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Abstract Cloud computing and poor security issues have quadrupled over the last six years and with
the alleged presence of backdoors in common encryption ciphers, has created a need for personalising
the encryption process by the client. In 2007, two Microsoft employees gave a presentation “On
the Possibility of a backdoor in the NIST SP800-90 Dual Elliptic Curve Pseudo Random Number
Generators” and was linked in 2013 by the New York Times with notes leaked by Edward Snowden.
This confirmed backdoors were placed, allegedly, in a number of encryption systems by the National
Security Agency, which if true creates an urgent need for personalising the encryption process by
generating locally unbreakable one-time pad ciphers. Hybrid random binary sequences from chaotic
oscillators initialised by natural noise, were exported to an online Javascript application which applies
a von Neumann deskewing algorithm to improve the cryptographic strength of the encryptor. The
application also provides initial statistical p-test for randomness testing. Encoding the Lenna image
by XORing it with the new cipher provided another test to observe if patterns could be observed in
the encoded image. Finally, the cipher was subjected to the NIST suite of statistical tests. All designs
were simulated using Orcad PSpice c© V16.5.

Keywords —Backdoors, one-time pads, chaos, natural noise, cryptography, Orcad
PSpice,Von Neumann, NIST

I Introduction: Cloud computing

Protecting information from unwanted intercep-
tion during transmission dates back thousands
of years. During WW11 Churchill and Roo-
sevelt communicated using a secure 1-to-1 one-
time Pad (OTP) transatlantic communications
system called SIGSALY. SIGSALY was developed
by Bell Labs and Alan Turing and introduced a
number of innovative technological systems such as
transmitting speech using pulse code modulation
and multi-level frequency shift keying [1]. Noise
from a mercury-vapour rectifying vacuum valve
was added to the voice and spread over a wide
frequency band similar to direct spread spectrum
communications. This 55 ton encryption system
recorded unique OTPs on vinyl record which were
then carefully distributed. We present a PSpice
design for a 40 g electronic device for generating

OTPs for personalising data encryption prior to
storage in the Cloud.

Fig. 1: Cloud computing growth.

By 2017, Global Internet protocol (IP) traffic is
forecast to increase to 1.3 trillion Gigabytes. Such
traffic will be subjected to ever-increasing security



attacks similar to those on the Sony server which
made headline news when personal details of fa-
mous actors were divulged [3]. Dan Shumow and
a Microsoft colleague, Niels Ferguson, gave a talk
“On the Possibility of a backdoor in the National
Institute of Standards and Technology SP800-90
Dual Elliptic Curve Pseudo Random Number Gen-
erators (ECPRNG)” [4], and in 2013 the New York
Times connected this talk with classified Top Se-
cret memos leaked by Edward Snowden [5].

This confirmed backdoors were placed, allegedly,
by the National Security Agency (NSA) in a num-
ber of encryption systems as part of a decade-long
covert operation undermining the integrity of user
security. To address this, a system for generat-
ing unlimited unique OTPs to encrypt data locally
by the end-user using systems such as OneDrive,
Google Drive, Dropbox, is described. Figure 2 out-
lines our system which incorporates a thresholded
chaotic nonlinear oscillator initialised by a natural
noise to generate a OTP which is XORed with the
data in an online application.

Fig. 2: System for generating OTP sequences.

The final design comprises several chaos sources
but to adhere to conference maximum page guide-
lines, the discussion is limited to a single nonlin-
ear Lorenz chaotic oscillator whose initial condi-
tion (IC) is a natural noise source as recommended
in [6].

II Chaos Cryptography

Designing encryptors using pseudo-chaos was pro-
posed by Claude Shannon in a 1945 paper [7] when
he mentioned with great foresight, the stretching
and folding mechanism associated with chaos, and
is analogous to confusion and diffusion in encryp-
tion. Encoding data using chaos has grown expo-
nentially since 2000, with many chaotic maps used
in multi-algorithmic systems, encrypting data on a
randomised block-by-block basis [8]. Two classes
of chaotic oscillators whose ergodicity makes them
suitable for encryptor generation, were considered:

• The Lorenz and Chua analogue chaotic oscil-
lators,

• The logistic and Hénon maps digital chaotic
maps, which operate in sampled time.

However, for the reasons stated previously, only
the Lorenz system is considered.

a) The Lorenz chaotic oscillator

Edward Lorenz, a meteorologist became involved
in chaos theory when he modelled atmospheric
convection and weather patterns. The results were
published in a 1963 paper [9] and probably was
the first model to demonstrate chaotic behaviour
which displayed a sensitivity to initial conditions
(SIC). Thresholding the Lorenz oscillator signal
around the fixed points, produced maximum en-
tropy in the random binary sequences generated.
The oscillator was initialised using a natural noise
source and hence classified it as a hybrid pseudo-
random number generator (HPRNG) [10].

Any n-th order non-linear differential equation
may be expressed as coupled n first-order equa-
tions as given in equation (1). These are a reduced
form of the Navier-Stokes equations and written in
integral form to facilitate electronic integrator im-
plementation.

x(t) = −P
∫ t

t0
{x(t)− y(t)}dt

y(t) = −
∫ t

t0
{−Rx(t) + y(t) + x(t)z(t)}dt

z(t) = −
∫ t

t0
{Bz(t)− x(t)y(t)}dt

(1)

Lorenz used B = 2.666, Prandtl P= 10, R= 28,
but slightly different values were determined ex-
perimentally using a Web application discussed
later, to maximise the OTP entropy. The equa-
tions were simulated in PSpice using analogue be-
havioural model (ABM) parts which were replaced
by integrated circuit models at a later stage [11].

b) Determining the Fixed Points

The thresholding circuit was designed by calculat-
ing the values of the fixed points (FP) at the loci
centres in the Lorenz strange attractor, v(x ) ver-
sus v(z ) in Figure 3.

Fig. 3: Lorenz butterfly strange attractor.

To find the FP values consider the Jacobian ma-



trix:
∂P (y−x)

∂x
∂P (y−x)

∂y
∂P (y−x)

∂z
∂(Rx−y−xz)

∂x
∂(Rx−y−xz)

∂y
∂(Rx−y−xz)

∂z
∂(xy−Bz)

∂x
∂(xy−Bz)

∂y
∂(xy−Bz)

∂z

 (2)

The Lorenz model is approximately linear at the
origin (x = y= z = 0 corresponds to stationary
air masses in the original convective model), hence
the Jacobian is rewritten:

J (0, 0, 0) =

 −P P 0
R −1 0
0 0 −B

 (3)

The FPs were determined from the characteristic
matrix (J -λI ), so, solving the characteristic poly-
nomial yields the system eigenvalues:

λ1 = −B,
λ2,3 = − 1

2 (P + 1)± 1
2

√
(P + 1)

2 − 4P (1−R)

(4)

The eigenvalues, -2.666, -22.8277, and +11.8277,
show the system is unstable at the origin for the
positive eigenvalue. The x y coordinates at each
lobe centre are the FPs:

dx

dt

∣∣∣∣
P=10

= 10(y − x) = 0⇒ x = y (5)

From this equality, the y equation becomes:

dy

dt

∣∣∣∣
x=y

= Rx− x− xz = 28x− x− xz = 0 (6)

Substituting the value of z = 27 yields:

dz

dt

∣∣∣∣
x=y

= x2 −Bz = 0⇒ x = ±
√
Bz
∣∣∣
z=27

(7)

The FPs at each lobe centre C1,2 were computed
as follows:

C1,2 = {+
√
B(P − 1),−

√
B(P − 1), (R− 1)} (8)

For the standard Lorenz parameters, the FPs were
calculated as: ± 8.485 V for z equal to 27 V, as
shown in Figure 3. However, scaling the equations
for reasonable voltage signal ranges is necessary
and changes the FP values and hence the threshold
voltage values.

c) Amplitude Scaling

The Lorenz oscillator signal amplitude for the
standard parameters exceeds the voltage range of
electronic devices and hence scaling x, y and z by
10 was necessary. This modifies the product terms
in the equations as:

x = −10
∫ t

t0
{x− y}dt

y = −
∫ t

t0
{−28x+ y + 10xz}dt

z = −
∫ t

t0
{2.666z − 10xy}dt

(9)

Scaling thus changes the loci C 1,2 to ± 0.8485
V. The 4-quadrant AD633 multiplier IC, which
has internal magnitude scaling of 0.1, realises the
cross-product nonlinear terms in the Lorenz oscil-
lator in Figure 4. To solve the equations the TL084
operational amplifier is configured as a summing
inverting integrator.

Fig. 4: Lorenz chaos oscillator circuit.

Component values, Lorenz parameters and scal-
ing factors, are defined in a PARAM part to facil-
itate investigating parameter variation on encryp-
tor entropy. This part then links component and
parameter values to actual values using the non-
numerical operator, {}. For example, the integra-
tor gain is 1/CR, where R is 1 MΩ, means the P
parameter is realised by reducing R1 and R2 as
{1meg/P}.

The resistances between each multiplier and in-
tegrator are scaled by a magnitude scaling fac-
tor (MSF ) and the 0.1 AD633 magnitude scal-
ing factor (ASF ), hence the total resistance is
{R/ASF/MSF}. Final components are: R1 = R2
= 100 kΩ, R3 = 36.3 kΩ, R4 = 10 kΩ, R5 = 1 MΩ,
R6 = 10 kΩ, R7 = 357 kΩ, and C = 50 pF. A de-
tuned FM receiver IC natural noise source added
via a large resistor, RIC, sets the initial condition.

III Threshold design

The potential divider R8 and R9 in Figure 5, to-
gether with C4, adds 4 V DC to the bipolar x
signal changing it to unipolar. The thresholding
circuit comprises a resistive network, LM339 com-
parators and a reference voltage, Vref = 1.24 V.
The 74121 monostable produces constant width
set and reset pulses, with the width time given by
0.69*C5R15. However, these components are not
modelled in PSpice and the pulse width is set as
an external model parameter. The FP threshold



voltages ± 0.848 V adds to the 4 V DC shift to
yield 3.15 V and 4.84 V, so that for a total resis-
tance of 1 MΩ and Vref = 1.24 V, the components
were calculated:

V high = 4.84 V = V ref
R10 +R11 +R12

R12
(10)

This yields R12 = 256 kΩ. Similarly for R11:

V low = 3.15 V = V ref
R10 +R11 +R12

R11 +R12
(11)

Resulting in R11 = 138 kΩ and R10 = 607 kΩ.
These non-preferred values were realised in the
prototype using miniature multi-turn potentiome-
ters.

Fig. 5: Threshold circuit for producing the OTP.

The constant width monostable set and reset
pulses displayed in Figure 6 are combined by the
NOR gates forming an SR latch giving a non-
return-to zero (NRZ) format to the OTP. The set
and reset pulses never overlap and is a property
exploited in the software algorithm in the next sec-
tion. Figure 7 shows the upper and lower threshold

Fig. 6: (a) Monostable signals (b) Set pulse (c) Reset
pulse.

voltages superimposed on the x signal.

Fig. 7: Threshold voltages at 3.15 V and 4.84 V.

The butterfly strange attractor in Figure 8 shows
the set and reset pulse trajectories superimposed
at the loci thus correlating with the previous fig-
ure. The monostable pulses cannot be superim-
posed on the attractor.

Fig. 8: Butterfly attractor with set and reset pulse
trajectories.

IV Exporting data from PSpice

Exporting PSpice analogue signals using copy and
paste, works for analogue signals but not for digi-
tal data. Instead, binary signals were exported in
a text file using PSpice Vector1 parts which spec-
ify the directory location and file name. Assigning
the same file name to each vector1 parts attached
to the monostable set and reset output lines, au-
tomatically combines the two outputs forming a
dibit pair in a column vector. Table 1 is part of
a vector1 text file from PSpice and shows header
rows, and time-voltage vectors. The PSpice time
vector is not increasing monotonically and shows
transitions only.

The Javascript application ignores the time vec-
tor column and an algorithm concatenates the set



* Created by PSpice Sd Rd (dibit)
28.22us 10
36.7767us 00
59.2285us 01
69.2285us 00

Table 1: Example of Vector1 output text file.

and reset bit streams forming the OTP. The first
bit of the second column is the set pulse and the
second bit is the reset pulse. The goal was to ignore
the temporal information and remove the dibit 00
and 11 pairs- states that should never happen.
This leaves 10 or 01, of which the first bit is pro-
cessed to combine the two data streams into a sin-
gle OTP column stream as displayed in Figure 9.
In this example, the final OTP, when XORed with
the pixel array data from the test bitmap image,
Lenna, produced the encoded image as shown. A
single statistical p-test is also displayed and gives
an initial indication of randomness in the OTP.

Fig. 9: Online application for processing the Vector1 OTP.

A biased OTP demonstrated undesirable patterns
in the encrypted image. Another feature applied
the Von Neumann de-skewing algorithm to pairs of
data (dibit) but rejected all 00 and 11 dibit pairs
[12]. This removes bias from the bit stream which
would produce lines in the encrypted image but
the algorithm is inefficient and removes 75 percent
of data in the process. The VN algorithm should
be applied to two uncorrelated data streams but
this is addressed in the final circuit by XORing
two chaos independent data streams from Lorenz
and Chua oscillators. However, for this paper only
the Lorenz data was exported from the application
as a text file.

V Testing the One-Time-Pad

The cryptographic strength of the OTP was eval-
uated by the National Institute of Standards and
Technology (NIST) suite of tests [13]. These tests
comprise parameter and non-parameter tests but
the OTPs from simulation were limited to non-
parameter tests because it was not practical to run
the parameter tests which require several million
bits in length. Table 2 shows the OTP passed those

tests for file sizes less than one million bits. The
online software p-test shows the results of chang-
ing the Lorenz system parameters on the cipher
entropy and it was found that B = 2.8, P= 11,
and R= 27.5 produced maximum entropy in the
OTP.

,

Nist Tests Result
Frequency test P=0.503
Block Frequency P= 0.116
Runs P=0.508
Block Long Run Ones P=0.490
Binary Matrix Rank P=0.333
D Fourier Transform P=0.216
Non-overlap Tp Match P=0.370
Overlapping Tp Match P=0.002
Universal P= NA
Linear Complexity P=0.263
Serial P1=0.1971 P2=0.544
Approximate Entropy P=0.201
Cumulative Sums P=0.563
Random Excursions P=NA
Random Excursion
Variant

P=NA

Table 2: NIST p-test results for OTP.

The OTP was also subjected to an autocorrela-
tion test which displayed a single Kronecker delta
function as in Figure 10 showing no statistical bias
[14].

Fig. 10: OTP autocorrelation test result.

The OTP should have several desirable quanti-
ties such as infinite uniform power spectral density
(PSD) plot, with a positive Lyapunov exponents
(LE) which ensures the non-linear oscillator oper-
ates in the chaotic region [15]. Another measure of
randomness is the Shannon entropy, which essen-
tially is the Kolmogorov complexity (KC) created
simultaneously by Andrey Kolmogorov and Ray
Solmonoff. This measure specifies the minimum
length to which a string of binary digitscan be com-
pressed [16]. For certain phase space conditions,
Brudno’s theorem states that the Kolmogorov-
Sinai entropy (KSE) is the algorithmic complexity



(AC) over all the trajectories [17] and Pesin’s the-
orem relates to the KSE by summing the positive
LEs.

VI Conclusion

Poor security in cloud computing is growing expo-
nentially and our solution was to personalise the
encryption process using OTPs. Ultimately, this
solution gives greater control and complete confi-
dence to the end user security because the OTP
is the only proven unbreakable cipher provided it
is used only once. This condition is met however
as a new OTP is generated each time new data is
uploaded to the cloud. Designing encryptor cir-
cuits for chaos cryptography is made considerably
easier and more time efficient, by simulating in the
first instance, all aspects of the design procedure
[18] and the resultant HPRNG circuit produces
OTPs that passes the NIST international random-
ness tests.

The Javascript application software encrypted
data with the OTP from a text file exported from
PSpice. The application added a von Neumann
algorithm to improve cipher entropy and provided
a single statistical test for investigating the ef-
fect of parameter variation on randomness (Soft-
ware is available at [19]). A prototype circuit was
produced after submitting the conference paper
and matched all the simulation results. It is ex-
pected that the final PCB circuit using several
chaos sources initialised by a natural noise source,
will passes all the NIST randomness tests.
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