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Magnetic Resonance Image Processing using Lévy
Distributed Anisotropic Diffusion
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Dublin, Ireland London, England
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Abstract — We consider the physical nature of the self-diffusion of water molecules
in tissue and explore how (Nuclear) Magnetic Resonance (MR) imaging may be used
as a means of measuring the rate of diffusion in vivo. A discussion is presented on how
these techniques may be implemented as a non-invasive means of assessing the response
of tumours to novel therapeutics including some of the basic advantages and disadvan-
tages when compared to other methods. The physical basis and mathematical models
for diffusion are considered together with models for the distribution of the diffusion co-
efficient including a Lévy distributed model. Using a Lévy distributed diffusion model,
we develop a novel algorithm for the purpose of improving the signal-to-noise ratio of
MR images.

Keywords — Magnetic Resonance Imaging, Diffusion Imaging, Fractional Diffusion, Noise
Reduction.

I Introduction

Investigations into the use of NMR measurements
to study the self-diffusion of water began with work
by Hahn in 1950 who discovered that there was
an inherent loss in signal in spin-echo sequences
due to the motion of water during the application
of magnetic gradients[1]. These ideas were later
developed by Stejskal and Tanner [7] who showed
that using two gradients of opposite polarity either
side of the π rf excitation pulse in spin-echo se-
quences resulted in signals whose amplitudes were
highly dependent on the diffusivity of the medium
being probed. Figure 1 shows a simplified Stejskal-
Tanner MRI pulse sequence (also known as the
pulsed field gradient or PFG sequence) in which
the diffusion sensitizing gradients have been la-
belled with a duration of δ ms, a gradient mag-
nitude of g Tm−1 and the second pulse has been
applied at a time of ∆ ms after the first (∆/2 ms
after the π rf pulse).

Let us consider the effect of this pulse sequence
on a single spin at position r. Firstly the applica-
tion of a π/2 rf pulse flips the spins’ magnetization

Fig. 1: A simplified Stejskal-Tanner NMR pulse sequence.
Diffusion sensitizing gradients are a applied at ±∆/2 ms
either side of the π rf pulse which have a duration of δ ms
and magnitude of g Tm−1



vector, m, into the x’-y’ plane of the rotating frame
of reference (z’ is taken to lie along the same direc-
tion as the main B0 field). Following this the first
diffusion sensitizing gradient (g1) rotates m by an
angle of α1 = δγr·g1 about z’ and then a π rf pulse
flips m by 180◦ about either x’ or y’ depending on
the choice of the pulse direction. Finally, the sec-
ond diffusion gradient (g2) rotates m through an
angle of α2 = δγr · g2 about z’. Provided that g1

= g2 and that the spin does not move during the
pulse sequence then the net phase offset acquired
(neglecting T2 effects) is α1 − α2 = 0. However if
we were to consider that the spin has time depen-
dent position, r(t), then the effect of the diffusion
pulses would be to rotate the m through a total
angle of

θ =

δ∫
0

γr(t) · gdt−
∆+δ∫
∆

γr(t) · gdt (1)

around z’. By considering that the spins are ran-
domly moving due to diffusion, then the spins
which form an isochromat at a position r0 at the
time of signal acquisition will have acquired a dis-
tribution of phase offsets during the sequence de-
pending on the diffusivity of the material. In a
similar fashion to T2 dephasing the bulk magne-
tization (and hence the NMR signal) will have a
smaller magnitude than if no diffusion were present
due to the ‘fanning out’ of spins (see fig. 1) .
A mathematical framework for these ideas can be
built using complex notation where a phase shift
θ may be represented by multiplying the original
signal by eiθ. Therefore the net contribution of
a cohort of spins at position r0 on the signal will
be [5]

S(τ) = S(τ)g=0

∞∫
−∞

P (θ,∆)eiθdθ (2)

where S(τ)g=0 is the signal which would have been
recorded had the diffusion gradients been omitted
and P (θ,∆) is the normalized probability of find-
ing a spin with phase shift θ at r0 acquired during
the time period ∆ (see figure 1). As discussed be-
fore, it may be shown that in the case of diffusion
the integral results attenuation of the signal ampli-
tude. It is therefore sensible to write this equation
in the form

|S(τ)|
|S(τ)g=0|

= E(δ,∆, g,D)

where E is the attenuation of the signal due to
the parameters of the PFG sequence and the dif-
fusion coefficient of the medium. The question
then remains of finding a numerical solution for
E so that the signal attenuation is quantifiable

in terms of the diffusion coefficient and the PFG
pulse sequence parameters. One method of so-
lution, known as the ‘Gaussian Phase Distribu-
tion’ (GPD) approximation, involves the assump-
tion that the form of P (θ,∆) is equivalent to the
probability distribution of the distance travelled
by a particle in time t undergoing unrestricted
isotropic diffusion so that

P (θ,∆) = (2π〈θ2〉)−N2 exp
(
− θ2

2〈θ2〉

)
where 〈θ2〉 is the expected square phase shift,
found by evaluating equation (1) with 〈r2〉 =
〈(r1 − r0)2〉 = nDt giving (as derived in detail
by Price [5])

〈θ2〉 = γ2|g|2nDδ2

(
∆− δ

3

)
where n = 2, 4, 6 for 1, 2 and 3 dimensions respec-
tively (n = 2N). In the case of DWI g is only
applied in one direction at any given time so it
is sufficient to consider the effects of diffusion in
only one dimension where N = 1. By substituting
P (θ,∆) into equation (2) and using the standard
integral [2]

∞∫
−∞

e−p
2x2±qxdx =

√
π

p
e
q2

4p2

it may be shown that

E(δ,∆, g,D) = exp
(
−〈θ

2〉
2

)

= exp
[
−γ2|g|2Dδ2

(
∆− δ

3

)]
This formula is usually simplified by combining all
the scanning parameters into a single variable, b,
giving

E(b,D) = e−bD, b = γ2|g|2δ2

(
∆− δ

3

)
As the scanning parameters (and hence b) may be
chosen at will (within certain limits depending on
the instrument) it is possible to obtain different
levels of contrast in MR images that are dependent
on the diffusivity of the medium. Furthermore, if
a number of signals are acquired with different b-
values (at least 2) then the gradient of the log plot
of signal versus b gives an estimate for the value
of the diffusion coefficient.

It is important to note that in the above argu-
ments the assumptions are made that (a) diffusion
is isotropic, (b) diffusion is unrestricted and (c)
there is no net flow in the probed sample of water.
Clearly in all situations assumption (b) is going



to be violated but provided that the encasement
of the water is relatively large and ∆ is kept rel-
atively short then unrestricted diffusion is a good
approximation. Assumption (a) also holds under
these conditions as the effects of anisotropy mainly
come into play when considering spins that heav-
ily restricted in one direction and not in another.
However, in the case of imaging in vivo as will be
explained later the assumptions do not hold well
due to the restriction of water molecules by a com-
plex entanglement of cell walls. It should be noted
that other solutions of P (θ,∆) exist (see Price [5])
depending on which assumptions seem most valid
for the given system but they are beyond the con-
text of this paper.

II Biophysics of Diffusion

Whilst the above discussion provides insight into
how diffusion is measured through magnetic reso-
nance techniques, a number of simplifying assump-
tions have been made which are not valid in bio-
logical systems. Firstly, in the derivation of the
GPD approximation it is assumed that the diffu-
sion of water molecules is free. However, in tis-
sue diffusivity measurements the motion of water
molecules is hindered and restricted by the various
cellular constituents and cel walls [3] and so it is
common to use the term apparent diffusion coeffi-
cient (ADC) [6]. Furthermore, most tissues con-
tain of a complex array of capillaries in which the
effects of flow and perfusion must also be consid-
ered. Due to their small length scales and the fact
that they are generally quite tortuous (especially
in the case of tumour tissues) the movement of
water within the capillary network may be viewed
as a random walk and hence is similar to that of
diffusion in the sense discussed above. However,
as the motion is generally quicker due to flow the
pseudo-diffusion coefficient, Dp, for water within
the capillaries is likely to be higher then that for
water in which no flow is present [4]. From these
arguments it is possible to arrive at the Intravoxel
Incoherent Motion (IVIM) biexponential relation
where the total signal attenuation is proposed to
consist of the sum of the attenuation due water
within capillaries and the attenuation due to wa-
ter in the rest of the tissue, each multiplied by the
fraction of the voxel volume they occupy;

E(b) =
S(b)

S(b = 0)
= αe−bDp + (1− α)e−bADC

Assuming that Dp > ADC then for small values
of b, E will be dominated by the attenuation due
to pseudo-diffusion and similarly for high b values
the reverse is true. For this reason measurements
of the diffusion coefficient are often made over low
and high b-values and are named ADCfast and
ADCslow which are estimates for Dp and ADC re-

Fig. 2: A simplified diagram showing the typical structure
of cells and capillaries in tissues.

spectively. Whilst these ideas help in understand-
ing the physical properties of the tissue, the use
of only two diffusion coefficients is still rather lim-
ited. It is perhaps more appropriate to consider
that the tissue has some distribution of possible
D values all of which contribute to the observed
signal attenuation. The ideas behind the biexpo-
nential model can be generalized by;

E(b) =
∞∑
i=0

Cie
−bDi

where Ci is the voxel fraction of tissues with diffu-
sion coefficient Di. If Ci is then considered to be a
continuous function P (D) which is normalised to
unity, then the signal attenuation is described as

E(b) =

∞∫
0

P (D)e−bDdD = L{P (D)}

where L represents the Laplace transform. An
ideal experiment would be to calculate the inverse
Laplace transform of the signal decay profile ob-
tained at many b-values to give diffusion coefficient
probability density function. However, in practice
this is extremely difficult as a small change in E(b)
can be the cause of a very large change in P (D).
It would therefore be necessary to calculate the at-
tenuation curve over a large range of many closely
spaced b-values and the signal to noise ratio would
need to be exceptional. An alternative approach
is to hypothesize a distribution P (D), which could
be done theoretically or perhaps through Monte
Carlo simulations, and consider the Laplace trans-
form as fitting function for E(b). As an example
one may assume that P (D) is normally distributed
such that the mean diffusion coefficient, D̄, has the
highest voxel fraction and the width of the curve
is described by the standard deviation of the coef-
ficients, σ;

P (D) =
1

σ
√

2π
exp

{
−(D − D̄)2

2σ2

}



Analyzing the Laplace transform yields

E(b) =
1
2

exp
{
−bD̄ − 1

2
b2σ2

}

×erfc
{

1√
2

(
bσ − D̄

σ

)}
However, one major shortcoming of this distribu-
tion is that it allows for negative D values which
are clearly unachievable in reality. Furthermore, it
is likely that distribution would have some skew-
ness and kurtosis which cannot be described us-
ing standard normal distributions. Another ap-
proach is to use a function which best fits E(b)
and then infer the distribution of diffusion coeffi-
cients. One such decay function which is often used
is the Kohlrausch-Williams-Watts (KWW) func-
tion (otherwise known as a stretched exponential)
which is described by [8]

E(b) = e−(bD∗)α (3)

It may be shown that the implied distribution of
diffusion coefficients is a Lévy skew alpha-stable
distribution [11], [12]:

P (D) = lim
ε→0

1
2πi

ε+i∞∫
ε−i∞

e−(bD∗)αebDdb

=
1

πD∗

∞∫
0

exp
{
−Du
D∗
− uα cos (πα)

}
× sin {uα sin (πα)}du

A plot of these probability distributions is shown
in figure 3 for different values of α. It is clear
that the distributions have some degree of ‘nor-
mality’ to them with no values of D being less
than 0 as previously desired. Also, as α decreases
it is seen that the ratio of higher to lower diffu-
sion coefficients increases indicating different de-
grees of negative skewness and kurtosis in the dis-
tribution. However, whilst these distribution seem
attractive at first glance, they must only be treated
as approximations as issues with them are still ev-
ident such as the fact that they cannot have more
than one peak which may well be expected in a bi-
exponential model, they do not allow for any pos-
itive skewness and in all distributions (especially
those with low α) extremely high diffusion coeffi-
cients approaching infinity are possible. In general
the inverse Laplace transform is an extremely ill-
conditioned mathematical problem where a minor
change in the attenuation curve can have a consid-
erable effect on the implied distribution. The use
of a stretched exponential is therefore likely to be
due to its convenient mathematical representation
and easier fitting to decay curves rather than due
to the precision of the implied distributions.

Fig. 3: A plot showing the diffusion coefficient distributions
that are assumed when using a stretched exponential decay
curve to fit to as a function of b for different values of the
parameter α. The curves clearly have some ‘normaility’ to
them with no values of D < 0. It should be noted that
as α → 1 the distribution tends towards a delta function
centered at D = D∗, which is in agreement with equation
(3) where a value of α = 1 represents a monoexponential
decay

Another approach for analysis of tissue structure
using diffusion imaging is known as q-space imag-
ing. This technique uses the assumption that the
length of the diffusion sensitising gradients is small
(δ << ∆) so that equation (2) may be re-wrtten in
terms of the average probability of a spin moving
a distance R in time ∆, P̄ (R,∆) [5];

∣∣∣∣ S(τ)
S(τ)g=0

∣∣∣∣ =

∞∫
−∞

P̄ (R,∆)eiγδg·RdR

If the parameter q is now defined such that q =
γδg/2π (m−1) then it is clear that the signal atten-
uation of the signal as a function of q is the Fourier
transform of the average distance probability;

E(q,∆) =

∞∫
−∞

P̄ (R,∆)ei2πq·RdR

By obtaining a series of images using different q-
values using different direction of g it is therefore
possible to obtain a map of the average propagator
P̄ (R,∆) in which effects due to the restriction of
diffusion can be seen. However, in order to obtain
good accuracy using this technique it is necessary
to acquire data using many values of q over a wide
range which will be extremely time consuming and
very challenging for the scanner due to the large
diffusion gradients involved.

Finally, it should be mentioned that in some
cases it is necessary to consider the anisotropy of
the diffusion for the tissue under investigation. As
previously explained, diffusion anisotropy is neatly
summarized using the 3x3, diagonally symmetric



diffusion tensor, D, rather than the scalar diffusion
coefficient, D. Signal attenuation in Diffusion Ten-
sor Imaging (DTI) is related to the b-value matrix,
b, by [9];

E(b,D) = e−b:D, b : D =
∑
i

∑
j

bijDij

where off-diagonal elements in b may be achieved
using diffusion gradients in more than one direc-
tion simultaneously [5]. In order to obtain an esti-
mate of the tensor it is necessary to obtain diffu-
sion weighted images using diffusion sensitising in
at least 6 directions, although using a greater num-
ber of directions will increase the accuracy of the
estimation, which may be used to calculate each of
the six unknown elements in D. Representation of
the tensor is a difficult task although some groups
choose to use ‘diffusion ellipsoids’ which show the
distance covered by particles in a pre-defined time
in all directions. The principle axis of the ellipsoids
(found by calculating the eigenvalues and eigen-
vectors of D) may then be traced through to show
the orientation and length of fibers in a 3 dimen-
sional view, as is commonly done in MR tractogra-
phy of white matter in the brain. However, these
processes are somewhat laborious computationally
and so two orientation invariant parameters have
been reported that summarize both the average
diffusivity, regardless of direction, and the level of
anisotropy. It can be shown that the trace of a ma-
trix, Tr(D) = Dxx+Dyy+Dzz, is equal to the sum
of the eigenvalues for that matrix. As the eigenval-
ues for D are independent of the orientation of the
reference frame in which it is measured, it is sim-
ple to see that the trace is also independent. The
mean diffusivity is then defined as Tr(D)/3 [9].
However, the use of DTI is limited to tissues which
are highly ordered such as the axons in the white
matter of the brain. When applying this technique
to study diffusion in tumour tissues therefore, the
only viable application has been in study of brain
tumours [10] as the cellular environment of lesions
tends to be very disordered.

III Noise Reduction for Lévy
Distributed Processes

Let as assume that the noise generated in an MR
image I is the result if a Lévy distributed process.
The image can then be taken to conform to the
fractional diffusion equation

∂

∂t
I(x, y, t) = D(x, y)∇αI(x, y, t) (1)

where α is the Lévy index. Our goal is to solve this
equation and thereby investigate the properties of
the solution for reducing noise in an MR image.
To do this, we consider a modification of equation

(1) that includes the Laplacian ∇2, i.e.

∂

∂t
I(x, y, t) = D(x, y)∇2[∇α−2I(x, y, t)]

where

∇α−2I(x, y, t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

(
Ĩ(kx, ky, t)

(k2
x + k2

y)(2−α)/2

)

× exp(ikxx) exp(ikyy)dkxdky

and
Ĩ(kx, ky, t) =

∞∫
−∞

∞∫
−∞

I(x, y, t) exp(−ikxx) exp(−ikyy)dxdy

In practice (i.e. for numerical computations op-
erating on a digital image Iij), ∇α−2I is com-
puted using a Discrete Fourier Transform to out-
put the digital equivalent operation which we de-
note as ∇α−2

ij Iij . Forward differencing in time, we
can then consider the following iterative filter: For
k = 0, 1, 2, ..., N

Ik+1
ij = Ikij + ∆Dij

 0 1 0
1 −4 1
0 1 0

⊗i,j ∇α−2
ij Ikij

(2)
where I0

ij is the input image. Figure 4 show the
outputs of the algorithm provided in after 5, 10
and 15 iterations using a time step ∆ = 0.05 and
a Lévy index α = 1.98. The Diffusivity Dij is
obtained be applying an edge detector to the image
I0
ij to obtain an output Eij , say, and compute

Dij = 1− Eij

where it is noted that Dij ≥ 0∀(i, j) and Eij ≥
0∀(i, j). In the example given, a Prewitt edge de-
tector has been used [13] The value of α that is
used in this case it critical, and must, in general,
be close to 2 as given in the example shown in Fig-
ure 4. If α moves too far below 2, the lowpass filter
| k |−(2−α)/2 attenuates the high frequency compo-
nents in the image too severely at each iteration.
On the other had, for values of α close to 2, the
number of iterations required to de-noise the im-
age is significantly less than in the application of
the non-fractional anisotropic diffusion algorithm,
noise reduction being optimal after only 5 iteration
as shown in Figure 4.

IV Summary

The principle aim of this has been to describe the
nature of diffusion imaging in MR imaging and dis-
cuss its use in assessing response of metastatic dis-
ease to therapy. It has been shown that the ther-
mal Brownian motion of water may be measured



Fig. 4: MR image of the Brain before (top-left) and the
results of applying the fractional anisotropic diffusion al-
gorithm given in Appendix III for a Prewitt edge detector
after 5 (top-right), 10 (bottom-left) and 15 (bottom-right)
iterations with ∆ = 0.05 and α = 1.98.

in vivo using specialized pulse sequences. These
sequences cause attenuation in MR images that is
dependent on the scanning parameters and diffu-
sivity of the target tissue affording a powerful con-
trast tool that probes length scales much smaller
than those available with other conventional imag-
ing modalities. In most diffusion sequences scan-
ning parameters may be combined into a single
’b-value’ which simplifies the equations of signal
dependence. By obtaining images with different
b-values it is possible to obtain an estimate of the
Diffusion Coefficient which characterizes the rate
of diffusion in the tissue. In the context of diffusion
imaging and given that the implied distribution of
diffusion coefficients are Lévy distributed, we have
considered extending the method of anisotropic
diffusion for noise reduction in digital images to
the fractional anisotropic diffusion case. The algo-
rithm considered is compounded in equation (2).
This result assumes that the noise generated in
a MR image is non-Gaussian and that as α → 2
noise generation becomes the ‘product’ of classi-
cal diffusion conforming to Gaussian processes. In
this sense, fractional diffusion is a generalisation
of classical diffusion which includes long tail dis-
tributions associated with Lévy processes associ-
ated with the diffusion coefficients studied in MR
imaging.
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[8] M. Köpf, C. Corinth, O. Haferkamp, and
T. F. Nonnenmacher, “Anomalous Diffusion
of Water in Biological Tissues” Biophys J.,
70(6), 2950-2958, 1996.

[9] D. Le Bihan, J-F. Mangin, C. Poupon,
C. A. Clark, S. Pappata, N. Molko and
H. Chabriat, “Diffusion Tensor Imaging:
Concepts and Applications”, JMRI, 13, 534-
546, 2001.
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