
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Book chapter/book School of Mathematics 

2019 

Integrable Models of Internal Gravity Water Waves Beneath a Flat Integrable Models of Internal Gravity Water Waves Beneath a Flat 

Surface Surface 

Alan Compelli 
University College Cork, Ireland 

Rossen Ivanov 
Technological University Dublin, rossen.ivanov@tudublin.ie 

Tony Lyons 
Waterford Institute of Technology, Ireland 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatbk 

Recommended Citation Recommended Citation 
Compelli, A.,Ivanov, R. & Lyons, T. (2020) Nonlinear Water Waves: an Interdisciplinary Interface, Springer 
Nature, Switzerland. isbn:978-3-030-33536-6 

This Book Chapter is brought to you for free and open 
access by the School of Mathematics at ARROW@TU 
Dublin. It has been accepted for inclusion in Book 
chapter/book by an authorized administrator of 
ARROW@TU Dublin. For more information, please 
contact yvonne.desmond@tudublin.ie, 
arrow.admin@tudublin.ie, brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Arrow@dit

https://core.ac.uk/display/301313488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatbk
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatbk?utm_source=arrow.tudublin.ie%2Fscschmatbk%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Integrable Models of Internal Gravity Water
Waves beneath a Flat Surface

Alan C. Compelli, Rossen I. Ivanov and Tony Lyons

Abstract. A two-layer fluid system separated by a pycnocline in the form of
an internal wave is considered. The lower layer is bounded below by a flat
bottom and the upper layer is bounded above by a flat surface. The fluids are
incompressible and inviscid and Coriolis forces as well as currents are taken
into consideration. A Hamiltonian formulation is presented and appropriate
scaling leads to a KdV approximation. Additionally, considering the lower
layer to be infinitely deep leads to a Benjamin-Ono approximation.

Mathematics Subject Classification (2000). Primary: 35Q35, 35Q51, 35Q53;
Secondary: 37K10 .

Keywords. Internal waves, currents, nonlinear waves, long waves, Hamiltonian
systems, solitons.

1. Introduction

The presented material provides a review of some well-known long wave models: the
KdV and Benjamin-Ono approximations. The context is an oceanic fluid system
comprising of two layers separated by an internal wave, created by a sharp density
gradient, bounded above and below by a flat surface and flat seabed respectively.
Many irrotational studies of both single layered and stratified systems such as
[2, 3, 4, 17, 18, 19, 27, 28] have followed on from Zakharov’s determination in [32]
of a canonical Hamiltonian structure for a deep fluid with gravitational surface
waves. The consideration of vorticity, however, is necessary for the inclusion of
currents. The interaction of waves and currents have been examined for single layer
systems in [10, 11, 14, 15, 16, 30, 31] and for stratified systems in [5, 6, 7, 12, 13].

2. The set-up

Consider a fluid system consisting of two domains as shown in Figure 1. The
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Figure 1. Set-up for the system.

lower medium is bounded underneath by a solid, stationary, impermeable layer of
constant depth called the ‘flatbed’ at a depth h and the upper medium is bounded
by a flat surface called the ‘lid’ at a height h1. The physical reasoning is that the
surface waves in the ocean have usually much smaller amplitudes in comparison
to the internal waves. Typically h1 may be of the order of hundreds of metres and
h may be of the order of kilometres.

The system comprises of two separate fluids which have different densities
due to different salinity levels and temperatures. Some prescribed flow has been
generated by, perhaps, surface winds permeating downwards or due to tidal influ-
ences. However, at the interface the fluids do not mix and form a free common
interface in the form of an internal wave. The wave is two-dimensional (in the x-y
plane), propagating in the positive x-direction, due to the assumption that there
is no lateral movement. This is a reasonable assumption for example, for oceanic
waves of constant depth travelling along the equator [13, 22, 26]. The wave extends
to infinity in both the positive and negative directions. The wave is characterised
by the elevation function η(x, t) with respect to the level y = 0. In other words
the equation of the interface is

y = η(x, t). (2.1)

The mean value of η is taken to be zero for convenience,
∫

R

η(x, t)dx = 0, for all t. (2.2)
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The system is assumed to be on the surface of the Earth, that is on a rotating
solid body. The wave is acted upon by the restorative action of gravity. The Earth’s
centre of gravity is considered to be in the negative y-direction.

The domains Ω and Ω1 are defined as

Ω := {(x, y) ∈ R2 : −h < y < η(x, t)}

and Ω1 := {(x, y) ∈ R2 : η(x, t) < y < h1}.

Due to an assumption of incompressibility the constant densities are given by ρ
and ρ1 and stability is ensured by the assumption of immiscibility and that ρ > ρ1.

The stream functions, ψ and ψ1, are related to the velocity fields u = (u, v)
and u1 = (u1, v1) via the relations

u = ψy, u1 = ψ1,y, v = −ψx and v1 = −ψ1,x (2.3)

due to the incompressibility assumption ∇ · u = 0, ∇ · u1 = 0.
The velocity potentials, ϕ and ϕ1, are introduced such that

u = ϕx + γy, u1 = ϕ1,x + γ1y, v = ϕy and v1 = ϕ1,y (2.4)

where γ and γ1 are the constant vorticities, where the vorticities are defined as

γ = −vx + uy and γ1 = −v1,x + u1,y. (2.5)

This setup allows for modelling of an undercurrent, such as the Equatorial
Undercurrent. A piecewise linear current profile can be represented by the velocity
fields of the form (2.4), [12] by writing

u = ϕ̃x + γy + κ, u1 = ϕ̃1,x + γ1y + κ1, v = ϕ̃y and v1 = ϕ̃1,y (2.6)

where κ and κ1 are constants representing the current horizontal velocities at
y = 0. The wave-only components have been separated out by introducing a tilde
notation.

There is a harmonic conjugate relationship between ψ and ϕ̃ (cf. [21, 25])
given by the complex analytic function

f(z) = ϕ̃(x, y, t) + i
(
ψ(x, y, t) −

1

2
γy2 − κy

)
,

where z = x + iy ∈ Ω, and similar for Ω1. The fact that f(z) is analytic in the
corresponding domain allows the determination of the velocity potential ϕ̃(x, y, t)
in Ω from its value φ(x, t) at the interface y = η(x, t) (see (4.13) below, φ(x, t) can
be expressed through the canonical Hamiltonian variables defined at the interface).
Hence, the physical quantities in the body of the fluid can be determined from the
variables at the interface as well.

We assume that the functions η(x, t), ϕ̃(x, y, t) and ϕ̃1(x, y, t) belong to the
Schwartz class S(R) (cf. [24]) with respect to x (for any y and t). The assumption
of course implies that for large absolute values of x the internal wave attenuates,
and is vanishing at infinity, and therefore

lim
|x|→∞

η(x, t) = lim
|x|→∞

ϕ̃(x, y, t) = lim
|x|→∞

ϕ̃1(x, y, t) = 0. (2.7)
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Note that we have not specified the dynamics (the time-evolution) of our
physical variables yet.

3. Governing equations

The fluid velocities and the net forces per unit mass for the inviscid media under
study are related through the Euler equations

ut +(u.∇)u = −
1

ρ
∇p+g+F and u1,t +(u1.∇)u1 = −

1

ρ1
∇p1 +g+F1 (3.1)

where

F = 2ω∇ψ and F1 = 2ω∇ψ1 (3.2)

are the Coriolis forces per unit mass with ω being the rotational speed of the Earth,
g = (0, 0,−g) is the Earth acceleration, i.e. g is the acceleration due to gravity, ρ
and ρ1 (due to the assumption of incompressibility) are the constant densities and
p and p1 are the corresponding pressures.

The pressure gradients are given as

∇p = −ρ∇
(
ϕ̃t +

1

2
|∇ψ|2 − (γ + 2ω)ψ + gy

)

and ∇p1 = −ρ1∇
(
ϕ̃1,t +

1

2
|∇ψ1|

2 − (γ1 + 2ω)ψ1 + gy
)
.

We hence can establish a Bernoulli condition at the interface (p = p1)

ρ
(
(ϕ̃t)c +

1

2
|∇ψ|2c − (γ + 2ω)χ+ gη

)

= ρ1

(
(ϕ̃1,t)c +

1

2
|∇ψ1|

2
c − (γ1 + 2ω)χ1 + gη

)
(3.3)

where the subscript c signifies the evaluation at the common interface y = η(x, t),
χ = ψ(x, η, t) and χ1 = ψ1(x, η, t). The equation (3.5) will eventually produce the
evolution of the quantity

ξ := ρ(ϕ̃)c − ρ1(ϕ̃1)c

and this indicates that ξ can be chosen as a momentum variable in the Hamiltonian
formulation of the problem. The obvious candidate for a counterpart coordinate

variable is η(x, t) and it evolves according to the so called kinematic boundary

condition at the interface

ηt = v − uηx = v1 − u1ηx. (3.4)

This can be expressed in terms of the stream functions, using (2.3), as

ηt = −(ψx)c − (ψy)cηx = −(ψ1,x)c − (ψ1,y)cηx, (3.5)

and in terms of the velocity potentials, using (2.6), as

ηt = (ϕ̃y)c −
(
(ϕ̃x)c + γη + κ

)
ηx = (ϕ̃1,y)c −

(
(ϕ̃1,x)c + γ1η + κ1

)
ηx. (3.6)
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The kinematic boundary condition at the bottom, requiring that there is no ve-
locity component in the y-direction on the flat bed, is given by

(
ϕ̃(x,−h, t)

)
y

= 0 and
(
ψ(x,−h, t)

)
x

= 0 (3.7)

and, additionally, there is a kinematic boundary condition at the top, requiring
that there is no velocity component in the y-direction on the surface, given by

(
ϕ̃1(x, h1, t)

)
y

= 0 and
(
ψ1(x, h1, t)

)
x

= 0. (3.8)

4. Hamiltonian formulation

The functional H , which describes the total energy of the system, can be written
as the sum of the kinetic, K, and potential energy, V contributions. The potential
part is

V (η) = ρg

∫

R

η∫

−h

y dydx+ ρ1g

∫

R

h1∫

η

y dydx.

However, the potential energy is always measured from some reference value, e.g.
V (η = 0) which is the potential energy of the current (without wave motion).
Therefore, the relevant part of the potential energy, contributing to the wave mo-
tion is

V(η) = V (η) − V (0) = ρg

∫

R

η∫

0

y dydx+ ρ1g

∫

R

0∫

η

y dydx =
1

2
(ρ− ρ1)g

∫

R

η2dx.

In order to determine the kinetic energy of the wave motion, from the total
kinetic energy of the fluid

1

2
ρ

∫

R

η∫

−h

(u2 + v2)dydx+
1

2
ρ1

∫

R

h1∫

η

(u2
1 + v2

1)dydx (4.1)

one should subtract again the constant, but infinite kinetic energy of the current
which is

1

2
ρ

∫

R

0∫

−h

(γy + κ)2dydx+
1

2
ρ1

∫

R

h1∫

0

(γ1y + κ1)
2dydx. (4.2)
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In terms of the dependent variables η(x, t), ϕ̃(x, t) and ϕ̃1(x, t) this kinetic
energy is

K(η, ϕ̃, ϕ̃1) =
1

2
ρ

∫

R

η∫

−h

(
(ϕ̃x + γy + κ)2 + (ϕ̃y)2

)
dydx−

1

2
ρ

∫

R

0∫

−h

(γy + κ)2dydx

+
1

2
ρ1

∫

R

h1∫

η

(
(ϕ̃1,x + γ1y + κ1)

2 + (ϕ̃1,y)
2
)
dydx−

1

2
ρ1

∫

R

h1∫

0

(γ1y + κ1)
2dydx

=
1

2
ρ

∫

R

η∫

−h

(
(ϕ̃x)2 + (ϕ̃y)2 + 2ϕ̃x(γy + κ)

)
dydx

+
1

2
ρ1

∫

R

h1∫

η

(
(ϕ̃1,x)2 + (ϕ̃1,y)2 + 2ϕ̃1,x(γ1y + κ1)

)
dydx

+
1

6
(ργ2 − ρ1γ

2
1)

∫

R

η3dx+
1

2

(
ργκ − ρ1γ1κ1

) ∫

R

η2dx. (4.3)

The Hamiltonian is therefore

H(η, ϕ̃, ϕ̃1) = K + V =
1

2
ρ

∫

R

η∫

−h

(
(ϕ̃x)2 + (ϕ̃y)2 + 2ϕ̃x(γy + κ)

)
dydx

+
1

2
ρ1

∫

R

h1∫

η

(
(ϕ̃1,x)2 + (ϕ̃1,y)2 + 2ϕ̃1,x(γ1y + κ1)

)
dydx

+
1

6
(ργ2 − ρ1γ

2
1)

∫

R

η3dx+
1

2

(
(ργκ − ρ1γ1κ1) + (ρ− ρ1)g

) ∫

R

η2dx. (4.4)

The Dirichlet-Neumann operators G(η) and G1(η) are introduced defined as
[20]

G(η)φ = (ϕ̃n)c

√
1 + η2

x and G1(η)φ1 = (ϕ̃1n1
)c

√
1 + η2

x (4.5)

where n and n1 are the unit exterior normals,
√

1 + (ηx)2 is a normalisation factor
and

φ(x, t) := (ϕ̃)c = ϕ̃(x, η(x, t), t) and φ1(x, t) := (ϕ̃1)c = ϕ̃1(x, η(x, t), t)
(4.6)

have been introduced as the interface velocity potentials and also introduce the
operator B [18] as

B := ρG1(η) + ρ1G(η). (4.7)
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Using the boundary conditions
{
G(η)φ = −ηx(ϕ̃x)c + (ϕ̃y)c = ηt + (γη + κ)ηx,
G1(η)φ1 = ηx(ϕ̃1,x)c − (ϕ̃1,y)c = −ηt − (γ1η + κ1)ηx

(4.8)

we get

G(η)φ+G1(η)φ1 = µ (4.9)

where

µ :=
(
(γ − γ1)η + (κ − κ1)

)
ηx. (4.10)

Introducing the momentum variable [2, 3]

ξ(x, t) = ρφ(x, t) − ρ1φ1(x, t) (4.11)

we can show that

Bφ = ρ1G(η)φ+ ρG1(η)φ = ρ1µ+G1(η)ξ (4.12)

and thus {
φ = B−1

(
ρ1µ+G1(η)ξ

)

φ1 = B−1
(
ρµ−G(η)ξ

) (4.13)

gives the explicit expression of φ and φ1 in terms of η and ξ. Due to the initial
assumptions on the velocity potentials, ξ(x, t) is a Schwartz class S(R) function in
x (for any t).

Usually there is no jump in the current velocity, hence in what follows we
take κ = κ1. The Hamiltonian of the system can be expressed in terms of variables
defined on the interface only, η and ξ:

H(η, ξ) =
1

2

∫

R

ξG(η)B−1G1(η)ξ dx−
1

2
ρρ1(γ − γ1)

2

∫

R

ηηxB
−1ηηxdx

−γ

∫

R

ξηηxdx−κ

∫

R

ξηxdx+ρ1(γ−γ1)

∫

R

ηηxB
−1G(η)ξ dx+

1

6
(ργ2−ρ1γ

2
1)

∫

R

η3dx

+
1

2

(
(ργ − ρ1γ1)κ+ g(ρ− ρ1)

) ∫

R

η2dx. (4.14)

It is a natural physical fact that there is no flow through the common interface
and therefore the stream functions χ = ψ(x, η, t) and χ1 = ψ1(x, η, t) at the
interface coincide,

χ = χ1 = −

∫ x

−∞

ηt(x
′, t)dx′ = −∂−1

x ηt (4.15)

noting that due to (3.7)

d

dx
ψ(x, η, t) = ψx + ψy(x, η, t)ηx = −ηt.



8 A.C. Compelli, R.I. Ivanov and T. Lyons

By evaluating the variations of the Hamiltonian one can show that (3.8) and
(3.5) can be written in the form of a non-canonical Hamiltonian system [16]

ηt =
δH

δξ
and ξt = −

δH

δη
+ Γχ = −

δH

δη
− Γ∂−1

x ηt, (4.16)

where
Γ := ργ − ρ1γ1 + 2ω(ρ− ρ1) (4.17)

is a constant. Canonical equations of motion can be achieved by transforming the
velocity potential at the interface, ξ, to a new variable, ζ, via the transformation
(cf. [31])

ξ → ζ = ξ +
Γ

2

x∫

−∞

η(x′, t)dx, (4.18)

and due to (2.2) the variable ζ ∈ S(R) (for any t). For our further convenience
however the equations (4.16) will be written in terms of the variable

u = ξx

and hence for a Hamiltonian in u and η

ηt = −
(δH
δu

)

x
and ut = −

(δH
δη

)

x
− Γηt. (4.19)

5. Expanding the Dirichlet-Neumann operators

The Dirichlet-Neumann operators can be expanded in terms of powers of η as

G(η) =

∞∑

j=0

G(j)(η) and G1(η) =

∞∑

j=0

G
(j)
1 (η), (5.1)

where G(j)(η) is a homogeneous expression in η of degree j, that is G(j)(bη) =
bjG(j)(η) for any constant b. The explicit expansion is [18]

G(η) = DT (D) +DηD −DT (D)ηDT (D) + O(η2) (5.2)

and G1(η) = DT1(D) −DηD +DT1(D)ηDT1(D) + O(η2) (5.3)

where
D := −i∂x (5.4)

is a differential operator and

T (D) := tanh(hD) and T1(D) := tanh(h1D) (5.5)

have been introduced.
The operator B, as defined in (4.7), which is a function of the Dirichlet-

Neumann operators, can therefore be expressed as

B = ρ

∞∑

j=0

G
(j)
1 (η) + ρ1

∞∑

j=0

G(j)(η).
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It is noted that the leading (zeroth order in η) term in the expansion of B−1,

represented by [B−1](0), is

[B−1](0) =
1

ρDT1(D) + ρ1DT (D)
. (5.6)

6. Approximations

6.1. The KdV approximation

A KdV-type approximation will be derived (cf. [8]). This family of equations are
characterised as having weakly nonlinear and dispersive components.

Small parameters associated to the physical scales

ε =
a

h1
and δ =

h1

λ
(6.1)

are introduced where λ is the wavelength of the internal wave and a is the average
wave amplitude. Indeed, δ ≪ 1 is small for long waves λ≫ h1. This approximation
therefore is for the long-wave regime. The quantity h1k where k = 2π/λ is the wave
number is therefore scaled as

O(h1k) = δ,

and therefore for the operatorD (which on monochromatic waves has an eigenvalue
equal to the wave number) clearly

O(h1D) = δ. (6.2)

To keep track of the order of the variables we replace h1D with δh1D and
further assume that h1D itself is of order 1. Since h and h1 are fixed constants,
then their ratio is of order 1. The wave elevation function is scaled according to

η → εη. (6.3)

It can be shown as in [8] that the scaling of ξ, leading to the KdV approximation
is

ξ → δξ. (6.4)

The expansion of the Dirichlet-Neumann operators, given in (5.2) and (5.3),
can be scaled as

G(η) → δ
(
D tanh(δhD)

)
+ εδ2

(
DηD −D tanh(δhD)ηD tanh(δhD)

)
+ O(ε2δ4)

G1(η) → δ
(
D tanh(δh1D)

)
− εδ2

(
DηD −D tanh(δh1D)ηD tanh(δh1D)

)

+ O(ε2δ4).

Using the expansion for the hyperbolic tangent the Dirichlet-Neumann oper-
ators can be represented as

G(η) = δ2
(
hD2 + εDηD

)
− δ4

(1

3
h3D4 + εh2D2ηD2

)

+ δ6
( 2

15
h5D6

)
+ O(δ8, εδ6, ε2δ4) (6.5)
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and

G1(η) = δ2
(
h1D

2 − εDηD
)

+ δ4
(
−

1

3
h3

1D
4 + εh2

1D
2ηD2

)

+ δ6
( 2

15
h5

1D
6
)

+ O(δ8, εδ6, ε2δ4). (6.6)

and so the inverse of the operator B is given by

B−1 =
1

δ2(ρ1h+ ρh1)
D−1

{
1 − ε

ρ1 − ρ

ρ1h + ρh1
η + ε2

(ρ1 − ρ)2

(ρ1h+ ρh1)2
η2

+ δ2

(
1

3

ρ1h
3 + ρh3

1

ρ1h+ ρh1
D2 −

1

3
ε
(ρ1 − ρ)(ρ1h

3 + ρh3
1)

(ρ1h+ ρh1)2
ηD2

−
1

3
ε
(ρ1 − ρ)(ρ1h

3 + ρh3
1)

(ρ1h + ρh1)2
D2η + ε

ρ1h
2 − ρh2

1

ρ1h+ ρh1
DηD

)

− δ4

(
2

15

ρ1h
5 + ρh5

1

ρ1h + ρh1
D4 −

1

9

(ρ1h
3 + ρh3

1)
2

(ρ1h+ ρh1)2
D4

)
+ O(δ6, εδ4, ε2δ2, ε3)

}
D−1.

(6.7)

By assuming that ε and δ2 are of the same order, so as to permit a balancing
between nonlinearity and dispersion, the Hamiltonian to O(δ6) is therefore

H(η, ξ) =
1

2
δ4α1

∫

R

ξD2ξdx+
1

2
δ6α3

∫

R

ξDηDξdx −
1

2
δ6α2

∫

R

ξD4ξdx

− δ4κ

∫

R

ξηxdx− δ6α4

∫

R

ξηηxdx+
1

6
δ6α6

∫

R

η3dx+
1

2
δ4α5

∫

R

η2dx (6.8)

or

H(η, u) =
1

2
δ4α1

∫

R

u
2dx+

1

2
δ6α3

∫

R

ηu2dx−
1

2
δ6α2

∫

R

u
2
xdx

+ δ4κ

∫

R

ηudx + δ6
1

2
α4

∫

R

uη2dx+
1

6
δ6α6

∫

R

η3dx+
1

2
δ4α5

∫

R

η2dx (6.9)
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where the following constants have been introduced

α1 =
hh1

ρ1h+ ρh1
, (6.10)

α2 =
1

3

h2h2
1(ρ1h1 + ρh)

(ρ1h+ ρh1)2
, (6.11)

α3 =
ρh2

1 − ρ1h
2

(ρ1h+ ρh1)2
, (6.12)

α4 =
γρh1 + γ1ρ1h

ρ1h+ ρh1
, (6.13)

α5 = (ργ − ρ1γ1)κ+ g(ρ− ρ1), (6.14)

α6 = ργ2 − ρ1γ
2
1 . (6.15)

The equations of motion (4.19) are now written in terms of η and u as

ηt + κηx + α1ux + δ2α3(uη)x + δ2α2uxxx + δ2α4ηηx = 0 (6.16)

and ut + κux + δ2α3uux + δ2α4(uη)x + δ2α6ηηx + α5ηx + Γηt = 0, (6.17)

with an appropriate scaling of t. Noting the assumption that g ≫ 2ωκ and intro-
ducing a Galilean shift

X = x− κt, T = t, ∂X = ∂x and ∂T = ∂t + κ∂x (6.18)

the equations of motion can be written as

ηT + α1uX + δ2
(
α2uXXX + α3(uη)X + α4ηηX

)
= 0 (6.19)

and uT − Γα1uX + g(ρ− ρ1)ηX + δ2
(
− Γα2uXXX

+ α3uuX + α4(uη)X − Γα3(uη)X + α6ηηX − Γα4ηηX

)
= 0. (6.20)

The linearised equations are therefore

ηT + α1uX = 0 (6.21)

and uT − Γα1uX + g(ρ − ρ1)ηX = 0. (6.22)

The variables, η and u can be represented as

η(X, T ) = η0e
i(kX−Ω(k)T ) (6.23)

and u(X, T ) = u0e
i(kX−Ω(k)T ). (6.24)

Noting that the wave number, angular frequency and wave speed are related
via c(k) = Ω(k)/k means it can be written that

− ickη + iα1ku = 0 (6.25)

and − icku+ ig(ρ − ρ1)kη − iΓα1ku = 0. (6.26)

This has solutions for observers moving with the flow as

c =
1

2

(
− Γα1 ±

√
α2

1Γ
2 + 4α1g(ρ − ρ1)

)
. (6.27)
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From (6.25) in the leading order u = c
α1

η. Considering a relation that goes

to the next order

u =
c

α1
η + δ2

(
σηXX + µη2

)
(6.28)

for some constants µ and σ we can exclude u from the system (6.19)-(6.20) and
write both equations in terms of η. Of course they should coincide for the special
choice of the constants µ and σ which is

σ = −
cα2(c+ Γα1)

α2
1(2c+ Γα1)

(6.29)

and

µ =
α1α4(c− Γα1) − α3c(c+ 2Γα1) + α2

1α6

2α2
1(2c + Γα1)

(6.30)

giving the KdV equation

ηT + cηX + δ2
(

c2α2

α1(2c+ Γα1)

)
ηXXX + δ2

(
α2

1α6 + 3α3c
2 + 3α1α4c

α1(2c+ Γα1)

)
ηηX = 0.

(6.31)
Recalling the constants (6.10)–(6.15) when γ = γ1 = ω = 0 this becomes

ηT + cηX + δ2
chh1(ρ1h1 + ρh)

6(ρ1h+ ρh1)
ηXXX +

3

2
δ2c

ρh2
1 − ρ1h

2

hh1(ρ1h + ρh1)
ηηX = 0, (6.32)

where

c = ±

√
hh1(ρ− ρ1)g

ρ1h + ρh1
= ±

√
(ρ− ρ1)g

ρ1/h1 + ρ/h
.

In the case h→ ∞ we have

c∞ = ±

√
h1(ρ− ρ1)g

ρ1
. (6.33)

Next, we recall fact that the canonical KdV equation

ET +EXXX + 6EEX = 0 (6.34)

has a one-soliton solution

E(X, T ) = 2ν2sech2ν(X − 4ν2T −X0)

where ν,X0 are constants, related to the soliton’s initial position and velocity.
Let us now introduce

A = δ2
α2

1α6 + 3α3c
2 + 3α1α4c

α1(2c+ Γα1)

B = δ2
c2α2

α1(2c+ Γα1)

and rescale the variables

η = αE, X → βX, T → βT
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in order to match the coefficients of (6.34). This gives α = 6β2B/A. Applying
further a Galilean shift we obtain the one-soliton solution of (6.31) as

η(X, T ) =
12B

A
ν2β2sech2

(
νβ(X −X0 − (c+ 4ν2β2B)T )

)
.

Introducing the constant K = νβ which has a dimensionality (length)−1 and the
meaning of an analogue of a wave number, the above formula becomes

η(X, T ) =
12B

A
K2sech2

(
K(X −X0 − (c+ 4K2B)T )

)
. (6.35)

The maximal amplitude of the solitary wave is therefore

η0 =
12B

A
K2

and it is related to the constant K. The propagation speed is

V = c+ 4K2B

which is represented from the component of the leading order linear wave c and
the soliton speed 4K2B which is proportional to the amplitude η0 due to the K2

factor.
Let us now analyse the irrotational case where

η0 =
4K2h2h2

1(ρ1h1 + ρh)

3(ρh2
1 − ρ1h2)

.

Since ρ and ρ1 are very close, and usually h is much bigger than h1, then η0 < 0
and the soliton is a depression wave. The velocity is

V = c

(
1 + δ2

2

3
K2hh1

)
= ±

√
hh1(ρ− ρ1)g

ρ1h+ ρh1

(
1 + δ2

2

3
K2hh1

ρ1h1 + ρh

ρ1h+ ρh1

)
.

The plus and minus signs are for the right and left running waves respectively.
Therefore the bigger wave travels faster.

6.2. The Benjamin-Ono approximation

For the Benjamin-Ono approximation we consider the system with an infinitely
deep lower layer h → ∞ (cf. [9]). The Hamiltonian is (4.14) with the following
scaling

η → δη, ξ → ξ and D → δD. (6.36)

The Dirichlet-Neumann operators, given in (5.2) and (5.3), can be expanded,
taking into account that

lim
h→∞

tanh(hD) = sgn(D), lim
h→∞

D tanh(hD) = |D|.

In order to explain the meaning of |D|, we introduce the Fourier transform

û(k) := F{u(x)}(k), u(x) = F−1{û(k)}(x).
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Then

|D|u(x) := F−1{|k|û(k)}(x)

and similarly

sgn(D)u(x) := F−1{sgn(k)û(k)}(x).

There is a relation between the Hilbert transform, H

H{u}(x) := P.V.
1

π

∫ ∞

−∞

u(x′)dx′

x− x′

and the Fourier transforms, namely

F{H{u}(x)}(k) = −isgn(k)û(k)

or

H{u}(x) = −iF−1{sgn(k)û(k)}(x).

Hence

H{Du}(x) = −iF−1{|k|û(k)}(x) = −i|D|u(x),

or

|D| = iHD = H∂x.

The expansion is

G(η) = δ|D| + δ3
(
DηD − |D|η|D|

)
+ O(δ5)

and G1(η) = δD tanh(δh1D)

−δ3
(
DηD −D tanh(δh1D)ηD tanh(δh1D)

)
+ O(δ6)

noting from [18] that the leading term for the infinite lower layer is |D|. Using
the expansion for the tanh, the Dirichlet-Neumann operators can be represented
further as

G(η) = δ|D| + δ3DηD − δ3|D|η|D| + O(δ5)

and G1(η) = δ2h1D
2 − δ3DηD + O(δ4)

and so the inverse of the operator B is given by

B−1 =
1

δρ1
|D|D−1

{
1 − δ

ρ

ρ1
h1|D| + O(δ2)

}
D−1.

The Hamiltonian can therefore be written, using components of the expanded
operators as (see the notations (6.14), (6.15))

H(η, ξ) =
1

2
δ2
h1

ρ1

∫

R

ξD2ξ dx−
1

2
δ3
h2

1ρ

ρ2
1

∫

R

ξ|D|D2ξ dx−
1

2
δ3

1

ρ1

∫

R

ξDηDξ dx

− δ3γ1

∫

R

ξηηxdx− δ2κ

∫

R

ξηxdx+
1

6
δ3α6

∫

R

η3dx+
1

2
δ2α5

∫

R

η2dx+ O(δ4)

(6.37)
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and in terms of η, u

H(η, u) =
1

2
δ2
h1

ρ1

∫

R

u
2 dx−

1

2
δ3
h2

1ρ

ρ2
1

∫

R

u|D|u dx −
1

2
δ3

1

ρ1

∫

R

ηu2 dx

+ δ3
γ1

2

∫

R

uη2 dx+ δ2κ

∫

R

uη dx+
1

6
δ3α6

∫

R

η3dx+
1

2
δ2α5

∫

R

η2dx+ O(δ4).

(6.38)

The equations of motion (4.19) are now written in terms of η and u as

ηt + κηx +
h1

ρ1
ux − δ

h2
1ρ

ρ2
1

|D|ux − δ
1

ρ1
(ηu)x + δγ1ηηx = 0 (6.39)

and ut + κux − δ
1

ρ1
uux + δγ1(ηu)x + δα6ηηx + α5ηx + Γηt = 0. (6.40)

Again we perform the Galilean shift (6.18) noting that g ≫ 2ωκ and α5 − Γκ ≈
g(ρ− ρ1) to obtain

ηT +
h1

ρ1
uX − δ

h2
1ρ

ρ2
1

|D|uX − δ
1

ρ1
(ηu)X + δγ1ηηX = 0 (6.41)

and uT −δ
1

ρ1
uuX +δγ1(ηu)X + δα6ηηX + g(ρ− ρ1)ηX + ΓηT = 0. (6.42)

In the leading order

ηT = −
h1

ρ1
uX and uT = −g(ρ − ρ1)ηX − ΓηT .

Again using exponential representations (6.23) the above equations give

−cη = −
h1

ρ1
u (6.43)

and − cu =
(
− g(ρ− ρ1) + cΓ

)
η. (6.44)

This gives an equation c2 = −h1

(
− g(ρ− ρ1) + cΓ

)
/ρ1 with solutions

c = −
h1

2ρ1
Γ ±

1

2

√
h2

1

ρ2
1

Γ2 + 4
h1

ρ1
g(ρ− ρ1). (6.45)

Considering an expansion of the type of (6.28)

u =
ρ1

h1
cη + δαη2 + δβ|D|η,

we can determine that

α =
ρ1(ρ1c

2 + 2h1Γc − γ1h
2
1Γ + ρ1γ1h1c + h2

1α6)

2h2
1

(
2ρ1c+ h1Γ

) (6.46)

and

β =
ρ(ρ1c

2 + h1Γc)

2ρ1c+ h1Γ
. (6.47)
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The Benjamin-Ono equation is therefore given by

ηT + cηX − δ
ρh1c

2

2ρ1c+ h1Γ
|∂X |ηX + δ

−3ρ1c
2 + 3ρ1γ1h1c+ h2

1α6

h1(2ρ1c+ h1Γ)
ηηx = 0. (6.48)

The obtained equation is the well known Benjamin-Ono (BO) equation [1, 29]
which is an integrable equation whose solutions can be obtained by the Inverse
Scattering method [23].

The Benjamin-Ono equation in the irrotational case ( γ = γ1 = ω = 0,
α6 = Γ = 0) becomes (cf. [5])

ηt + cηx −
1

2
δ
ρh1c

ρ1
|D|ηx −

3

2
δ
c

h1
ηηx = 0, (6.49)

where, from (6.45)

c = ±

√
h1

ρ1
g(ρ− ρ1).

This wavespeed of course coincides with (6.33).
The BO equation in the form

ηT + cηX + AηηX + B|∂X |ηX = 0 (6.50)

has a one-soliton solution

η(X, T ) =
η0

1 +
(
Aη0

4B

)2 [
X −X0 −

(
c+ 1

4
Aη0

)
T
]2 (6.51)

where the amplitude η0 and the initial displacement X0 are arbitrary constants.
From (6.48) for the internal wave equation

A := δ
−3ρ1c

2 + 3ρ1γ1h1c + h2
1α6

h1(2ρ1c+ h1Γ)
(6.52)

and

B := δ
ρh1c

2

2ρ1c + h1Γ
. (6.53)

We note that (6.51) shows that the wavespeed of the soliton c+ 1
4Aη0 depends on

its amplitude η0 and on the parameters of the system.

7. Discussion

The illustrative one-soliton solutions of the KdV (6.35) and the BO equation (6.51)
suffers, however, from the following disadvantages. First, the BO soliton is not in
the Schwartz class in the x-variable, which is not a very serious disadvantage from
the physical point of view. Second, the assumption (2.2) for η is violated since for
the one-soliton solutions have finite “mass” proportional to

∫
R
η(X, T )dX, which

for the KdV model is 24BK/A and for the BO model is πB/A. One can argue
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again that this does not change the physical setup. Indeed, the average value of η
would be

〈η〉 =

∫
R
η(X, T )dX∫
R
dX

= 0

since the nominator is finite and the denominator is infinite. We note also that the
“mass”

∫
R
η(X, T )dX, is always a conserved quantity due to (4.19). Therefore the

extra condition (2.2) can be properly relaxed, allowing for solitary waves with a
finite “mass”.
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