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ABSTRACT

We present a method of simulating audio signals using the prin-
ciples of random fractal geometry which, in the context of this
paper, is concerned with the analysis of statistically self-affine
‘phaselets’. The approach is used to generate audio signals that are
characterised by texture and timbre through the Fractal Dimension
such as those associated with bowed stringed instruments. The pa-
per provides a short overview on potential simulation methods us-
ing Artificial Neural Networks and Evolutionary Computing and
on the problems associated with using a deterministic approach
based on solutions to the acoustic wave equation. This serves to
quantify the origins of the ‘noise’ associated with multiple scatter-
ing events that often characterises texture and timbre in an audio
signal. We then explore a method to compute the phaselet of a
phase signal which is the primary phase function from which a
phase signal is, to a good approximation, a periodic replica and
show that, by modelling the phaselet as a random fractal signal,
it can be characterised by the Fractal Dimension. The Fractal
Dimension is then used to synthesise a phaselet from which the
phase function is computed through multiple concatenations of the
phaselet. The paper provides details of the principal steps associ-
ated with the method considered and examines some example re-
sults, providing a URL to m-coded functions for interested readers
to repeat the results obtained and develop the algorithms further.

1. INTRODUCTION

The digital simulation of audio signals produced by different mu-
sical instruments is a standard problem with many example solu-
tions having been considered and implemented over many decades
e.g. [1] and [2]. However, these successes tend to be related to the
simulation of instruments that are monotonic in the sense that the
sound field they generate is the result of a resonance with a rel-
atively small band-width. This includes instruments such as the
trumpet, trombone, clarinet, flute, the forte-piano and so on. The
simulation of primarily bowed string instruments such as the vio-
lin, viola and cello relies on sound archives and libraries such as

∗ Stokes Professor, Science Foundation Ireland
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‡ Research Assistant, School of Electrical and Electronic Engineering

those available from the Vienna Symphonic Library [3] and the al-
gorithmic simulation of solo stringed instruments remains an elu-
sive problem to-date. This is because the sound field these instu-
ments produce is the result of a resonance involving complex inter-
actions (multiple reflections) of the sound waves inside a resonator
with a relatively complex topology. The result of this is to produce
a sound source that, compared with many other instruments, may
be loosely classified by the term ‘texture’. This is reflected in the
onomatopoeic terms used to describe the violin, for example, in
the slavonic languages, i.e. Skrzypce in Polish and Skripka in Rus-
sian, both words being synonymous with the English phrase, ‘to
scrape’.

Texture and Timbre is fundamental to playing stringed instru-
ments [4] and can significantly differentiate one individual player
from another which is often based on the traditions of the ‘School’
in which they have been trained, e.g. the tone of Jasha Heifetz
(with its highly textured and ‘gritty’ timbre) [5] verses that of
Nathan Milstein known as the ‘man with the silver bow’ (a phrase
used to describe the silky transparency of a sound with a ‘silver
shade’) [6]. The word associations used to describe the subtleties
of an audio signal generated by a bowed stringed instrument are
of little value with regard to the issue of how such a sound can be
synthesised. This is especially true with regard to the algorithmic
synthesis of a solo violin (as opposed to developing a library of
samples associated with a string ensemble). There are a variety of
potential approaches that can be used which are briefly discussed
in the following sections.

1.1. Synthesis using Artificial Neural Networks

An Artificial Neural Network (ANN) aims, through iterative pro-
cesses, to compute a set of optimal weights that determine the flow
of information (the amplitude of a signal at a given node) through a
network that simulates a simple output subject to a complex input.
In this sense, an ANN simulates a high entropy input with the aim
of transforming the result into a low entropy output. However, this
process can be reversed to generate a high entropy output from a
low entropy input. In this sense, a ANN can be used to generate
a textured harmonic by simulating signals once it has been trained
to do so. To use a ANN in this way, the audio engineer requires
knowledge of the ANN algorithm and the weights that have been
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generated through the training process (i.e. the input of the sig-
nals used to generate the weights). For this purpose the type and
architecture of the ANN that provides a best simulation is crucial
[7].

1.2. Synthesis using Evolutionary Algorithms

Like artificial intelligence, evolutionary computing involves the
process of continuous optimisation. However, using ANNs to gen-
erating textured harmonics can be time consuming and inflexible
compared to using a formulaic approach to simulating sound tex-
tures via an iterated (nonlinear) function, for example, whose out-
put can be filtered as required. To do this, an evolutionary algo-
rithms approach is required in which a population-based, stochas-
tic search engine is required that mimics natural selection. Due
to their ability to find excellent solutions for conventionally diffi-
cult and dynamic problems within acceptable time, evolutionary
algorithms have attracted interest from many areas of science and
engineering [8]. Like the use of ANNs, the application of evolu-
tionary algorithms to simulate textured sound fields lies beyond the
scope of the paper and will be considered in a future publication.
However, it can be considered as an extension of the noise filtering
approach considered in this paper where the iterator used to gen-
erated random numbers coupled with a low-pass filter is replaced
by a single nonlinear iteration function that has been evolved to
simulate the audio signal directly.

1.3. Synthesis using Fractal Texture Analysis

In a very general context, we may expect a textured sound signal
to be the result of filtered noise. As with all filtered noise mod-
els, the problem is to determine what type of noise and what type
of filter provides the closest simulation to the sound. In this pa-
per, we focus on a 1/ | ω |q fractal noise model [9] where ω is the
(angular) frequency and q is some exponent which is taken to char-
acterise the real signal in some ‘best fit’ sense. This approach is
consistent with self-affine stochastic systems theory. As discussed
later on in the paper, although such a model is relatively trivial, it
does provide surprisingly good results when applied to the simula-
tion of the phaselet associated with a textured monotonic harmonic
subject to parameter optimisation. This filter based model is easy
to implement on any audio engineering and post-production plat-
form and can be extended further to include a range of stochastic
field models However, in this paper we focus on the application of
the simplest filtered-noise based random fractal model on the un-
derstanding that interested readers can easily extend such a filter-
based model. For this purpose, two m-code functions are given in
Appendix A and Appendix B.

2. THE PHYSICAL ORIGINS OF TEXTURE IN SOUND
SIGNALS

The synthesis of an acoustic field from complex sound sources
such as stringed instruments is computationally intensive using a
deterministic approach based on the application of conventional
methods for modelling the propagation and scattering of sound
waves. This is because the sound waves undergo many complex
scattering interactions to generate a ‘resonance’ that is character-
istic of a particular instrument such as violin, for example. This
‘resonance’ is not a simple one-dimensional standing wave pattern
but a three-dimensional quasi-standing wave pattern that outputs a

complex phase signal. By understanding the physical background
to the problem, which is compounded in solutions to the wave
equation, we can assess which physical aspect of the sound source
is responsible for the complexity that we associated with the term
texture [10]. This is the purpose for the material presented in the
following section.

2.1. Model for a Simple Source

It is well known that the fundamental model for an acoustic field
u(r, t) (i.e. three-dimensional pressure waves) as a function of
three-dimensional space r = x̂x+ ŷy + ẑz and time t, generated
by an acoustic source denoted by a ‘source function’ f(r, t) is
given by [11] (

∇2 − 1

c20

∂2

∂t2

)
u(r, t) = −f(r, t) (1)

where∇2 is the Laplacian operator and c0 is the (constant) acous-
tic wave speed. If we consider the source to be ideally localised in
space so that f(r, t) = δ3(r)f(t) then, withU(r, ω) = F1[u(r, t)]
and F (ω) = F1[f(t)] where F1 denotes the one-dimensional
Fourier transform operator, equation (1) can be written in terms
of the wavenumber k = ω/c0 as(

∇2 + k2
)
U(r, k) = −δ3(r)F (k)

This equation has the general Green’s function solution [1]

U(r, k) = g(r, k)⊗r δ
3(r)F (k) = g(r, k)F (k)

where

g(r, k) =
exp(ikr)

4πr
, r =| r |

and ⊗r denotes the convolution integral over r. Inverse Fourier
transforming

u(r, t) =
f(t+ r/c0)

4πr
and the time variations of the sound field are simply related to the
source function subject to an intensity | u |2 determined by the
inverse square law. Ignoring the scaling and translation effects by
r (and c0), the detected signal at some point in space r can be taken
to be given by

s(t) = p(t)⊗t f(t)

where ⊗t denotes the convolution integral over time and p is the
Impulse Response Function of the ‘detector’ (which may include
the audio environment in which the source is placed). This result
provides a standard linear time invariant model for an audio signal.

2.2. Model for a Complex Resonator

Acoustic fields are rarely generated by the direct propagation of
a field from a source but through reflection or scattering of the
field in a resonator. The scattering effects can characterise both
the source itself (the local resonator) and the environment (e.g.
a concert hall) in which the source is placed. The effects of a
concert hall typical filter out the higher frequency components of
the source. In either case, the scattering of an acoustic field can
be taken to be generated by spatial variations in the wave speed so
that the wave equation (1) now becomes(

∇2 − 1

c2(r)

∂2

∂t2

)
u(r, t) = −f(r, t)
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With
1

c2(r)
=

1

c20
[1 + γ(r)]

and taking the Fourier transform with respect to time, we then ob-
tain the inhomogeneous Helmholtz equation(

∇2 + k2
)
U(r, k) = −k2γ(r)U(r, k)− F (r, k)

whose Green’s function ‘transformation’ is given by [13], [14]

U(r, k) = Ui(r, k) + k2g(r, k)⊗r γ(r)U(r, k) (2)

where
Ui(r, k) = g(r, k)⊗r F (r, k)

It is important to stress that, unlike the ‘source problem’ consid-
ered in the previous section, equation (2) is not a solution since
the field we require a solution for is on both the left- and right-
hand sides of the equation, i.e. equation (2) is transcendental. This
issue is a principal problem with regard to computing exact solu-
tions to the scattering problem in order to simulate the complex
wave patterns generated by a scattered acoustic field. The ‘formal
approach’ is to consider the ‘iterative solution’ [11]

U = Ui + k2g ⊗r γUi + k4g ⊗r γ(g ⊗r γUi) + ...

which converges provided k2‖γ‖ < 1. Each term in this series
solution characterises the effect of increasingly higher order scat-
tering effects, i.e. the total field is equal to the incident field plus
single scattering processes plus second order scattering effects and
so on. We consider the field pattern associated with the higher or-
der terms to contribute to a ‘noise function’ N associated with the
generation of a complex (multiple scattered) audio signal (through
the ‘resonator’ of a string instrument, for example) and write

U(r, k) = Ui(r, k) + k2g(r, k)⊗r γ(r)Ui(r, k) +N(r, k)

The second term in this equation describes weak scattering under
the Born approximation [11] and the third term the texture which
we are required to model. The sound signal detected at a point in
space r is taken to be given by [12]

s(r, t) = p(t)⊗t u(r, t) = p(t)⊗t ui(r, t)

−p(t)⊗t
∂2

∂t2
G(r, t)⊗r γ(r)⊗t ui(r, t) + p(t)⊗t n(r, t)

and is the result of contributions from the initial source, single
scattering events and the ‘noise’ generated by multiple scattering
processes. In this sense, the development of a model for the (tem-
poral) noise function n(t) of a complex resonator changes from an
approach based on a deterministic model involving a series solu-
tion to one that is based on a stochastic model. The problem is then
to consider the most suitable stochastic model in terms of its statis-
tical properties and spectral characteristics subject to an evaluation
based on known audio signals.

2.3. Diffusion Based Model

Diffusion models are based on an understanding that multiple scat-
tering effects can be taken to be analogous to the effect of dif-
fusion via a random walk model. In this context, it is possible
to show that the diffusion equation is a special case of the wave

equation. Consider the three-dimensional homogeneous time de-
pendent wave equation [13](

∇2 − 1

c20

∂2

∂t2

)
u(r, t) = 0

and
u(x, y, z, t) = U(x, y, z, t) exp(iωt)

where it is assumed that the field u varies significantly slowly in
time compared with exp(iωt) and we note that

u∗(x, y, z, t) = U∗(x, y, z, t) exp(−iωt)

is also a solution to the wave equation. Differentiating

∇2U = exp(iωt)∇2u,

and
∂2

∂t2
U = exp(iωt)

(
∂2

∂t2
u+ 2iω

∂u

∂t
− ω2u

)
' exp(iωt)

(
2iω

∂u

∂t
− ω2u

)
when ∣∣∣∣∂2u

∂t2

∣∣∣∣ << 2ω

∣∣∣∣∂u∂t
∣∣∣∣ .

Under this condition, the wave equation reduces to

(∇2 + k2)u =
2ik

c0

∂u

∂t

where k = ω/c0. However, since u∗ is also a solution,

(∇2 + k2)u∗ = −2ik

c0

∂u∗

∂t

and thus,

u∗∇2u− u∇2u∗ =
2ik

c0

(
u∗
∂u

∂t
+ u

∂u∗

∂t

)
which can be written in the form

∇2I − 2∇ · (u∇u∗) =
2ik

c0

∂I

∂t

where I = uu∗ =| u |2. Let u be given by

u(r, t) = A(r, t) exp(ikn̂ · r)

where n̂ is a unit vector and A is the amplitude function. Differ-
entiating, and noting that I = A2, we obtain

n̂ · ∇A =
2

c0

∂A

∂t

or (
∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2

c0

∂

∂t
A(x, y, z, t)

which is the unconditional continuity equation for the amplitude
A of a wavefield

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

where A varies slowly with time.
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The equation

∇2I − 2∇ · (u∇u∗) =
2ik

c0

∂I

∂t

is valid for k = k0 − iκ (i.e. ω = ω0 − iκc0) and so, by equating
the real and imaginary parts, we have

D∇2I + 2Re[∇ · (u∇u∗)] =
∂I

∂t

and
Im[∇ · (u∇u∗)] = −k0

c0

∂I

∂t

respectively, where D = c0/2κ, so that under the condition

Re[∇ · (u∇u∗)] = 0

we obtain
D∇2I =

∂I

∂t
.

This is the diffusion equation for the intensity of sound I . The
condition required to obtain this result can be justified by applying
a boundary condition on the surface S of a volume V over which
the equation is taken to conform. Using the divergence theorem

Re

∫
V

∇ · (u∇u∗)d3r = Re

∮
S

u∇u∗ · n̂d2r = 0

under the homogenous boundary condition

u = 0, ∇u∗ = 0 ∀ r ∈ S

Physically, diffusion based models consider the multiple scattering
of an acoustic wavefield to be analogous to a random walk with a
uniformly distributed phase.

If we consider the diffusion equation for a source f(r, t) to be
given by(

∇2 − σ ∂
∂t

)
I(r, t) = −f(r, t), I0(r) = I(r, t = 0)

where σ = D−1 and f is of compact support, the Green’s function
solution to this equation for homogenous boundary conditions is
given by [1]

I(r, t) = f(r, t)⊗r ⊗tG(r, t) + σI0(r)⊗r G(r, t)

where

G(r, t) =
1

σ

( σ

4πt

) 3
2

exp

[
−
(
σr2

4t

)]
, t > 0

which satisfies the property:∫ ∞
−∞

G(r, t)d3r =
1

σ
, t > 0

The terms involved in the equation for the sound intensity are con-
volutions of the Green’s function with the source function and the
initial condition I0(r) respectively. Thus, for a localised source
f(r, t) = δ3f(t) and with I0 = 0, the signal recorded a some
point in space r is given by

s(r, t) = p(t)⊗t f(t)⊗t G(r, t)

Classically diffusive systems are thus characterised by an Impulse
Response Function that is a Gaussian, a scenario that is compatible
with the purpose of an anechoic chamber (i.e. a room designed to
completely absorb reflections of sound) but incompatible with the
concept of a resonator.

2.4. Fractal Noise Model

The models considered in the previous sections reveal some major
problems with regard to using a deterministic approach to simu-
lating an audio signal generated by an instrument and/or an envi-
ronment whose audio response is the result of multiple scattering
effects. These problems include: (i) the three-dimensional nature
of the models used, that, while of physical significance, are in-
compatible with the direct simulation of a time signature using a
linear filtering approach; (ii) diffusion based models assume a uni-
form phase distribution for the scattering of sound which is rarely
the case, especially with regard to instruments that are specifi-
cally designed to generate complex resonance effects; (iii) multiple
scattering models ‘naturally iterative’ (as should be expected on a
causal basis, i.e. an (n+ 1)th order reflection can only occur after
a nth order event) and therefore require complex simulations to be
undertaken in light of point (i) above. Thus, given the inadequacy
of the simple sound-source model, the complexity associated with
the multiple scattering model, the incompatibility associated with
a fully diffusive model and the incompatibility of using fully three-
dimensional models to simulate time-dependent signals, we con-
sider an approach to modelling the texture associated with multiple
scattering which is based on the one-dimensional fractional diffu-
sion equation for a localised source given by(

∂2

∂x2
− ∂q

∂tq

)
u(x, t) = δ(x)w(t)

where w(t) is white noise (with a uniformly distributed power
spectrum). This phenomenological equation represents the inter-
mediate case between a wave model q = 2 and a classical diffusion
model q = 1 in a one-dimensional sense, and, moreover, has the
self-affine temporal solution [14]

u(t) =
1

Γ(q)t1−q/2
⊗t w(t), t > 0 (3)

where q = 5 − 2D and D ∈ [1, 2] is the Fractal Dimension. A
fundamental property of this solution is that it is characterised by
a Power Spectral Density Function P̂ (ω) given by [12]

log P̂ (ω) = C − q logω, ω > 0 (4)

where C is a real scaling constant and the remaining focus of this
paper is the use of equation (4) to determine the Fractal Dimension
of a phaselet and equation (3) to simulate a phaselet and thereby,
harmonic texture.

3. FRACTAL PHASELET MODEL

A phaselet is the smallest phase signature of a single harmonic. If
a perfect harmonic is taken to have a simple linear phase function
that can be cut into a sequence of smaller linear phase functions
concatenated together, then the phase of a textured harmonic is
taken to be the concatenation of a many phaselets of compact sup-
port t = (0, T ]. Each phaselet is computed using equation (3),
subject to a given fractal dimension that changes the texture of the
output. Thus, we consider a fractal phaselet to be given by

θ(t) =
1

Γ(q)t1−q/2
⊗t w(t), t ∈ [0, T ] (5)
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The phase function Θ(t) is then given by the N th concatenation
of replicas of θ(t), i.e.

Θ(t) =
N

‖
j=1

θj(t) ≡ θ1(t) ‖ θ2(t) ‖ · · · ‖ θN (t) (6)

and the (complex) signal given by

s(t) = exp(i[ω0t+ Θ(t)])

whose real (or imaginary) component is used to compute the audio
harmonic.

3.1. Phase Evaluation of a Harmonic Audio Signal

To demonstrate the nature of a phaselet for a textured harmonic,
we consider the computation of the phase function for a concert
A (44.1kHz) generated by a violin. Figure 1 shows the unwrapped
and de-trended phase function for the signal together with a smaller
window of the signal illustrating a series of replica phaselets asso-
ciated with the primary resonance phenomena. The macro-trends
(with both positive and negative gradient) associated with this data
are generated by the vibrato which is quasi-periodic but the phase-
lets from which the entire phase signal is composed (and as illus-
trated in Figure 1) are the basis functions for the texture of the
sound generated.

Figure 1: Unwrapped and de-trended phase for a concert A
recorded from a violin (above) and a windowed sample of the sig-
nal (below) showing a series of replica phaselets associated with
the primary resonance characteristics of the instrument.

The phase function shown in Figure 1 is the perturbation to an
otherwise near-linear function that must be extracted from the (un-
wrapped) phase signal. This is easily accomplished by evaluating
the gradient of the phase ω0 and computing the (de-trended) phase
function

θ(t) = Θ(t)− ω0t

the gradient being obtained by applying a least square fit to the
data (when the unwrapped phase is quasi-linear) or, for a quasi-
harmonic phrase function, via the equation

ω0 =
Θ(τ)−Θ(0)

τ

where τ defines the window of time over which the un-wrapped
phase is considered.

3.2. Phaselet Identification

With regard to automating the period of a phaselet and thereby
identifying the primary resonance signature, this can be under-
taken by autocorrelating the de-trended unwrapped phase which
is composed of a sequence of ‘spikes’ whose width represents the
periodicity of the phaselet. By locating the positions of the zero
crossings in this autocorrelation function and rounding the aver-
age distance between them (for one half of the autocorrelation
function) an estimate of the phaselet periodicity can be obtained
from which a single phaselet can then be extracted. However, this
approach assumes the absence of vibrato, which, as shown in Fig-
ure 1, generates a distortion in terms of quasi-periodic trends. To
over come this problem, the de-trended unwrapped phase is first
differentiated (using a simple forward differencing scheme) to re-
move the isolated trending effects caused by vibrato. The result of
this computation is conveyed in Figure 2 which shows a single iso-
lated phaselet together with the associated log-log power spectrum
(for the first 50% of the positive half-space data) that is clearly
characteristic of the scaling relationship compounded in equation
(4), i.e. a linear relationship between the logarithm of the power
spectrum and the logarithm of the frequency with a negative gra-
dient characterised by q.

Figure 2: Isolated phaselet (above) and the associated log-log
power spectrum (below).

3.3. Computation of the Fractal Dimension of a Phaselet

Numerical methods for computing the Fractal Dimension of a ran-
dom scaling fractal are well known. The power spectrum method
is particularly popular and involves the generation of a best fit es-
timation based on the scaling model associated with equation (4)
and thereby obtaining an estimate for q (and C). Application of a
least squares method for estimating q, which is based on minimis-
ing the error function

e(q, C) = ‖ logP (ω)− log P̂ (ω, q, C)‖22
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where P (ω) is the input power spectrum of the phaselet, generally
leads to errors in estimates for q. The reason for this is that the ap-
plication of a least squares approach is very sensitive to statistical
heterogeneity and may therefore provide values of the Fractal Di-
mension that are not compatible with the rationale associated with
the model. For this reason, Orthogonal Linear Regression (OLR)
is used to compute an estimate of q based on the algorithm avail-
able at [15]. In Appendix A an m-code function is provided to
compute the Fractal Dimension of a phaselet for a single textured
harmonic input from a (mono) .wav file. Note that this function
is only suitable for applications to single harmonic inputs alone.
Its sole purpose is to identify the fractal dimension of the phase-
let associated with a single harmonic characterised by texture, the
Fractal Dimension being a measure of this texture. The function
uses the OLR algorithm given by function OLR and in the case
of the phaselet shown in Figure 2 yields a Fractal Dimension of
1.3945.

4. SIMULATION OF A PHASELET USING RANDOM
FRACTALS

In principle, once the Fractal Dimension has been estimated for a
phaselet of a harmonic texture, the phaselet can be simulated based
on the application of equation (5), in particular, using the Fourier
filtering operation

θ(t, q, T ) = ReF−1
1

(
[W (ω)]

| ω |q

)
, ω > 0, t ∈ [0, T ] (7)

where w(t) is generated using a Pseudo Random Number Genera-
tor and where the phaselet may now depend upon the input Fractal
Dimension and the period T (user parameters). The phase func-
tion is then computed using equation (6) which depends upon an-
other user defined parameter N . An example m-code function for
simulating a harmonic texture using this approach is provide in
Appendix B which depends upon user parameter D,T,N . The
value of N determines the length of the signal and the parameter
T determines the pitch subject to the sampling rate chosen to out-
put an audio signal. However, in the context of the remit for this
paper, the ‘key parameter’ is D which changes the texture of the
sound depending upon the value used subject to the pitch being
considered.

4.1. Incorporation of a Deterministic Sound Source

To simulate an audio signal we need to include a deterministic
source term. This can be achieved by replacing the stochastic
source function w(t) as given in equation (5) with a hybrid term
that consists of two components including a deterministic source
function f(t), i.e.

w(t) := (1− r)w(t) + rf(t), r ∈ [0, 1]

where ‖n(t)‖∞ = 1 and ‖f(t)‖∞ = 1. Here, r defines the rel-
ative ‘strength’ of each term in relaton to its contribution to the
solution of(

∂2

∂x2
− ∂q

∂tq

)
u(x, t) = δ(x)[(1− r)w(t) + rf(t)]

which models a signal now determined by the equation

s(t) = p(t)⊗t [(1− r)w(t) + rf(t)]⊗t
1

Γ(q)t1−q/2

Note that, for r = 1 and q = 2 we obtain a signal that is, in
effect the same as that obtained under the ‘simple source model’
presented in Section 2.1, i.e. s(t) = p(t)⊗t f(t).

5. DISCUSSION

To quote B. Mandelbrot, ‘fractal geometry is an intrinsic study of
texture’ and in this paper, we have developed a model for simu-
lating texture in audio signals based on random scaling fractals.
However, the model has been introduced in a way that attempts
to relate it to the problem of evaluating multiple scattering effects
that occur in instruments such as the violin when a simple sound-
source model is entirely inadequate and a deterministic approach
is not practically realisable.

The principal original contribution we have made to the field
of digital audio effects has been to illustrate how a fractional dif-
fusion equation can be used to model a digital audio signal that is
taken to be generated from a complex resonance. This approach
has specific applications in the simulation of audio signals gener-
ated by instruments such as the violin which is notoriously difficult
to synthesise because of the complex acoustic scattering processes
that occur in this instrument. The primary controlling parameter is
the Fractal Dimension D. This parameter can be used to charac-
terise the phaselet of audio signals using the algorithm presented
in Appendix A which is then used to synthesise signals based on
the application of equation (7).

The purpose of this paper has been to introduce a fractal based
model for the synthesis of audio signals using a texture associated
with the generation of sound fields from instruments that generate
complex resonance patterns due to multiple scattering effects. This
has been considered through a study of conventional scattering the-
ory which is too computationally difficult to use effectively for
audio simulation and a classical diffusion based approach which
produces a model that is ‘phase limited’. A fractional diffusion
approach has therefore been considered in which each scattering
process is considered to be a random walk with a directional bias
to the phase (which is determined by the Fractal Dimension). This
is the essential link between attempting to model a multiple scat-
tered sound field and using random scaling fractal signals to model
audio texture produced from instruments such as a violin.

6. CONCLUDING REMARKS

With regard to the simulation method proposed, the audio signal is
still a relatively poor representation of a stringed instrument. First,
no vibrato is considered and second, the harmonic characteristics
of the sound are weak. With regard to vibrato, it is observed that
the quasi-regular trending behaviour of the unwrapped phase func-
tion given in Figure 1 resembles a deterministic fractal structure
consistent with a Sierpinski triangle, for example. Thus applica-
tion of deterministic fractals for simulating vibrato may provide a
route to modelling this quasi-regular effect.

The use of ANNs and evolutionary algorithms to simulate sound
textures as briefly discussed earlier in this paper is the subject of
future work and lies beyond the scope of this paper. However, it is
noted that the evolution of nonlinear functions for the generation
of phase signals of the type given in Figure 1 is practically viable
within the context of applications packages such as Eureqa [8], for
example, especially if an output can be configured, through appli-
cation of an iterated function, for sound simulation over a range of
frequencies. In contrast, although ANNs provide the potential for
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a more subtle demarcation of a sound textures, the result is pred-
icated on training data which makes the approach time and data
demanding.

The simplest and most cost effective approach is to further de-
velop the texture synthesis based on the approach considered here
which has introduced only the most basic method for fractal sound
synthesis using a simple 1/ωq model. This model can be further
improved to incorporate generalised self-affine models and multi-
fractal methods coupled with a more in-depth analysis of stochas-
tic time series applied to sound textures using, for example, the
Ornstein-Uhlenbeck process [16]. Irrespective of the stochastic
model assumed, the identification and regeneration of a phaselet
for this purpose appears to be crucial. Thus, another approach
is to categorise these functions, thereby developing a library of
phaselets that can be concatenated for sound simulation. In this
context, the use of evolutionary algorithms could prove to be ad-
vantageous. However, in the context of the approach considered
in this paper, there would appear to be value in further exploring
the role of random fractal geometry and fractal time random walks
[17] and stochastic field theory focusing on the theory and appli-
cations of fractional dynamics (e.g. [18] and [19]) for the purpose
of simulating textured audio signals.

Appendix A: m-Code for Computing the
Fractal Dimension of a Phaselet
The following code has been written to accommodate a two-column
format and consequently uses the MATLAB continuation syntax
‘...’. The code is somewhat condensed to minimize space.

function D=FDPhaselet
%Function to compute Fractal Dimension D
%for a phaselet extracted from a textured
% harmonic.
%START:
%Read signal from mono .wav file.
signal=wavread(’newvio.wav’);
signal=signal./max(abs(signal));%Normalise.
%Compute Hilbert transform of signal &
%its angle and write unwrapped phase to
%array ’phase’.
phase=unwrap(angle(hilbert(signal)));
%Compute gradient of unwrapped phase
grad=(phase(length(phase))-phase(1));
grad=grad/length(phase);
%and de-trend
for i=1:length(phase)
phase(i)=phase(i)-grad*i;
end
%Compute gradient of phase
for i=1:length(phase)-1
dphase(i)=phase(i+1)-phase(i);
end
dphase(length(phase))=...
dphase(length(phase)-1);
dphase=dphase’;
%Compute autocorrelation function
autocor=xcorr(dphase,dphase);
autocor=autocor./max(autocor);
%Compute zero crossings metric to

%extract a phaselet.
k=1;
zero(k)=0;%initialize
%only fist half of autocor required
for i=1:round(size(autocor)/2)
%find a zero crossing and repeat process

if autocor(i)>0.0 & autocor(i+1)<=0.0
zero(k)=i; k=k+1;

end
end
%Compute distance between zero crossings
for i=1:round(length(zero))-1

zc(i)=zero(i+1)-zero(i);
end
%Compute the (integer) average of the
%distanec between the zero crossings.
avzc=round(sum(zc));
avzc=round(avzc/(length(zero)-1));
%extract phaselet from phase array centre
phaselet=phase(round(length(phase)/2)...
-round(avzc/2):round(length(phase)/2)...
+round(avzc/2));
%Compute Power Spectrum of phaselet
powspec=abs(fft(phaselet)).^2;
%Extract data for OLR estimation
%(50% of positive half space of spectrum).
for i=1:round(size(powspec)/2)

if powspec(i)>0
ydata(i)=log(powspec(i));
xdata(i)=log(i);

end
end
%Compute Fractal Dimension using OLR.
p=OLR(xdata,ydata);
q=-p(2)/2; D=(5-q)/2;
%Output of function is D.

%FINISH
%
%-------------------------
%
%OLR Function
%
function x=OLR(xdata,ydata)
fun=inline(’sum((p(1)+p(2)*xdata-ydata).^2)...
/(1+p(2)^2)’,’p’,’xdata’,’ydata’);
x0=flipdim(polyfit(xdata,ydata,1),2);
options=optimset(’TolX’,1e-6,’TolFun’,1e-6);
x=fminsearch(fun,x0,options,xdata,ydata);

Appendix B: m-Code for Simulating a
Fractal Textured Harmonic
The following code has been written to accommodate a two-column
format and consequently uses the MATLAB continuation syntax
‘...’. The code is somewhat condensed to minimize space.

function Sig=FHTS(D,T,N)
%Example Parameters:
%D=1.2; T=100; N=1000;
%Function to simulate harmonic texture
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%Fractal Harmonic Texture Simulator ’FGTS’.
%INPUTS: D-Fractal Diomension
% T-Length of Phaselet
% N-Number of cancatinations
% =length of phase signal
%OUTPUT: Sig-Simulated signal.
q=(5-2*D);%Comput q from D
%Compute noise using function rand.
w=rand(1,T);
%Comput complex spectrum of noise
%with shift.
w=fftshift(fft(w));
%Filter the spectrum.
for i=1:T

filter(i)=abs(i-round(T/2))^(q/2);
if filter(i)==0%Check if singularity

w(i)=w(i); else
w(i)=w(i)/filter(i);

end
end
%Compute phaselet and normalise.
theta=real(ifft(fftshift(w)))’;
theta=theta./max(theta);
%Cancatenate phaselets.
Theta=theta;%initilise
for i=1:N
Theta=cat(1,theta,Theta);
end
%Compute output signal
for i=1:size(Theta)

Sig(i)=cos(Theta(i)); end
%FINISH
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