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ABSTRACT 

Towards the last two-decade Artificial Intelligence (AI) proved its use on tasks such as 

image recognition, natural language processing, automated driving. As discussed in the 

Moore’s law the computational power increased rapidly over the few decades (Moore, 

1965) and made it possible to use the techniques which were computationally 

expensive. These techniques include Deep Learning (DL) changed the field of AI and 

outperformed other models in a lot of fields some of which mentioned above. 

However, in natural language generation especially for creative tasks that needs the 

artificial intelligent models to have not only a precise understanding of the given input, 

but an ability to be creative, fluent and, coherent within a content. One of these tasks is 

automated story generation which has been an open research area from the early days 

of artificial intelligence. This study investigates whether the transformer network can 

outperform state-of-the-art model for automated story generation. A large dataset 

gathered from Reddit’s WRITING PROMPTS sub forum and processed by the 

transformer network in order to compare the perplexity and two human evaluation 

metrics on transformer network and the state-of-the-art model. It was found that the 

transformer network cannot outperform the state-of-art model and even though it 

generated viable and novel stories it didn’t pay much attention to the prompts of the 

generated stories. Also, the results implied that there should be a better automated 

evaluation metric in order to assess the performance of story generation models. 

 

 

Key words: text generation, automated story generation, deep learning, transformer 

networks, convolutional sequence to sequence networks 
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1. INTRODUCTION 

Towards the last two-decade Artificial Intelligence (AI) proved its use on tasks such as 

image recognition, natural language processing, automated driving. As discussed in the 

Moore’s law the computational power increased rapidly over the few decades (Moore, 

1965) and made it possible to use the techniques which were computationally 

expensive. These techniques include Deep Learning (DL) changed the field of AI and 

outperformed other models in a lot of fields some of which mentioned above. 

However, in natural language generation especially for creative tasks that needs the 

artificial intelligent models to have not only a precise understanding of the given input, 

but an ability to be creative, fluent and, coherent within a content. One of these tasks is 

automated story generation which has been an open research area from the early days 

of artificial intelligence. According to Martin et al. (2018) “automated story generation 

is the problem of automatically selecting a sequence of events, actions, or words that 

can be told as a story” (p.2250). Because of its nature it is not like many other text 

generation tasks, since the generated text should have events, actions and characters 

which should be consistent within the generated story and in addition to that it should 

fulfil the primary concerns of automated story generation which are to create a 

meaningful, fluent and consistent story. The latest developments in Natural Language 

Processing (NLP), especially transformer networks (Vaswani, Shazeer, Parmar, 

Uszkoreit, Jones, Gomez & Polosukhin, 2017), made it possible to capture important 

information and allow parallelization  when generating the output. For automated story 

generation topic that means, capturing events, actions or important words for the story 

that is going to be generated. 

 

1.1 BACKGROUND 

A story conveys a sequence of events over time (Labov and Waletzky, 1997) and those 

events contains characters, locations, actions and sometimes subevents that occur 

within an event. The result of the events can lead to another event or conclude a story. 

Even for humans, story generation is a hard task which requires a set of skills and 

expertise. Automated story generation is a sub field of Natural Language Processing 

(NLP) which tackles the problem of giving a machine to generate stories like a human. 
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It is considered one of the key areas for creating a general artificial intelligence 

(Shapiro, 1992).  By hearing stories every day, we figure out how the world works. We 

order its events to search for meaning in them. This ability to craft, tell and understand 

stories has long been a hallmark of human intelligence and a long-term goal of 

artificial intelligence (Mehta, Gala & Kurup, 2016).  

NLP tasks such as machine translation, summarization or segmentation does not need 

to track events or actions that occurs within a story neither characters or locations nor 

the causal relationship that appears between events. However, for automated story 

generation it is crucial for a model to keep track of the concepts stated above and while 

doing so, be coherent and creative. Researchers have taken many different approaches 

to solve this problem.  

Before the latest developments in the field of Deep Learning most of the research 

conducted relied on human-based rules and planning which restricts the story 

generation to domains that are specified by the designer (Meehan, 1977;Lebowitz, 

1984). Some achieved good results on restricted domains and with human interaction 

involved in every step. Recent progresses in Deep Learning made it possible to 

generate stories in an open domain (Clark, Ji & Smith, 2018). Fan, Lewis and 

Dauphin’s attempt was reached outstanding results however “narratives still lacked 

coherence and human like outcomes and because of the convolutional sequence to 

sequence and fusion architectures focused on some aspects more than necessary 

concluded in repetition of words” (Fan et al., 2018). Although latest researches created 

fluent sentences, capturing the causal relationship between events, creating a coherent 

story which is consistent from beginning till the end still needs improvement. 

Essentially, it still remains an open question for the field of NLP. The aim of this paper 

is to enhance the latest successes on automated story generation field by applying a 

deep learning approach, the Transformer, which proved its success on several other 

NLP tasks. The success behind transformer networks is coming from their attention 

mechanism. It has been proved that when predicting the next word in a sequence 

transformer networks are capable of attending right words and capture the long-term 

dependencies which can solve the problem of seizing the causal relationships and by 

attending the right parts of the story at right moment it can provide a coherent 

narrative. 
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1.2 RESEARCH PROBLEM 

The model which can be considered as state-of-the-art, Fan, Lewis and Dauphin (2018) 

presented a novel approach with convolutional sequence to sequence (Gehring, Auli, 

Grangier, Yarats & Dauphin 2017) architecture and decomposed the decoder with 

attention mechanism (Bahdanau, Cho & Bengio, 2015) and created a fusion model 

with two of these architectures combined. The work also compared various state-of-

the-art seq2seq models to compare their model on a 300K dataset gathered from an 

online forum and improved the perplexity score and human evaluation scores on 

automated story generation dramatically. 

In this paper, those two evaluation metrics used by the Fan, Lewis and Dauphin (2018) 

is adopted for comparison. The first one is an automated evaluation technique called 

perplexity. Formally it is defined as “the geometric mean of the inverse of the per-

word likelihood” (Kobayashi, 2014, p. 797). This score shows how fluent the 

generated text is given the preceding words and the basic formula is two to the power 

of cross-entropy. The lower the perplexity score is the better the model. The second 

evaluation method is human evaluation which has two parts. The first part tests 

whether the story generated is relevant to the prompt that is given to the model or not. 

Second human evaluation is about comparing the quality of the stories generated by 

the models.  

“Can a transformer network used on Reddit’s WRITINGPROMTS forum dataset 

achieve statistically significant improvement on the perplexity score and human 

evaluation metrics prompt matching and blind model comparison test, presented in the 

paper of Fan et al., (2018), for automated story generation when a prompt is given, 

over the state-of-the-art Hierarchical Neural Story Generation model (Fan et al., 

2018)?” 

 

1.3 RESEARCH OBJECTIVES 

One objective is to do a comprehensive literature review on NLG techniques and 

automated story generation in order to understand the text generation techniques and 

their relationships with the story generation approaches proposed over time. Also, the 

evaluation methods proposed for text generation examined in order to comprehend the 
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methods that should be used for the comparison of the state-of-the-art model and the 

model that this paper proposes. Recent attempt by Fan, Lewis and Dauphin (2018) 

about the automated generation field, showed that attention mechanism (Bahdanau et 

al., 2015) combined with Seq2seq CNN architecture does a decent job tracking long-

term dependencies for a consistent story . However, stories still diverge from original 

course on some aspects and repeat some words or phrases occasionally because of the 

local aspects of convolutional part of the architecture.  

Another objective is to design an experiment which investigates instead of using the 

convolutional networks for tracking the long-term dependencies and for attending to 

the essential parts and having a decoder with attention mechanism to enhance its 

power, the transformer model solely without a fusion model architecture, which had 

been proven its use for tracking long-term dependencies, can or cannot yield to better 

perplexity and human evaluation results which leads to a more coherent and consistent 

story.  

Third objective is to evaluate the design with the perplexity automated metric and the 

human evaluation metrics defined in the paper (Fan et al., 2018). 

Last objective is to validate the design with Free-Marginal Fleiss’s Kappa (Rudolph, 

2005) for human evaluation results, report and discuss the results on two metrics 

perplexity and human evaluations.  

 

1.4 RESEARCH METHODOLOGIES 

For the purpose of having reliability and validity throughout the research and the 

results gained when conducting the experiment, the methodologies are clearly defined.  

The overall methodology used for this thesis is Knowledge Discovery in Databases 

(KDD) which is in broad terms, making sense of the data with the development of 

related methods and techniques (Fayyad & Uthurusamy, 1996). The investigation 

started with the selection of the appropriate data for automated story generation task. 

Then a pre-processing and transformation step was in place in order to prepare the data 

for the prerequisites of the model and according to the time and resource constraints 

allocated for this thesis. Those steps followed by constructing the model and 
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performing the experiment. Lastly, in order to gain knowledge, results gained by the 

aid of several evaluation methods examined and discussed. 

This research used existing data in order to compare the model built with another 

model that used the same data, thus it is a secondary (desk) research in addition to that, 

it is concerned about measuring and comparing the performance of the models built, 

with numerical evaluation approaches as a result quantitative methods are used. A 

systematic empirical investigation of the quantitative properties observed in order to 

build up intelligence about the field of research. This is accomplished by deductive 

reasoning which starts by constructing a theory, formulating a hypothesis based on the 

theory, gathering the data, in this case the data is collected and ready for the research, 

conducting an experiment then examining the results of the experiment for approving 

or rejecting the constructed theory. 

The data that used in this investigation was Reddit’s WRITINGPROMPTS1 dataset. 

Reddit is a social sharing website where users share a content and based on its 

popularity those contents rise to the top, making others become less visible. 

“WRITINGPROMPTS is a community where online users inspire each other to write 

by submitting story premises, or prompts, and other users freely respond. Each prompt 

can have multiple story responses. The prompts have a large diversity of topic, length, 

and detail” (Fan et al., 2018, pp. 2251). Respected writers of the community share 

prompts and others write short stories about those prompts. Main constraints about 

writings are, the proposed story should have more than 30 words, plagiarism results in 

a ban so all stories are unique and off-topic writing is not allowed all stories checked 

regularly by the administrators thus, consistency among prompts and stories are 

ensured. The dataset is available online and gathered from here 2.  

Once collected, stories trimmed to 1000 words and vocabulary size for prompts and 

stories restricted to 19,025 and 104,960 respectively. The average length for the 

prompts and stories 28.4 and 734.5 respectively and validation and test set were set to 

5% (Fan et al., 2018). Tokenization of the dataset is done with Byte-Pair Encoding 

tokenization method proposed by Sennrich, Haddow, and Birch (2016). The maximum 

 
1 https://www.reddit.com/r/WritingPrompts/ 

2 https://github.com/pytorch/fairseq/tree/master/examples/stories 

https://www.reddit.com/r/WritingPrompts/
https://github.com/pytorch/fairseq/tree/master/examples/stories
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length of tokenized prompts and tokenized stories are 71 and 1157 respectively 

therefore the input of the transformer model is a vector of the size 71 and the output 

vector has size of 1157. Once the model is trained the perplexity scores of a various 

test sets calculated, and its distribution was compared to the state-of-the-art model’s 

perplexity scores, therewithal the human evaluation. To ease human evaluation the 

generated stories are limited to 150 words and scientific measures were in place for 

human evaluation methods in order to have accurate comparison of those quantitative 

methods. 

1.5 SCOPE AND LIMITATIONS 

The scope of this thesis is the automated story generation (Li, Lee-Urban, Jonston & 

Riedl, 2013) which is a subfield of Natural Language Generation using deep neural 

networks.  

Based on a given topic the model generates stories; the inputs are prompts and outputs 

are corresponding stories. Since the purpose of this paper is to compare the model 

designed and the state-of-the-art model, the dataset used for both models should match 

in order to have significant comparison. At training time, due to the lack of time and 

resources 50000 instances were used and the length of the prompts were 71 and, 

generated stories were limited to 500 words. The reason behind that is the complexity 

per layer for a transformer network is roughly O(n2.d) for self-attention layer (Vaswani 

et al., 2017) where n is sequence length and d is the dimension of the layer. With 

50000 stories the dimensions of the input and output are 71 columns and 50000 rows 

and 500 columns 50000 rows respectively, it took two weeks to train the network, thus 

there was no time for tuning the hyperparameters of the model because of the time 

allocated for the dissertation. Also because of the length of the stories the node on the 

server that this model was trained on gave memory error for more than 50000 prompts 

and corresponding stories with 500 length. Even for 50000 data instances the model 

was using 400gb ram on a single GPU. 
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1.6 DOCUMENT OUTLINE 

The rest of this thesis is outlined below. 

Chapter 2 – Review of Existing Literature 

This chapter is dedicated to the literary review of previously examined venues of 

research that investigated text generation and the subfield of it, automated story 

generation. The initial methods used in text generation and story generation, early 

machine learning attempts and recent deep learning methods discussed and compared. 

Recently proposed NLG models analysed and deeply examined, using that information 

a state-of-the-art model which solved some problems in this area such as translation, 

language understanding, introduced in an expectation for outperforming the state-of-

the-art model (Fan et al., 2018) for automated story generation. 

Chapter 3 –Design and Methodology 

This chapter provides insight to the experiment that was conducted, in order to test the 

hypothesis and eliminate the gaps that have been defined in Chapter 2. It underpins an 

inclusive clarification to the design process of the experiment and methods to evaluate 

the performance of the proposed model and compare it to the state-of-the-art model 

specified in Chapter 2. 

Chapter 4 – Results, Evaluation and Discussion 

The results of the experiment are presented here, and the performance of the model is 

evaluated also compared to the state-of-the-art model described in Chapter 2. Design 

flaws that led to inaccurate results and possible improvements that may guide to build 

a better automated story generation model is discussed. 

Chapter 5 – Conclusion 

In this chapter, the results, observations and insights gathered throughout this 

investigation is summarized, further research that can be carried out as a potential 

extension to this paper is presented. 
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2. LITERATURE REVIEW 

2.1. NATURAL LANGUAGE PROCESSING 

“Computational linguistics, also known as natural language processing (NLP), is the 

subfield of computer science concerned with using computational techniques to learn, 

understand, and produce human language content.” (Hirschberg & Manning, 2015). 

Essentially, NLP is an area that starts with modifying the spoken or written language 

into structured data that computers can understand then creating a system that responds 

back according to the task given to them by humans. Some NLP tasks are machine 

translation, text summarization, text segmentation, question answering and some 

subjects that require creativity such as poem or story generation. 

One of the first task that NLP paid attention on was machine translation. Hutchins 

(2000), stated that Warren Weaver was the pioneer in machine translation which 

started in 1946 for translating enemy language. However, those were systems similar 

to dictionary look up, so they lacked capturing the semantics or the arrangement 

between words. Therefore, in early years of NLP scientists tried to create a set of rules 

describing the human language and vocabulary that machines can understand and 

interpret. Chomsky (1965), created a syntax that is considered one of the first 

grammars or a set of rules for the field. Grammars such as the one Chomsky created 

were indispensable for language understanding processes such as semantic 

interpretation and made it possible to create applications such as ELIZA 

(Weizenbaum, 1966) which is an early dialogue system that replicates the dialogue 

between a psychologist and a patient. 

However, until 1990s NLP systems were based heavily on hand crafted rules, the data 

was limited which restricted the vocabulary used to build those systems and more 

importantly computational power was limited. Efforts done by linguistic data 

consortium (LDC) made it possible to have digital copies of written documents and 

with the arrival of internet made many statistical models feasible for NLP. By the time 

of 2000s the increase on the computational power shifted this area towards the Deep 

Learning as some researchers proved its use on NLP (Bengio, Ducharme, Vincent, & 

Janvin, 2003 ; Schwenk & Gauvain, 2005).  



 

9 

 

NLP has two major subtasks which are Natural Language Generation and Natural 

Language Understanding. There must be a clear distinction between NLU and NLG in 

order to avoid confusions that might be occur later. “Natural language generation is the 

process of mapping internal computer representations of information into human 

language, whereas natural language understanding is the process of mapping human 

language into internal computer representations” (Reiter & Dale, 1997). So, they can 

be considered as opposite sides of NLP, NLU is concerned about comprehension thus, 

makes analysis of text however NLG is about construction and planning not analysis 

(McDonald, 2010). In this manner, the generator can be viewed as “the equivalent of a 

person with something to say. Its work begins with the initial intention to 

communicate, and then on to determining the content of what will be said, selecting 

the wording and rhetorical organization and fitting it to a grammar, through to 

formatting the words of a written text or establishing the prosody of speech” 

(McDonald, 2010).  

 

2.2. NATURAL LANGUAGE GENERATION 

NLG is considered as one of the subtopics of Natural Language Processing. A broad 

definition of NLG made by Reiter & Dale (1997, p. 57) “the subfield of artificial 

intelligence and computational linguistics that is concerned with the construction of 

computer systems than can produce understandable texts in English or other human 

languages from some underlying non-linguistic representation of information”. Despite 

the efforts such as Reiter & Dale (1997) to define NLG precisely, still there are 

contradictions among researchers. The reason behind that is the input of the text 

generation. Depending on the task to be performed and type of the input it has different 

applications such as text-to-text, image-to-text etc. It is obvious that the output has to 

be text, but the input types are diverse (McDonald, 1993). Although input types can be 

diverse most NLG tasks have text as input. Some of the NLG tasks outlined below. 

• Free form Question-Answering 

• Image Captioning 

• Dialogue (chit-chat or task-based) 

• Grammar correction 
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• Story generation 

• Poetry generation 

• Joke and pun generation 

Conventionally, the problem of generating text from a given input divided into  

subproblems to simplify the process. Most common sub problems from determining 

the information needed to generating text are presented below. 

 

• Content determination: Determining the information involved in the 

generated text. 

• Text structuring: Deciding the order of the information presented in the 

generated text. 

• Sentence aggregation: Selecting, structuring and ordering the information to 

present in the individual sentences. 

• Lexicalisation: Finding the words and phrases that should be included in the 

text to articulate information. 

• Referring expression generation: Selection process of words to determine the 

way of referring the entities.  

• Linguistic and structure realisation: Generating the final text by linking the 

words, terms and phrases taking the requirements under consideration. 

 

Early approaches to solve the text generation problem relied heavily on solving these 

tasks. After the invention of internet and increase in data, data-driven statistical 

methods gained power thus, the research on this area shifted to machine learning and 

deep learning methods which blurred the boundaries between these tasks. Nowadays 

most of the state-of-the-art NLG models are using deep learning. 

 

2.3. NLG APPROACHES AND ARCHITECTURES 

Over the years, many approaches presented to solve the NLG problem and most 

common NLG sub problems outlined in the previous section. Early approaches relied 

on symbolic or knowledge-based methods (Reiter & Dale, 1997), however data-driven 

methods proved their success after the access to the data became easier and some 
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methods incorporated statistical learning in them to generate outcomes that were less 

dependent on human interaction and domain restrictions. For the sake of this paper, 

NLG approaches divided into three broad groups. First one is defined as modular 

approaches which are grouped together by the common architecture they used which is 

a reference pipeline architecture is shown in Figure 2.3-1, has roots in early sequential 

approaches in the field (Dale, Mellish, & Zock, 1990) and it was first demonstrated by 

Reiter (1994).  

 

 

Figure 2.3-1 NLG system architecture Reprinted from “Building applied natural language 

generation systems,” by E. Reiter and R. Dale, 1997, Natural Language Engineering, 3, page 

number. Copyright 1997 by Reiter, et al. 

 

Second group is named as planning-based approaches which are based on planning 

which is a process of selecting the actions to be performed for reaching a specified 

goal, and the last part focused on machine learning and deep learning approaches. 
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2.3.1 Modular Based Approaches 

Reiter (1994) taken most early approaches into account when proposing a general 

architecture for the NLG field which is shown in Figure 2.3.1-1.  The modules in the 

pipelines accommodates some combinations of sub-tasks examined in Section 2.3.  

 

 

 

 

 

 

 

Figure 2.3.1-1 Modular architecture pipeline that incorporates sub problems from Section 2.3 

Document Planner pays attention to the decision of “what to say”, in this manner it 

tries to solve the text structuring and content selection problem. As McDonald (1993) 

pointed out it deals with the strategic generation. The output of Document Planner 

which is a text plan serves as an input to the Sentence Planner (Microplanner). 

Sentence aggregation, lexicalization and referring expression generation are the main 

problems that Sentence Planner is concerned about (Reiter & Dale, 1997). Since 

Document Planner deals with the problem of “what to say”, Sentence Planner takes it 

one step forward and it focuses on “how to say it”. What remains is the generation of 

text which is the problem of “literally saying it”. Surface realiser is concerned about 

the linguistic and structure realisation sub problem which solves that sub problems by 

taking grammar of the language and its rules into account which results into the final 

text. The Sentence Planner and Surface Realiser performs the tasks that identified as 

the tactical generation. 

The first module, the Text Planner (or Document Planner, or Macroplanner), combines 

content selection and text structuring (or document planning). Thus, it is concerned 

mainly with strategic generation (McDonald, 1993), the choice of ‘what to say’. The 

resulting text plan, a structured representation of messages, is the input to the Sentence 

Planner (or Microplanner), which typically combines sentence aggregation, 

lexicalisation and referring expression generation (Reiter & Dale, 1997). If text 

Document Planner 
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Referring expression 

generation 
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structure 
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planning amounts to deciding what to say, sentence planning can be understood as 

deciding how to say it. All that remains then is to actually say it, i.e., generate the final 

sentences in a grammatically correct way, by applying syntactic and morphological 

rules. This task is performed by the Linguistic Realiser. Together, sentence planning 

and realisation encompass the set of tasks traditionally referred to as tactical 

generation. 

The pipeline was widely used because of the clear distinction it made among the 

assignment of sub problems to modules and describing the proceeding sub problems 

for information (Smedt, Horachek & Zock, 1996). Systems such as CORAL and SUM-

TIME-MOUSAM (Dale, Geldof & Prost, 2003 ; Reiter, Sripada, Hunter, Yu, & Davy, 

2005) inherited modular approach which are route finding and weather forecasting 

generator systems respectively. When the architecture starts working the 

representations are created at the Document Planner stage then passed to the Sentence 

Planner and at last those internal representations transferred to the Surface Realiser in 

order to create the actual text. As discussed above those modules solves specific sub 

problems of NLG with various approaches which are examined alongside with the 

details of modules, in the next sub sections. 

1.1.1.1  Document Planner  

Document Planner involves messages which are grouped together by considering the 

requirements of the domain that the system is trying to build and represented as trees 

whose leaf nodes specifies individual messages. The messages are built by changing 

and outlining input data, labelling the entities, concepts and relationships gathered 

from the domain (Reiter & Dale, 1997). There are several approaches taken in order to 

solve the two sub problems, content determination and text structuring involved in the 

module of Document Planner. 

Many researchers taken the reasoning approach for solving the content determination 

problem .Allen & Perrault (1980) recommended a plan recognition to solve that 

problem however that approach required sophisticated reasoning and vast among of 

knowledge about the world and the user because many different plans require similar 

request of information. Even though there are many investigations conducted about 

plan recognition, no real-world applications of NLG systems noted about that approach 
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because of the reasons stated above (Reiter & Dale, 1997). Another approach is to 

have domain-specific rules for the information to be included when determining 

content. Most used process for this is examining text with pre-determined operations 

based on the domain which is very similar to the knowledge acquisition task 

investigated by Scott, Clayton, & Gibson (1991). 

The second sub problem in Document Planner is text structuring which is structuring 

the content produced by content determination in order to have coherent text. While 

content determination focusses on what information should be included in the text to 

be generated, text structuring determines the organisation of structure to create 

meaningful output. There is no agreement upon a de facto text structuring in the field, 

in most cases the text structure created is domain specific. To solve the second sub 

problem text structing in Document Planner, two main approaches proposed. First is 

planning-based approach which is in broad terms, for reaching a specific target 

determining a sequence of actions. Here the target is to create a coherent text structure 

and the actions are plans that should be in place in order to reach that target. The text 

should be structured by putting the right messages one after another so there must be a 

plan in place for having a knowledge of which information comes one after another. 

NOAH (Nets of Action Hierarchies) proposed by Sacerdoti (1977) takes the problem 

presented to it and applies series of pre-defined actions in an initial state of the world. 

First it creates a one-step solution then expands it further progressively to have a 

deeper more detailed solution then plans are represented as partial orderings of actions. 

Essentially, it is a system of hierarchical planning that used artificial intelligent style 

planning operators that has rules to what message should be used in where in order to 

have a coherent text. Many approaches came after based on NOAH (Cawsey, 1993 ; 

Hovy, 1991 ; Maybury, 1992 ; Moore & Paris, 1993) however the usage of procedural 

semantics for taking care of specific domain problems and their reliance on customized 

planning made them unprincipled and difficult to analyse. In addition to that, there are 

no rules specified for them to generate incorrect plans, they have redundant steps in 

their planning and, sometimes they fail to find plans in situations where they exist 

(Young & Moore, 1994). DPOCL system proposed by Young and Moore (1994) in 

order to overcome these problems by two new properties completeness and soundness. 

Completeness ensures that there is a plan for all situations that might occur and no 

incorrect solutions when creating the text structure, soundness create steps in a plan in 
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a way that steps in a plan doesn’t interfere with each other and redundancy is not an 

issue. Around the time that modular approaches were used, because of the 

computational power and the lack of knowledge about the text structuring space, made 

it difficult to create real world applications that uses planning for text structure. The 

approach that was widely used in modular systems is schema-based approach. Since 

the approach is domain specific, it can be easily adopted to real world applications. A 

relatively small number of patterns can be extracted in order to satisfy the needs of text 

structuring and these patterns discovered by a thorough analysis of the corpus 

determined by content selection and, with the aid of domain experts. The patterns 

involve the order, relations and words to connect messages. Most widely accepted 

approach is SCHEMA, is “a computational model of discourse strategies encoding text 

organization” which is developed to guide the generation process in order to decide 

what to say next (McKeown, 1985).  

1.1.1.2  Sentence Planner  

Sentence Planner consists of the NLG subproblems sentence aggregation, 

lexicalization and referring expression generation which are inter-related however 

separate tasks which broadly concerns about syntactic structure of the text and the 

decides how to merge them together into one or more sentences (Walker, Rambow, & 

Rogati, 2001). There are various concepts proposed in order to solve the three sub 

problems related to NLG which eventually means constructing the Sentence Planner. 

Sentence aggregation tries to solve the problem merging two or more messages in 

order to create a sentence. As mentioned in the beginning of Section 2.3.1.1 the output 

of the Document Planner are trees which includes leaf nodes that consists of specific 

messages. Sentence aggregation takes those messages in the leaf nodes as input and 

combines them to form sentences. Which message should the sentence contain and 

how should those messages represented in order to be syntactically correct, must be 

determined by the sentence aggregation sub problem. Sole approach to solve this 

problem is to create a set of rules which is decided by examining a corpus to have a 

grasp about the aggregations appeared in it. Those rules the applied to the NLG system 

to have similar aggregations that are extracted from the corpus. After this process 

lexicalization and referring expression generation takes place which concerns about 
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selecting the right words for referring to an entity or expressing a concept related to the 

domain respectively. Like sentence aggregation they are both essential for having a 

coherent and fluent text, the better those concepts get the better the reader comprehend 

the generated text however bad lexicalization and referring expression generation can 

still produce understandable text.  

Lexicalization covers the problem of expressing a concept related to the domain. In the 

following sentence “TUDublin city campus will be relocated to Grangegorman in 

2020” the word relocated probably referred as a relation and defined as “RELOCATE” 

in the message. In order to express the concept lexicalization mapped the relation 

relocate into “relocated” it can also map it into “moved”. An early approach to solve 

this problem is using decision trees for choosing the right expression of concepts 

depending on the rules of the domain and syntax (Goldman, 1975). This approach 

however is monolingual and needs to be reconstructed for another languages and 

cannot deal with more than one language which means it is not possible to use that 

approach for machine translation. A frequent approach to solve the lexicalization on 

both mono and bilingual NLG tasks is to treat the message as a graph which consists of 

concepts in the domain and relations and map that graph into another graph which can 

be identified as an output graph that includes the words and the syntax of relations. To 

do that researchers developed dictionaries that consists of the concepts in the domain 

and relations which is mapped into a structure that has various words and 

representations, when executing the matching of the input and output occurs to get 

results (Nogier & Zock, 1992 ; Stede, 1996).  

Referring expression generation is the problem of deciding how to refer or describe the 

entity for the reader to understand which entity this sentence is referring to or 

describing. In the following sentences “TUDublin is moving to Grangegorman, it will 

be one of the best campus in Ireland. The demand for this university will definitely 

increase.” the entity TUDublin referred as third times, first with its original name, 

second with “it” and third since the entity had been stated with its original name before 

“this university” is used. Those decisions are the responsibility of referring expression 

generation. Most of the work done to identify these relationships between the first 

introduction of entity and pronouns are based on conditional clauses. If the entity 

should be used which is decided based on the information of other words around it, 
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hasn’t introduced then use its name, if it is introduced select a noun that describes it 

and if necessary add adjectives or similar distinguishers to separate it from the other 

objects (Mani & Dale, 1995).  

1.1.1.3  Surface Realizer  

Surface realizer involves only linguistic realization which is the last part in the 

modular approach. Its task is to take the relevant words and phrases and link them in a 

way to generate grammatically correct sentences. The problem that needs to be solved 

is the right ordering of the words and generating right morphology. Usually, it needs to 

modify its input by adding auxiliary words, prepositions and punctuation marks. One 

of the first approaches taken to solve this problem is to create templates to specify 

outputs. It is domain specific, can be used for relatively small domains and when low 

deviation in the sentences is expected. The reason for those limitations is, this 

approach creates templates that are fixed other than the words which comes from the 

output of the lexicalization and referring expression generation (Mcroy, Channarukul, 

& Ali, 2003). An example sentence in a template can be “Weather will be 

$weather_type in $city on $weekdays”. Marked parts are the outputs of the Sentence 

Planner which can be “rainy”, “Dublin” and “Sunday” and other parts are fixed. For 

having a general-purpose realization module hand coded grammar system proposed, 

which in broad terms make the decisions based on the grammar of a language. Early 

grammar-based realizers the grammar and its rules are written by hand, some examples 

are KPML (Bateman, 1997) and RealPro (Lavoie & Rambow, 1997). Since they 

require the whole grammatical and semantic information of a language it was a hard 

task to prepare them for a real-world scenario. Because of this, researchers proposed a 

hybrid method which combine templates with hand coded grammar systems. In the 

approach the realisation supplies the morphology and syntax however the decision 

making is left to the developer (Vaudry & Lapalme, 2013).  Another widely used 

approach is statistical which obtains a large corpus and extracts the probabilistic 

information of grammars which decrease the amount of manually hand coding while 

extending the amount of knowledge gathered. One approach proposed by Langkilde 

(2000) creates a hand-crafted grammar for all possible representations which is 

demonstrated as a forest then relied on statistical models to build a stochastic re-ranker 

to perform ranking (Stent & Srinivas Bangalore, 2014). Despite of being effective that 
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approach is computationally expensive, so another method is proposed which makes 

statistical decisions at the very end generation level. The approach defined by Belz 

(2008) as “a language generation framework that was developed with the aim of 

providing the formal underpinnings for creating NLG systems that are driven by 

comprehensive probabilistic models of the entire generation space (including deep 

generation)”. It creates most probable sentence using a context-free grammar, which 

handles the decision-making process statistically in order to find the optimal solution.  

2.3.2 Planning Based Approaches  

Modular approaches are easy to comprehend because of the distinction it made among 

the sub problems of NLG however there were some difficulties observed when using 

modular approaches. One of the first problem encountered was the generation gap 

(Meteer, 1991) which are the confusions between the strategic and tactical generation 

parts. For instance, at the strategic stage an ordering can be determined but when 

linguistic realizer starts to produce the actual text that constructed ordering become 

obscure (Inui, Tokunaga & Tanaka, 1992). Another problem is the constraints 

problem. There can be some constraints regarding to the text to be generated which can 

be defined in the early stages in development such as content determination or text 

structuring however it was discovered that controlling if those constraints met cannot 

assessed until the generation of text. This is discussed in a study conducted by Reiter 

(2000) and grounded with an example in the beginning of the study which is “Some 

types of documents need to meet size constraints, such as fitting into a limited number 

of pages. This can be a difficult constraint to enforce in a pipelined natural language 

generation (NLG) system, because size is mostly determined by content decisions, 

which usually are made at the beginning of the pipeline, but size cannot be accurately 

measured until the document has been completely processed by the NLG system”. In 

addition to that, when trying to create a general-purpose system since all the modules 

must have sub systems to conduct it was computationally expensive. Those problems 

stated above led researchers to seek different solutions to text generation problem. The 

approaches discussed on this and the next section blurred the boundaries between the 

modules and involves methods that intended to solve all sub problems with one 

architecture. With an unlimited space of actions planning approaches can pass through 

the boundaries represented in the modular approaches (Gatt & Krahmer, 2018). It can 
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solely decide on “what to say” and “how to say it” and actually saying it in the same 

system.  “In the subject of AI, planning refers to determining a sequence of actions that 

are known to achieve a particular objective when performed” (Inder, 1996, pp. 23). It 

is the method for determining a sequence of one or more actions in order to reach a 

particular goal. The main goal can be divided into sub goals, accomplished by actions 

which has pre-determined conditions and effects (Fikes & Nilsson, 1971). The 

methods used in the planning process may differ however the fundamentals which 

involves the initial state, state transition system and goal expressed in every method 

(Garoufi, 2014) and defined below.  

• Initial state: In a formal logic-based language the initial state impose which 

propositions are true during the stage of planning. 

• State transition system: When transitioning from one state to another, state 

transition system defines the changes occur in the world according to the 

consequences of actions. The preconditions in the actions determine whether 

the actions can be carried out according to the state of propositions, then 

specify the changes made to the propositions after the execution. 

• Goal: Goal is the state or states which the system tries to reach eventually after 

carrying out several actions. 

The aim of the planner is to arise with specific actions which are actions when 

performed, guides the planner from initial state to the goal and that solution is called a 

plan (Garoufi, 2014).  

Planning methods were first used for building a plan for physical actions one of the 

first study that investigated whether the planning can be used for text generation is a 

paper by Cohen and Perrault (1979). They sought to find a definitive formulation of 

plans containing preconditions for speech acts with the aid of Searle’s formulation. 

One other early study which cut across the borders of modular approaches was KAMP 

(Appelt, 1985) which was in broad terms modelling the user's beliefs and goals. It 

maps the mutual beliefs and intentions of the speaker and the hearer and uses a 

planning system for producing the utterances (Paris, 2015, pp. 158). The system 

created sub-goals according to the mapped beliefs and intentions and, used those from 

the initial state of the system till reaching specified goals. If a comparison made 

between KAMP and modular approaches, the initial state begins from the Document 
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Planner and ends with Surface Realiser, and KAMP solves those tasks in one system. 

Solely using planning means giving the system the ability to do decision-making at 

every step which requires deciding on the rules of grammar. Since the possibilities for 

deciding about the syntax, morphology and semantics require a huge action and state 

space the computational expense becomes infeasible.  

Rather than unrestricted reasoning, using a linguistic framework for the planning 

process was considered a solution for speeding up the operations. Some early 

investigations in modular approaches such as KPML (Bateman, 1997) which uses 

planning to solve linguistic realization, is based on Systematic-Functional Grammar 

(Halliday & Matthiessen, 2004) that is considered as a baseline for creating a planning 

approach through grammar. More recent approach is adapting planning into the 

grammar and treating linguistic structures as planning operators. This requires 

grammar formalisms which integrate multiple levels of linguistic analysis, from 

pragmatics to morpho-syntax (Gatt & Krahmer, 2018). Lexicalised Tree Adjoining 

Grammar - LTAG (Joshi & Schabes, 1997) is considered as a common method for 

planning based approaches. For LTAG to generate smooth text based on the semantic 

preconditions and the goals that it will satisfy when the specified text is generated 

semantic information was combined with the linguistic structure (Garoufi & Koller, 

2013).  

2.3.3 Machine Learning Approaches  

In spite of having a various of planning approaches available for practical use, as 

indicated by Koller and Petrick (2011) planners spend considerable amount of time on 

pre-processing only after pre-processing they tend to produce efficient results, in 

addition to that there are still aspects that needs human interaction which made the 

systems dependent to human interference and the skills of its developer. A vast 

increase in available data in almost every field of AI made it possible for researchers to 

fully utilise data-driven solutions one of which and probably the most common is 

machine learning. Despite the popularity it has today, it is an old field. The inventor of 

the term “Machine Learning” Arthur Samuel described it as “the field of study that 

gives computers the ability to learn without being explicitly programmed” (Samuel, 

1959). It is an interdisciplinary field that combines computer science with statistics. 

The broad purpose of machine learning is learning from past experience in order to 



 

21 

 

improve future performance (Kumbhar & Kunjir, 2017). Learning term in machine 

learning models stands for, extracting and enhancing the knowledge hidden in the data 

and adjusting themselves to accomplish the task that is presented to them. In other 

words, “a computer program is said to learn from experience E, with respect to some 

task T and some performance measure P, if its performance on T, as measured by P, 

improves with experience E” (Mitchell, 2017). A high-level pipeline of machine 

learning models starts with data preparation then training of the model for adjusting its 

parameters for representing a general function for the data and finally testing the model 

with new instances in order to assess its performance. There are several learning 

paradigms proposed for machine learning models and most common of those 

discussed below. 

 

• Supervised Learning: This learning method assumes that the category 

structure in the data is intact and the models that use supervised learning 

demands labels and the instances present on the data that correspond to them in 

order to determine a function that maps the instances to the class labels. 

• Unsupervised Learning: There is no knowledge of pre-determined labels to 

figure out which instance in data belong to which class. Instead of creating a 

function that maps the instances to class labels , unsupervised learning models 

concerns about extracting the existing clusters or patterns in the dataset and its 

aim is, when a new instance is present, mapping it to the correct cluster that 

was defined at training time. 

• Reinforcement Learning: It is learning what to do in order to maximize the 

reward signal by mapping situations to actions. There are no instructions given 

to the model about which actions it should take in order to reach the ultimate 

reward instead it discovers actions that yield the most reward by trial and error 

(Sutton & Barto, 2018, pp. 1). This is a learning technique not only designed 

for machine learning purposes, it can be used in machine learning, planning, 

operations research etc. and has different names related to its use such as 

dynamic programming. 

 

Machine learning models or statistical models which was what some researchers called 

them in early days in the field, tend to improve in performance with more data 
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presented to them. There are various machine learning approaches presented in order 

to solve the NLG problem in various tasks. 

Since decision-making in text generation is choosing the right choice when dealing 

with the sub problems of NLG such as choosing the right structure, pronoun or word 

etc. it can be viewed as a classification model. In order to do that a cascade of 

classifiers can be built in order to construct the output incrementally where the next 

classifier uses the output of the previous classifier as an input (Daelemans & Van den 

Bosch, 1998). Marciniak & Strube (2005) used LTAG (Joshi & Schabes, 1997) to 

represent text in grammatical form and used decision tree classifiers (C4.5) that at any 

stage of generation produced most probable output which then passed onto the next 

classifier. That approach used classical pipeline system described in Section 2.3.1 and 

compared with integer linear programming to integrate decisions involved in every 

step, which uses Naïve Bayes algorithm with reinforcement learning.  

Most of the machine learning models are built for classification or prediction of 

continuous values such as decision trees, support vector machines and linear 

regression. However, text is a discrete type of data and text generation requires delicate 

planning and may involve classification at some steps as discussed above however 

when generating there are not many suitable machine learning architectures proposed 

for NLG especially long text generations such as story generation. However recent 

focus on deep learning created models that can handle discrete data and has the power 

of capturing the semantics, grammar and linguistic structures which required delicate 

planning and human interaction before. 

 

2.3.4 Deep Learning Approaches 

The expression “Deep Learning” first proposed by Aizenberg, Aizenberg and 

Vandewalle (2000), is a subfield of machine learning which “allows computational 

models that are composed of multiple processing layers to learn representations of data 

with multiple levels of abstraction” (LeCun, Bengio, & Hinton, 2015, pp. 436). Most 

of the models built in deep learning based on neural networks which was first proposed 

by McCulloch and Pitts (1943). They consist of simple processing units which are 

called perceptrons that calculate a function of their input. A perceptron or neurons may 
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not achieve much but when integrated into a complex architecture they become quite 

powerful. Both perceptrons and neural network shown in Figure 2.3.3-1. 

  

Figure 2.3.3-1 Basic structure of Perceptron (left) and Neural Network (right) 

 

Over the years many functions put to work inside the neuron of a network but 

originally first the linear regression of the input values and weights are calculated then 

passed to an activation function which is a sigmoid function. The activation function 

computed in order to get the hypothesis (output) of the neuron. The activation function 

pushes the result of linear regression into 1 or 0 which means it decides if the 

calculations made inside the neuron should or shouldn’t passed to the following layers. 

The power of the neural networks comes from ability to build non-linear models 

without the manual encoding of higher order featuring from its base features. The 

network itself looks at building these high order features as a part of its training 

process. The advantage of this there is no need for the developer of the neural 

networks to construct high order features and decide which ones are useful, the 

network will only create high order feature that are shown to have effect. The training 

process of the network has two parts, first one is forward propagation which means 

feeding an input into the system and from left to right doing the necessary calculations 

till the prediction is produced, the second one is backpropagation which is calculating 

the error produced when the system makes a prediction and back propagating it 

through the network for adjusting the trainable parameters of the network in order to 

make better predictions next time. The backbone of the training process is 

backpropagation because without it network only does predictions and cannot learn to 

build better ones. The perceptron, the neural network architecture and propagations 

form the baseline for deep neural networks which used in deep learning. In order to 

call it “deep” it must have more than one hidden layer. 
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Despite of the recent impact made by deep learning into the NLG field, neural 

networks had been investigated in various studies in terms of generation such as the 

paper by Kukich (1987), however due to the lack of computational power and data till 

2010s the research on neural networks was limited. Due to the increase in hardware 

that can support the intensive computations required for deep neural networks such as 

GPUs and the creation of frameworks that comes with the backpropagation and recent 

improvements in deep learning (i.e. Geoffrey Hinton and his teams implementation of 

backpropagation to Tensorflow framework in 2009) made it possible to use deep 

neural networks in many fields of AI one of which is NLG. The advantage of deep 

neural networks on NLG is, they are great at capturing grammar and semantics which 

made several early hand crafted rule based approaches for identifying grammatical 

structure and semantics in languages obsolete (Mikolov, Chen, Corrado & Dean, 2013 

; Pennington, Socher, & Manning, 2014). 

In the last two decade many approaches, and architectures related to deep learning 

proposed in order to solve the NLG problem including sequential models that use 

several architectures including feed-forward networks (Bengio et al., 2003 ; Schwenk 

& Gauvain, 2005), recurrent neural networks (Mikolov, Karafiat, Burget, Cernocky & 

Khudanpur, 2010) and its variations long short-term memory (Hochreiter & 

Schmidhuber, 1997) and gated recurrent networks (Cho, Merriënboer, Gulcehre, 

Bougares, Schwenk & Bengio, 2014), transformer neural networks (Vaswani et al., 

2017) and convolutional networks combined with some other features such as attention 

(Gehring et al., 2017). Main benefit of these architectures is they are capable of 

processing text with multiple lengths avoiding both data sparseness and explosion in 

the number of parameters through the projection of histories into a low-dimensional 

space, so that similar histories share representations (Gatt & Krahmer, 2018). 

One other architecture followed the footsteps of sequential models is the encoder-

decoder architecture which enabled end-to-end approach to map sequences to 

sequences (Seq2Seq) (Sutskever, Vinyals & Le, 2014). The intuition behind this 

approach is the encoder maps the sequence to a vector of a fixed dimension which is 

then passed to the decoder in order to decode into another sequence and Sutskever et 

al., (2014) used long short-term memory (LSTM) to do those operations and also there 

are other studies that used encoder decoder architecture that are combined with other 
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networks (Gehring et al., 2017 ; Vaswani et al., 2017). Despite valuable studies in 

tasks such as machine translation (Kalchbrenner & Blunsom, 2013) if the input text is 

more than one sentence or a long text such as articles, an encoder decoder model may 

need some information from previous sentences at encoding in order to decode 

properly for the given task however there was no significant results reported that uses 

vanilla encoder decoder architectures for long text that include more than one sentence. 

The reason for that is when the network is encoding it forces all the information 

captured from the input text to be stored in the encoded vector and as shown in Figure 

2.3.3-2 it is the only connection between the encoder and decoder thus, the decoder 

generates text according to the information it gets from the encoded vector. However, 

for long texts the network puts too much pressure into the encoded vector which 

results in an information bottleneck (Bahdanau et al., 2015). Essentially, by the time 

the encoding process gets to the end for long input text, since the network forces all the 

information gathered from the long process of encoding the input, the encoded vector 

might lose some valuable information presented at the early stages which results in 

poor decoding. 

 

 

Figure 2.3.3-2 A high-level illustration of encoder decoder architecture 

In order to solve this problem Bahdanau et al., (2015) presented a structure called 

attention which implemented inside the encoder decoder architecture. The difference 

of attention based encoder decoder model is when the model is doing generation at 

every step of decoder, in addition to gathering information from the encoded vector, 

using a direct connection to every vector in encoder should result in attending the 

important parts of previous sentences in order to generate next words in the sequence 

properly. This proposal adopted by several text generation approaches one of which is 

a study proposed by Serban, Sordoni, Bengio, Courville, & Pineau, J. (2016). They 

used encoder to capture the dialogue context and utterances and decoder to predict the 
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next word in the sequence which reached results close to the state-of-the-art models. 

Despite their success dealing with long texts there were some other problems. In order 

to track long term dependencies, they used attention mechanism at every sequence in 

the encoder layer and dependencies on the computations made at the previous steps of 

the network which doesn’t allow parallelization thus, for example at training time the 

backpropagation needs to be done through time which slows down the training process 

substantially (Gehring et al., 2017). Also, because of that reason those networks need 

serious amounts of computational power for storing and reusing that information. This 

resulted in inefficient use of hardware thus it brought many difficulties to implement 

them into real world scenarios. 

One approach to solve this problem was presented by Gehring et al., (2017) which uses 

convolutional neural networks to implement parallelization, gated linear units to ease 

the gradient propagation and attention modules in the decoder. That convolutional 

seq2seq model outperformed LSTM models in both performance and efficiency in 

various tasks. Because of their efficient structure they used in various long text 

dependent tasks such as story generation (Fan et al., 2018) thus, this architecture is 

discussed in Section 2.4.3 thoroughly. Another approach to resolve this matter is an 

architecture called transformer network (Vaswani et al., 2017). Since one of the 

models adopted in this paper is transformer network it is described in the next section 

with more details.  

2.4 TRANSFORMER NETWORK 

In order to ensure parallelization transformer network gets rid of the recurrent structure 

and focuses solely on the attention. It adopts the encoder decoder architecture and the 

architecture described in the paper has 6 stacked encoder and decoder. There are two 

main processes take place in the encoder, attention and feed forward network, which 

are also present in the decoder and in addition to that decoder has another attention 

layer which has inputs from both encoder and previous decoder attention layer. The 

high-level architecture of the model is shown in Figure 2.4-1.  



 

27 

 

 

Figure 2.4-1 The Transformer model architecture. Reprinted from “Attention is all you need” 

by Vaswani et al., 2017, Proceedings of the 2017 Neural Information Processing Systems 

(NIPS 2017), 6001. Copyright 2017 by Vaswani et al. 

To increase the power of attentions Vaswani et al., (2017) presented a new attention 

mechanism called multi-headed attention which has 8 attention head concatenated to 

form attention layer thus, it increases the models ability to focus on different parts of 

the text presented to it. The study used byte-pair encodings (Sennrich, Haddow & 

Birch, 2016) for creating input embeddings and as explained when discussing the 

study made by Gehring et al., (2017) transformer networks also used positional 

encodings to determine the positions of the words in the input text with sine and cosine 

functions of different frequencies which shown in below where i is the current 

dimension, pos is the current position and dmodel is the dimension of the model.  

 

 

After positional encodings implemented inside the input embeddings, they are linearly 

transformed into three vectors which are queries, keys and values vectors. The vectors 

that are used in the multiplying process were first initialized randomly then trained 

during the training process. All attention matrices inside the multi-headed attention 

consist of those three vectors. The dot product of queries and keys followed by a 
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division (the square root of the dimension of the key vectors used in the paper -64) to 

have more stable gradients and a softmax function determines how much focus should 

the network needs to pay attention to the other parts of the text when encoding a 

particular word. Then those outputs of the softmax multiplied by the value vector to 

create the weighted embeddings. After that, those embeddings summed up to create the 

output of one attention layer. This is done 8 times in parallel then those results 

concatenated and multiplied with a weight matrix which is also randomly initialized 

and trained during training process, in order to get the output of the multi-headed 

attention. In the following process those results passed into a layer normalization 

which has the output of multi-headed attention and the input the encoder with the help 

of a residual connection as input then the output of the layer normalization passed into 

a feed-forward network. The output of the feed-forward network then passed into 

another layer normalization, with another residual connection it has the input and 

output of feed-forward network as input and the output of the layer normalization is 

the output of the encoder. An illustration of an encoder is shown in Figure 2.4-2. 

 

Figure 2.4-2 Encoder of the transformer network with details3 

 

 
3 http://jalammar.github.io/illustrated-transformer/ 

http://jalammar.github.io/illustrated-transformer/
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The decoder of the network has the same architecture with the encoder except it has 

one more attention layer between the multi-headed attention and feed forward network 

which is another multi-headed attention which takes the outputs of the encoder and the 

output of the first multi-headed attention layer as an input in order to focus appropriate 

places in the input when decoding. In addition to that the first multi-headed attention 

layer is a masked attention layer thus, it ensures the decoder to attend to the earlier 

positions in the output in order to prevent bias. After the decoding step the outputs of 

the network passed into a fully connected neural network that is a linear network that 

outputs the logits vector which then passed into the softmax layer in order to convert 

them into probabilities. The details of the decoder shown in Figure 2.3.3-5. The 

difference between decoder and the encoder is, encoder takes all the text as input 

however decoder generates words one by one and uses teacher forcing at training time 

when generating which means after predicting a word if it is different from the ground 

truth it changes that word back to the ground truth word in order to force the decoder 

to predict next word according to the prior ground truth. 

 

Figure 2.4-3 Decoder of the transformer network with details 

 

When training a sequence to sequence neural models the standard loss function is 

maximum likelihood estimation (MLE), which maximizes the log-likelihood of 
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observing each word in the text given the ground-truth proceeding context (Poon, Yap, 

Tee, Lee, & Goi, 2019). This model uses a multi-class cross-entropy as a loss function 

which is a different representation of log-likelihood thus, they are actually the same 

formula (Bishop, 2016, pp. 168).  

 

 

 

Multi-class cross-entropy loss can be calculated with both categorical cross-entropy or 

sparse categorical cross-entropy. Sparse categorical cross-entropy calculates the loss 

with integers unlike categorical cross-entropy which is dependent on one-hot encoded 

vector. The formula is same for both, but categorical cross-entropy needs a vector 

however sparse categorical entropy needs integers, so it is faster. In the formula 

presented above ŷi and yi represents the predicted value and the ground truth 

respectively since transformer networks use byte pair encoding the values of the 

outputs are integer values between 0 and the token number that the byte pair encoding 

encoded, the predicted and ground truth values must be integers in that range thus, 

transformer network uses sparse categorical entropy.  

There are two main important aspects of this model. First it does attention naturally 

like humans do it has the ability to attend all the word simultaneously which made this 

and several other variations of this model very powerful and become state-of-the-art in 

some tasks such as machine translation (Vaswani et al., 2017). The other important 

aspect is it because of its attention mechanism it allows parallelization. 

2.5 EVALUATION METHODS IN NLG 

2.5.1 Automated (metric-based) Evaluation 

Natural Language Generation models inherited automated metrics from several related 

fields such as summarization, image captioning and machine translation. Essentially, 

these metrics compute a score which shows the similarity between the text generated 

by the model and the ground truth. There are several automated metrics adopted to 
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NLG such as BLEU, ROUGE, METEOR and perplexity which are cheap and easy to 

implement however those metrics are metrics for comparison thus, they are not 

concerned with the quality of the text generated and in many occasions even the 

generated text is diverted from the ground truth it can have significant quality. 

However, those metrics are not totally useless Reiter and Belz (2009) proved that there 

is a weak correlation between automated metrics and human evaluation, which is far 

more useful than automated metrics for text generation, so they can be considered as 

an acceptable starting point.  

• BLEU: Found by Papineni, Roukos, Ward and Zhu (2002) essentially it is a 

modified precision for comparing the result of a model and the ground truth 

thus, it tries to find how many of the predicted text is actually correct. Since 

build for machine learning tasks it generates more than one output so the 

precision it does can be called multi-class precision. For translation it has high 

correlations with human evaluations. 

• ROUGE: Rouge consists of several metrics that proved their use for text 

summarization. ROUGE has more than one metric. One of them is ROUGE-n 

which tries to assess the performance of the model by counting how many n-

grams of generated summaries, matches the n-grams of ground truth. In 

addition to that, the other ROUGE metrics ROUGE-l, ROUGE-w and 

ROUGE-s are based on longest common subsequence , weighted longest 

common subsequence, and skip-bigram co-occurrence statistics, respectively. 

They have shown high correlations with human evaluations (Lin & Hovy, 

2003). 

• METEOR: Lavie and Agarwal (2007) the founders of this metric claim that 

the metric has higher correlation with human annotators then BLEU score for 

machine translation. They used weighted F-score that penalizes wrong ordered 

translations which was not considered by BLEU. 

• Perplexity: Perplexity can be considered most adequate metric for text 

generation since it is a metric for assessing the fluence of the generated text. It 

shows how good a model is when predicting the next word in the sequence. It 

is a widely used metric for speech recognition systems. Perplexity PP can be 
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defined as the geometric of the inverse of the per-word likelihood on the held-

out test corpus so lower perplexity means better generalization.  

Perplexity = 2 cross-entropy 

Another evaluation method cross-entropy can be calculated as log2PP 

(Kobayashi, 2014) which means perplexity can be calculated as shown in the 

formula above. Since perplexity can assess how fluent the generated text is, it 

can be a starting point when evaluating text generation tasks such as story 

generation.  

2.5.2 Human Evaluation 

When evaluating the readability or quality of the generated text automatic methods 

becomes obsolete which are tasks suitable for humans. Human can be intrinsic or 

extrinsic evaluations. Intrinsic evaluations usually done by showing the annotators 

both the generated text and the ground truth and the performance of the system is the 

comparison between the ratings given to them (Sparck Jones & Galliers, 1996). 

Another implemented intrinsic method is comparing taking one NLG model as 

baseline and making a comparison with others (Lester & Porter, 1997). Intrinsic 

methods tend to ask people how fluent, coherent or readable the generated text is by 

questionnaire or by a ranking system. For doing an extrinsic evaluation the proposed 

model should be embedded to a real world environment according to its use since its 

time consuming and some model’s generation times require time that don’t make them 

suitable for such an environment intrinsic evaluation methods are chosen much more 

then extrinsic ones. Human evaluation for creative text generation tasks such as poem, 

story or joke generation is much more essential then others since they require the 

assessment of measures such as enjoyment, expectation, coherence and creativity.  

 

 

2.6. AUTOMATED STORY GENERATION 

The study of narrative described as narrative theory or narratology by Fludernik 

(2009), is the theory of the structures of narrative (Phelan & Rabinowitz, 2008) which 

studies mostly the formal features of a story. The history of narratology can be viewed 
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as two phases, classical and post-classical. Classical narratology focused more on 

identifying the genres, structure and the systematics of telling a story, on the other 

hand, post-classical era defined narratology as an inter-disciplinary field which aims 

more on practical applications and studies with other fields such as cognitive 

narratology (Amerian & Jofi, 2015). Classic narratology divides the story generation 

into two parts, fabula and suzjet (Lemon, Reis, Ėĭkhenbaum, Shklovskiĭ, & 

Tomashevskiĭ, 1965). Fabula corresponds to story in English and it is not outlined by 

the writer, it is the story interpreted by the reader. More precisely it is a series of events 

that occur in a narrative which has no perspective. On the other hand, suzjet bears the 

perspective of the author, it is about designing a coherent story by ordering the events 

and, planning the structure of the story. These two terms served as a guideline for 

many of the work done in the field, one of which is Genette (Prince, Genette, & Lewin, 

1980), fabula put into action as the events of the story and had precise computer 

representations which were ordered by taking their chronology and causal relationships 

into account, suzjet is the generated text. Essentially, fabula is the document and text 

planner in NLG and suzjet is the surface realiser. In addition to humanities narratology, 

linguistics was also an influential field for automated story generation. Constructing 

grammars for story generation which is called story grammars is an area in linguistics 

and used for story generation applications such as BRUTUS (Bringsjord & Ferrucci, 

2000). To generate a long coherent narrative, automated story generation field have 

been made use of computational models. Many early models tried to decode the 

structure of a story by investigating the classical narratology which “is a humanities 

discipline dedicated to the study of the logic, principles, and practices of narrative 

representation” (Gradmann, Hühn, & Schönert, 2006). Since computer programs need 

a structure and precise knowledge of what to do and when to do it, early models 

focussed on examining the structure of the story to be generated by finding the causal 

relationship between events, the roles of the characters, the actions they might take and 

the results of those actions. Latter models however tried to give the models the ability 

to capture that information without explicitly programmed, especially deep learning 

approaches.  
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2.6.1 Grammar Based Approaches 

One of the oldest approaches for automated story generation is generations based on 

story grammars. These grammars involve a set of transformation rules and those rules 

expand the story grammars in order to transform them into final stories. First story 

grammars were created by Lakoff (1972) rewrote the rules and structure created by 

Propp (1968) in order to create a grammar for Russian folk tales. Thorndyke (1977) 

creates his own set of rules by extracting rules that are common to a set of narratives. It 

was argued that those set of grammars and rules are focused intensively on grammar 

that they fail to create coherent stories (Andersen & Slator, 1990). Regardless of those 

investigations several successful story systems created one of which is TELLTALE 

(Correira, 1980). It generates a story by a set of grammars and rules held within a 

database and expanded in order to generate a story. The database was manually built to 

generate short stories itself. An example of a rule is, that each fairy tale must contain a 

setting and at least one episode, terminating with the main characters living happily 

ever after (McIntyre, 2011).  

2.6.2 Planning Based Approaches 

Stories generated with this method is based on planning in NLG. The planning systems 

created for storytelling usually took initial state of the world and the goal as an input 

then produced sequence of actions which might comprise sub actions that lead from 

one to the other in order to reach a specific goal. The goals for those systems can be 

character or authorial goals. The first automated storytelling model was created by 

Klein et al., (1973) generated stories in a weekend party setting. They created actions 

that follow previous events but instead of a goal they used a system similar to story 

grammars which tried to satisfy the grammatical structure of a story. Not only there 

was one domain the only thing that changed in the stories generated are the role of the 

characters. Another planning approach was TALESPIN (Meehan, 1977) created stories 

about the lives of woodland creatures. In order to create the story, the character was 

given a goal and then a plan was in place in order to reach that goal. TALESPIN 

combined events and related consequences with goals that occurred from previous 

events which are bound to the events that come before them (Kybartas & Bidarra, 

2017).  
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Some other models concerned more on plot planning which aims to plan the plot 

which will lead to a story that satisfies one or more predetermined goals. They created 

stories chunk by chunk rather than creating them as a whole. UNIVERSE (Lebowitz, 

1984) generated plots for soap opera episodes. For generating events which are 

melodramatic conflicts between characters planning was used (Lebowitz, 1984). The 

system paid more attention to the characters in the story which helped to create diverse 

roles that story grammars are in lack of. UNIVERSE kept track of the goals that aims 

to expand the plots to reach a complete story. BRUTUS (Bringsjord & Ferrucci, 2000) 

also used plot-planning for building stories for its betrayal narratives which is 

combined by story grammars. It used a knowledge base of story plot templates and 

planning for the association between causes and effects.  

2.6.3 Modular Based Approaches 

Several story generation systems followed the NLG pipeline examined in Section 

2.3.1. McIntyre (2011) stated that the production of high-quality narratives clearly 

involves an integration of the story generation process with the natural language 

generation pipeline. GESTER (Pemberton, 1989) is a storyteller that generate medieval 

French epic story summaries which used a modular approach. Its grammar is hand 

coded based on nine French epic poems. From those grammars a tree is constructed in 

order to determine the document plan. In order to plan and generate the text Pemberton 

used a set of rules which makes the model dependent on human interaction. Callaway 

and Lester (2001) built one architecture and its implementation, in order to integrate 

the story generation process with the NLG pipeline which are AUTHOR and 

STORYBOOK respectively. The input, narrative plan examined, and the linguistic 

structures extracted in order to generate the story however since their focus was on 

more with the sentence planner and surface realiser. In order to fully integrate NLG 

pipeline with story generation Lönneker, Meister, Gervás, Peinado and Mateas (2005) 

stated that the systems must also take document planner into account. To fulfil the 

requirements of many stories such as flashbacks, ellipses or stories within stories story 

generation systems has to consider rhetorical structure of the document being 

developed which can be done by document planner (Lönneker et al., 2005).  
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2.6.4 Case Based Reasoning Approaches 

Case-based reasoning was one of the widely used problem-solving task for generating 

stories. It solves problems by “recalling past scenarios where a solution was gained 

and apply those solutions to the current problem” (Slade, 1991). MEXICA (Pérez ý 

Pérez, 2001) is a short story generator based on early inhabitants of Mexico and 

generates the story by combining plot chunks together piece by piece. The system 

takes previous stories as input for assessing the performance of the next story 

generated. Story plot generation based on CBR (Gervás et al., 2005), VBPOCL (Riedl 

and Sugandh, 2008) are also used case-based reasoning to create stories for a closed 

domain. However, since case-based reasoning depends on the previous tasks when a 

new task appears, when those models are applied to new domains, they have no way of 

dealing with the new domains, thus problem-solving fails. Because of that those 

models couldn’t generate stories on an open domain they were bound to the domains 

that the model has seen before. FABULIST (Riedl and Young, 2010) used same 

technique with analogical mapping and expanded the search space of planners to 

account for coherence and character believability to create more creative stories, 

although they managed to come close creating open domain stories, the model wasn’t 

coherent. 

2.6.5 Deep Learning Approaches  

Some of the models mentioned above gained noteworthy results however almost all 

approaches were restricted to limited domains till deep learning approaches. One of the 

most important reason behind that is the deep learning models generalization power. 

They are very capable of capturing the semantics and grammar of the text in some 

domains and can adopt themselves into other domains. Peng, Ghazvininejad, May and 

Knight (2018) extracted keywords from the ground truth stories via RAKE algorithm 

(Rose, Engel, Cramer, & Cowley, 2010) then provided those keywords to a 

bidirectional LSTM in order to generate stories based on those keywords. Those 

keywords provided to the model in order to increase the controllability of the model 

and reached more coherent results than non-controlled models. Another approach by 

Jain et al. (2017) used GRU specialization of RNN for generating stories. The model’s 

input was descriptions of a story and the output was the story generated. Martin et al. 

(2018) focused on the events and used reinforcement learning in order to determine 
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what action to take next when generating a story. There were two seq2seq networks 

built, first one is a LSTM network with attention (Sutskever et al., 2014) which is 

called event2event. Purpose of that network is trying to determine which event can 

lead to the best story and after that event2sentence translates those successful events 

back to sentences which is also LSTM network with attention. However, the results of 

the model were not coherent, and it lost the course of the story very easily. In order to 

solve those problems Xu et al. (2018) proposed a generative adversarial network. The 

discriminator of the network is a seq2seq network which consists of hierarchical 

encoder and an attention-based decoder, and the generator is a seq2seq LSTM 

network. Since text is discrete data the backpropagation of the network with traditional 

methods failed so reinforce algorithm was implemented. They used policy gradient as 

optimizer and monte-carlo search in order to solve the derivation problem. Model 

overcame the problem of losing course but still wasn’t coherent and failed in human 

evaluation. In another approach Fan et al., (2018) used gated convolutional neural 

networks (Dauphin, Fan, Auli & Grangier, 2017) and for generating prompts 

convolutional sequence to sequence model (Gehring et al., 2017) is used with both the 

pre-trained gated convolutional neural networks in a fusion model architecture (Sriram, 

Jun, Satheesh, & Coates, 2018) that enables the generator to access the hidden states of 

the pre-trained model.  

 

Figure 2.6- 1 Fusion model, taken from (Fan et al., 2018) 

 

The first model is trained with the prompts only and the researchers tried to give the 

model ability to generate a sketch of the original prompt. The gated convolutional 

model builds a hierarchical representation of the input and that made capturing the 
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long-term dependencies easier, similar to the tree-structured analysis of linguistic 

grammar formalisms (Dauphin et al., 2017). Then for training the fusion model, they 

combined the pre-trained gated convolutional model with convolutional sequence to 

sequence model (Gehring et al., 2017) for generating the actual story because they are 

well suited for long text generation because they allow parallelism of computations 

within the sequence (Fan et al., 2018). Since the fusion model allows the convolutional 

seq2seq model to access the hidden states of the first pre-trained model the story is 

grounded that means it doesn’t lose its original course which is the prompt of the story. 

The model reached significant results on terms of both perplexity and human 

evaluation. However, the prompts were given to the model by another model, so the 

model is controlled and because of the convolutional networks ability to focus model 

tends to focus more than necessary in some parts which resulted in repetition of words. 

In addition to that, the results of the model were coherent however lacked creativity 

they focussed on one aspect in the prompt and kept generating text according to it. 

2.7 SUMMARY 

2.7.1 Overview 

As it can be inferenced from this section there have been many approaches proposed 

for NLG and almost every one of them used in automated story generation in order to 

create narratives which are human-like. Approaches before deep learning created 

significant results however they were bound to one domain or several but neither of 

them could propose a method for open story generation. With the rise in deep learning 

approaches several approaches reached tremendous results in open domain generation 

however there are still restrictions about what they can achieve. As a result, a model 

which can be considered new, the transformer networks applied to story generation in 

order to resolve those restrictions.  

2.7.2 Gaps in the Research 

More researches began to investigate this area with recent advances in deep learning 

and improved the quality of generated stories according to the human evaluations and 

dramatic increases have been seen on perplexity scores as seen in the model of Fan, 

Lewis and Dauphin (2018). However, because of unnecessary attention provided by 
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convolutional networks the model attended some parts of the prompts more than 

others. This resulted in repetitions of words and stories were stuck on some aspects of 

the prompt didn’t have a clear sense of progression which was a problem for a 

coherent story. Transformer networks (Vaswani et al., 2017) provided optimum 

amount of attention to the right parts of the text and reached state-of-the-art results in 

many tasks in NLG and to my knowledge they haven’t been used for story generation 

field yet. They have the potential of providing the attention the story generation needs, 

in addition to that the model proposed by Fan et al., (2018) uses a pre-trained network 

in order to create stories which are not independent from the prompt. Transformer 

networks can also provide stories which are linked to their prompt with their attention 

mechanism.  

2.7.3 Research Question 

Those evidences lead to a theory that, convolutional seq2seq models combined with 

attention can reach to significant results for automated story generation so transformer 

networks which are solely based on attention can improve those results in that field. 

 

“Can a transformer network used on Reddit’s WRITINGPROMTS forum dataset 

achieve statistically significant improvement on the perplexity score and human 

evaluation metrics prompt matching and blind model comparison test, presented in the 

paper of Fan et al., (2018), for automated story generation when a prompt is given, 

over the state-of-the-art Hierarchical Neural Story Generation model (Fan et al., 

2018)?” 
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3. DESIGN & METHODOLOGY 

This chapter describes the experiment undertaken in order to determine whether the 

null hypothesis can be rejected or not. For the experiment transformer network is 

designed for decreasing the perplexity and having more human annotators chosen the 

transformer network in terms of story quality and, more correct pairing of prompts and 

stories made by human annotators then the compared Hierarchical Neural Story 

Generation model (Fan et al., 2018).  

The data collection and understanding step followed by its preparation for transformer 

network is described. Before the experiment, the details of the model are described in 

detail and the experiment process is examined.  

The evaluation metrics, both perplexity and human evaluations described in detail 

including how they are used to compare the two models and how the human evaluation 

results can be specified statistically in order to accept or reject the null hypothesis is 

defined. 

3.1 HYPOTHESIS 

H1: If a transformer network (Vaswani et al., 2017) is designed and applied to the 

Reddit’s WRITINGPROMTS forum dataset for automated story generation, it can 

statistically significantly outperform the Hierarchical Neural Story Generation model 

(Fan et al., 2018) on perplexity and two human evaluation metrics prompt pairing and 

blind model comparison. 

H0: If a transformer network (Vaswani et al., 2017) is designed and applied to the 

Reddit’s WRITINGPROMTS forum dataset for automated story generation, it cannot 

statistically significantly outperform the Hierarchical Neural Story Generation model 

(Fan et al., 2018) on perplexity and two human evaluation metrics prompt pairing and 

blind model comparison.  
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3.2 DATA 

3.2.1 Data Collection and Understanding 

The dataset used for this investigation is the forum Reddit’s WRITING PROMPTS 

dataset which is available online and gathered from the link provided by Ott et al., 

(2019). Reddit is an online forum where people create subreddits in order to discuss 

some matters, presenting the latest news, socializing and so on. “WRITING 

PROMPTS” is also a subreddit where administrators of the forum create prompts such 

as topics which can be considered as descriptions of a story or poems and users write 

stories or poems corresponding to that prompt. Then respected administrators rank 

those stories and the best topic is presented at the top of the forum which can be 

looked at as the best story for its corresponding prompt. The dataset contains the 

prompts and only best stories written in order to provide a certain quality. Main 

constraints about writings are, the proposed story should have more than 30 words, 

plagiarism results in a ban so all stories are unique and off-topic writing is not allowed. 

All stories checked regularly by the administrators thus, consistency among prompts 

and stories ensured. Also, prompts have a large diversity of topic, length, and detail 

(Fan et al., 2018). The average length for the prompts and stories 28.4 and 734.5 and 

the maximum lengths measured as 71 and 3784 respectively. As seen in histogram 

charts of the Figure 3.2.1-1 and Figure 3.2.1-2 the length of the sentences is quite 

diverse for both stories and prompts. The minimum length of a sentence in a story is 1 

because there are questions such as “How?” or answers such as “yes” present in the 

corpus and the maximum length is measured as 38. The minimum and maximum 

length for a sentence in prompts is 3 and 26 respectively. Also, there is a prompt 

restriction which is six words referenced from the famous six-word stories concept so 

the minimum prompt can be six words which then should be expanded to a story by 

the writers. An example of a prompt and corresponding story is shown in Figure 3.2.1-

3 and Figure 3.2.1-4 respectively.  
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Figure 3.2.1-1 Histogram for sentence length of the prompts 

 

Figure 3.2.1-2 Histogram for sentence length of the stories 

 

 

Figure 3.2.1- 3 A sample prompt from the dataset 

 

 

Figure 3.2.1- 4 Corresponding story of the sample prompt 
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3.2.2 Data Preparation 

The acquired dataset prepared for satisfying the limitations and pre-processed for the 

model. Initial dataset was already randomly divided into training, validation and test 

sets which are %90, %5 and %5 respectively. Training set contains 272.600, validation 

set 15.620 and test set 15.138 instances for both prompts and stories. The model 

presented by Fan et al., (2018) limited the story length to 1000 words and did their 

experiments on 8 GPUs however, because of the resource limitations the length of the 

stories for this investigation was limited to 500 words per story and the training 

instances were limited to 50.000. Since the training set is limited to 50.000, and there 

was no hyperparameter tuning applied with the validation, the percentage of the test set 

increased to %23. Prompts contain information about which writing mode is dedicated 

for that blog, such as “[WP]” which corresponds to writing prompts, removed from the 

prompts. All the transformer models in the NLP field used byte pair encoding over 

character encodings. There are two reasons for that, first one is it was empirically 

proven that byte-pair encoding increases the performance of the models and second 

since models need to capture every character rather than words and then predict them 

one by one, models that used the character encodings are computationally expensive 

than other models. For byte-pair encoding the target size chosen to be 32.000 and the 

words in the dataset tokenized according to it. The dimension of the tokenized training 

dataset is 50.000 rows and 71 columns for prompts (inputs) and 50.000 rows and 624 

columns for the stories (outputs) which is shown in Figure 3.2.2-1. After that in order 

to give the model the ability to learn the start and end of the prompts and stories, start 

and end tokens added to the beginning and endings of the sequences.  

 

Figure 3.2.2-1 Tokenized input and output datasets of model, prompts (left) and stories (right) 
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3.3 TRANSFORMER NETWORK DESIGN 

In order to design the transformer network, there are various hyperparameters that 

needs to be determined. However, one model for hyperparameter tuning took 15 days, 

thus it was not feasible to do hyperparameter selection because of the time interval 

allocated for this thesis. Instead of randomly choosing the hyperparameters, they are 

taken from the original paper of transformers (Vaswani et al., 2017) which proved its 

use for many tasks with those hyperparameters which are defined in the next section. 

3.3.1 Hyperparameters of Transformer Network 

• Number of layers: The layers of the stacked encoders and decoders. Encoders 

function is to map the input and the attention information into vector 

representations. On the other hand, decoders take that information to turn that 

representation into output text. There is one more attention mechanism that the 

decoder has which makes the decoder attend the previously decoded words in 

addition to the attention for input words.   

• Number of heads: This hyperparameter is designed in order to determine the 

number of scaled dot-product attention heads used inside multi-headed 

attention. The h represented in the Figure 3.3-1 below shows number of heads. 

 

Figure 3.3.1-1 Scaled dot-product attention (left) and multi-head attention, taken from 

Vaswani et al., (2017) 

• Dimension of the model: Determines the input and output dimensions of the 

feed-forward network inside the encoders and decoders and eventually the 

output of encoders and decoders since the last layer inside them is a feed 
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forward network. In addition to that the input and output tokens are converted 

to vectors and its length is determined by this hyperparameter. 

• Dimension of the feed forward network (FFN): The dimension of the hidden 

layer inside the fully connected feed forward network which can also be 

understood as two convolutions with kernel size 1. More dimensions mean 

more functions will be computed inside the hidden layer which can increase the 

performance however that might result in overfitting. 

• Dropout rate: The dropout rate eliminates some neurons from the network 

when training in order to prevent overfitting. In transformers it is implemented 

for the feed forward networks inside the encoder and decoders. 

• Activation function: A function that decides if the information of a particular 

neuron or a function should be passed to the next layer in the network or not. It 

is used inside the feed-forward networks. There are many activation functions 

proposed for many different tasks in deep learning models, some of which are 

linear function, sigmoid function, hyperbolic tangent function, rectified linear 

unit (RELU) and leaky RELU. 

• Loss function: Also called as cost function, in training time it determines 

whether the outputs of the model are correct or not in order to calculate the 

error rate and pass it back to the model by backpropagation. There are various 

loss functions for different purposes. Some of them are mean squared 

error(MSE) and cross-entropy. 

• Optimizer: An algorithm, which is responsible for making the loss function 

converge to its optimum. Some examples are stochastic gradient descent, 

Adagrad, Adadelta and Adam optimizer. 

• Number of epochs: The number of times allowed for the network to see the 

dataset.  

• Batch size: Determines the number of instances passed through the model 

before the backpropagation for each epoch. Small batch sizes lead to more 

backpropagation, so the loss function can converge faster however it gets 

computationally expensive and big batch size may lead to bad performance.  
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• Top k sampling: This is a method for the generation step. When generating 

text word by word it allows the model to randomly choose between most k 

probable words for that position. 

3.3.2 Hyperparameters of the Model  

The hyperparameters defined for the original transformer model (Vaswani et al., 2017) 

is selected for this model. The number of layers for both encoder and decoder defined 

as 6 which are identical to one another. The number of scaled-dot attention inside the 

multi-headed attention is 8 which means there are 48 scaled dot-attentions present in 

the encoder and 96 in the decoder. The dimension of the network is 512 thus, when the 

input embeddings converted to vectors their length will be 512 and the input and 

output dimension is also 512 for the feed forward networks which has 2048 neurons 

inside its one hidden layer. Also, the dropout rate and activation function chosen for 

those feed forward networks is 0,1 and RELU respectively. Since the byte-pair 

encoding assigns integers to words with 32.000 chosen as the target vocabulary there 

are around 32.000 different tokens in the dataset because of that reason sparse 

categorical cross-entropy is chosen to be the loss function of the model. In addition to 

that Adam optimizer is used with β1 = 0.9, β2 = 0.98 and ↋ = 10−9. Adam optimizer 

chosen because it aids to a faster convergence of the loss function and  

computationally cheap. The learning rate of the optimizer is chosen to be a custom 

learning rate as described in the paper. The formula for the learning rate shown in the 

following formula and learning rates in the Figure 3.3.1-1 where warmup steps are the 

number of training steps from the beginning of the training till a specified training step 

which chosen to be 4000.  

 

 

 

Figure 3.3.2- 1 Change in the learning rate 
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The number of epochs and batch size were unfortunately limited because of the time 

and resource limitations. The number of epochs chosen to be 10 and batch size 64 

because with bigger batch sizes the model got memory error even with 400 GB RAM. 

A table of the hyperparameters implemented to the model is shown below. 

 

Number of layers 6 

Number of heads 8 

Dimension of the model 512 

Dimension of the FFN 2048 

Dropout rate 0.1 

Activation function RELU 

Loss function Sparse categorical loss function 

Optimizer Adam 

Epochs 10 

Batch size 64 

Top k sampling 3 

 

Table 3.3.2-1 Hyperparameters of the model 

3.4 EVALUATION OF RESULTS 

3.4.1 Perplexity 

“Perplexity is commonly used to evaluate the quality of language models, and it 

reflects how fluently the model can produce the correct next word given the preceding 

words” (Fan et al., 2018). The perplexity can be formulized as 2 to the power of cross-

entropy which is a measure for calculating the differences of two distribution functions 

(Chen, Kar, & Ralescu, 2012). 

Perplexity = 2 cross-entropy 

The perplexity for the proposed model calculated by measuring the cross-entropy of 

test instances one by one then taking the average of them and calculating the power of 

two of the cross entropy. Lower perplexity means better model. 



 

48 

 

3.4.2 Human Evaluation Methods 

There are two human evaluations designed for this model. First one is prompt pairing 

where stories and their corresponding prompts are presented to 15 human annotators 

and asked to match them. This is done in order to assess if the story generated 

according to the prompt is related to it or not. After that process is done the accuracy 

of the annotators are calculated for both models. In the original state-of-the-art model 

(Fan et al., 2018) this is done with more than two models however for this thesis only 

two models are compared so an option given to the annotators which is “not related to 

the prompt”. Thus, when two prompts and stories are given to the annotator if a story 

found to be unrelated, he or she can choose “unrelated” option which result as negative 

to the model of that story. This evaluation is done by taking 100 prompts and 

corresponding stories from both models and then they are shuffled and presented to the 

annotators simultaneously. 

Second evaluation is a blind test where the prompts of the stories are hidden from the 

annotators. The number of annotators used for this task is 5 and they are asked to 

assess the qualities of the stories. If the story found to be good, it is considered as 

positive and negative otherwise. 

Both human evaluations then gone through a Free-Marginal Fleiss’s Kappa test 

(Randolph, 2005) which is a variation of original Fleiss’s Kappa test for assessing the 

annotators reliability statistically (Fleiss, 1971). This test is chosen because of two 

reasons. First reason, this is a test for multi-rater reliability, other tests such as Cohen’s 

Kappa (Cohen, 1960) measures the reliability of just two annotators. Second reason, 

original Fleiss’s Kappa test assumes that there is a predetermined amount of cases in 

each category however the human evaluations in this thesis don’t give the annotators 

such limits for categories. As shown in the formula below, Kfree value is the overall 

agreement between annotators and is the expected agreement.  
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In order to calculate Po, the proportion of overall observed agreement calculated 

according to the formula below where M corresponds to the number of classes which 

are positive and negative in this case, N is the number of annotators, A is the total 

number of tests presented to one annotator and aic is ith annotators total annotations 

made for cth class. 

 

Since there is no lower limit for the number of times of choosing a category which can 

also be expressed as free marginals, the expected agreement is assumed as all 

categories in the dimension have same probability of being chosen by the annotators 

therefore the expected aggrement formulized as follows: 

 

3.4.3 Hypothesis Testing 

For determining whether the transformer networks outperformed the state-of-the-art 

model presented by Fan et al., (2018) series of tests conducted. To compare the 

transformer model’s results with the state-of-the-art model the prompts and stories 

generated by that model gathered from the website4 provided by Ott et al., (2019). 

The dataset encoded by the byte pair encoding in order to get the input embeddings 

which then passed into the designed transformer model. The model trained with the 

hyperparameters stated in the Section 3.3.1 and the results for both perplexity and two 

human evaluation methods are gathered. 

For comparing the perplexities of two models the simplest of cross-validations the 

hold-out method is used. Since to train the transformer with 50.000 instances took 15 

days for 10 epochs with batch size 64 and because of the time restrictions for allocated 

for the thesis hold-out method is chosen. As specified in the Section 3.2.2 the dataset is 

divided in to %77 (50.000) training, %23 (15.138) test set respectively.  

 
4 https://github.com/pytorch/fairseq/tree/master/examples/stories 

https://github.com/pytorch/fairseq/tree/master/examples/stories
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There were 15 annotators chosen for pairing the prompts with the stories. 100 prompts 

and their corresponding stories were chosen randomly and presented to the annotators. 

They matched the prompts with the stories and if they think the prompt is not related 

with the story, they chose “not related” option. For both models the matched and 

unmatched answers are gathered and Free-Marginal Fleiss’s Kappa used twice, one for 

each model to assess the annotators results reliability. 

For the second human evaluation, annotators are asked to choose the better story from 

two stories that are presented to them. There were 5 annotators and 100 stories used for 

this method and one Free-Marginal Fleiss’s Kappa score calculated to measure the 

reliability of the annotators.  

After gathering the perplexity and human evaluation results for both models they are 

compared in order to accept or reject the null hypothesis.  

3.5 SUMMARY 

For conducting the experiment, first the dataset was gathered from the website 

described in Ott el al. (2019) and it was pre-processed in order to convert it to the 

embeddings that the model required. After that the transformer model was designed 

with the hyperparameters described in the original paper of transformer networks 

(Vaswani et al., 2017). The state-of-the-art model (Fan et al., 2018) and the designed 

transformer network trained and evaluated with the same training and testing dataset in 

order to compare them through perplexity and human evaluation metrics described in 

Section 3.4 to test the hypothesis.  

3.5.1 Strengths 

• Easy to comprehend: Transformer networks focus solely on the attention 

mechanism and exclude any recurrence and convolutional structures. They 

neither have any time step nor confusing calculations such as LSTM networks 

has or convolutional features that gets hard to understand when networks get 

deeper thus, they are much easier to comprehend. 

• Faster training times compared to previous approaches: Since there is no 

time step, the calculations in the attention layers doesn’t depend on the 
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previous time steps, all can be done simultaneously in parallel which makes the 

network faster than many previous approaches done on this field. 

• Diversity of topics: The topics (prompts) in the dataset is examined and found 

to be quite diverse as stated in the paper by Fan et al., (2018) 

3.5.2 Weaknesses 

• Reproducibility: In order to reproduce the same design, one must have the 

tokenized dictionary. Since there is a stochastic aspect in tokenization every 

tokenization can result in different set of tokens.  

• Bias from tokenization: Since the tokenization is done with whole dataset in 

order to avoid <unknown> tokens, tokenization process includes bias into the 

process. 

• Long training times for long text: The speed of the transformer networks is 

proven for tasks such as machine translation and text summarization however 

for text generation it takes longer times than expected. The reason can be 

understood especially when compared to text summarization. Text 

summarization can also contain long texts however the input is long not the 

output. Thus, because of the parallelization in the encoder architecture of 

transformers the input text can be processed fast however for the decoder the 

network generates texts one by one so there is no parallelization there but since 

the summaries of the texts rather short this can be done fast. However, for story 

generation it is the opposite the prompts are short, and the outputs are long 

which takes transformer train times much higher than expected. 
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4. RESULTS, EVALUATION & DISCUSSION 

The experiment process is examined in this chapter as well as the results of the 

evaluation metrics described in the Section 3.4.2, then they are compared in order to 

test the null hypothesis. The strengths and weaknesses according to the findings when 

conducting the design, experiment and evaluation is discussed along with the changes 

and enhancements that can be implemented into the design examined. 

4.1 EXPERIMENT RESULTS 

In this section, the perplexity and human evaluation results measured from the 

experiment, is demonstrated in three sections. First section is dedicated to the 

transformer network, the second section is for the state-of-the-art model from Fan et 

al., (2018) and the last section dedicated to Free-Marginal Fleiss’s Kappa scores from 

all human evaluations in order determine the reliability of the annotators. 

4.1.1 Transformer Network 

When the network is generating text on unseen data which is the test data in this case, 

the cross-entropy scores are tracked, and the perplexity of the transformer network 

calculated with the cross-entropy scores as discussed in the Section 3.4.1. The 

perplexity of the transformer network is measured 67,48.  

The pairing task involves the prompts and their corresponding stories. The test is done 

with randomly chosen 100 instances from the test set and given to 15 annotators.  

Annotators Positive Negative

Annotator 1 4 96

Annotator 2 7 93

Annotator 3 3 97

Annotator 4 3 97

Annotator 5 5 95

Annotator 6 4 96

Annotator 7 6 94

Annotator 8 4 96

Annotator 9 2 98

Annotator 10 4 96

Annotator 11 6 94

Annotator 12 4 96

Annotator 13 4 96

Annotator 14 5 95

Annotator 15 4 96  

Table 4.1.1-1 Summary of pairing results for transformer network 
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As shown in the Table 4.1.1-1 above positive means annotators were able to match the 

correct prompt with the story, negative means they weren’t able to match or chosen the 

option of “not related”. Annotators were able to choose the correct prompt with the 

story with 4.3% accuracy. 

Second human evaluation is a blind test which is, giving the annotators two stories, 

one created by transformers and the other by the state-of-the-art model (Fan et al., 

2018). 100 randomly chosen stories were given to 5 annotators without their prompts 

in order for them to choose which one is better. The results for the blind test are shown 

in the Table 4.1.1-2 below. Annotators preferred the stories generated by the 

transformer network with 23.8%. The table only shows the numbers that chosen this 

model, a table for both models is shown in the Section 4.2.  

Annotators TRNET (from 100 stories)

Annotator 1 25

Annotator 2 24

Annotator 3 23

Annotator 4 25

Annotator 5 22  

Table 4.1.1- 2 Summary of blind test results that were in favour of transformer network 

A sample prompt and its corresponding story generated by transformer network shown 

below in the Figure 4.1.1-1. 

 

 

Figure 4.1.1-1 A sample prompt (top) and its story generated by transformer network (bottom) 
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4.1.2 Hierarchical Neural Story Generation Model  

Since both models are tested on the same dataset the perplexity result of this model is 

taken from the paper of it (Fan et al., 2018) which is 36,56. The generated stories and 

their corresponding prompts by the model (fusion model) gathered as described in the 

Section 3.4.2 in order to conduct the human evaluation. 

The pairing task again used the same 15 annotators and randomly chosen 100 stories 

and prompts. As mentioned earlier both the transformer network’s and fusion model’s 

generated stories and corresponding prompts were given to the annotators 

simultaneously in order to do the pairing task however in the Table 4.1.2-1 below only 

the fusion models results are shown. Positive means correct matches, while negative is 

the count of wrong or “not related” matches. Annotators were able to choose the 

correct prompt 70.67% of the time for the fusion model. 

Annotators Positive Negative

Annotator 1 64 36

Annotator 2 69 31

Annotator 3 74 26

Annotator 4 62 38

Annotator 5 75 25

Annotator 6 76 24

Annotator 7 68 32

Annotator 8 78 22

Annotator 9 66 34

Annotator 10 72 28

Annotator 11 64 36

Annotator 12 68 32

Annotator 13 72 28

Annotator 14 77 23

Annotator 15 75 25  

Table 4.1.2-1 Summary of pairing results for the state-of-the-art model 

The second human evaluation is a blind test. Same 5 annotators and 100 stories 

randomly taken from the generated stories of the fusion model. This is a task for 

deciding which model generates more human like results and only the number of 

stories generated by the fusion model and preferred by the annotators are displayed in 

the Table 4.1.2-1 below.  

Annotators Fusion Model (from 100 stories)

Annotator 1 75

Annotator 2 76

Annotator 3 77

Annotator 4 75

Annotator 5 78  

Table 4.1.2-2 Summary of pairing results for the fusion model 
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Annotators preferred the stories generated by the fusion model 76.20% of the time. 

Also, an example of a prompt and its corresponding story generated by the fusion 

model is shown in the Figure 4.1.2-1 below. 

 

 

 

 

Figure 4.1.2-1 A sample prompt (top) and its story generated by fusion model (bottom) 

4.1.3 Reliability of Human Annotators  

Free-Marginal Fleiss’s Kappa score calculated three times. Firstly, for the pairing task 

of the transformer network, secondly again for the pairing task but this time for the 

fusion model and thirdly for the blind comparison. Figure 4.1.3-1 shows summary of 

all human evaluations. Original results of the human evaluations can be found in 

Appendix A. 

Positive Negative Positive Negative

Annotator 1 4 96 64 36

Annotator 2 7 93 69 31

Annotator 3 3 97 74 26

Annotator 4 3 97 62 38

Annotator 5 5 95 75 25

Annotator 6 4 96 76 24

Annotator 7 6 94 68 32

Annotator 8 4 96 78 22

Annotator 9 2 98 66 34

Annotator 10 4 96 72 28

Annotator 11 6 94 64 36

Annotator 12 4 96 68 32

Annotator 13 4 96 72 28

Annotator 14 5 95 77 23

Annotator 15 4 96 75 25

Annotators
Fusion ModelTRNET

 

Figure 4.1.3-1 Summary of Prompt pairing results (left) and blind comparison (right) 

Annotators TRNET Fusion Model

Annotator 1 25 75

Annotator 2 24 76

Annotator 3 23 77

Annotator 4 25 75

Annotator 5 22 78
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4.2 EVALUATION 

In order to evaluate the model, three evaluation metrics were taken into consideration 

and the details are explained in this section. 

First evaluation metric examined is perplexity. Because of the time limitations the 

transformer network was trained on 50.000 data instances which took 15 days thus, 

only one perplexity score gathered from the whole instances of the test set which is 

15.138 prompts and corresponding stories. The perplexity of the transformer network 

and fusion model (Fan et al., 2018) is 67,48 and 36,56 respectively. Since no metrics 

such as k-fold cross validation for gathering more than one perplexity score, the 

statistical significance of the perplexity score is an issue and in terms of perplexity 

there is no evidence found to reject the null hypothesis. 

Models # of Parameters (mil) Perplexity score

Transformer network 93.3 67,48

Fusion model (Fan et al., 2018) 255.4 36,56  

Figure 4.2- 1 Perplexity score of the models 

The second and third metrics are human evaluation metrics which are prompt pairing 

and blind comparison test of generated stories. In order to interpret the Free-Marginal 

Fleiss’s Kappa measure for both human evaluations, the guideline determined by 

Richard and Koch (1977) was used. For the prompt pairing task, the percentage of 

pairing accuracy for the transformer network is measured as 4.33%. The Free-Marginal 

Fleiss’s Kappa score for the prompt pairing task related to the transformer networks 

calculated as 0.86±0.04 with %95 confidence interval. There was a significant perfect 

reliability found between annotators about the prompt pairing task for the transformer 

network. The prompt pairing accuracy for the fusion model found as 70.67% and the 

Free-Marginal Fleiss’s Kappa score for fusion networks measured as 0.45±0.05 with 

%95 confidence interval. There was a significant moderate reliability found among 

annotators for the prompt pairing task related to the fusion model. 

Models
Accuracy of Prompt

pairing task

Free-Marginal 

Fleiss's Kappa

Transformer network 4.33% 0.86±0.04

Fusion model (Fan et al., 2018) 70.67% 0.62±0.04  

Figure 4.2- 2 Accuracy of prompt pairing task and kappa scores 
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The third metric is also a human evaluation task which is a blind comparison task 

given to the annotators for them to prefer a story between two stories. For this task the 

annotators chosen the fusion model over the transformer network with 76.20% and the 

Free-Marginal Fleiss’s Kappa score measured as 0.62±0.04 with %95 confidence 

interval. There was a significant substantial reliability found among annotators for the 

blind comparison test. Results of the both metrics shown that there is no statistically 

significant evidence found to reject the null hypothesis. 

Models
Blind 

Comparison Task

Free-Marginal 

Fleiss's Kappa

Transformer network 23.80%

Fusion model (Fan et al., 2018) 76.20%
0.62±0.04

 

Figure 4.2- 3 Blind comparison task and kappa score 

4.3 DISCUSSION 

This section is dedicated to the strengths and limitations of the proposed model. 

4.3.1 Strengths 

• Competitive results with simpler network: The fusion mechanism has one 

pre-trained convseq2seq network and another convseq2seq with attention and 

gating mechanism implemented in it, however even with 22% training data that 

fusion network trained with transformer networks generated results that 

preferred by annotators in every 1 out of 4 stories. 

• No bias in reliability of the annotators: The popular technique Fixed-

Marginal Fleiss’s Kappa (Fleiss, 1971) is shown to be influenced by prevalence 

and bias which can lead to high agreement but low kappa among annotators 

(Randolph, 2005). On the other hand, the Free-Marginal Fleiss’s Kappa used in 

this thesis resolve that problem so there is no bias in reliability of agreements 

among annotators.  

• Generated novel stories: The transformer network generated novel stories 

without copying the stories from the original dataset. 
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4.3.2 Weaknesses 

• High memory usage: The network has 93.3 million trainable parameters 

which is almost %30 of the fusion model. However even with 93.3 million 

parameters the attention that needed to be kept in RAM during training is 

substantially high. In addition to that, there is no parallelization in the decoder 

layer which is the part that generates the whole story, which increases the 

training time and memory usage enormous amounts. The RAM needed to train 

the dataset was 400GB. 

• Repetition: The seq2seq network architecture of the transformer network 

resulted in repetition of words which also examined in some previous research 

for LSTM seq2seq on story generation (Jain et al., 2017). Even the transformer 

architecture which based on solely powerful attention mechanism which has no 

recurrence in it endured repetition, so the problem seems to be the seq2seq 

architecture, not recurrence. 

• Grammatical errors: When generating stories in several occasions the model 

generated wrong grammar especially for abbreviations. An example can be 

given from the Figure 4.1.1-1 “have n’T”. There is an unnecessary space 

between have and the abbreviation also capital “t” is used.  

• Better automated evaluation metric needed for story generation: Even the 

perplexity score of the transformer model is almost two times high or in other 

words the difference between the perplexity of two models is 30.92, the 1 out 

of 4 stories generated by transformer networks are chosen by the annotators as 

better story. 

• Stories are not related to prompts: The seq2seq network architecture of the 

model resulted in having stories that lose its course which brought the problem 

of generating stories that are unrelated to their corresponding prompts as 

examined in the first human evaluation task. 

• No sense of progression in the stories: Stories tend to keep telling the same 

events no sense of progression found in the generated stories. 
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• Inefficient generation time: The time needed for generating a story that 

consists of 150 words with a prompt that has 23 word in it measured as 43 

seconds on an average CPU which makes the network inefficient for real time 

generation. 

• No statistical comparison for perplexity: Because of the training time took to 

train one model there was no time for validation methods such as cross-

validation to make a statistical comparison of perplexity results. 
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5. CONCLUSION 

5.1 RESEARCH OVERVIEW 

The main objective of this research is to investigate the automated story generation 

field and propose a new model that can increase the automated generation capabilities 

of machines. In order to reach that goal, a transformer network (Vaswani et al., 2017) 

was designed and the performance of it compared with the state-of-the-art automated 

story generator (Fan et al., 2018) on the same evaluation metrics. 

5.2 PROBLEM DEFINITION 

Many approaches taken in order to solve the automated story generation over the years 

as reviewed comprehensively in Section 2.6. Early approaches tried to solve the 

problem on restricted domains and some of the investigations got good results. 

However, those methods were relied heavily on human interaction and since they were 

bound to the domains that specified by their developers and lacked creativity. Deep 

learning approaches brought open domain solutions to the field, but they also 

introduced several other problems some of which is the coherency, repetitive 

generations and keep generating on the same event with no progression so it is still an 

open field. In order to solve those issues a transformer network is designed, evaluated 

and tested against the hypothesis in Section 3 and Section 4 respectively. 

5.3 DESIGN/EXPERIMENTATION, EVALUATION, RESULTS  

The data was gathered and in order to have a clear understanding some features of it 

examined. Because of the time limitations allocated to this thesis the data was cropped 

into a feasible dataset. The network was designed according to the hyperparameters 

specified by Vaswani et al., (2017) and the experiment conducted, and the strengths 

and weaknesses of the design was examined. 

After the training step the transformer network, the quality and performance of the 

generations done by the proposed transformer network on the test dataset was 

measured with perplexity and human evaluations as explained in Section 3 then the 
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reliability of the human evaluation results examined in order to assess their statistical 

significance. 

The comparison of the perplexity and human evaluation results between the 

transformer network and the state-of-the-art model proposed by Fan et al., (2018) 

reported and the hypothesis presented in Section 3.1 is tested, in addition to that, the 

strengths and weaknesses of the experiment is investigated. There was no statistically 

significant evidence found to reject the null hypothesis.   

5.4 CONTRIBUTIONS & IMPACT 

This investigation shows that even one of the most powerful models in the field of 

NLG which is solely attention-based transformer network cannot generate stories 

dependent on a prompt and solve the repeatability problem because of its seq2seq 

architecture. Still the most viable approach is to take the prompts written by a human, 

turn them into sketches and use them as a prompt (Fan et al., 2018).  

Usually among the NLP field an increase by 10 on perplexity considered as a 

dramatical increase, however even there was substantial differences between the two 

models perplexity scores, 1 out of 4 stories chosen by the annotators are generated by 

transformer networks which indicates there should be a better automated metric in 

place in order to assess the performance of text generations especially tasks that 

require a certain level of creativity such as story or poem generation.  

Although, transformer networks allow parallelization in the encoder, for long text 

generation transformer networks take considerable amount of time to generate stories 

because of the one by one generation mechanism at the decoder.  

5.5 FUTURE WORK & RECOMMENDATIONS 

• In order to pay more attention to the prompts the encoder architecture of the 

network can be changed to bidirectional encoder (Devlin, Chang, Lee, & 

Toutanova, 2019) in order to pay more attention to the prompt.  

• An implementation of generative adversarial networks (Goodfellow et al., 

2014) with bidirectional transformer encoder as discriminator and the decoder 
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of the transformer network as generator with REINFORCE algorithm has the 

potential of reaching more creative, coherent and human like results when 

paying attention to the prompt. 
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APPENDIX A 

Match No Match Match No Match

story #1 0 15 2 13

story #2 0 15 12 3

story #3 2 13 11 4

story #4 0 15 14 1

story #5 0 15 13 2

story #6 0 15 12 3

story #7 2 13 14 1

story #8 4 11 10 5

story #9 0 15 11 4

story #10 4 11 12 3

story #11 3 12 12 3

story #12 1 14 12 3

story #13 2 13 0 15

story #14 0 15 3 12

story #15 0 15 13 2

story #16 0 15 10 5

story #17 0 15 14 1

story #18 1 14 3 12

story #19 0 15 10 5

story #20 1 14 0 15

story #21 1 14 15 0

story #22 0 15 13 2

story #23 0 15 12 3

story #24 0 15 1 14

story #25 0 15 11 4

story #26 0 15 12 3

story #27 1 14 11 4

story #28 0 15 13 2

story #29 1 14 10 5

story #30 0 15 11 4

story #31 0 15 10 5

story #32 0 15 11 4

story #33 0 15 12 3

story #34 0 15 10 5

story #35 0 15 2 13

story #36 0 15 11 4

story #37 0 15 13 2

story #38 0 15 15 0

story #39 0 15 13 2

story #40 1 14 13 2

story #41 1 14 11 4

story #42 0 15 14 1

story #43 0 15 13 2

story #44 0 15 12 3

story #45 0 15 13 2

story #46 5 10 10 5

story #47 1 14 14 1

story #48 0 15 1 14

story #49 0 15 13 2

story #50 0 15 12 3

story #51 0 15 14 1

story #52 1 14 13 2

story #53 1 14 14 1

story #54 0 15 0 15

story #55 2 13 2 13

story #56 0 15 13 2

story #57 0 15 14 1

story #58 0 15 13 2

story #59 0 15 2 13

story #60 0 15 13 2

story #61 5 10 10 5

story #62 0 15 0 15

story #63 0 15 14 1

story #64 1 14 11 4

story #65 0 15 14 1

story #66 1 14 10 5

story #67 0 15 12 3

story #68 2 13 1 14

story #69 4 11 11 4

story #70 0 15 13 2

story #71 0 15 12 3

story #72 0 15 15 0

story #73 2 13 12 3

story #74 1 14 11 4

story #75 0 15 14 1

story #76 0 15 13 2

story #77 1 14 11 4

story #78 0 15 14 1

story #79 0 15 13 2

story #80 1 14 2 13

story #81 3 12 14 1

story #82 1 14 14 1

story #83 0 15 12 3

story #84 1 14 11 4

story #85 1 14 13 2

story #86 0 15 11 4

story #87 0 15 12 3

story #88 1 14 13 2

story #89 0 15 14 1

story #90 1 14 11 4

story #91 0 15 2 13

story #92 1 14 11 4

story #93 0 15 10 5

story #94 2 13 13 2

story #95 0 15 12 3

story #96 0 15 14 1

story #97 1 14 12 3

story #98 0 15 2 13

story #99 0 15 13 2

story #100 0 15 14 1

Stories
TRNET Fusion Model

 

Results for prompt pairing task 
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Stories TRNET Fusion

story #1 1 4

story #2 0 5

story #3 0 5

story #4 1 4

story #5 0 5

story #6 1 4

story #7 0 5

story #8 1 4

story #9 0 5

story #10 1 4

story #11 0 5

story #12 0 5

story #13 1 4

story #14 5 0

story #15 1 4

story #16 1 4

story #17 0 5

story #18 1 4

story #19 1 4

story #20 5 0

story #21 0 5

story #22 1 4

story #23 1 4

story #24 0 5

story #25 1 4

story #26 0 5

story #27 0 5

story #28 1 4

story #29 0 5

story #30 1 4

story #31 1 4

story #32 1 4

story #33 1 4

story #34 0 5

story #35 5 0

story #36 0 5

story #37 0 5

story #38 0 5

story #39 1 4

story #40 0 5

story #41 0 5

story #42 1 4

story #43 5 0

story #44 0 5

story #45 0 5

story #46 5 0

story #47 1 4

story #48 0 5

story #49 5 0

story #50 0 5

story #51 1 4

story #52 0 5

story #53 1 4

story #54 5 0

story #55 0 5

story #56 5 0

story #57 1 4

story #58 5 0

story #59 0 5

story #60 0 5

story #61 1 4

story #62 5 0

story #63 1 4

story #64 0 5

story #65 1 4

story #66 1 4

story #67 1 4

story #68 4 1

story #69 4 1

story #70 1 4

story #71 1 4

story #72 0 5

story #73 1 4

story #74 4 1

story #75 1 4

story #76 0 5

story #77 4 1

story #78 1 4

story #79 0 5

story #80 0 5

story #81 1 4

story #82 1 4

story #83 1 4

story #84 1 4

story #85 0 5

story #86 5 0

story #87 0 5

story #88 1 4

story #89 1 4

story #90 0 5

story #91 1 4

story #92 0 5

story #93 0 5

story #94 0 5

story #95 5 0

story #96 0 5

story #97 1 4

story #98 0 5

story #99 0 5

story #100 1 4  

Results for blind comparison task 
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