
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Electrical and Electronic Engineering

2012

Multi-Channel Audio Information Hiding Multi-Channel Audio Information Hiding

Jonathan Blackledge
Technological University Dublin, jonathan.blackledge@tudublin.ie

AbdulRahman Isam Al-Rawi
Technological University Dublin, abdulrahman.alrawi@gmail.com

Ruairi Hickson
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Blackledge, J., Al-Rawi, A., Hickson, R.:Multi-Channel audio information hiding. Digital Audio Effects
Conference (DAFx2012) - submitted, York University, 2012

This Conference Paper is brought to you for free and
open access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Conference papers by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301313441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=arrow.tudublin.ie%2Fengscheleart%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

MULTI-CHANNEL AUDIO INFORMATION HIDING

J M Blackledge, ∗

Audio Research Group
Dublin Institute of Technology

jonathan.blackledge@dit.ie

A I Al-Rawi,†

Audio Research Centre
Dublin Institute of Technology

abdulrahman.alrawi@gmail.com

R Hickson,‡

Audio Research Centre
Dublin Institute of Technology
notruairi@gmail.com

ABSTRACT

We consider a method of hiding many audio channels in one host
signal. The purpose of this is to provide a ‘mix’ that incorporates
information on all the channels used to produce it, thereby allow-
ing all, or, at least some channels to be stored in the mix for later
use. After providing an overview of some recently published au-
dio water marking schemes in the time and transform domains, we
present a method that is based on using a four least significant bits
scheme to embed five MP3 files into a single 16-bit host stereo
WAV file without incurring any perceptual audio distortions in the
host data. The host WAV file is taken to be the final mix associated
with the original data before applying ‘lose MP3’ compression or
alternatively an arbitrary host audio signal into which other multi-
channel audio data is hidden. Further, the embedded information
can be encrypted and/or the embedding locations randomized on a
channel by channel basis depending on the protocol desired by the
user. The method is illustrated by providing example m-code for
interested readers to investigate and reproduce the results obtained
to date and as a basis for further development.

1. INTRODUCTION

The approach to information hiding discussed in this paper relates
to an investigation into the design of ‘intelligent’ coding algo-
rithms for audio post-production based on a current FP7 research
project [1]. The research has and is continuing to be undertaken
jointly between the Audio Research Group [2], the Digital Me-
dia Centre [3] at Dublin Institute of Technology and Tamborine
Productions Limited [4]. This includes the use of watermarking
methods for audio signal authentication and multiple audio signal
embedding techniques using computational solutions based on im-
age information hiding and authentication techniques, e.g. [5] and
[6].

While there are a number of different approaches for hiding
a signal in another host signal, inclusive of encryption, or other-
wise, there are relatively few published methods that consider a
multi-signal to single host signal approach. In this paper we con-
sider the problem of embedding many audio signals provide as in

∗ Stokes Professor, Science Foundation Ireland
† Research Assistant, School of Electrical Engineering Systems
‡ Research Assistant, School of Electrical Engineering Systems

MP3 formats into a single wave of WAV file under the following
conditions: (i) the embedded MP3 audio data can be recovered
without any loss of information; (ii) the host signal has no percep-
tual change in its audio fidelity. An algorithm is presented based
on a time domain method in which five MP3 files are hidden in
a single WAV file using a four least significant bit scheme which
satisfies these conditions.

The method considered has applications in covert information
transmission with applications in areas such as communications
security, signal authentication and DRM (Digital Rights Manage-
ment), for example. However, the method reported has been de-
veloped in the context of an audio post-production product to al-
lows a stereo ‘mix’ to incorporate information on all or some of
the channels used to produce the same mix, thereby allowing all
or selective channels to be embedded in the mix for remixing at
a later date and/or for data storage. Current scenarios usually in-
volves a post-production centre having to maintain records of all
the data used to generate a mix with the view that this same data
may be required at a later date, thereby necessitating the need for
a data base management infrastructure which may require signifi-
cant overheads.

After providing an overview of recently published works that
focus on the area of audio information hiding (Section 2), we
present a time domain solution to the problem in Section 3. This
includes prototype m-code for interested readers to test the algo-
rithms for themselves and as a basis for developing the methodol-
ogy further.

2. AUDIO INFORMATION HIDING

Audio information hiding or Audio Steganography is based on two
specific and distinct approaches which consider the development
of algorithms using time domain data or transform domain data
such as the consine transform, for example. In this section, we
provide a brief overview of some of the most recently published
material in this area, publications that have been studied by the
author’s in association with the multi-channel information hiding
approach considered in this paper.

DAFX-1

http://blackledge.sharepoint.com
mailto:jonathan.blackledge@dit.ie
http://http://www.audioresearchgroup.com
mailto:abdulrahman.alrawi@gmail.com
http://http://www.audioresearchgroup.com
mailto: notruairi@gmail.com

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

2.1. Audio Hiding in the Time Domain

Time domain audio hiding has the advantage of being relative sim-
ple to implement and computationally efficient. However the ap-
proach does not yield algorithms that are as diverse and robust as
those developed for the transform domain. This is because of the
relatively limited number of ways in which data can be manip-
ulated in the time domain subject to the generation of an output
that is perceptually compatible with the original audio signal. In
the literature survey that follows, it is clear that all the methods
conceived are based on some form of data manipulation by modi-
fying the binary representation of the audio signal, i.e. variations
on the basic theme of modifying the Least Significant Bits of a
data stream. For example, in [7], the authors proposed a novel au-
dio embedding method using amplitude differencing. It involves
embedding a covert message of any format into a two cover audio
files which are of a similar size. The difference in amplitude values
between the two signals is compared to the maximum range index
of the range (ranging from 0 to 255 where all audio values are rep-
resented as bytes). The covert message is divided into a series of
4-bits and new amplitude difference values calculated for the two
cover audio files which contain the message. This process hides 2-
bits per audio file with a total capacity of 4-bits in both files. The
data extraction process follows the same embedding procedure (in
the inverse sense). The main advantage of using two cover audio
files is to distribute the payload equally among more than one file
which prevents the introduction of noise into the cover files.

In [8] the authors propose two novel approaches of Least Sig-
nificant Bit (LSB) substitution to improve the capacity of the au-
dio hiding methods. The first approach increases the number of
bits that can be used for hiding from 4 LSBs to 7 LSBs by using
the first and second Most Significant Bits (MSB), respectively, as
follow: (i) if the MSB-1 and MSB-2 values are 00 then 4 LSBs are
used for data embedding; (ii) if the values are 01 then 5 LSBs are
used; (iii) if the values are 10 then 6 LSBs are used; (iv) if the val-
ues are 11 then 7 LSBs are used for data embedding. The second
approach shifts the maximum limit by only considering the first
MSB where 6 LSBs are used for data hiding if its value is 0 and 7
LSBs are used if its value is 1. The data extraction procedure uses
the same scenario for retrieving the embedded data (in an inverse
sense).

Audio watermarking schemes based on amplitude modifica-
tion are presented in [9] using a similar approach to that reported
in [10] but with increased hiding capacity. The proposed method
embeds the watermark data by modifying the AOAA (Average Of
Absolute Amplitude) differences calculated from three sections in
a GOS (Group Of Samples). In the watermark embedding pro-
cess, the original audio signal is divided into consecutive lengths of
GOSs where each GOS contains three non-overlapping sections.
The AOAAs of these section are calculated using the equations
(1),(2) and (3) in [9], the values sorted in descending order and
labeled as Emax, Emid and Emin. The differences between them
(A,B) are then calculated using equations (4) and (5) of [9]. To em-
bed a watermark component of type bit 1: check if (A−B ≥ Thd)
and if false increase Emax and decrease Emid by the same amount,
otherwise do continue. To embed watermark component of type
bit 0, check if B − A ≥ Thd and if false increase Emid and de-
crease Emin by the same amount, otherwise continue. The extrac-
tion procedure is predicated on knowing the GOSs and following
the same steps to calculate A’ and B’. By comparing these values
with the original values bits of type 1 are recovered if A′ ≥ B′

and 0 otherwise. This method is highly robust to attacks including
MP3 compression and low-pass filtering.

An encrypted watermarking scheme is discussed in [11]. The
‘secrete message’ (watermark) is encrypted using a bit exchange
encryption method and the encrypted data embedded into the LSB
and LSB+3 bits of the cover file. The embedding process starts by
dividing each byte of the secret message into groups of two bits,
the first 2-bits are embedded into the LSB and LSB+3 bits of the
cover file leaving one byte intact. 2-bits are then again embedded
into the LSB and LSB+3 leaving one byte intact. The same pro-
cess is repeated for all bits of the secret message bits yielding an
algorithm that embeds one byte of the secret message into 8 bytes
of the cover file.

In [12] the author’s present two methods to improve the con-
ventional LSB modification method for audio steganography. The
first method is based on randomizing the LSB bit number of the
host file, the bit selection being based on the 1st and 2nd MSBs,
respectively. If the MSB-1 and MSB-2 values are 00 then the 3rd

LSB is used for embedding a secret bit; if the values are 01 then
the 2nd LSB is used, and if the values are 10 or 11 then the 1st

LSB is used. The second approach randomizes the sample num-
bers containing the next secret bit of the data, the decision criterion
relying on the first, second and third MSBs: If the MSB1, MSB2
and MSB3 values are 000 then the sample containing next secret
bit is i+1; if their values are 001 then the sample containing the
next secret bit is i+2; if their values are 010 then the sample con-
taining the next secret bit is i+3, and so on. In both cases (i.e. the
methods considered) data extraction is performed by comparing
the MSBs values to find the LSBs with the hidden data.

Different low-bit coding methods for audio steganography are
considered in [13]. Conventional low-bit coding methods embed
the bits of the watermark into the LSBs of the cover audio. This
can be improved by using a variable low-bit coding using two ap-
proaches. The first approach defines two threshold (T1 and T2)
based on the standard level about a mid-range of 128 where the
samples are taken to be bytes with a maximum value 255. If the
audio amplitude value is greater than T2, two bits are used for em-
bedding. If the amplitude value is between T1 and T1, one bit is
used to embed, no embedding being undertaken if the watermark
data has a value less than T1. The second approach calculates the
average amplitude data of the surrounding audio signal to provide
a threshold. If the amplitude level is greater than the average value,
then 2-bits are embedded in the host signal, else, no embedding is
undertaken, the amplitude level being considered to be too low.

In [14] an audio hiding method is proposed that is based on
the escape sequences of ACC (Advanced Audio Coding) audio
files. The secret information is transformed into a bit stream and
XORed with a pseudo random generator sequence to obtain an en-
crypted data sequence. The AAC audio file is unpacked and the
escape sequences located and used as a ‘carrier’ for data hiding.
The embedding process is performed based on the matrix encod-
ing described in Section III in [14]. The LSBs of each escape se-
quence are extracted as carrier data, the LSBs of every 15 escape
sequences constituting a 15 dimensional carrier vector a. Every 4-
bits of the secret data are taken to form a 4-dimension vector b and
a 4-dimensional column vector cT computed based on equations
(5) and (6) of [14]. b is XORed with c to generate the vector d
using equation (7) in [14] and, according to equation (8) of [14],
the vector e is calculated and tested as follows: If e=0, then no bits
are modified, else, the dth bit of the carrier vector is modified so
that the LSB of the dth escape sequence is modified. This means

DAFX-2

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

that 4-bits of the secret data is embedded (i.e 4-bits of the secret
information in embedded into 15 bits of the carrier). This process
is repeated until the secreted information is completely embedded
or the end of the audio cover is reached.

2.2. Audio Hiding in the Transform Domain

Using the transform domain provides the potential to generate a
wider class of audio information hiding methods than are available
using time domain techniques. However, any transform domain
comes at the expense of the computational costs involved in com-
puting the transform and its inverse which is typically the Fourier
transform computed using a fast Fourier Transform (FFT) but in-
cludes transforms such as the Discrete Wavelet Transform and the
Discrete Cosine Transform. For example, in [15], an audio wa-
termarking algorithm is considered based on a RSVD (Reduced
Singular Value Decomposition) of the FFT of the audio signal.
The method relies on manipulating the coefficients of one of the
resulting unitary matrices for watermark embedding. The audio
signal is split into frames of length L, a FFT applied to compute
the magnitude spectrum in each frame, and, finally, the frequency
components of each frame is organized into RSVD input matrix
(RSVD being applied to a matrix rather than a vector). RSVD de-
composes each input matrix into three matrices U, S and V [16],
the coefficients of U are changed to embed the watermark bits by
creating a local peak in u1..p,2. If the watermark bit to embed is
of type 1, the magnitude of the element uc,2 is increased (where c
is a user defined key value that represents the peak value), and the
surrounding elements uc−1,2 and uc+1,2 are reduced to insignifi-
cant amplitude values φ. If the watermark bit to be embedded is of
type 0, then the magnitude of the element uc+1,2 (which represents
the peak value) and the surrounding elements uc,2 and uc+1,2 are
reduced to the same insignificant amplitude value φ. To extract the
hidden watermark, the watermarked signal is split into frames, the
FFT applied to each frame and the frequency components orga-
nized into a matrix A. RSVD is then applied to this matrix and the
following process applied: if uc,2-uc+1,2 > 0, then the watermark
is taken to be of bit-type 1, otherwise it is taken to be of bit type 0.

An audio watermarking algorithm based on Fast Fourier Trans-
form and Quadratic matrix is considered in [17]. A non-singular
quadratic form is chosen to obtain a corresponding quadratic ma-
trix Q and the secret data is converted into a matrix M which is
taken to be equivalent to Q. These matrices are then multiplied
to generate an encrypted data matrix E. The cover audio data is
transformed into the frequency domain using a FFT and the secret
information E embedded into the frequency domain of the cover
signal. Retrieval is performed by recovering the hidden data E to
regenerate the audio cover frequency domain and decryption per-
formed by multiplying E by the inverse matrix Q−1 to recover the
original watermark.

A speech signal watermarking method that uses the sinusoidal
modeling and QIM (Quantization Index Modulation) is presented
in [18]. The principal idea is to hide the watermark data in the
phase information of an appropriate sine because the human au-
ditory system is insensitive to the absolute phase. The QIM wa-
termarking method [19] for embedding the watermark data is used
starting by dividing the speech signal into voiced and unvoiced
parts. The voiced part S is segmented into L overlapped frames
and a STFT (Short Time Fourier Transform) applied to each frame.
The amplitude and frequency of each component is estimated by
locating the peaks of the STFT and the phases computed using

the corresponding real and imaginary parts. The appropriate sine
wave components are selected and the watermark embedded by
changing the phase value of selected components using equation
(3) given in [18]. The watermark signal is synthesized based on
the amplitude, frequency and quantized phase value using equa-
tion (1) in [18] and the watermark data recovered by comparing
the phase values with the quantization levels.

Application of multiple scrambling and amplitude modula-
tion is considered in [20]. The watermark data is scrambled with
a coded-image instead of a chaotic or pseudo-random sequence
since the extracted coded-image can be post-processed to enhance
the quality of the recovered watermark. The embedding procedure
is initiated by applying a pre-selection process on the host audio
file to select only those regions whose power exceeds a certain
threshold, thereby preventing the selection of silent potions of the
audio signal. The selected segments are then divided into adjacent
frames with a 50% overlap and a Short Time Fourier Transform
(STFT) applied to them to obtain their frequency spectrum. These
segments are further subdivided into N two-dimensional blocks,
each block being used to embed one sub-watermark B where B is a
part of the watermark W) as shown in Figure 2 of [20]. Each block
N is segmented into different levels of granularities, unit, slot, tile
and bin as shown Figure 3 in [20] and the watermark bits embed-
ded through the process of amplitude modulation as discussed in
[21] and [22]. Finally, the watermarked signal for each frame is
constructed in the frequency domain using the magnitude, phase,
and the sign of the signal spectrum which is then added to the host
frame after its transformation to the time domain. To increase the
security of the method, the authors apply another scrambling op-
eration by randomly selecting N’ blocks from N blocks and then
randomizing their order for encoding. The watermark bits are de-
tected by examining whether there is an increase or decrease in the
magnitude of the corresponding tiles of the received signal [22]
[23].

A blind audio watermarking algorithm using the wavelet trans-
form chaotic encryption is presented in [24]. Chaotic encryption is
used for encrypting the watermark data and randomizing its (hid-
ing) location. The watermark bit stream is encrypted and the orig-
inal audio signal divided into non-overlapped frames. Random-
ization of the order of the frames is undertaken using chaotic se-
quence and each frame processed with an L grade wavelet trans-
form. Finally, the encrypted watermark bits are embedded into the
L grade detail value by choosing M coefficients from the greater
absolute values between the detail values. The coefficients are then
modified according to the watermark bit value according to equa-
tion (3) given in [24]. Watermark extraction is performed by ap-
plying the inverse process, segmenting the watermarked signal into
non-overlapped frames and applying the L grade wavelet transform
to the frames selected by the chaotic sequence used, the hidden bits
being extracted using equation (5) in [24] followed by decryption
to recover the original watermark.

A further example of the application of the wavelet transform
is considered in [25] based on an adaptive wavelet packed modi-
fication. The embedding method consists of five components: (i)
Wavelet packet decomposition involves the audio signal being de-
composed using a three level wavelet packet, where the HLH band
is used for data embedding; (ii) Binary mapping is applied where
the coefficients in the selected band are sampled to evenly dis-
tribute the hidden data over the entire host audio data for improv-
ing audio imperceptibility. The coefficients are converted from
a one-dimensional vector to a two-dimensional matrix and each

DAFX-3

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

matrix further subdivided into 2 × 2 blocks B. A pseudorandom
sequence is applied to select the B block to be used for secret data
embedding and the selected blocks mapped to binary form using
a trend detection. If the block values follow an increasing trend,
then they are mapped into a bit of type 1 and if the values follow
a decreasing trend they are mapped into a bit of type 0, each bi-
nary block being referred as a pattern matrix T which is classified
accoding to the following step; (iii) each pattern matrix T is clas-
sified into classes as given in [26]; (iv) Adaptive wavelet packet
modification us for for embedding. To embed the secret bits, the
pattern matrix B is modified to obtain B’ making sure that B and B’
belong to the same class which range maintains the modified bits
with regard to their neighbors; (v) The inverse wavelet packet is
applied to the modified packets to generate the stego-audio signal.
The embedding and extraction procedures are illustrate in Figure
1 and Figure 5 of [25], respectively.

Application of an integer wavelet transform is considered in
[26]. The scheme is based on two essential ideas: The first is to
use a pseudorandom sequence to scramble the secret signal bits
and randomize the wavelet coefficients used for data embedding.
The second idea is to calculate the hearing threshold to be used
as an embedding threshold. The estimation of hearing threshold is
very important because low values lead to low payloads while high
values cause auditable distortion. The embedding process begins
by performing a Haar DWT (Discrete Wavelet Transform) on the
cover audio signal and then converting the DWT coefficients into
integer form using equation (1) as given in [26]. The encrypted
data is then embedded into the integer DWT coefficients (the num-
ber of bits embedded in each coefficient being determined by the
hearing threshold). Finally the modified coefficients are converted
into the wavelet domain and the resulting coefficients transformed
back into the time domain to generate the stego-signal. The data
extraction steps are generally similar to the embedding process.

Application of the Discrete Cosine Transform (DCT) for audio
watermarking is considered in [27]. A Hamming error correcting
code and a Neural Network (NN) are applied. The cover audio
signal is divided into non-overlapped frames of size 512 samples
and the DCT applied to each frame. The watermark is divided
into sets of length 8 and each set is encoded with a Hamming er-
ror correcting code [28], the encoded sets being processed using
a pseudorandom sequence for increased security. The bands Is of
the middle frequencies are then located for insertion of the water-
mark bits. Each band is trained using a BPNN (Back-Propagation
Neural Network) result in Bs. The located bands and the NN train-
ing result are compared prior to watermark insertion in order to
maintain the relationship between the sample to be modified and
its neighborhood samples. Following watermark bit insertion and
IDCT (Inverse Describe Cosine Transform) is applied to gener-
ate the watermarked audio signal. The extraction process is per-
formed by adopted the equivalent inverse embedding process with
knowledge of the the NN weights, pseudorandom sequence and
the band positions. The extracted watermark bits are corrected us-
ing Hamming decoding to increase the accuracy of the recovered
watermark.

Application of the wavelet transform coupled with higher-order
statistics are considered in [29]. The two dimensional watermark
data (image or audio samples organized into a matrix) is initially
scrambled using the Arnold transform and converted into one di-
mensional sequence of zeros and ones. A wavelet de-noising al-
gorithm is applied to the host audio data to remove as much noise
as possible and recover its original characteristics. The de-noised

audio signal are divided into segments, each segment A being fur-
ther sub-divided into two parts A1 and A2 of length L1 and L2

elements respectively. The embedding process starts by embed-
ding a synchronization code into the average value of the audio
samples of A1 as described in Section 4.4 given in [29] which is
required to survive de-synchronization. The watermark is embed-
ded into A2 as follows: sub-divide A2 into audio sub-segments of
length L2/(M×xN samples (where L2 is the length of A2 and M×N
is the watermark size), perform an H-level DWT on each sub-
segment, embed the watermark into the DWT coefficients based
on the higher-order statistics computed using the Hausdorff dis-
tance and finally apply an inverse DWT to obtain the watermarked
audio segment. The synchronization code and watermark bits are
embedded into each audio segment to increase the robustness of
the method. The watermark detection is performed by de-noising
the watermarked audio signal, detecting the synchronization code
and use the detected codes to locate the watermark into audio sub-
segments based on higher-order statistics.

An approach using SVD-DCT (Singular Value Decomposition-
Discrete Cosine Transform) and synchronization codes is consid-
ered in [30]. The host audio signal is partitioned into two parts, the
first for synchronization code insertion and the second for water-
mark embedding. A logistic chaotic sequence with an initial value
in the interval [0, 1] is used to generate the synchronization code.
To embed the watermark, the host audio signal is organized into a
2D matrix H which is then segmented into non-overlapping blocks
Hj . An 8×x8 block based SVD is used to generate U, S and V and
the first SVD coefficients arranged to form S(1,1) of every block
into a new matrix DC where most signal energy is concentrated
in the largest singular values. The matrix DC is partitioned into
4×4 sub-blocks and the DCT applied to each block to generate
the SVD-DCT coefficient blocks, each block being ‘zigzagged’ as
illustrated in Figure (2) as given in [30] with the shaded position
representing potential location for watermark embedding. The wa-
termark embedding starts by selecting the coefficient pairs to be
modified (the selection is based on a pseudo-random sequence)
from the potential location of each SVD-DCT block. The fre-
quency mask is computed to weight the watermark amplitude (the
frequency mask is used to determine the level of tolerance against
distortion caused by embedding the watermark), and, finally, the
watermark is embedding by modifying the magnitude difference
of the selected pairs.

3. MULTI-CHANNEL INFORMATION EMBEDDING

None of the audio watermarking methods discussed in the previous
section and other recent publications studied by the authors con-
sider the problem of embedding multiple channels into a single
channel. Multi-channel watermarking has a number of potential
advantages over single channel watermarking. The most obvious
of these is that a number of entirely independent and uncorrelated
sources of (audio) information can be embedded into a single au-
dio host signal either as plaintext or ciphertext data streams (de-
pending upon whether data encryption of the hidden information
is required).

We consider a scheme for 5:1 multi-channel audio embedding
and and extraction process illustrated in Figure 1 and Figure 2,
respectively. The scheme is based on embedding five MP3 files
into a single WAV file using 4 LSB coding. It focuses on the use
of five MP3 files in terms of the optimum number of channels that
can be embedded subject to the following conditions:

DAFX-4

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Key-1

Read 5 stereo wav

files of 44.1 KHz 16 bit

(wav1 .. wav5)

Loosely compress

the input files

(vec1 .. vec5)

Arrange (vec1..vec5)

into one vector B

with bytes entries

Divide B into two

parts of 4-bits each

(B1,B2)

Split C into two

channels

(C1,C2)

Read a stereo host

wav file of 44.1 KHz

16 bit (C)

Randomize the embedding

locations in C1 using

pseudorandom sequence-1

Key-2
Randomize the embedding

locations in C2 using

pseudorandom sequence-2

Embed B1 into C1 using 4-LSBs

Embed B2 into C2 using 4-LSBs

Combine C1 and C2 to generate

the stereo stego-audio S

Figure 1: High level data flow diagram for the 5:1 multi-channel
audio embedding process.

• minimal perceptual distortion of the host WAV file accord-
ing to the Perceptual Evaluation of Audio Quality (PEAQ
ITU-R recommendation BS.1387) discussed in [32];

• high integrity on the fidelity of all channels after extraction
from the host signal based on 4-bit LSB coding.

The use of 4-bit LSB is the minimum required to satisfy the
second of these conditions and is predicated on experimental re-
sults associated with the first condition (details of which lie beyond
the scope of this paper).

This approach follows on from the method reported in [33]
which uses a Frequency Modulation method called ‘Chirp-Coding’,
originally designed for the purpose of self-authenticating digital
signals [34] modified to embed up to four ‘information packets’.
However, the information capacity of these information packets
is low compared to the method proposed in this paper as well as
being computationally more intensive. However, unlike the tech-
nique reported here, the method given in [33] is robust to various
attacks subject to the carrier frequency of the chirp where a low
frequency sweep provides greater robustness when compared to
a high frequency sweep. In this case, the watermark sequence is
derived from sub-band energies which are unique and signal de-
pendent. Due to the different processes associated with informa-
tion extraction, an additional advantage of self-authentication is
achieved, thereby making this multi-level watermarking scheme
simultaneously robust and fragile (to an attack). By comparison,
the method proposed in this paper is not taken to be robust and is

Key-2

De- compress

(vec1 .. vec5)

to recover

the input files

(wav1 .. wav5)

Split the vector B

into 5 vectors

(vec1 .. vec5)

Arrange B1 and B2 to

re-generate the byte

vector B

Split S into two

channels

(S1,S2)

Read the stereo

stego-audio (S)

Determine the extracting

locations in S2 using

pseudorandom sequence-2
Key-1

Determine the extracting

locations in S1 using

pseudorandom sequence-1

Extract B1 from S1

Extract B2 from S2

Figure 2: High level data flow diagram for the 5:1 multi-channel
audio extraction process.

extremely fragile. In other words, the watermarked WAV file can
not be subjected to any form of lossy compression or other pro-
cess which involves data degradation although lossless encryption
is possible if required. The method reported in [33] is designed
for signal authentication using limited information embedding and
focuses on issues associated with Digital Right Management and
Copyright Protection. The approach considered in this paper fo-
cuses on attempting to pack many audio channels into a single au-
dio signal with minimal loss of information while sustaining audio
fidelity of the host signal.

Referring to Figure 1, the input audio channels are taken to be
MP3 files which may by loosely compressed WAV files. The MP3
data vectors are concatenated to form a single vector expressed in
bytes. This vector is split into two component vectors composed
of 4-bit entries. The host WAV file is decomposed into two compo-
nent vectors representing the left and right channels of the stereo
data stream. An additional step can then be considered whereby
each channel is randomized in terms of the embedding locations
for the input data as illustrated in Figure 1. A further security
feature is possible by encrypting the input data vector before em-
bedding is undertaken. This extra step can be executed by using a
pseudo-random or pseudo-chaotic cipher which is either converted
to binary form or output in binary form based on the methods dis-
cussed in [35], for example.

The information hiding process is accomplished in the time
domain by embedding the 2-part input vector into the 2-component

DAFX-5

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

host vector using 4-bit LSB in both cases. The stereo stego-audio
signal is then constructed by combining the two component output
into a single WAV files.

The algorithm for reconstruction of the embedded data is illus-
trated in Figure 2. After reading the stereo stego-audio WAV file,
the data is split into two channels and, as required, the keys used to
obtain the position of the embedded data in the channels. Recon-
struction of the embedded data is then undertaken by extracting the
4-bit LSBs and arranging the data to regenerate the original (byte)
vector. This vector is then split into the five original channels and
decompressed as required, thereby recovering the original WAV
files.

Prototype m-code for executing these processes is provided in
Appendix A and Appendix B which provide solution for the em-
bedding and extraction of data, respectively. In this example, em-
bedding position randomization and encryption of the input data
is not included. It is assumed that users have access to MP3 com-
pression software.

4. SUMMARY

Multi-channel information hiding has a range of applications but
the method presented in this paper is focused on problems asso-
ciated with audio post-production, in particular, the problem of
embedding the audio signals used to produced a stereo mix in that
mix. Clearly, the current solution only provides a solution for a
5:1 embedding scenario and relies on the input WAV files being
loosely MP3 compressed. However, by double, triple and quadru-
ple sampling the host file, it is possible to embed 10, 15 and 20
channels into the mix using the proposed approach.

From an information theoretic point of view, it is clearly not
possible to embed many channels into one channel without some
loss of information in terms of both the embedded data and the
host. However, provided the result does not lead to distortions that
are perceptible on an audio basis, such distortions can be made ac-
ceptable. In the context of the algorithms presented here, tests have
been undertaken using the Perceptual Evaluation of Audio Quality
(PEAQ ITU-R recommendation BS.1387) discussed in [32] and
will be detailed in a future publication.

Appendix A: m-Code for Multi-Channel
Information Hiding in a WAV file
The following code has been written to accommodate a two-column
format and consequently uses the MATLAB continuation syntax
‘...’. The code is somewhat condensed to minimize space. For
simplicity, the data is not encrypted and the embedding positions
are not randomized.

% Program to watermark one host WAV file
% with 5 MP3 files. The basic steps are:
% (i) Read 5 mp3 files; (ii) combine the
% files into a single vector; (iii) embed
% the vector into a host WAV file.
clear; clc;
fprintf(’Combining 5 MP3 files...’);
% Combine 5 MP3 files into 1 binary file
% Read 5 name MP3 files as binary files
% of type uint8
filename1 = ’filename_1.mp3’;

filename2 = ’filename_2.mp3’;
filename3 = ’filename_3.mp3’;
filename4 = ’filename_4.mp3’;
filename5 = ’filename_5.mp3’;
fid1 = fopen(filename1,’r’);
Signal_1 = fread(fid1,’uint8=>uint8’);
fclose(fid1); fid2 = fopen(filename2,’r’);
Signal_2 = fread(fid2,’uint8=>uint8’);
fclose(fid2); fid3 = fopen(filename3,’r’);
Signal_3 = fread(fid3,’uint8=>uint8’);
fclose(fid3); fid4 = fopen(filename4,’r’);
Signal_4 = fread(fid4,’uint8=>uint8’);
fclose(fid4); fid5 = fopen(filename5,’r’);
Signal_5 = fread(fid5,’uint8=>uint8’);
fclose(fid5);
% Combine 5 MP3 files into a single
% vector: the array "Signal_5MP3"
Len_1 = length(Signal_1);
Len_2 = length(Signal_2);
Len_3 = length(Signal_3);
Len_4 = length(Signal_4);
Len_5 = length(Signal_5);
Signal_5MP3 = uint8(zeros(Len_1+Len_2+...
Len_3+Len_4+Len_5,1));
Signal_5MP3(1 : Len_1,1) = Signal_1;
Signal_5MP3(Len_1+1 : Len_1 + Len_2,1) =...
Signal_2;
Signal_5MP3(Len_1+Len_2 + 1 : Len_1+Len_2...

+ Len_3,1) = Signal_3;
Signal_5MP3(Len_1+Len_2+Len_3 + 1 : Len_1+...

Len_2+Len_3 + Len_4,1) = Signal_4;
Signal_5MP3(Len_1+Len_2+Len_3+Len_4 + 1 :...
Len_1+Len_2+Len_3+Len_4 + Len_5,1) = Signal_5;
% Save "Signal_5MP3" as a binary file
fid = fopen(’Signal_5MP3_file.bin’,’w’);
fwrite(fid,Signal_5MP3,’uint8’); fclose(fid);
fprintf(’(DONE)\n’);
fprintf(’Embedding the 5 MP3 files...’);
% Embed 5 MP3 files into 1 host WAV file
[Signal_host,SamplingRate_Host,...

NumofBits_Host]= wavread(’host.wav’);
fid = fopen(’Signal_5MP3_file.bin’ , ’r’);
Signal_Secret = fread(fid,’uint8=>uint8’);
fclose(fid); Signal_embed = Signal_Secret;
RemSamples = length(Signal_host)...

-length(Signal_Secret);
if (RemSamples >= 0)

Len_5mp3 = length(Signal_Secret);
% Begin the Embedding Process
Signal_stego = Signal_host;
Signal_stego = ((Signal_stego+1)./2).*...
65535; % quantize to [0,65535]
% Embedding the signal
for i = 1:length(Signal_embed)
bit4_1 = bitand(uint8(Signal_embed(i)),...

uint8(15));
bit4_2 = bitand(bitshift(uint8(...

Signal_embed(i)),-4) , uint8(15));
% Embed the first 4-bit signal
Signal_stego(i,1) = bitand(uint16(...

Signal_stego(i,1)),uint16(65520));

DAFX-6

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Signal_stego(i,1) = bitor(uint16(...
Signal_stego(i,1)),uint16(bit4_1));

% Embed the second 4-bit signal
Signal_stego(i,2) = bitand(uint16(...

Signal_stego(i,2)),uint16(65520));
Signal_stego(i,2) = bitor(uint16(...

Signal_stego(i,2)),uint16(bit4_2));
end
Signal_stego = ((Signal_stego./65535) .*2)...

- 1; % quantize to [-1,1]
% Write the stego signal into a WAV file
wavwrite(Signal_stego,44100,16,...

’Stego_5MP3.wav’);
else
fprintf(’Process failed...\n’);
fprintf(’Secret Signal length exceeds the\n’);
fprintf(’Host Signal length\n’);
end % related to the statement

% "if (RemSamples >= 0)" given above
fprintf(’(DONE)\n’);
fprintf(’Embedding Process Completed.\n\n’);
% Write length of MP3 files to TXT file.
Length_Data=[Len_1,Len_2,Len_3,Len_4,Len_5];
fid = fopen(’MP3_File_Lengths.txt’,’w’);
fwrite(fid,Length_Data,’long’); fclose(fid);

Appendix B: m-Code for Multi-Channel
Extraction from a Stego-Audio WAV file
% Program to extract 5 MP3 from host WAV file
% The basic steps are as follows:
% 1. Extract a vector from the host WAV file.
% 2. Separate the 5 MP3 files from the vector.
clear; clc;
fprintf(’Extracting 5 MP3 files...’);
% Extract 5 MP3 files from the host WAV file.
[Signal_stego] = wavread(’Stego_5MP3.wav’);
Signal_stego = ((Signal_stego+1)./2).*65535;
% Quantize host signal to range [0,65535].
Len_5MP3 = length(Signal_stego);
Signal_extract = zeros(Len_5MP3,1);
% Extract the first signal.
for i = 1:Len_5MP3

% Extract the first 4-bit signal
s4_1_ext = bitand(uint16(...

Signal_stego(i,1)),uint16(15));
% Extract the second 4-bit signal
s4_2_ext = bitand(uint16(...

Signal_stego(i,2)),uint16(15));
% Combine the two 4-bit signals to
% generate the extracted 8-bit signal.
Signal_extract(i,1) = bitor(...

uint8(0) , uint8(s4_2_ext));
Signal_extract(i,1) = bitor(...

bitshift(uint8(...
Signal_extract(i,1)),4),...
uint8(s4_1_ext));

end
fprintf(’(DONE)\n’);
fprintf(’Extraction Process Completed...\n’);

fprintf(’Seperating the 5 MP3 files...’);
% Seperate 5 MP3 files from the extracted
% vector "Signal_extract".
% Read MP3 original file length data
fid = fopen(’MP3_File_Lengths.txt’,’r’);
Length_Data=fread(fid,’long’); fclose(fid);
Len_1=Length_Data(1); Len_2=Length_Data(2);
Len_3=Length_Data(3); Len_4=Length_Data(4);
Len_5=Length_Data(5);
Signal_1_sep = Signal_extract(1 : Len_1);
Signal_2_sep = Signal_extract(Len_1...

+ 1 : Len_1 + Len_2);
Signal_3_sep = Signal_extract(Len_1+Len_2...

+ 1 : Len_1+Len_2+Len_3);
Signal_4_sep = Signal_extract(Len_1+Len_2+...

Len_3 + 1 : Len_1+Len_2+Len_3 + Len_4);
Signal_5_sep = Signal_extract(Len_1+Len_2+...

Len_3 + Len_4 + 1 : Len_1+Len_2+Len_3+...
Len_4 + Len_5);

fprintf(’(DONE)\n’); % Write MP3 data to file.
fid1=fopen(’extracted_filename_1.mp3’,’w’);
fwrite(fid1,Signal_1_sep,’uint8’);fclose(fid1);
fid2=fopen(’extracted_filename_2.mp3’,’w’);
fwrite(fid2,Signal_2_sep,’uint8’);fclose(fid2);
fid3=fopen(’extracted_filename_3.mp3’,’w’);
fwrite(fid3,Signal_3_sep,’uint8’);fclose(fid3);
fid4=fopen(’extracted_filename_4.mp3’,’w’);
fwrite(fid4,Signal_4_sep,’uint8’);fclose(fid4);
fid5=fopen(’extracted_filename_5.mp3’,’w’);
fwrite(fid5,Signal_5_sep,’uint8’);fclose(fid5);

5. REFERENCES

[1] Codecs based on Auditory Scene Analysis, Marie Curie
Industry-Academic Partnerships and Pathways (IAPP); Call:
FP7-PEOPLE-2009-IAPP, 2011

[2] Audio Research Group, Dublin Institute of Technology
http://www.audioresearchgroup.com/

[3] Digital Media Centre, Dublin Institute of Technology
http://www.dmc.dit.ie/

[4] Tamborine Productions Limited, London
http://www.tamborine.co.uk/

[5] J M Blackledge and A Al-Rawi, Application of Stochastic
Diffusion for Hiding High Fidelity Encrypted Images, ISAST
Transaction on Computing and Intelligent Systems, Vol. 3,
No. 1, 24-33, 2011.

[6] J M Blackledge and A Al-Rawi, A, Steganography using
Stochastic Diffusion for the Covert Communication of Digi-
tal Images, IANEG International Journal of Applied Mathe-
matics, Vol. 41, Issue: 4, 270 - 298, 2011.

[7] K. Shafi, A. Sankaranarayanan, G. Prashanth and A. Mohan,
A Novel Audio Steganography Scheme using Amplitude Dif-
ferencing, Trends in Information Sciences and Computing
(TISC), 163-167, 17-19 Dec. 2010.

[8] H. B. Kekre, A. Athawale, B. S. Rao and U. Athawale,
Increasing the Capacity of the Cover Audio Signal by Us-
ing Multiple LSBs for Information Hiding, Emerging Trends
in Engineering and Technology (ICETET), 196-201, 19-21
Nov. 2010.

DAFX-7

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

[9] A. Ogihara, H. Murata, M. Iwata, and A. Shiozaki, Multi-
Layer Audio Watermarking Based on Amplitude Modifica-
tion, Fifth International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing, IIH-MSP
’09, 68-71, 12-14 Sept. 2009.

[10] W. N. Lie and L. C. Chang, Robust and High-Quality Time-
Domain Audio Watermarking Based on Low-Frequency Am-
plitude Modification, IEEE Transactions on Multimedia, Vol.
8, No.1, 46- 59, Feb. 2006.

[11] A. Dutta, A. K. Sen, S. Das, S. Agarwal and A. Nath, New
Data Hiding Algorithm in MATLAB Using Encrypted Secret
Messages, International Conference on Communication Sys-
tems and Network Technologies (CSNT), 262-267, 3-5 June
2011.

[12] M. Asad, J. Gilani and A. Khalid, An Enhanced Least Signif-
icant Bit Modification Technique for Audio Steganography,
International Conference on Computer Networks and Infor-
mation Technology (ICCNIT), 143-147, 11-13 July 2011.

[13] M. Wakiyama, Y. Hidaka and K. Nozaki, An Audio Steganog-
raphy by a Low-Bit Coding Method with Wave Files, Sixth
International Conference on Intelligent Information Hiding
and Multimedia Signal Processing (IIH-MSP), 530-533, 15-
17 Oct. 2010.

[14] Y. Wang, L. Guo, Y. Wei and C. Wang, A Steganography
Method for AAC Audio Based on Escape Sequences, Inter-
national Conference on Multimedia Information Networking
and Security (MINES), 841-845, 4-6 Nov. 2010.

[15] J. Wang, R. Healy and J. Timoney, A Novel Audio Water-
marking Algorithm Based on Reduced Singular Value De-
composition, Sixth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-
MSP), 143-146, 15-17 Oct. 2010.

[16] L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM:
Society for Industrial and Applied Mathematics, PA, USA,
1997.

[17] A. C. Sekhar, C. Suneetha, G. NagaLakshmi and B. RaviKu-
mar, Fast Fourier Transforms and Quadratic Forms for Dig-
ital Audio Watermarking, International Conference on Ad-
vances in Recent Technologies in Communication and Com-
puting, ARTCom ’09., 449-452, 27-28 Oct. 2009.

[18] M. Narimannejad, S. M. Ahadi, Watermarking of speech Sig-
nals Through Phase Quantization of Sinusoidal Models, 19th
Iranian Conference on Electrical Engineering (ICEE), 1-4,
17-19 May 2011.

[19] B. Chen, G. W. Wornell, Quantization Index Modulation: A
Class of Provably Good Methods for Digital Watermarking
and Information Embedding, IEEE Transactions on Informa-
tion Theory, Vol.47, No.4, 1423-1443, May 2001.

[20] Y. Lin and W. H. Abdulla, A Secure and Robust Audio Wa-
termarking Scheme using Multiple Scrambling and Adap-
tive Synchronization, 6th International Conference on Infor-
mation, Communications and Signal Processing, 1-5, 10-13
Dec. 2007.

[21] R. Tachibana, S. Shimizu, and S. Kobayashi, An Audio
Watermarking Method using a Two-dimensional Pseudo-
random Array, Signal Processing, Vol. 82, No. 10, 1455-
1469, 2002.

[22] Y. Q. Lin and W. H. Abdulla, Robust Audio Watermarking
Technique Based on a Gamma-tone Filter Bank and Coded
Image, International Symposium on Signal Processing and
Its Application (ISSPA’07), 2007.

[23] Y.Q. Lin and W.H. Abdulla, Robust Audio Watermarking
for Copyright Protection, Technical Report (No. 650), Dept.
of Electrical and Computer Engineering, The University of
Auckland, 2006.

[24] X. S. Chen, Y. T. Yang, H. Zhang and X. J. Lu, An Audio
Blind Watermarking Algorithm in the Wavelet Domain Based
on Chaotic Encryption, International Conference on Wavelet
Analysis and Pattern Recognition, ICWAPR ’07. 470-473,
2-4 Nov. 2007.

[25] P. Shah, P. Choudhari and S. Sivaraman, Adaptive Wavelet
Packet Based Audio Steganography using Data History,
IEEE Region 10 and the Third international Conference on
Industrial and Information Systems, ICIIS 2008, 1-5, 8-10
Dec. 2008.

[26] A. Delforouzi and M. Pooyan, Adaptive Digital Audio
Steganography Based on the Integer Wavelet Transform,
Third International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, IIHMSP 2007,
Vol. 2, 283-286, 26-28 Nov. 2007

[27] C. Maha, E. Maher, K Mohamed and B. A. Chokri, A DCT
Based Blind Audio Watermarking Scheme, Proceedings of
the 2010 International Conference on Signal Processing and
Multimedia Applications (SIGMAP), 139-144, 26-28 July
2010.

[28] W. Hamming, Error Detecting and Error Correcting Codes,
Bell Systems Technical Journal 26(2), 137-160, 1950.

[29] H. Y. Yang, X. Y. Wang and T. X. Ma, Robust Digital Audio
Watermarking using Higher-order Statistics, AEU - Interna-
tional Journal of Electronics and Communications, Vol. 65,
Issue 6, 560-568, June 2011.

[30] B. Y. Lei, I. Y. Soon and Z. Li, Blind and Robust Audio Wa-
termarking Schemes Based on SVD-DCT, Original Research
Article: Signal Processing, Vol. 91, Issue 8, 1973-1984, Au-
gust 2011.

[31] F. Han, X. Yu and S. Han, Improved Baker Map for Image
Encryption, Proceedings of the First International Sympo-
sium on Systems and Control in Aerospace and Astronautics,
ISSCAA 2006, 1273-1276, 2006.

[32] P. Kabal, An Examination and Interpretation of ITU-R
BS.1387: Perceptual Evaluation of Audio Quality, Technical
Report, McGill University, Version 2, 2003.

[33] J. M. Blackledge and O. Farooq, Audio Data Verification
and Authentication using Frequency Modulation based Wa-
termarking, International Society for Advanced Science and
Technology, Journal of Electronics and Signal Processing,
Vol. 3, No 2, (ISSN 1797-2329), 51 - 63, 2008.

[34] J. M. Blackledge and E. Coyle, Self-Authentication of Au-
dio Signals by Chirp Coding, Proceedings of the 12th In-
ternational Conference on Digital Audio Effects (DAFx-09),
Como Italy, 2009.

[35] J. M. Blackledge, Cryptography and Steganography: New
Algorithms and Applications, (Ed. Stanislaw Janeczko), Cen-
tre for Advanced Studies, Textbook Series 1, Warsaw Univer-
sity of Technology, Poland ISBN: 978-83-61993-05-6, 2012.
url - http://eleceng.dit.ie/papers/195.pdf

DAFX-8

	Multi-Channel Audio Information Hiding
	Recommended Citation

	1 Introduction
	2 Audio Information Hiding
	2.1 Audio Hiding in the Time Domain
	2.2 Audio Hiding in the Transform Domain

	3 Multi-Channel Information Embedding
	4 Summary
	5 References

