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Model for Hyphal Growth
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Abstract
The development of methods capable of accurately characterising the morphology of filamentous microbes repre-
sents a significant challenge to biotechnologists. This is because the productivity of many industrial fermentation
processes is heavily dependent on the morphological form adopted by an organism. It is therefore of significant
value if a quantitative model and associated metric(s) for morphological forms determined by complex pheno-
types can be determined non-invasively, e.g. through image analysis. Specific interest is in the quantification of the
branching behaviour of an organism. This is due to the link between branching frequency, biomass and metabolite
production. In this paper we present a model for three-dimensional microbial growth that is based on a fractional
dynamic model involving separable coordinate geometry. This provides a focus for an approach reported in this
paper where microbial growth can be quantified using a sample microscopic digital image. In particular, we study
the fractal dimension of fungal mycelial structures by generating a ‘fractal signal’ based on the object bound-
ary. In the analysis of a population of Aspergillus oryzae mycelia, both the fractal dimension and hyphal growth
unit are found to increase together over time. Further, through an analysis of different populations of Penicillium
chrysogenum and A. oryzae mycelia, cultivated under a variety of different conditions, we show that there is a
statistically significant logarithmic correlation between the boundary fractal dimension and hyphal growth unit.

Keywords: Fractional Diffusion, Fractals, Fungal Morphology, Image Analysis, Pharmaceutical Process Engi-
neering

1. Introduction

The optimisation of industrial fermentation processes in-
volving filamentous microorganisms requires an in-depth
knowledge of the relationship between biomass and metabo-
lite production. The specific morphological form adopted
by an organism is of critical importance to the clarification
of this relationship which is dependent on a variety of fac-
tors [ZP01]. The accurate quantification of phenotypic vari-
ation in vegetative mycelia, as a means of process control,
is therefore of the utmost importance. With the advent of
image analysis systems, significant progress has been made
in furthering the understanding of the relationship between
morphology and productivity [Pap04]. However, the accu-

† SFI Stokes Professor
‡ School of Biological Sciences

rate quantification of complex morphologies still represents
a major challenge in process optimisation.

At the microscopic level, filamentous microorganisms
consist of Hyphae exhibiting strongly polarised growth that
develop into a composite structure termed a mycelium,
which is conventionally characterised based on the ratio of
the total hyphal length to the number of branches formed.
This measure, termed the hyphal growth unit (LHGU ), was
first proposed by Plomley [Plo59] and is still a common
means of morphological quantification [BCW09, PM06,
Pap06, ESMH06]. The growth unit effectively provides an
overview of the branching behaviour of an organism under
a given set of environmental conditions; a low value indi-
cates a high rate of branch formation, whereas a high value
is indicative of a relatively non-branching structure. The ex-
tent to which an organism forms branches is often of interest
in industrial processes, as metabolite excretion occurs pri-
marily at hyphal tips [GAJ∗00,MMHN02]. A knowledge of

Institute of Physics, Computational Biomedical Physics (2010)



2 J. M. Blackledge and D. J. Barry / Morphological Analysis based on a Fractional Dynamic Model for Hyphal Growth

branching behaviour is therefore of significant interest in the
design of a particular bioprocess.

At the macroscopic level, the dispersed mycelial morpho-
logical form may dominate, or an aggregation of biomass
may result in mycelial ‘clumps’ being predominant. These
clumps may develop into dense, approximately spherical
structures termed ‘pellets’, which may be up to several mil-
limetres in diameter as shown in Figure 1. In fermentations
of certain microorganisms, such as Aspergillus oryzae, there
is evidence that pellet-formation is driven by spore agglom-
eration [CSNV96] and, as such, the occurrence of ‘free’
mycelia may be rare. The characterisation of these com-
plex macro-morphologies represents a far greater challenge
to the fungal biotechnologist, as individual Hyphae cannot
be isolated and enumerated. As such, the accurate determi-
nation of the extent of branching of the organism is often im-
possible. These large aggregates of biomass are convention-
ally characterised in terms of projected area (Ap), perime-
ter length (P), circularity (C = 4πApP−2), or various other
interpretations thereof [PM06, TKDT92, LSW∗02]. As dif-
ferent morphological parameters are often utilised depend-
ing on the growth form present, a considerable amount of
effort has been expended in designing imaging systems ca-
pable of discriminating between these different phenotypes
[PM06, TKDT92].

Figure 1: Typical morphologies found in submerged fermen-
tations of filamentous microorganisms: (a) Freely dispersed
mycelia (Bar = 50µm) (b) Mycelial clump (Bar = 100µm)
(c) Pellets (Bar = 2.5mm)

An alternative approach to morphological quantification
is to use fractal geometry [Man82] to characterise the spa-
tial distribution of an organism (e.g. [Pap06], [PLL∗07],
[JL97], [KLK∗05], [Ryo99], [HGR96], [GBD08], [MM92]
and [JLM93]) although it has been suggested that the fractal
dimension is often not sufficient for morphological charac-
terisation, as microorganisms can sometimes appear to have
different branching patterns, despite having similar values

for the fractal dimension [BD08]. However, although numer-
ous studies have been conducted in which fractal analysis
is utilised to quantify morphology, few have attempted to
link fractal dimension with conventional morphological pa-
rameters. Fractal analysis is of significant potential value in
the study of filamentous microorganisms. This is because it
lends itself to the quantification of all gross morphological
forms that may be encountered and there remains tha need
to develop a quantitative relationship between the fractal di-
mension within a population of mycelia and the branching
behaviour within that population. In this paper, we describe
an alternative approach to fractal analysis, which directly re-
lates the hyphal growth unit to the fractal dimension, based
on an analysis of the mycelial boundary. The theoretical ba-
sis for this approach is considered in the following section.

2. Hyphal Growth based on Fractional Diffusion

Consider the three-dimensional fractional diffusion equation
[Hil95], [Com96](

∂
2
x +∂

2
y +∂

2
z −σ

q
∂

q
t

)
u(x,y,z, t) =−s(x,y,z, t)

where σ is the fractional coefficient of diffusion and where
we consider a solution based on the separable case [Eis48]

s(x,y,z, t) = δ(x)nx(t)+δ(y)ny(t)+δ(z)nz(t)

and

u(x,y,z, t) = ux(x, t)+uy(y, t)+uz(x, t)

The source function s is taken to model a system charac-
terised by a separable spatial impulse with a temporal white
noise function (nx,ny,nz). We are interested a fractional dy-
namic model involving the time evolution of the system sub-
ject to changes in the ‘Fourier Dimension’ q > 0 which is
taken to decrease as a function of time. Hyphal growth in a
three-dimensional space is taken to be described by the para-
metric curve [ux(t),uy(t),uz(t)) whose morphology is gov-
erned by the value of q. In this sense, we consider a frac-
tional dynamic model that is based on the non-stationary op-
erator [Bla10] ∂

2
x −σ

q(t)
∂

q(t)
t .

2.1. Solution Method

The model described above allows us to consider Hyphal
growth in terms of a solution to the following independent
equations: (

∂
2
x −σ

q
∂

q
t

)
ux(x, t) =−δ(x)nx(t) (1)

(
∂

2
y −σ

q
∂

q
t

)
uy(y, t) =−δ(y)ny(t)

(
∂

2
z −σ

q
∂

q
t

)
uz(z, t) =−δ(z)nz(t)
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Any solution to equation (1) then applies to the solutions for
uy and uz, i.e. we are required to find the general solution of
the equation (

∂
2
x −σ

q
∂

q
t

)
u(x, t) =−δ(x)n(t)

Let

u(x, t)↔U(x,ω), n(t)↔ N(ω)

and
∂

q

∂tq u(x, t)↔U(x,ω)(iω)q

where↔ denotes transformation from real to Fourier space.
We can then transform equation (1) to the form(

∂
2

∂x2 +Ω
2
q

)
U(x,ω) = δ(x)N(ω), Ωq = i(iωσ)

q
2

The Green’s function solution to this equation is then given
by

U(x,ω) = N(ω)g(| x |,ω) (2)

where [EBY99]

g(| x |,ω) =
i

2Ωq
exp(iΩq | x |)

under the assumption that u and ∂xu→ 0 as x→±∞.

2.2. Asymptotic Solution

Given equation (2), we can construct the asymptotic solution

lim
x→0

U(x,ω) =
iN(ω)
2Ωq

or

U(ω) =
1

2σ
q
2

N(ω)
(iω)

q
2

The time series associated with this asymptotic solution is
then obtained by Fourier inversion giving (ignoring scaling)

u(t) =
1

t1−q/2
⊗t n(t) (3)

where ⊗t defines the convolution integral over time. This
equation is the Riemann - Liouville transform (ignoring scal-
ing) which is a fractional integral and defines a function u(t)
that is statistically self-affine, i.e. for a scaling parameter
λ > 0,

λ
q/2Pr[u(λt)] = Pr[u(t)]

where Pr[u(t)] denotes the Probability Density Function of
u(t). Thus, equation (3) can be considered to be the temporal
solution of equation (1) as x → 0 and u(t) is taken to be
a random scaling fractal signal. Note that for | x |> 0 the
phase Ωq | x | does not affect the ω

−q scaling law of the
power spectrum, i.e. ∀x,

|U(x,ω) |2= | N(ω) |2

4σqωq , ω > 0

Thus for a white noise function n(t) with spectrum N(ω)
the Power Spectrum Density Function of U is determined
by ω

−q,∀x and not just for the case when x→ 0. However,
since we can write

U(x,ω) = N(ω)
i

2Ωq
exp(iΩq | x |) = N(ω)

1
2(iωσ)q/2

×
(

1+ i(iωσ)q/2 | x | − 1
2!

(iωσ)q | x |2 +...

)
unconditionally, by inverse Fourier transforming, we obtain
the following expression for u(x, t) (ignoring scaling fac-
tors):

u(x, t) = n(t)⊗t
1

t1−q/2
+ i | x | n(t)

+
∞
∑
k=1

ik+1

(k +1)!
| x |2k dkq/2

t n(t)

Here, the solution is composed of three terms composed of
(i) a fractional integral, (ii) the source term n(t); (iii) an infi-
nite series of fractional differentials of order kq/2.

2.3. Fractional Differentials

Fractional differentials of any order need to be considered in
terms of the definition for a fractional differential given by

D̂q f (t) = dm
t [Îm−q f (t)], m−q > 0

where m is an integer and Î is the fractional integral operator
(the Riemann-Liouville transform) given by

Îp f (t) =
1

Γ(p)
f (t)⊗t

1
t1−p , p > 0

The reason for this is that direct fractional differentiation can
yield divergences. However, there is a deeper interpretation
of this result which relates to the ‘memory’ of a system and
is based on observing that the evaluation of a fractional dif-
ferential operator depends on the history of the function in
question. Thus, unlike an integer differential operator of or-
der m, a fractional differential operator of order q has ‘mem-
ory’ because the value of Îm−q f (t) at a time t depends on
the behaviour of f (t) from −∞ to t via the convolution of
f (t) with t(m−q)−1/Γ(m− q). The convolution process is
dependent on the history of a function f (t) for a given ker-
nel and thus, in this context, we can consider a fractional
derivative defined by D̂q to have ‘memory’. In this sense,
the operator ∂

2
x −σ

q
∂

q
t describes a process, compounded in

a field u(x, t), that has memory association with regard to
the temporal characteristics of the system it is attempting to
model. This is not an intrinsic characteristic of systems that
are purely diffusive q = 1 or propagative q = 2.

Institute of Physics, Computational Biomedical Physics (2010)



4 J. M. Blackledge and D. J. Barry / Morphological Analysis based on a Fractional Dynamic Model for Hyphal Growth

2.4. The Hurst Exponent, Fractal Dimension and Lévy
Index

Brownian motion is characterised by a Hurst exponent H ∈
[0,1] of 0.5 and random walk processes whose macroscopic
behaviour is specified by the diffusion equation for a field
u. By induction, the macroscopic behavior of a field gener-
ated by Hurst processes is determined by generalizing the
diffusion operator to the fractional form ∂

2
x−σ

q
∂

q
t ,q∈ (0,2]

Fractional diffusive processes can therefore be interpreted
as intermediate between a ‘diffusive’ (random phase walks
with H = 0.5; diffusive processes with q = 1) and ‘prop-
agative’ process (coherent phase walks for H = 1; propaga-
tive processes with q = 2). The relationship between the
Hurst exponent H, the Fourier dimension q and the Frac-
tal dimension DF is given by [TBA] DF = DT + 1−H =
1− (q/2) + (3/2)DT where DT is the topological dimen-
sion. Thus, a Brownian process, where H = 0.5, has a frac-
tal dimension of 1.5. The relationship between q and the
Lévy index γ (which specifies the characteristic function
exp(−a | k |γ),hskip0.1truein0 < γ≤ 2 where a is a constant
and k is the spatial freqeuncy) is given by [Bla10] q/2 = γ

−1

so that diffusive processes with q = 1 are characterised by a
Lévy index of 2 and are therefore Gaussian distributed.

2.5. Simulation

We consider the composite signal ux(t)
uy(t)
uz(t)

=
1

t1−q/2
⊗t

 nx(t)
ny(t)
nz(t)

 (4)

whose amplitude spectrum is given by (ignoring scaling con-
stants)  Ux(ω)

Uy(ω)
Uz(ω)

=
1

(iω)q/2

 Nx(ω)
Ny(ω)
Nz(ω)

 (5)

The simulation involves the use of a uniform random num-
ber generator initiated with three different seeds to gener-
ate uncorrelated white noise fields nx(t), ny(t) and nz(t) in
equation (4). A Discrete Fourier Transform is then used to
transform these signals into Fourier space where upon each
spectrum is filtered by (iω)−q/2 - equation (5). The real
component of the inverse Fourier transform is then taken
to compute the fields ux(t), uy(t) and uz(t) and a plot of
the parametric curve [ux(t),uy(t),uz(t)] generated. Clearly,
the output depends on the Fractal Dimension DF = 2.5− q
where, for DF ∈ [1,2],q ∈ [1.5,0.5]. We consider the fractal
dimension to increase linearly with time thereby simulating
a Hyphae complex whose branching characteristics increase
with time. This is taken to be due to the increased num-
ber of filamentations that develop as the Hyphae increase
in length. Figure 2 provides an example of the three dimen-
sional growth (a plot of [ux(t),uy(t),uz(t)] using MATLAB
function plot3) for different values of DF . A qualitative com-
parison between example simulations of the type given in

Figure 2 and experimental images given in Figure 1, for ex-
ample, points to the idea of using the fractal dimension as
an indirect measure of the hyphal growth rate and thereby,
biomass productivity. This is the basis for the study given in
the following section.

Figure 2: Evolution of three-dimensional Hyphal growth for
values of DF (from left to right and from top to bottom) given
by 1.1, 1.3, 1.7 and 1.9.

3. Computation of the Fractal Dimension of Mycelial
Structures

Penicillium chrysogenum (IMI 321325) spores were har-
vested with cultivation conditions and processing of cultures
for image analysis as described in [BCW09]. Submerged
fermentation of A. oryzae was also undertaken where im-
ages of submerged culture samples were captured with a
Canon PowerShot S50 digital camera attached to a fluores-
cence microscope (Leitz Laborlux S) fitted with an epifluo-
rescence illuminator (307-148.002 514687, Leitz Wetzlar).
Images were captured at 100x magnification.

In all cases, only ‘free’ mycelial elements, exhibiting min-
imal overlapping Hyphae, were considered for image anal-
ysis, so that comparisons could be drawn between the frac-
tal dimension and the hyphal growth unit. The generation
of binary images and the enumeration of the hyphal growth
unit were as undertaken as described in [BIM∗]. The frac-
tal dimension, DF , of an object function, f (x,y), was deter-
mined by first locating the object boundary in a binary image
(all foreground pixels bordering background), which can be
thought of as a ‘fractal curve’, consisting of a set of N coor-
dinates, (xi,yi). From this series of points, a digital ‘fractal

Institute of Physics, Computational Biomedical Physics (2010)
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Figure 3: Illustration of the algorithm for determination of
the fractal dimension of mycelial structures. Distance, d, be-
tween the centroid, c, and the boundary is plotted for each
position on the boundary, p, and the fractal dimension de-
rived from a log-log plot of the Fourier domain representa-
tion of the signal.

signal’, ui, can be constructed given by

ui =
√

(xi− xc)2 +(yi− yc)2 ∀0 < i < N

where (xc,yc) is the average location of all (x,y)∈ f (x,y). If
ui is a digital fractal signal, then its Power Spectral Density
Function will be of the form

P(ωi) = |U(ωi)|2 =
c

ω
q
i

where U(ωi) is the discete Fourier transform of u(i) and c is
a constant. Thus,

ln[P(ωi)] = lnc−q ln(ωi)

where the fractal dimension is given by DF = (5− q)/2. A
value for q and thus DF can therefore be determined by lin-
ear regression of a plot of ln(P(ωi)) against ln(ωi) as illus-
trated in Figure 3. With regard to he results that follow, all
numerical algorithms were implemented in Java using Im-
ageJ v1.41o (US National Institutes of Health).
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Figure 4: Temporal variation in mean hyphal growth unit
(LHGU ; �) and the mean fractal dimension (DF ; �) of pop-
ulations of A. oryzae cultivated on malt agar. Error bars rep-
resent 95% confidence intervals.

Figure 5: Different morphological forms of filamentous
fungi. (a) Penicillium chrysogenum 27 hours after inocu-
lation on malt agar; DF = 1.087, LHGU = 25.8µm (bar =
20µm). (b) Aspergillus oryzae 21 hours after inoculation on
malt agar; DF = 1.243, LHGU = 66.5µm (bar = 20µm). (c)
Aspergillus oryzae 46 hours after inoculation in submerged
culture; DF = 1.271, LHGU = 121.0µm (bar = 100µm).

An analysis of the development of A. oryzae on malt agar
shows that both DF and LHGU increased over time and both
tend toward approximately constant values (Fig. 4). This
suggests that the value of LHGU specific to A. oryzae under
these growth conditions is reflected in the fractal dimension
of the mycelia. The fractal dimension of Ashbya gossypii

Institute of Physics, Computational Biomedical Physics (2010)



6 J. M. Blackledge and D. J. Barry / Morphological Analysis based on a Fractional Dynamic Model for Hyphal Growth
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Figure 6: Relationship between the mean hyphal growth unit
(LHGU ) and the mean fractal dimension (DF ) of populations
of Aspergillus oryzae (�) and Penicillium chrysogenum (�)
mycelia, grown under a variety of different conditions. A log-
arithmic relationship of the form DF = a ln(LHGU )+b exists
between the two parameters, where a = 0.14 and b = 0.65.
Error bars represent 95% confidence intervals.
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Figure 7: Relationship between mean fractal dimension
(DF ) of populations of Aspergillus oryzae (�) and Peni-
cillium chrysogenum (�) mycelia and mean projected area
(Ap).

and Streptomyces griseus were also found to increase with
time during the colonisation of solid substrates [OPS90]. A.
oryzae and P. chrysogenum were grown under a variety of
different conditions, producing mycelia of varying size and
dimension (Fig. 5) that are quantified in the same manner.
The resultant mean values of DF obtained for each pop-
ulation were plotted against the mean values of LHGU to
yield an approximately logarithmic relationship (Fig. 6) of
the form

DF = a ln(LHGU )+b

where a and b are constants. This result demonstrates
a strong correlation between the branching behaviour of
mycelia and their space-filling properties. However, it has

been shown in other studies that fractal dimension tends to
increase as projected area of mycelial structures increases
[Pap06]. This may also be the case here, as higher values of
DF tend to be biased toward high values of the projected area
Ap (Fig. 7) although this result is inconclusive as the sizes of
mycelia analysed fall within a relatively small range.

The results obtained demonstrate a clear relationship be-
tween the branching behaviour of filamentous organisms and
the fractal dimension of the resultant mycelial structures,
further emphasising the potential use of fractal analysis in
morphological quantification. An ability to extract informa-
tion on the branching behaviour of an organism by analysing
the shape of the mycelial boundary would be highly advan-
tageous in the study of more complex conformations where
measures such as the hyphal growth unit are not readily ob-
tainable. Furthermore, as has been demonstrated in other
studies (e.g. [Pap06], [PLL∗07], [KLK∗05], [JLM93]) that
fractal analysis can be applied regardless of the gross mor-
phological form that results in a particular process, allowing
a more thorough compilation of data. However, a more com-
plete analysis, including more complex structures, is neces-
sary to validate the universal application of fractal analysis.

It has been suggested that the box-counting method of
fractal dimension enumeration may not be suitable for the
analysis of small, relatively unbranched hyphal structures
[Pap06], [OPS90]. This approach entails covering the ob-
ject with a grid of side length ε and counting the number of
boxes, N(ε) that are intersected by the onject. If the object is
fractal then

N(ε) = cε
−DF

The accuracy of the box-counting method relies on an ob-
ject being sufficiently large in size so as to allow a reason-
ably large variation in ε (approximately one order of magni-
tude has been suggested [OPS90]). Given a value of approxi-
mately 4µm for εmin (hyphal width is approximately 2-4µm),
this suggests a minimum value of approximately 40µm for
εmax in this study, equating to a minimum object ‘diame-
ter’ of 160µm. However, mycelia smaller than this dimen-
sion were often encountered, particularly in the case of P.
chrysogenum. Further, the number of evaluations of N(ε) is
restricted by the image resolution (approximately 1µm per
pixel in this study).

By enumerating the fractal dimension based on the ob-
ject boundary, considerations of resolution are obviated to
some degree, as the boundary can be represented geometri-
cally as a series of equations, or indeed as a single spline, to
be sampled as often as is necessary to provide sufficient sig-
nal resolution. However, image resolution is still an impor-
tant consideration, as low-resolution images may not contain
an accurate representation of the object boundary. Consid-
eration must also be given to the means used to locate the
boundary. In this study, Hyphae were uniformly stained and
object segmentation from background was accurately per-
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formed by grey-scale thresholding. In cases where staining
is non-uniform, thresholding may not be suitable and some
form of edge-detection algorithm may be required.

While numerous studies have been conducted in which
fractal analysis is utilised to quantify mycelial morphology,
few have attempted to link fractal dimension with conven-
tional morphological parameters. However, links have been
established between fractal dimension and productivity in
some processes. For example, in the optimisation of Funalia
trogii fermentations, both fractal dimension and mean pellet
area were monitored; while no link was established between
the two parameters, it was suggested that a correlation may
exist between fractal dimension and decolourisation of reac-
tive black 5 [PLL∗07]. A positive correlation was also found
between fractal dimension and phenol-oxidase expression
by Pycnoporus cinnabarinus, with both parameters being
regulated by media composition [JL97].

Where links between fractal dimension and conventional
Euclidean measures of morphology have been made, the
relationship is often either ambiguous or qualitative in na-
ture. An approximate correlation (R2 = 0.614) was found
between the convexity (defined as the ratio between convex
perimeter and respective perimeter) of Cupriavidus necator
DSM 545 flocs and the surface fractal dimension [FGL∗07].
The fractal dimension was shown to be related to broth rhe-
ology in the submerged fermentation of Cephalosporium
acremonium M25 and a relationship with other morpho-
logical measures, such as the number of arthrospores in
the media, was also suggested, but not explicitly demon-
strated [KLK∗05]. A relationship between hyphal growth
unit and fractal dimension of mycelia was previously noted
in submerged fermentations of Aspergillus niger, but the dif-
ferences in the recorded values of LHGU were ambiguous
[Ryo99]. Further studies of A. niger revealed that medium
composition had a significant impact on the fractal dimen-
sion, the changes in morphology reflected in variations in the
size and compactness of mycelial aggregates [Pap06]. The
local fractal dimension (determined by the concentric circles
method) within a colony of Trichoderma viride was found
to increase with branching frequency (occurrence of ‘loops’
in the mycelium), although the result was rather qualitative
in nature [HGR96]. However, successful attempts have been
made in relating fractal dimension to growth kinetics. While
colony expansion rates were found to differ between differ-
ent strains of Cryphonectria parasitica, fractal dimension
was found to correlate with the expansion rate, independent
of strain [GBD08].

4. Conclusion

The optimisation of industrial fermentation processes in-
volving filamentous microbes requires extensive knowledge
of morphological development, as productivity is heavily in-
fluenced by the specific phenotypic form adopted by an or-
ganism in a given process under specific operational condi-

tions. The accurate quantification of morphological variation
in vegetative mycelia is therefore of the utmost importance
and the characterisation of complex morphologies represents
a significant challenge. The utility of conventional measures
employed in the analysis of these microbes (such as pro-
jected area, perimeter length and circularity) is limited, as
they reveal little about the extent in the branching of the or-
ganism, which is known to be related to metabolite produc-
tion.

The self-affine nature of mycelial structures has been
demonstrated in numerous studies and there is clearly signif-
icant potential benefit in the application of fractal analysis to
filamentous microorganisms. What has been lacking in these
studies is a firm link between fractal dimension and conven-
tional morphological parameters, such as the hyphal growth
unit. We have considered a model for the morphology of a
branching organism that is based on a coordinate separable
fractional dynamic model in which increased branching be-
haviour is characterised by an increasing fractal dimension.
This model provides the theoretical background to the work
reported in this paper which indicates a strong correlation
between the fractal dimension and hyphal growth unit in the
analysis of ‘free’ mycelial elements. Further work is now
required that focuses on elucidating a universal relationship
between the fractal dimension, branching behaviour and pro-
ductivity, independent of the gross morphological form en-
countered in a given process. The theoretical model devel-
oped in this paper (Section 2) provides a foundation for this
work with the aim of generating an efficient means of mor-
phological quantification for use in industrial bio-process en-
gineering.
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