
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Electrical and Electronic Engineering

2017-9

Chaos-based Encryption Keys and Neural Key-store for Cloud-Chaos-based Encryption Keys and Neural Key-store for Cloud-

hosted Data Confidentiality hosted Data Confidentiality

N.N Mosola
National University of Lesotho, Lesotho

M.T Dlamini
Department of Computer Science, University of Pretoria, Pretoria, South Africa

Jonathan Blackledge
Technological University Dublin, jonathan.blackledge@tudublin.ie

J.H.P Eloff
Department of Computer Science, University of Pretoria, Pretoria, South Africa

H.S Venter
Department of Computer Science, University of Pretoria, Pretoria, South Africa Follow this and additional works at: https://arrow.tudublin.ie/engscheleart

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Mosola, N.N. et al. (2017) Chaos-based Encryption Keys and Neural Key-store for Cloud-hosted Data
Confidentiality, Southern Africa Telecommunication Networks and Applications Conference (SATNAC,
2017), Royal Caribbean International, September 3-10, pp. 168-173, 2017.

This Conference Paper is brought to you for free and
open access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Conference papers by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fengscheleart%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Chaos-based Encryption Keys and Neural Key-store for Cloud-

hosted Data Confidentiality
N.N Mosola1,2, M.T Dlamini3,4, J.M Blackledge2, J.H.P Eloff3, H.S Venter3

1Department of Mathematics and Computer Science, National University of Lesotho, Lesotho
1nn.mosola@nul.ls

2 School of Mathematics, Statistics and Computer Science, University of Kwa-Zulu Natal, Durban, South Africa
2216075642@student.ukzn.ac.za

jonathan.blackledge@ukzn.ac.za
3Department of Computer Science, University of Pretoria, Pretoria, South Africa

3{mdlamini; eloff; hventer}@cs.up.ac.za

4 Command, Control and Information Warfare, Defence, Peace, Safety and Security, Council of Scientific and Industrial

Research, Pretoria, South Africa
4TDlamini1@csir.co.za

Abstract— Cloud computing brings flexible and cost-effective

services. However, security concerns plague the cloud. Data

confidentiality is one of the security concerns inhibiting the

adoption of cloud computing. This concern stems from various

cyberattacks directed towards gaining unauthorised access to

cloud-bound or cloud-hosted data. This paper proposes a client-

end encryption and key management system to curb cyberattacks

that target compromising data confidentiality on the cloud. The

proposed system uses chaotic atmospheric noise to generate a

fitness function. The fitness function is used to generate random

numbers, which are used to create encryption keys. The strength

of the encryption keys is derived from the chaotic and random

nature of the atmospheric noise. The keys are then used for

encrypting cloud-bound data using Advanced Encryption

Standard (AES- 128, 192 and 256), Data Encryption Standard

(DES), 3-DES, and our novel cryptosystem named Cryptor,

before it can be sent to the cloud. However, encryption bears no

significance if the key management system is flawed. To address

the inherent key management problem, the solution uses a neural

network to learn patterns of an encryption key. Once learnt, the

key is discarded to thwart possible key attacks. The key is

reconstructed by the neural network for decryption purposes.

Keywords— Cloud computing, confidentiality, chaotic noise,

encryption, neural network.

I. INTRODUCTION

Cloud computing has gained considerable popularity. This

is due to the exponential increase in the use of the Internet-

based services e.g. software as a service (SaaS), platform as a

service (PaaS), infrastructure as a service (IaaS). Cloud

computing brings attractive benefits. For example, resource

sharing, storage capacities, pay-per-use model etc. However,

despite having such advantages, the cloud is afflicted with

security concerns. Among the concerns is data confidentiality

breaches.

Quite often, information security practitioners make use of

encryption systems to achieve data confidentiality guarantees.

Several encryption systems are used to secure cloud services.

For example, Data Encryption Standard (DES), its variant

triple DES, Advanced Encryption Standard (AES), the Rivest,

Adleman and Shamir (RSA) algorithm and others. However,

cybercriminals are continually finding new ways of

compromising the confidentiality of cloud-hosted data and

services. Cybercriminals continue to develop new tools,

techniques and procedures (TTPs) to breach existing

encryption systems and steal cloud-hosted data. Hence, the

adoption of cloud-based services hinges on getting right the

issues that relate to data confidentiality [1]. Data

confidentiality issues mainly arise from the fact that cloud-

based services can be accessed from virtually anywhere, at any

time, using any Internet-enabled device. Such convenience in

terms of accessibility opens gaping vulnerabilities that get

exploited by various attacks that target compromising the

confidentiality of cloud-hosted data. For example, inter-VM,

VM-sprawl and insider attacks exploit vulnerabilities in virtual

machines and hypervisors to breach the confidentiality of

cloud-hosted data. Existing cryptographic solutions are

proving to be insufficient in dealing with these new threats.

This has created a need for better mechanisms to deal with the

new threats that are specific to the cloud. Therefore, new

encryption systems are required to provide data confidentiality

guarantees and to thwart recurring and new cyber-attacks.

Moreover, due to the emergence of various digital devices

such as smart phones, tablets, laptops etc., enormous amounts

of digital content are generated and sent for storage on the

cloud. Cloud service providers (CSPs) such as Google,

Dropbox, Microsoft, Apple, Amazon etc., offer individuals,

small and big organizations cloud storage services to store their

data. This service comes at a fraction of the cost of hosting the

data in-house. Thus, the cloud is bulging with digital content.

The digital content explosion is envisaged to increase

exponentially in years to come. The increasing use of cloud

storage services to store digital content calls for secure

encryption measures to provide strong confidentiality

guarantees on the data. Therefore, some CSPs already provide

encryption mechanisms to ensure secure storage services that

guarantee confidentiality to cloud-hosted data. For example,

Dropbox uses AES-256 and a transport layer security (TLS)

protocol to provide data confidentiality for its customers [2].

Despite the efforts of some CSPs in trying to implement strong

encryption to protect cloud-hosted data from any malicious

attacks, there have been numerous security breaches that have

resulted in confidential data leakages. For example, the same

Page 168 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017

Dropbox which uses AES-256 has experienced a cyber-attack

in which user credentials were stolen and used to reveal

customers’ cloud-hosted data [3].

Furthermore, some CSPs are bound by service level

agreements (SLAs), regulatory compliance and legal policies

to provide confidentiality guarantees on cloud-hosted data [4].

Despite such legal and regulatory policy enforcement, data

leakage breaches are widespread and come with huge

consequences. Surely, there is something wrong with the

current approaches. It appears that most encryption systems are

implemented on the CSP’s end which indicates that the

resultant encryption keys are also managed by the CSP or a

third party. However, some CSPs have moved towards

encrypting customers’ cloud-hosted data and hand the keys

back to the customers (i.e. the keys to the data are not on the

CSPs premises). Some CSPs have involved third parties to

manage encryption keys. All these approaches have been tried

and tested. However, it must be noted that weak encryption or

a flawed key management system often results in confidential

data leakages which have severe financial implications to the

customer and the breached CSP. Thus, encryption on the cloud

requires careful attention and must be perfected to provide the

right levels of confidentiality guarantees to cloud-hosted data.

Therefore, this paper addresses data confidentiality issues

on the cloud from the perspective of strong encryption and

secure key management. The remainder of this paper is

structured as follows: section II discusses existing literature.

Section III introduces the proposed model. Section IV presents

and discusses the results of the proposed solution. Section V

concludes the paper and provides future recommendations.

II. LITERATURE REVIEW

Various research related to cloud encryption has been

conducted. In the quest to achieve data confidentiality,

encryption is cited as the widely-used method [5][6].

Neural cryptography is a new technique for providing data

confidentiality [7]. This technique combines the concepts of

machine learning and cryptography, using neural networks

(NNs). Artificial intelligence techniques are proposed to invent

cryptosystems to curb eavesdropping. This research [7]

proposes two artificial neural networks for develop a

cryptographic algorithm to protect data. The encryption part

was a success as the neural networks successfully

communicated securely, avoiding eavesdropping. However,

the solution requires large memory due to the exponential

growth of the type of NNs used. It also takes longer periods to

exchange a secret key between the two communicating neural

networks. These issues make the solution inefficient.

A neural cryptographic scheme is proposed in [8]. This

scheme is based on mutual machine learning concepts. The

idea of mutual machine learning is gaining popularity in

various aspects of neural cryptography. For example, using

synchronization, the prevalent key distribution problems faced

by most encryption systems might be solved. The proposed

scheme uses two feed-forward neural networks. The NNs have

discrete and continuous weights. The proposed scheme

encrypts data successfully. However, this solution is

susceptible to genetic, geometric and probabilistic attacks [9].

Using genetic algorithms, the scheme can be easily defeated by

mutating a fitness function until a matching encryption key is

found. This is analogous to a brute-force attack.

Another study proposes a neural cryptographic scheme

using information substitution and permutations [9]. These two

techniques are meant to achieve confusion and diffusion when

encrypting data. This scheme uses a recursive, modulo-2

substitution and two feed-forward NNs. Communicating NNs

receive a unique input vector to produce a unique output bit.

This process is repeated a number of times to generate a secret

key. This scheme encrypts plaintext through a recursive

modulo-2 substitution phase to produce ciphertext. This

ciphertext is then enciphered to produce the final ciphertext,

using a cipher block chain (CBC) and an exclusive OR (i.e.

XOR) operation. The CBC and XOR operations are applied on

vectors with identical weights and intermediate ciphertext

block lengths. As with most neural network implementations,

neural cryptographic schemes require large memory as the

feed-forward neural networks grow exponentially and require

huge amounts of training time.

Homomorphic encryption is one of the methods proposed

for ensuring data confidentiality. The notion of homomorphic

encryption was introduced by Rivest, Adleman and

Dertouzous [10]. Homomorphic encryption is based on the

ability to perform certain computations, such as addition and

multiplication on ciphertext, without using a decryption key to

decrypt the data. This allows third parties such as CSPs, to

perform limited queries on ciphertext while preserving the

confidentiality of the data. However, homomorphic encryption

schemes have vulnerabilities and can be broken [11]. It has

been proven that deterministic homomorphic ciphers can be

broken in sub-exponential time [12]. This becomes worse in a

quantum computing space. A study showed that homomorphic

schemes with deterministic properties can be broken using

quantum computations [13]. Furthermore, existing schemes

are not fully homomorphic as they allow only one operation,

either addition or multiplication, on a ciphertext. Fully

homomorphic encryption schemes have been proposed to

allow both operations on ciphertext [14]. However, fully

homomorphic encryption schemes are slow, resource intensive

and have not been tested for practical implementations.

Studies on encryption, key management and data

confidentiality on the cloud have been conducted before. A

client-end cryptosystem for encrypting data prior to uploading

it to the cloud is proposed [15][16]. Although the cryptosystem

achieves data confidentiality, its major downfall is on the key

management system. The authors propose to blend the

encryption key with the ciphertext. This becomes security by

obscurity - a vulnerability as cybercriminals might find out that

the key is part of the ciphertext. Hence, the confidentiality of

the data will be compromised.

A light-weight AES-128, a secure hash algorithm (SHA-512)

and water-marking are security mechanisms proposed to

provide confidentiality of cloud-hosted data in [17]. This study

also uses the Bell & Lapadula model for authorization purposes.

The authors implement a real-time identification scheme to

curb data leaks through a cache technique. The technique they

implement uses a VM cache memory to identify authenticated

and authorized users. The contents of the VM cache memory

are encrypted with AES-128 and sent to an authentication

server. The authentication server decrypts the message header

to find the user credentials. However, virtual cache memory

may not uniquely identify cached data due to aliasing. Aliasing

means that a virtual memory address may be mapped to a

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 169

different physical memory address. Hence, virtual cache

memory is susceptible to end channel attacks [18]. The authors

show how a novel attack vector can easily exploit

vulnerabilities of the hypervisor and other software security

monitors. The attack vector uses aliasing to place incoherent

copies of physical addresses on a cache memory. Thus, virtual

indexing is a one-to-many function. Such functions may not be

desirable where unique identifiers are used, such as in a cloud

environment. Hence, an unauthorized user might gain access

to confidential data.

An approach combining encryption and data fragmentation

is proposed has been proposed [19]. Fragmentation ensures

that data is split into several fragments which can be stored in

distributed cloud databases provided by CSPs. Fragmentation

may be implemented either vertically or horizontally across a

relational database to store data in various data centers. This is

also very useful for backup purposes. However, efficiency in

data retrieval may be an expensive process especially if one of

the sites (i.e. database storing fragments) is inaccessible due to

network problems as the fragments will not be enough to

reconstruct the data.

To ensure confidentiality guarantees, this study advocates

for client-end encryption. This approach aims to avoid

confidential data leaks due to intentional or accidental

incidents. CSPs may also be compelled to provide “back doors”

for law enforcement agencies to have uninterrupted access and

surveillance of cloud-hosted data. For example, the widely-

reported case between the Federal Bureau of Investigation

(FBI) and Apple, the Microsoft court case on stored emails etc.,

have set new standards on future cryptographic systems.

Testimony to this is the quick move by WhatsApp to develop

an end-to-end encryption scheme for their instant messaging

application.

This paper extends the work proposed in [20], which

proposes a neural cryptosystem for cloud-bound data. This

work shows how cloud users can encrypt their confidential data

before uploading it to the cloud. The cryptosystem proposes a

one-time pad (OTP) in which the data to be encrypted must be

of equal length to the encryption key. The study further

proposes the use of a counter propagation neural network for

key storage and revocation. However, the proposed system is

not tested against existing encryption solutions to determine its

efficiency. Hence, this paper adopts the techniques in [20] to

generate encryption keys for DES, 3-DES and AES, based on

chaos theory to have an objective analysis of the encryption

systems.

In summary, various researchers have suggested several

methods of protecting cloud-hosted data through encryption

and key management. However, existing systems fall short

when it comes to providing data confidentiality guarantees.

Existing research suggests solutions requiring high processing

power and large memory requirements. This becomes a

problem when considering client-end security. Another issue

with existing cryptosystems is their increasing reliance on third

party KDCs. The idea of KDCs requires a lot of trust as the

third-party entity can have access to the confidential data.

Moreover, KDCs are often targeted by cybercriminals. Hence,

new encryption schemes that provide data confidentiality

guarantees and secure encryption key storage are needed.

Therefore, this paper proposes a light-weight chaos-based

encryption system. It also aims to strengthen existing

encryption schemes by producing encryption keys from

chaotic random noise in the quest to have strong keys for DES,

3-DES and AES. The next section discusses the proposed

model.

III. PROPOSED MODEL SOLUTION

This section introduces the proposed solution which aims to

fill the gaps identified in the reviewed literature and provide

confidentiality guarantees through a client-end encryption

scheme. Encryption and key management is a big issue,

especially in a multi-tenant and distributed environment like

the cloud. The proposed model seeks to address the issue of

data confidentiality through strong encryption. The proposed

scheme is based on symmetric key encryption. This means that

the same key is used to encrypt and decrypt data. Furthermore,

the proposed scheme is based on evolutionary computing

concepts. These concepts introduce a paradigm shift in terms

of conventional approaches to encrypting data associated with

the Kerckhoff-Shannon principle. The concepts adhere to static

algorithms and dynamic encryption keys.

Moreover, evolutionary computing concepts explore how

encryption algorithms and keys can quite literally be generated

‘on the fly’. This is done so that a user can be provided with,

or, better still, individually generate a personalised encryption

algorithm in addition to a personalised encryption key. To

provide an extra layer of security, the model discussed below

uses an evolutionary Eureqa system seeded with natural noise

to create unlimited amounts of fitness functions, which will

eventually be used to generate one-time pads (OTPs).

To meet the objectives and fill the gaps identified in the

review of existing literature, the proposed cryptosystem has the

following functional requirements.

A. Functional requirements

• Client-end: The system must be able to encrypt cloud

user’s data before it could be uploaded on the cloud. The

encryption keys and everything concerning the model

should be done by the client. The CSP must never gain

access to the encryption algorithm or keys.

• Light-weight: The system must be able to encrypt and

decrypt data on the fly and without requiring a lot of

computational resources. This is to enable our proposed

solution to be suitable for devices with minimal

computing resources like mobile devices.

• Secure key management – The system must be able to

manage encryption keys securely and effectively. This

also must be done on the client end.

• Self-destruction of keys – The system must be designed

such that it can discard encryption keys once the

encryption is complete.

Each of these requirements is taken into consideration in the

design and implementation of the proposed model. The

proposed model is presented by Fig.1 below which depicts the

architecture of the proposed encryption and key management

scheme.

Page 170 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017

The model describes the process of encrypting cloud-bound

data on the client-end and how encryption keys are managed.

The process is initiated by generating random noise. The

noise can be from any source. In this paper, the noise was

sourced from [21]. The noise is then transmitted into the

Eureqa cloud-based system through a secure channel, using

transport layer security (TLS). Eureqa implements an

exhaustive search which mimics the concepts of evolutionary

computing to generate a non-linear fitness function that fits the

input noise. The fitness function is then used to generate a

symmetric key to encrypt cloud-bound data. The resultant key

exhibits the random and chaotic properties of the input noise.

Hence, the strength of the symmetric keys is derived from the

chaotic and random nature of the input noise. Hence, we argue

that the fitness function is the best approximation of the input

noise. The next section outlines the process of generating

encryption keys from the resultant fitness function.

B. Encryption key generation process

To generate random encryption keys, the fitness function is

normalized using random floating-point numbers in the range

[0,1]. This produces a set of random outputs. The outputs are

randomly picked and converted into a binary stream. The

minimum length of the binary stream is 56-bits. This is chosen

based on the length of a DES key for close comparisons with

existing cryptosystems. If the output bit stream is less than 56

bits, the process is repeated and the random binary outputs are

concatenated to form the desired length (i.e. 56 bits). The key

length depends on the encryption algorithm to be used i.e. DES,

3-DES, AES and Cryptor. DES and Cryptor use a 56-bit

encryption key. However, Cryptor can use resizable encryption

keys. This means Cryptor uses keys of variable length,

compared to DES which uses 56 bits only. This conforms to

having static algorithms with evolving key streams.

Hence, the strength of the encryption keys emanates from

the random property of the floating-point numbers derived

from the chaotic and random attributes of the input noise. It is

on this premise, that the proposed system is believed to achieve

strong encryption keys which are not reliant on the key length

but chaos and randomness. The following algorithm

summarises the encryption process.

C. Key generation and encryption algorithm

Algorithm 1: Key generation and encryption

1. Generate random noise

2. Input random noise into the Eureqa system

3. Obtain a fitness function

4. Generate random floating-point numbers between

[0,1]

5. Normalize the fitness function with random floats

6. Convert random outputs to binary to generate random

encryption keys

6.1. Pick an encryption key at random

6.2. Check length of key depending on the encryption

algorithm to be used

7. Encrypt plaintext

8. Send ciphertext and key into the neural network

9. Neural network learns the key and ciphertext patterns

10. Neural network outputs ciphertext

11. Send ciphertext to the cloud for storage

12. Discard the encryption key

The key generation phase in the algorithm above is generic

to all the encryption schemes discussed herein. Step 7 in the

algorithm is unique to each scheme. For example, Cryptor

implements the encryption through an exclusive or i.e. XOR

operation. Thus, the encryption is based on a one-time pad

implementation. Therefore, the length of the key and the

plaintext must be equal in order to encrypt data successfully.

Steps 8-10 describe how the ciphertext and the encryption key

are processed by the neural network. The ciphertext is used as

input into a counter propagation neural network (CPNN)

together with the encryption key. The next section discusses

the structure of a CPNN.

D. Encryption key generation process

A CPNN is a hybrid of other neural networks. It consists of

a combination of a structure widely known as a competitive

Figure 1: Proposed model solution

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 171

network [22]. A CPNN is a variant of a neural network

consisting of three layers: the input, Kohonen (i.e. hidden) and

Grossberg (i.e. output) layers. The structure of a CPNN is

depicted in the fig. 2 below:

Figure 2: Structure of a CPNN

There are two important aspects of a CPNN. These are

supervised and unsupervised learning. The Grossberg layer

uses supervised learning while the Kohonen layer uses

unsupervised learning. Depending on the learning scheme used,

the weights of the input vectors are automatically changed [23].

The inputs to the CPNN are the encryption key and the

ciphertext, as a set of vectors, in binary form. Given a set of

vector pairs (X1,Y1), (X2, Y2),…, (Xm, Ym), a CPNN is able to

learn and associate an X vector given in the input layer with a

Y vector. If there is a continuous function, f, relating X and Y

vectors such that the following equation is satisfied:

𝑦 = 𝑓(𝑥) (1)

The CPNN is trained to learn patterns of the binary

ciphertext and encryption key. Once the key has been learnt, it

is then discarded to avoid getting compromised.

Decryption can only be done by the data owner. This is done

in such a manner that the CSP or any unauthorized third-party

entities cannot decrypt the data. This provides the user with

absolute assurance of the confidentiality guarantees of their

cloud-hosted data. Once the ciphertext has been downloaded

from the cloud, it is sent into neural network to be processed.

The neural network uses unsupervised machine learning to

reconstruct the key, from the ciphertext patterns. Fig.2 below

presents the decryption model.

The output of the neural network is compared with the target

value set during the training phase by computing the Euclidean

distances. If the target value matches the ciphertext at each

instance, the corresponding encryption key (which was used as

input during encryption) is produced. The key value is

converted back to binary form. The plaintext is recovered by

performing the reverse of the encryption process. The

encryption key is discarded once the decryption process halts.

The next section discusses the results.

IV. DISCUSSION OF RESULTS

The results presented herein compare Cryptor with DES, 3-

DES, AES-128, AES-192 and AES-256. These cryptosystems

were chosen because they are also symmetric and are widely

used for data encryption. Hence, they have some similarities

with Cryptor.

A cloud infrastructure was set-up to test the application and

practicability of the proposed model solution on a live cloud

infrastructure. We used OpenNebula 4.12.3 which comes with

a kernel-based virtual machine (KVM) hypervisor.

OpenNebula does not have an encryption module. Thus, the

proposed system provides a contribution towards development

of modern-day cryptography by being integrated into the cloud

infrastructure easily to provide a client-end security service to

cloud users. The encryption schemes were used to encrypt a

text file of 167 bytes in size. Table 1 depicts the overall

performance of the encryption schemes when encrypting the

text file. It also shows the CPU and memory use in percentages.

TABLE I

OVERALL PERFORMANCE OF CRYPTOSYSTEMS

Attribute Cryptosystems

Cryptor DES 3DES AES-

128

AES-

192

AES-

256

Key size(bits) ≥56 64 192 128 192 256

File (bytes) 167 167 167 167 167 167

Enc time (ms)

Dec time (ms)

Memory (Mb)

CPU (%)

126

128.3

8

1.009

12.4

10

4

1.289

13.4

14

4

1.322

87.9

67.7

6.3

1.005

165

144

11.1

1.007

149.6

130.4

15.3

1.009

In terms of computing resources such as CPU and memory,

Cryptor has better results compared to DES and 3-DES. The

results mean that Cryptor is indeed a light-weight cryptosystem.

It therefore meets the functional requirements. Thus, the

cryptosystem can be deployed on computing devices with low

memory and CPU specifications given that it is designed to be

a client-end cryptosystem. Most client devices have low

specifications. For example, mobile devices. Hence, Cryptor

can be executed from them.

In terms of encryption and decryption times, Cryptor

performed better than AES-192 and AES-256. These results

show that the encryption scheme is indeed efficient and

achieves its objective.

Fig. 3 depicts the encryption and decryption times,

measured in milliseconds for all five encryption schemes.

Figure 3: Encryption vs Decryption times

Cryptor took 126 milliseconds to encrypt the text file. DES

encrypted the text file in 12 milliseconds. 3-DES encrypted the

text file in 13 milliseconds. AES-128 took 87 milliseconds,

AES-192 took 160 milliseconds and AES-256 recorded 149

milliseconds to encrypt the same text file. In this regard, only

Page 172 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017

DES, 3-DES and AES-128 encrypted the text file faster than

Cryptor. The former encrypts the text file with the least amount

of time. Cryptor outperformed AES (192 and 256). These

results were obtained after ten consecutive runs. On average,

Cryptor performs comparatively better that the other two

variants of AES (i.e. AES-192 and AES-256).

V. CONCLUSION AND FUTURE WORK

This paper presented a novel cryptographic scheme based

on chaos and neural cryptography. The proposed scheme uses

chaotic random noise to improve the strength of encryption

keys. The strength of the encryption keys does not rely on the

length of the key but the random and chaotic nature of the input

noise. Several experiments were conducted to test different

aspects of the solution implemented. Overall, it is concluded,

based on the results, that chaos theory can be applied in

cryptography to improve the strength of ciphers. The result

show that Cryptor is a lightweight, strong client-end encryption

scheme. Hence, Cryptor is a better encryption scheme in terms

of encryption and decryption times. The chaos-based

encryption keys can be used to improve the strength of existing

cryptosystems such as DES, 3-DES and AES. Future

perspectives include: experimenting on encrypting multi-

media digital content, implementing the Cryptor system to

have rounds of encryption to increase layers of security, and to

test the proposed neural key store against various types of key

attacks.

ACKNOWLEDGMENTS

The support of the National University of Lesotho (NUL),

University of KwaZulu-Natal (UKZN) and the University of

Pretoria (UP) is acknowledged. Special thanks go to Lerato

Lerato, Teboho Khoali and Kopano Moeketsi, for their

intriguing ideas on crypto. Opinions and conclusions reached

by this paper are those of the authors and should not be

attributed to the NUL, UKZN or UP.

REFERENCES

[1] A. Shawish and M. Salama, 2014. Cloud Computing: Paradigms and

Technologies, F. Xhafa and N. Bessis (eds.), Inter-cooperative
Collective Intelligence: Techniques and Applications, Studies in

Computational Intelligence 495, DOI: 10.1007/9783-642-35016-0_2,

Springer-Verlag Berlin Heidelberg.
[2] "IT Security - Dropbox Business", Dropbox.com, 2016. [Online].

Available: https://www.dropbox.com/enterprise/security. [Accessed:

03- Mar- 2017].
[3] D. Newton, "Dropbox authentication: insecure by design",

Dereknewton.com, 2011. [Online]. Available:

http://dereknewton.com/2011/04/dropbox-authentication-static-host-
ids/. [Accessed: 28- Feb- 2017].

[4] Mark D. Ryan. Cloud computing privacy concerns on our doorstep.

Com-munications of the ACM, 54(1), 2011.

[5] T. Security, "2016 Global Encryption and Key Management Trends",

Thales-esecurity.com, 2017. [Online]. Available: https://www.thales-

esecurity.com/cpn/2016-global-encryption-trends-study. [Accessed:
14- Mar- 2017].

[6] S. Anthony, "Google teaches “AIs” to invent their own crypto and avoid

eavesdropping", Ars Technica, 2016. [Online]. Available:
https://arstechnica.com/information-technology/2016/10/google-ai-

neural-network-cryptography/. [Accessed: 22- Mar- 2017].
[7] W. Kinzel, and I. Kanter, “Neural Cryptography”, Proc. of the 9th Int’l

Conf. on Neural Information Processing (ICONIP’02), vol. 3, pp.1351-

1354, 2002.
[8] D. A. Karras, and V. Zorkadis, “On neural network techniques in the

secure management of communication systems through improving and

quality assessing pseudorandom stream generators”, Neural Networks,
vol.16, issues 5-6, pp. 899-905, June-July 2003.

[9] R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and

privacy homomorphisms. In Foundations on Secure Computation,
Academia Press, pages 170–173, 1978.

[10] R. Chirgwin, "Researchers crack homomorphic

encryption", Theregister.co.uk, 2016. [Online]. Available:
https://www.theregister.co.uk/2016/08/16/researchers_crack_homomo

rphic_encryption/. [Accessed: 22- Mar- 2017].

[11] D. Boneh and R. Lipton. Searching for Elements in Black-Box Fields
and Applications. In Proc of Crypto ’96, LNCS 1109, pages 283–297.

Springer, 1996.

[12] W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for some
hidden shift problems. In Proc. of SODA ’03, pages 489–498. Full

version in SIAM J. Comput. 36(3): 763–778 (2006).

[13] C. Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford, CA, USA, 2009

[14] C. Van Dijk, M., and Gentry, S. Halevi, and V. Vaikuntanathan. Fully

homomorphic encryption over the integers. In Proceedings of the 29th
Annual International Conference on Theory and Applications of

Cryptographic Techniques, EUROCRYPT’10, pages 24–43, Berlin,

Heidelberg, 2010. Springer-Verlag.
[15] M.T. Dlamini, J. Kimershen, J.H.P. Eloff, M.M. Eloff. In Press.

Encryption, Key Management and Data Confidentiality on the Cloud.

Submitted to SAICSIT 2016 review.

[16] N. Kumar, V. Katta, H. Mishra, and H. Garg (2014). Detection of Data

Leakage in Cloud Computing Environments. 6Th International

Conference on Computational Intelligence and Communication
Networks, IEEE Computer Society; 803 – 807.

[17] M.S. Ratsoma, M.T. Dlamini, J.H.P. Eloff, and H.S. Venter (2015). A

Conflict-Aware Placement of Client VMs in Public Clouds. In: 10th
International Conference on Cyber Warfare and Security. Reading:

Academic Conferences and Publishing International Limited, pp.501-

503
[18] D. Zissis, and L. Dimitrios. "Addressing cloud computing security

issues." Future Generation computer systems 28, no. 3 (2012): 583-592.

[19] E. Damiani, S. D. C. D. Vimercati, J. Sushil, P. Stefano, and P. Samarati.
"Balancing confidentiality and efficiency in untrusted relational

DBMSs." In Proceedings of the 10th ACM conference on Computer and

communications security, pp. 93-102. ACM, 2003.
[20] N.N. Mosola, M.T. Dlamini, J.H.P. Eloff, M.M. Eloff (2016).

Evolutionary Neural Crypto-System for Cloud-bound Data. Southern
Africa Telecommunications Networks and Applications Conference

(SATNAC), George, South Africa.

[21] www.random.org

[22] V. Sagar and K. Kumar, "A Symmetric Key Cryptographic Algorithm

Using Counter Propagation Network (CPN)", in International

Conference on Information and Communication Technology for
Competitive Strategies, New York, 2014, pp. 1-6.

[23] A. Negi, M. Singh and S. Kumar (2015). An Efficient Security

Framework Design for Cloud Computing using Artificial Neural
Networks. International Journal of Computer Applications, 129(4),

pp.17-21.

Napo Mosola has just completed his MSc in Computer Science, at

the University of KwaZulu-Natal (UKZN), Westville, Durban,

focusing on cryptography. He obtained a BSc and BSc (Hons) in

Computer Science from the National University of Lesotho (NUL)

and University of Johannesburg (UJ), respectively. He is currently a

member of the Mathematics and Computer Science (MACS)

department at NUL. His research interests include cybersecurity,

artificial intelligence, machine learning, the Internet of Things (IoT)

and cloud computing.

Moses Dlamini is a PhD candidate at the University of Pretoria. He

is also a researcher in the DPSS unit at the CSIR, South Africa. He

obtained his BSc in Mathematics and Computer Science, BSc(Hons)

in Computer Science, MSc in Computer Science, from the University

of Pretoria. His research interests include cloud computing, big data,

cryptography and information security.

Please address all correspondence to: nn.mosola@nul.ls

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 173

	Chaos-based Encryption Keys and Neural Key-store for Cloud-hosted Data Confidentiality
	Recommended Citation

	SATNAC 2017 Proceedings Final 188
	SATNAC 2017 Proceedings Final 189
	SATNAC 2017 Proceedings Final 190
	SATNAC 2017 Proceedings Final 191
	SATNAC 2017 Proceedings Final 192
	SATNAC 2017 Proceedings Final 193

