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Abstract 

Primary Amine Oxidase (PrAO) is an enzyme with a variety of physiological roles. It 

catalyses the oxidative deamination of primary amines to the corresponding 

aldehydes. PrAO converts amines such as methylamine and aminoacetone to reactive 

compounds that can damage small blood vessel proteins. It also acts as a vascular 

adhesion protein (VAP-1) where it is essential for the migration of leukocytes through 

the vascular endothelium.  Inhibitors of PrAO have been reported to have anti-cancer, 

anti-diabetic and anti-inflammatory action. In this study we explore the interaction 

between dietary phytochemicals and Bovine PrAO.  

  

Methylxanthines (MXs) are food alkaloids having a positive association with good 

health. Of several MXs we examined, only caffeine and theobromine were found to 

be inhibitors of PrAO. Structure activity relationships along with in silico modelling 

and inhibition studies allowed us to identify a unique site for MX binding to PrAO.  

Green Tea extracts also inhibited PrAO but these reactive compounds were shown to 

give complex inhibition patterns due to the formation of non-enzymatic reaction 

products and interference in assay procedures. Despite these difficulties we found 

some evidence of direct inhibition of PrAO by Green Tea catechins. A number of other 

compounds tested showed a similar ability to inhibit PrAO.  

Taken together these studies show the potential for a variety of dietary compounds to 

inhibit the activity of this key enzyme. The role of PrAO inhibition by such 

phytochemicals in health and disease is discussed.  
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CHAPTER 1 

Introduction 
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1.0 Diet and health benefits 

Diet analysis is an area of increasing interest in terms of health benefits and disease 

prevention. Diets, such as the Mediterranean diet, that are rich in fruits, vegetables, 

legumes and cereals accompanied by high olive oil consumption, have been shown to 

be clinically relevant in the amelioration of mortality from diseases, including Type II 

diabetes, cancer, cardiovascular disease as well as Parkinson’s and Alzheimer’s 

disease (Lourida et al., 2013; Singh et al., 2014). 

 

The residents of the Japanese island of Okinawa are known for their longevity, having 

a high number of centenarians and a markedly low incidence of age-related disease 

(Suzuki et al., 2016). Their longevity is thought to be mainly due to the avoidance, or 

delay, of the onset of major age-related illnesses such as cancer, heart disease, stroke 

and diabetes. These health benefits are attributed to a diet rich in vegetable and fruit 

intake suggesting an important role for phytonutrients, minerals, vitamins and 

antioxidant-containing foods in the maintenance of good health (Willcox et al., 2014). 

Particular dietary habits, such as the daily consumption of various teas and coffee have 

been extensively studied and are associated with numerous health benefits and the 

amelioration of various diseases (da Silva Pinto, 2013; Ferrucci et al., 2014; George 

et al., 2008). For instance, a study by O’Keefe et al in the United States, where over 

400 million cups of coffee are consumed daily has shown, in both human and animal 

trials, that regular coffee consumption is associated with reduced vascular disease, 

type II diabetes and obesity (O'Keefe et al., 2013). A recent study of the relationship 

between coffee consumption and mortality in diverse European populations showed 

that coffee drinking was associated with reduced risk of death from various causes 

such as cardiovascular disease and cerebrovascular disease (Gunter et al., 2017).   



 

 

3 

 

The principal bioactive present in coffee, caffeine, is the subject of particular interest 

in disease prevention. A large-scale study by (Furman et al., 2017) showed that 

moderate caffeine consumption suppressed systemic inflammation, caused by 

inflammasome activation, which could account for its correlation with decreased 

mortality. Arendash and Cao (2010) in a study linking the reduction of Alzheimer’s 

disease and caffeine consumption found a direct correlation between the reduction of 

amyloid plaque formation and caffeine consumption in mice. Moreover, Chen et al. 

(2010) have shown that caffeine has a protective effect against the onset of 

Alzheimer’s and Parkinson’s disease: although the underlying mechanisms are not 

fully understood, it was postulated that caffeine aids in keeping the blood-brain barrier 

intact. Thus, caffeine may act to prevent blood-brain barrier leakage a possible 

contributor to the progression of both Alzheimer’s and Parkinson’s pathogenesis. 

Although there are many positive health benefits associated with moderate intake of 

caffeine, excessive consumption (considered as being over 5 cups of coffee or excess 

of 400 mg of caffeine a day (see Nehlig, 2015)) can have negative effects. Mood 

alteration such as increased anxiety or motor control impairment has been reported 

(Smith, 2002) as has sleep deprivation with some users experiencing withdrawal 

symptoms (Rogers et al., 2005). 

 

Green tea is a commonly consumed beverage, particularly in Asia, but is growing in 

popularity in the West due to increasing reports of health benefits (Mak, 2012). 

Notable health benefits associated with green tea consumption include the prevention 

of cancer, cardiovascular disease, type II diabetes and obesity. Many of these reported 

benefits are ascribed to the high polyphenol content of green tea. Catechins are the 
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principal polyphenol components of Green Tea (Chacko et al., 2010). Catechins are 

Flavan-3-ols, derived from flavans, that contain the 2-phenyl-3,4-dihydro-2H-

chromen-3-ol skeleton as part of their structure (see Fig. 1.1). 

 

Fig. 1.1. Structures of some Green Tea catechins considered in this study. 

http://www.chemspider.com/Chemical-Structure 

 

The mechanistic link between ingestion of specific dietary components and health is 

not well understood (Kozlowska and Szostak-Wegierek, 2014).  Thus, while a diet 

rich in fruits and vegetables can be linked to good health, the specific components of 

the diet that confer a health advantage are not known. In recent years, attention has 

focused on phytochemicals such as polyphenols, catechins and methylxanthines. 

However, our understanding of the molecular mechanisms underlying such effects are 

still at an early stage (Franco et al., 2013; Kozlowska and Szostak-Wegierek, 2014; 

Sarriá et al., 2015). It has been shown that methylxanthines such as caffeine are able 

to bind to adenosine receptors and much of their health benefits are attributed to this 

property. Catechins, the main polyphenols in green tea are known to have antioxidant 

properties (Rashidinejad et al., 2015) and to regulate gene expression and prevent 

DNA methylation and damage (Fujiki et al., 2015). These observations may account 

for some of the health benefits associated with these compounds and raise the 

https://en.wikipedia.org/wiki/Flavan
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possibility that there may be other important physiological targets yet to be explored. 

(Franco et al., 2013; Fukushima et al., 2009; Kozlowska and Szostak-Wegierek, 2014; 

Rashidinejad et al., 2015; Sarriá et al., 2015).   

 

1.1 Amine Oxidases 

Amine oxidases (AOs) are ubiquitous enzymes among living species and are 

responsible for the breakdown of mono and poly-amines from the diet and the 

environment (Gong and Boor, 2006). AOs are involved in a wide range of 

physiological functions such as the removal of toxic amines; neurotransmitter 

breakdown, leukocyte recruitment and collagen stabilisation (Baker et al., 2007). AOs 

catalyse amine catabolism by their oxidation into an aldehyde, ammonia and hydrogen 

peroxide products (Fig. 1.2; Agostinelli et al., 2010).  

 

 R-CH2NH2 + O2 + H2O  R-CHO + NH3 + H2O2 

 

Fig. 1.2: Amine Oxidase-catalysed deamination reaction.  On the left, a primary amine, oxygen and 

water are transformed to (on the right) the corresponding aldehyde, ammonia and hydrogen peroxide 

as products.  

 

There are five main classes of amine oxidases, namely; diamine oxidases (DAO) E.C. 

1.4.3.22, monoamine oxidases (MAO) E.C 1.4.3.4, lysyl oxidase (LOX) E.C 1.4.3.13, 

polyamine oxidases (PAO) E.C 1.5.3.13 and primary amine oxidases (PrAO) E.C 

1.4.3.21 (BRENDA, 2015). These five AOs can be further divided into two main 

groups based upon their cofactor preferences (see Table 1.0). 
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Table 1.0 The five Classes of Amine Oxidases subdivided by Cofactor type (see Yraola et al.,  

2009; Black and Whetstine, 2012; Binda et al., 2013; Tomitori et al., 2012; Agostinelli et al., 

2010) 

 

 

MAO and PAO belong to a group that uses flavin adenine dinucleotide (FAD) as 

cofactor while LOX, PrAO and DAO belong to a group that uses 2,4,5-

trihydroxyphenylalanine quinone (TPQ) as cofactor (Yraola et al., 2009). MAOs are 

mitochondrial enzymes responsible for the breakdown of neurotransmitters. MAO 

exists in two forms designated MAO-A and MAO-B that differ in terms of substrate 

specificity and inhibitor sensitivity. MAOs are targeted extensively in the treatment of 

mental health diseases such as depression, neurological diseases and Alzheimer’s 

disease (Binda et al., 2013). PAOs, on the other hand, are known to break down 

secondary amines including, spermidine and spermine which are involved in cell 

growth (Tomitori et al., 2012).  

 Flavin adenine dinucleotide (FAD) 

used as cofactor 

2,4,5-trihydroxyphenylalanine quinone (TPQ) 

used as cofactor 

 MAO  

E.C 1.4.3.4 

PAO        

E.C 1.5.3.13 

PrAO  

E.C 1.4.3.21 

DAO  

E.C. 1.4.3.22 

LOX  

E.C 1.4.3.13 

Substrates Noradrenaline 

Dopamine 

Spermidine 

Benzylamine 

Spermine 

Spermidine 

Benzylamine 

Methylamine 

Aminoacetone 

Histamine 

Cadaverine 

Putrescine 

Amino Groups in 

lysine residues in 

collagen and 

elastin 

Inhibitors Chlorgyline MDL. 72,527 Semicarbazide Semicarbazide Semicarbazide 

Location Mitochondria Intracellular Cell 

Surface/Plasma 

Intracellular Extracellular 

Function Breakdown of 

Neurotransmitters 

Cell Growth Leukocyte 

Adhesion, 

Breakdown of  

Primary Amines 

Breakdown of 

Histamine 

Formation of 

Extracellular 

Matrix 
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Of the TPQ-containing group: LOX is responsible for the crosslinking of an amino 

group of lysine with residues of other peptide strands which acts to stabilise the 

extracellular matrices of collagen and elastin (Black and Whetstine, 2012). DAO is 

primarily responsible for the breakdown of amines, such as, putrescine, spermidine 

and cadaverine (Armenta and Blanco, 2012). PrAO is known to oxidise primary 

amines and has received a lot of attention due to its multiplicity of functions (see 

O’Sullivan et al., 2004). Studies have shown a correlation between disease and 

abnormal or elevated PrAO levels in the body (Wong et al., 2013).  Further details of 

the structure and function of PrAO are given below. 

 

 

1.2 PrAO: An Introduction 

PrAO (EC 1.4.3.21) is an enzyme that can be found either membrane bound or free-

floating in plasma (Wong et al., 2014). PrAO belongs to the oxidoreductase 

(deaminating) family of enzymes. The International Union of Biochemistry and 

Molecular Biology (IUBMB) classify such enzymes as follows: 

“a group of enzymes that oxidize primary monoamines but have little or no activity 

towards diamines, such as histamine, or towards secondary and tertiary amines. They 

are copper quinoproteins (2,4,5-trihydroxyphenylalanine quinone) and, unlike EC 

1.4.3.4, monoamine oxidase, are sensitive to inhibition by carbonyl-group reagents, 

such as semicarbazide. In some mammalian tissues the enzyme also functions as a 

vascular-adhesion protein (VAP-1)” (BRENDA, 2015) (see section 1.3). 
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PrAO has been given different names over the years being variously known as 

benzylamine oxidase and chlorgyline resistant oxidase (CRAO; Buffoni and 

Blaschko, 1964; Clarke et al., 1982). In recent years PrAO was often commonly 

named as Semicarbazide Sensitive Amine Oxidase (SSAO) since it is potently 

inhibited by this compound. At present, the recommended nomenclature is to refer to 

this enzyme as Primary Amine Oxidase (PrAO) (O'Sullivan et al., 2004).  

When it is membrane bound, PrAO is found in high quantities in vascular, kidney, 

lung and adipose tissues and is known to increase in activity when associated diseases 

are present. For example, high PrAO activity in diabetic patients with vascular disease 

was reported at first clinical diagnosis indicating that high PrAO activity precedes the 

appearance of vascular complications (Göktürk et al., 2003). The involvement of 

PrAO in diseases such as diabetes, vascular diseases, neurological disease, 

inflammation and obesity is not well understood (see Section 1.6 for further details).  

 

PrAO has been shown to be involved in the pathogenesis of inflammatory diseases by 

mediating the migration of leukocytes into tissue and promoting an inflammatory 

response. Since the action of PrAO, either in the oxidative deamination of 

endogenous amines or in its role as a vascular adhesion protein (see section 1.3), 

requires its catalytic activity to be intact, PrAO inhibition appears to be a logical 

strategy to limit inflammation in various diseases. 

 

Some of the deleterious effects attributed to elevated PrAO levels are thought to be 

due to the toxic products formed during the oxidation of endogenous substrates such 

as aminoacetone (a product from adrenaline and creatinine metabolism) and 

methylamine (a product of amino acid catabolism). These endogenous substrates are 
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oxidised into highly reactive formaldehyde and methylglyoxal which are cytotoxic 

and genotoxic compounds (Hernandez et al., 2006a; Ullah et al., 2013; Wong et al., 

2014).  

 

1.2.1  PrAO Molecular Structure 

PrAO is a dimeric enzyme that is 180 kDa in size (Fig. 1.3); each 90kDa monomer 

has a TPQ moiety as cofactor in the active site along with a copper atom in close 

proximity to the metal (Peet et al., 2011). 

 

Fig. 1.3: Structure of dimeric PrAO (PDB-2PNC). On the left PrAO is shown as a stick model 

highlighting TPQ at the active site. The two monomers are shown as “A” green and “B” pink. The 

right-hand image depicts PrAO as a space filling model highlighting the funnel (concentric circles) 

leading to the active site entrance. It also shows the junction of the two monomers and the location of 

the joining hairpin “arms” of the dimer structure. (Sanner, 1999). 

 

 



 

 

10 

 

The structures of some copper containing amine oxidases (CuAOs) have been resolved 

by X-ray crystallography and they show a highly conserved active site across all 

species i.e. human, bovine, and murine. The active site is deeply buried within the 

structure and is accessed by a “funnel” formed by the D3 and D4 domains. TPQ, the 

quinone cofactor, is formed post-translationally by a non-enzymatic oxidation reaction 

of the amino acid tyrosine (Tyr471 in humans) in the presence of molecular oxygen 

and CuII (Shepard and Dooley, 2015). The copper atom in PrAO has a penta-

coordinate state and is bonded to three histidines and to a pair of water molecules that 

stabilize the copper ion in the ‘off” state (discussed in greater detail in Section 1.5). 

There are four domains present in PrAO designated D1, D2, D3 and D4, where D4 is 

known to contain the active site (Shepard and Dooley, 2015). 

 

1.2.2 Inter species variation in PrAO active site ligand access. 

The crystal structures solved for PrAO indicate it has a wide-mouthed funnel leading 

to the active site entrance (Fig. 1.3). Variations in structure between PrAO species, 

such as between human and bovine enzymes, are found within the funnel and at the 

active site entrance which leads to widening, or narrowing, of the funnel at the active 

site entrance thereby giving rise to variations in ligand access (see Table 1.1)  

 

Two long hairpins or “arms” join the two PrAO monomers forming the dimer unit. 

One of these arms stretches along the surface of the enzyme to the funnel entrance and 

may play a role in determining substrate/inhibitor specificity. The residues at the end 

of the arm differ between human and bovine forms (Yraola et al., 2006).  PrAO is 

known to be glycosylated at several sites. It is possible that carbohydrates attached to 
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PrAO may also serve to regulate ligand access. Finally, the funnel wall leading to the 

active site is lined with hydrophobic and aromatic amino side chains which potentially 

form bonds to an incoming ligand which can further influence active site access and 

substrate specificity (Holt et al., 2008a; Jakobsson et al., 2005).  

 

Bovine PrAO has a somewhat more open active site entrance than the human enzyme 

with the funnel being less obstructed thus permitting greater ligand access to the active 

site.  (Jakobsson et al., 2005). A specific leucine residue acts as an active site “gate” 

(Leu469 in human and Leu468 in bovine) to control ligand access at the active site 

entrance (Yraola et al., 2006). Notwithstanding these observations the active site of 

both human and bovine enzymes can accommodate substrates as large as benzylamine 

and phenethylamine and they show similar inhibitor sensitives.  
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Table 1.1: A selection of residue variations between bovine and human PrAO and conserved 

active site residues. These residues are located in the vicinity of the funnel entrance leading 

to the active site. (Holt et al., 2008a; Jakobsson et al., 2005; Yraola et al., 2006). 

 

Location Bovine Residue Human Residue Comparison 

Funnel brim Leu172  Phe173  Both hydrophobic  

Phe larger due to phenyl 

group 

Funnel Tyr392  

 

Arg393  

 

Tyr Hydrophobic 

Arg Positive Charge, 

larger residue  

Phe393  

 

Tyr394  

 

Both hydrophobic 

Tyr having an additional 

hydroxyl group 

Asn211  

 

Thr212  

 

Both polar 

Asn being larger 

Funnel base Pro237  

 

Phe238  

 

Both hydrophobic 

Pro is a cyclic amide 

Phe larger due to phenyl 

group 

 Tyr238  

 

Phe239  

 

Both hydrophobic  

Tyr has an additional 

hydroxyl group 

Hairpin (arm) tip, 

near active site 

entrance  

Phe 446  

 

Leu 447 

 

Both hydrophobic 

Phe larger due to phenyl 

group 

 Leu 447 Tyr 448 Both hydrophobic 

Tyr larger due to phenyl 

group 

Active site entrance Leu468  

 

Leu469  

 

Leu468 acting as a 

“gate”  

Leu469 acting as a 

“gate”  

Conserved Active 

Site Residues 

Between Both 

Species 

TPQ, His520, His522, His684, Asp386, Tyr372, 

Tyr384, Phe389, Tyr394 and Leu468  
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1.3 Physiological role of PrAO 

The physiological role of PrAO is confusing since its best substrate, benzylamine, is 

a non-physiological compound.  Indeed, identifying physiological substrates for this 

enzyme has proven difficult. The main catalytic function of PrAO is thought to be the 

breakdown and removal of primary amines in the body. However, in view of the 

observation that the aldehydes derived from amines such as aminoacetone and 

methylamine (the best physiological substrates) may be more toxic than their parent 

amines this role is unclear (Hernandez et al., 2006b).  In its role as a vascular adhesion 

protein PrAO binds human sialic acid-binding immunoglobulin-like lectin-10 (Siglec-

10) which acts as a substrate. The amino group on siglec-10 that gives rise to this 

activity has not been identified (Elovaara et al., 2016).  

 

In previous studies, it has been shown that PrAO is expressed in high concentrations 

in smooth muscle, endothelial and adipose cells, suggesting its involvement in 

important functions at these locations (Enzsoly et al., 2013). Hydrogen peroxide 

(H2O2), when produced by PrAO, is known to act as an insulin mimetic having the 

ability to stimulate the uptake of glucose from blood plasma by recruiting glucose 

transporter type 4 (GLUT 4) and GLUT 1 transporters extracellularly (McDonald et 

al., 2007).  

Another highly important physiological function of PrAO is its ability to act as a 

vascular adhesion protein (Fig. 1.4). This function was discovered in 1998, when a 

Finnish group cloned a gene coding for the protein they called: vascular adhesion 

protein 1 (VAP-1) (Smith et al., 1998). They were surprised when they found that their 

protein had already been cloned under the name human placental amine oxidase 
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(HPAO) (Zhang and McIntire, 1996). This important finding greatly stimulated 

interest in PrAO (Luo et al., 2013).  

 

Fig. 1.4: Image depicting VAP-1 (PrAO) mediated leukocyte extravasation. Extravasion refers to the 

crossing of the endothelial cell wall to a site of insult via tethering, rolling and tight binding to VAP-

1. Leukocytes with their attached ligand or receptor are shown binding or “tethering” to VAP-1 on the 

vascular endothelium. After the leukocytes bind to VAP1 they roll along the endothelium before 

establishing a tight binding complex. The formation of the complex allows the extravasion of 

leukocytes to a site of injury in a tissue (O'Sullivan et al., 2004). 

 

PrAO is known to be involved in vascular smooth muscle cell differentiation, 

influencing extracellular matrix composition and the regulation of vascular tone 

(Olivieri et al., 2011). The cellular matrix composition and maturation of collagen and 

elastin was disrupted in rat models when PrAO was inhibited with semicarbazide. This 

effect was probably due to PrAO-derived formaldehyde protein cross-linking 

(Mercader et al., 2011). Elastin structure maturation tests performed on rat aorta 

revealed that PrAO inhibition reduced mature elastin levels and compromised 

collagen elastin matrices, suggesting PrAO involvement in these physiological 

processes. PrAO is found at high amounts on fat cell surfaces and has been shown to 

be directly involved in adipose cell maturation and differentiation (Mercier et al., 
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2003). Murine studies demonstrated a decrease in fat cell size and weight gain in mice 

when PrAO was inhibited with semicarbazide (Mercader et al., 2011). 

 

While PrAO is predominantly found either membrane-bound or free floating in plasma 

it can also be found intra-cellularly in GLUT4-containing intracellular vesicles in 

adipocytes. Amine oxidase substrates such as benzylamine and methylamine have 

been shown to stimulate glucose uptake in rat adipocytes by increasing the recruitment 

of the glucose transporter GLUT4 from vesicles within the cell to the cell surface via 

the phosphatidylinositol 3-kinase (PI3K) pathway. It is thought that PrAO can mimic 

the adipogenic effect of insulin in cultured pre-adipocytes through the production of 

H2O2 during amine oxidation. Furthermore, it has been suggested that PrAO not only 

represents a novel late marker of adipogenesis, but could also be directly involved in 

the triggering of terminal adipocyte differentiation (Enrique-Tarancon et al., 1998; 

Göktürk et al., 2003; McDonald et al., 2007).  
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1.4 PrAO catalysed Oxidation of Amines 

The oxidation reaction that converts primary amines into their respective aldehyde, 

ammonia and hydrogen peroxide products by PrAO is carried out at the active site 

involving the TPQ cofactor and CuII (Autio et al., 2013). A ping-pong kinetic 

mechanism was proposed for this reaction (Fig. 1.5). Catalysis proceeds by, firstly, a 

reduction of TPQ to release an aldehyde product and secondly, an oxidative cycle 

releasing H2O2 and ammonia (Largeron, 2011). In brief, this reaction occurs when 

TPQ in its oxidised state reacts with a primary amine substrate producing a Schiff 

base. Subsequently, a quinolaldimine “product schiff base” is formed whose formation 

is facilitated by an α-carbon extraction from a conserved aspartate. The aldehyde 

product is then released via hydrolysis simultaneously forming the reduced 

aminoquinol (Fig. 1.5, Scheme 1) thus completing the first half of the reaction.  

 

In the second part of the reaction TPQ is re-oxidised by O2. There is some controversy 

over the mechanistic details of the oxidative half reactions and Figure 1.5 shows two 

possibilities.  
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Scheme 1. Proposed reductive half-reaction mechanism 

 

 

Scheme 2. Alternative pathways for the oxidative half-reaction. 

 

Fig. 1.5: Reaction mechanism for the oxidative deamination of a primary amine catalysed by PrAO. 

In this scheme TPQox is the oxidised form of the cofactor and TPQAMQ is the reduced amino quinol 

form. Scheme 1 shows the reductive half reaction where the primary amine forms a Schiff base with 

the cofactor. After protonation a product Schiff base is formed which is hydrolysed to release the 

aldehyde product.  The cofactor at this stage is in the aminoquinol form which is oxidised in the second 

oxidative half reaction. Scheme 2 shows two alternative pathways proposed for the oxidative half 

reaction.  Both pathways lead to the formation of an iminoquinone intermediate which is hydrolysed 

to produce ammonia and H2O2 (Shepard and Dooley, 2015). 

 

Despite mechanistic uncertainties both possibilities lead to formation of a Copper 

(CuII)−hydroperoxide, iminoquinone intermediate. Finally, this intermediate is 

hydrolysed to release ammonia and hydrogen peroxide regenerating the TPQ  

cofactor (TPQox in Fig. 1.5; Scheme 2) (Shepard and Dooley, 2015). 
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An equilibrium state occurs between copper and TPQ in the active site where the 

copper atom transitions between an ‘on’ and ‘off’ position (Fig. 1.6).  A reaction with 

an amine substrate occurs only when the Cu is in the ‘off’ (meaning not attached to 

TPQ) position whereby it is bonded to three histidines and two water molecules. In 

the ‘on’ position, the Cu is bound directly to a hydroxyl group of the TPQ cofactor 

preventing a nucleophilic attack on TPQ (Klema and Wilmot, 2012). 

 

Fig. 1.6: TPQ represented in an equilibrium state in both the ‘off’ positions. The off position is depicted 

in A and the ‘on’ position in B where the ‘off’ state involves Cu bound to three histidines and two 

water molecules. The ‘on’ state involves TPQ replacing the water molecules and binding to Cu 

(Shepard and Dooley, 2015). Only the off” position can catalyse amine oxidation.  

 

1.5 PrAO Substrates  

PrAO substrates can include long or short aliphatic and arylalkylamines (Kinemuchi 

et al., 2004b). Aminoacetone, methylamine and allyamine are well-characterised 

aliphatic substrates. Benzylamine, tyramine and spermidine (see Figure 1.7) are some 

of the more well-known substrates. The main physiological substrates are thought to 

be methylamine and aminoacetone (Hernandez et al., 2006a).  

A B 
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Substrate specificity can overlap between Cu/TPQ and flavin-containing amine 

oxidase species (see Table 1.2). For example, both PrAO and MAO can use substrates 

such as dopamine, tyramine and benzylamine. While there is no clear physiological 

reason for these overlaps, studies have shown that if MAO is suppressed, PrAO can 

provide an alternative pathway for metabolism of these amines (Yraola et al., 2009).  

 

Table 1.2:  Common substrates between members of the amine oxidase family. The members 

are: diamine oxidase (DAO), monoamine oxidase (MAO), lysyl oxidase (LOX), polyamine 

oxidase (PAO) and primary amine oxidase (PrAO) (Floris and Mondovi, 2009; Hernandez et 

al., 2006a; Yraola et al., 2009). 

Substrates 
PrAO DAO LOX MAO PAO 

Copper containing Flavin containing 

Allylamine Yes - - No No 

Aminoacetone Yes - - No No 

Benzylamine Yes Yes/low Yes Yes No 

Cadaverine +/- Yes Yes No No 

Dopamine Yes Yes - Yes No 

Histamine +/- Yes +/- No No 

L-lysine +/- No +/- No No 

Noradrenaline +/- +/- - Yes No 

Methylamine Yes No - No No 

Putrescine +/- Yes - No No 

Spermidine Yes Yes - No No 

Tryptamine +/- No - Yes No 

Tyramine Yes - - Yes No 

Notes: +/- some studies show catalysis and some not. The dash,-, indicates no data available. 

1.5.1 Sources of Amines 

PrAO substrates can be ingested directly through the diet; for example, dopamine from 

fruit, histamine from fish and cheese and 2-phenylethylamine from chocolate and meat 



 

 

20 

(Olivieri et al., 2011).  In addition, amine substrates such as allylamine, a compound 

used in the manufacture of vulcanized rubber, can enter the body through the 

environment. Certain aromatic amines can be absorbed via tobacco smoke (Olivieri et 

al., 2011). Although PrAO breaks down potentially toxic amines, sometimes the 

products formed can be more toxic than the amine substrate itself, i.e. methylamine is 

deaminated to the more toxic and reactive species formaldehyde (Section 1.8; Sun et 

al., 2014). 

 

Fig. 1.7.  Range of known PrAO substrates Images taken from ChemSpider 

(http://www.chemspider.com/Chemical-Structure). 
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1.6 PrAO and Disease 

High PrAO catalytic activity is associated with the progression of a variety of disease 

states from obesity and vascular disease to kidney disease (Wong et al., 2013;Mátyus 

et al., 2013). PrAO substrates such as methylamine, aminoacetone and allyamine can 

be oxidised into even more reactive and toxic products, such as formaldehyde, 

methylglyoxal and acroelin, respectively. These highly reactive species can cause 

protein crosslinking, oxidative stress and the formation of Advanced Glycation End 

(AGE) products (Fig. 1.7). The reaction product accompanying amine oxidation, 

hydrogen peroxide, can also be transformed to a reactive hydroxyl radical, further 

increasing cell damage (Mercier, 2009; Wong et al., 2013). 

 

Fig. 1.8: Diagram illustrating the relationship between PrAO and disease. PrAO is associated with 

disease (e.g. kidney fibrosis). Repeated initial insult (hyperglycemia, inflammation, toxins, endothelial 

stress, uremia, etc.) leads to increased production of PrAO substrates. It also stimulates leucocyte 

transmigration which leads to further inflammatory response. The aldehydes produced by PrAO -

catalysed amine oxidation cause vascular damage directly by cytotoxic insult and indirectly by 

formation of advanced glycosylation end products (AGE’s). This damage causes the upregulation of 

pro-inflammatory and pro-fibrinogenic cytokines in addition to promoting local tissue hypoxia, all of 

which contribute to tissue damage (Wong et al., 2013). 
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1.6.1 Elevated PrAO Activity and Disease 

For some conditions the state of disease advancement is often correlated with an 

increase in PrAO activity as evidenced by diabetes (Januszewski et al., 2014). A 

higher concentration of PrAO in turn leads to a higher turnover of reactive products, 

for example formaldehyde, methylglyoxal and acroelin, which may directly increase 

Advanced Glycation End product formation and exacerbate diabetic complications of 

vascular injury and capillary cell damage (Nunes et al., 2010) as well as heart disease 

(Marinho et al., 2010).  

 

Alzheimer’s disease, stroke and multiple sclerosis are also associated with elevated 

levels of PrAO causing the formation of reactive species and the associated 

inflammation mediated by VAP-1 (Alferova et al., 2010; Salter-Cid et al., 2012; 

Valente et al., 2012). Alzheimer’s disease (AD) is a progressive neurological disorder 

of the central nervous system (CNS), which leads to dementia and cognitive 

impairment (Dubois et al., 2014). One of the major pathological features in the 

progression of AD is cerebral amyloid angiopathy (CAA), which is caused by the 

deposition of β-amyloid (Ab) plaques. Overexpression of PrAO has been found in 

areas of β-amyloid plaque deposits (Chen et al., 2007b; Unzeta et al., 2007). Indeed, 

elevated levels of aldehydes are associated with Alzheimer’s disease and might play a 

role in β-amyloid aggregation. Chen et al investigated the link between elevated 

endogenous aldehydes, either from lipid peroxidation or from amine deamination, and 

the formation of β-amyloid plaques. Their findings support the involvement of 

endogenous aldehydes in amyloid deposition related to Alzheimer’s Disease. When 

PrAO was inhibited in the presence of methylamine, it led to a marked decrease of β-

amyloid plaque aggregation by up to 80% (Chen et al., 2007a) 



 

 

23 

 Type I and type II diabetes have been associated with high levels of PrAO in blood 

plasma (Boomsma et al., 2005; Göktürk et al., 2003). Studies have shown PrAO 

oxidation products, formaldehyde and methylglyoxal, can form AGEs. These 

aldehydes along with H2O2 produced by PrAO cause crosslinking of proteins and 

exacerbate diabetic complications such as retinopathy, neuropathy, nephropathy and 

atherosclerosis (Li et al., 2016). In vivo studies comparing patients with a known 

history of diabetes and vascular complications with a control group of similar age and 

gender revealed a correlation with high PrAO levels and the state of progression of 

this disease. Those with diabetic conditions had above average PrAO blood plasma 

levels when compared to healthy individuals (Januszewski et al., 2014). 

 

1.6.2 VAP-1 and Inflammation 

As previously disscussed, the membrane bound form of PrAO (VAP-1) has been 

shown to have an important role in the adhesion and recruitment of leukocytes to sites 

of inflammtion. This function has shown to be problematic when overexpressed at 

sites where VAP-1 is predominately found such as vascular and adipose tissue 

(Göktürk et al., 2003). Silvola et al., 2016 showed that VAP-1 was expressed on 

endothelial cells, where inflamed atherosclerotic lesions were present. Furthermore, 

they demonstrated that the inhibition of VAP-1 activity decreased the density of 

macrophages in inflamed atherosclerotic plaques in mice. Their findings led these 

workers to suggest VAP-1 inhibition as a therapeutic approach in the treatment of 

atherosclerosis. 

 

Studies indicated that VAP-1 could mediate inflammation leading to tumor initiation 

and progression in a mouse model (Ferjančič et al., 2013; Salmi and Jalkanen, 2011). 
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Their studies showed that VAP-1 deficient mice had less efficient leukocyte-

endothelial cell contacts resulting in reduced leukocyte recruitment and inflammation. 

In addition, Salmi and Jalkanen found that, in VAP-1-deficient mice, cancers such as 

melanoma spread more slowly than in wild type. This clearly points to a role for VAP-

1 (PrAO) in regulating the spread of cancer. Similar findings were obtained with wild 

type mice where small molecule inhibitors of VAP-1 were employed showing a strong 

link between VAP-1 and cancer progression (Salmi and Jalkanen, 2011). 

 

1.7 Inhibitors of PrAO 

A number of attempts have been made to develop specific, potent inhibitors of PrAO 

as therapeutics. It has proven challenging to find an inhibitor with the required 

specificity and potency due to similarities in active site structure to other AOs (see 

Section 1.5, Table 1.2). It is important that an inhibitor of PrAO does not overlap in 

specificity and inhibit other amine oxidases and is nontoxic and readily absorbed. 

Enzyme inhibitors can be chemically and structurally similar to their substrate 

counterparts (see section 1.6) when bound within the active site such as with the 

substrate benzylamine and the inhibitor Phenylhydrazine. PrAO inhibitors can be 

classified by structure or functional groups into a few categories: hydrazines, 

arylalkylamines, propenyl- and propargylamines, oxazolidinones, and haloalkylamine 

derivatives. A selection of known inhibitors of PrAO include hydrazine compounds, 

i.e. semicarbazide and aminoguanidine, arylalkylamine compounds, i.e. 

phenylhydrazine, and mexiletine and haloalkylamines such as 2-bromoethylamine are 

shown in Table 1.3, (Foot et al., 2013). 

 



 

 

25 

Table 1.3: Inhibitors of PrAO. Images taken from PubChem 

(https://www.ncbi.nlm.nih.gov/pccompound). 

Inhibitor Class Example Structure 

Hydrazine Semicarbazide 
 

Arylalkylamine Phenylhydrazine 
 

Propenyl-

propargylamines 

Mexiletine 
 

Oxazolidinone Almoxatone 
 

Haloalkylamine 2-bromoethylamine 
 

 

For PrAO, inhibition can be achieved in the active site via reaction with TPQ or by 

steric blockage of the active site entrance or funnel (see Jakobsson et al., 2005).  

 

 

 

 

 

  

https://www.ncbi.nlm.nih.gov/pccompound
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1.7.1 Inhibition of PrAO 

A selection of inhibitors of PrAO is discussed in detail below. IC50, Ki data and 

patterns of inhibition are provided where available. Hydroxyurea (hydroxycarbamide) 

(Table 1.4), a hydroxamic acid derivative used as an anti-cancer drug and for sickle 

cell treatment was shown to be an inhibitor of PrAO (Liu et al., 2010). These workers 

found that hydroxyurea was a competitive inhibitor of bovine PrAO using 

benzylamine as substrate and a Ki value 1.835µM was estimated. In an extension of 

this work these workers identified galacturonic acid hydroxamate as a non-

competitive inhibitor of bovine plasma PrAO (Liu et al., 2011). 

 

Table 1.4: Overview of hydroxamic based inhibitors of PrAO. Ki, IC50 and patterns of 

inhibition are given where available for each inhibitor that was screened against bovine PrAO. 

Images taken from PubChem https://www.ncbi.nlm.nih.gov/pccompound). 

Inhibitor IC50 Ki Pattern of 

Inhibition 

Structure 

Hydroxyurea 6.33µM 1.835µM Competitive 
 

Galacturonic 

acid 

hydroxamate 

41µM Not given Non-competitive 
 

L-lysine 37.4µM Not given Un-competitive 
 

 

 

 

https://www.ncbi.nlm.nih.gov/pccompound
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Since PrAO has been reported to oxidize peptides containing lysine the possibility that 

cell-surface lysyl reasidues might be the PrAO/VAP-1 recognition sites was 

considered. Olivieri et al. (2010) reported that the free amino acid L-lysine acted as an 

H2O2-dependent inhibitor of beef plasma PrAO.  

 

1.8 Dietary components in Health and disease 

Previous work in these laboratories explored the role of dietary components in health 

and disease. The protective effect of plant food sources against chronic diseases are 

often attributed to bioactive non-nutrients called phytochemicals (Vayalil, 2012). 

Phytochemicals are secondary plant metabolites that are not essential nutrients but 

known to have protective or disease preventive properties. In plants they can play a 

substantial role in the prevention of microbial, insecticidal or herbivorous attack (Naz 

et al., 2013).  

 

Interest in phytochemicals is growing in the research community (Monteiro et al., 

2016). One such family of phytochemicals, methylxanthines, have been the subject of 

much research over the years for their ability to block A2A adenosine receptors thereby 

acting as psychoactive stimulants and potential therapeutics for neurodegenerative 

diseases (Daly, 2007). The effect of methylxanthines on neurodegenerative diseases 

(Oñatibia-Astibia et al., 2017), cardiovascular disease (Khan et al., 2012), 

inflammation, (Frost-Meyer and Logomarsino, 2012) and cancer (Sang et al., 2013) 

are active areas of current research.  

 

Another family of phytochemicals, polyphenols, are also being studied for their health 

benefits associated with cancer, diabetes, inflammation, heart disease, Parkinson’s 



 

 

28 

disease and obesity (Chang et al., 2015; González-Castejón and Rodriguez-Casado, 

2011).  

 

Organic nutrients such as amino acids (AAs) and vitamins are also being studied for 

their health benefits. AAs are being studied for their potential in prevention and 

treatment of obesity, diabetes, and cardiovascular disorders, intestinal and 

neurological dysfunction, and infectious disease (including viral infections) (Wu, 

2013; Wu, 2014).  

 

Micronutrients like vitamins are known to be of interest in the prevention of a number 

of diseases such as migraine, anaemia, cancer, hyperglycemia, hypertension, diabetes 

mellitus, and oxidative stress. (Eitenmiller et al., 2016; Takata et al., 2013; Thakur et 

al., 2017). The following sections will consider some of the more prominent 

phytochemicals in greater detail. 

 

1.8.1 Caffeine and Related Methylxanthines 

Methylxanthines are secondary plant metabolites formed from purine nucleotides. 

They are classed as purine alkaloids and are ubiquitously found in plants. High 

concentrations of methylxanthines are found in Coffea arabica (coffee), Camellia 

sinensis (tea) and Theobroma cacao (cacao). The two most common and well-studied 

methylxanthines are caffeine and theobromine (Fig. 1.8). Other types of 

methylxanthine’s commonly found in food include theophylline, paraxanthine and 7, 

methylxanthine (Ashihara and Crozier, 1999). 
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Fig. 1.9: Selection of methylxanthine structures. Images taken from PubChem 

(https://www.ncbi.nlm.nih.gov/pccompound). 

 

Caffeine (1,3,7-trimethylxanthine) is a white crystalline alkaloid, which is found in 

the beans, fruits and leaves of over 60 plant varieties. However, the primary dietary 

sources are roasted coffee beans and tea leaves (Barone and Roberts, 1996). Caffeine 

and related xanthine analogues are known to have physiological effects on adenosine 

receptors, phosphodiesterases and calcium release channels and are thought to be 

potential therapeutics for Alzheimer’s disease, diabetes and cancer (Daly, 2007). 

Olivieri and Tipton (2011) noted caffeine to non-competitively inhibit Bovine PrAO 

with a Ki value of 1.0 mM. (Olivieri and Tipton, 2011). Other methylxanthines closely 

related to caffeine are theophylline, paraxanthine, 7,methylxanthine and theobromine, 

These molecules differ from caffeine by one, or more, methyl groups at either position 
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1, 2 or 3 around the xanthine structure (Fig. 1.8) and are also found naturally in the 

diet.  

Theobromine is most abundant in cocoa beans with a dry weight composition of 2.7% 

(Ashihara and Crozier, 1999). The reported health benefits of theobromine include 

anticancer, anti-inflammatory and cardiovascular protection without the unwanted 

stimulatory side effects such as insomnia, high heart rate and nervousness that can be 

associated with high caffeine intake (Martínez-Pinilla et al., 2015;Sugimoto et al., 

2014).  

Theobromine although structurally similar to caffeine has a number of chemical and 

physiological differences. For instance, theobromine has a calming sleep inducing 

effect on the body while caffeine is known for its stimulant properties (Khan et al., 

2017). Interestingly, a study with human molars showed remarkable protection of the 

enamel surface upon application of 200 mg/L of theobromine solution. The effect was 

not observed with other methylxanthines (Kargul et al., 2012). 

The half-life of theobromine in humans is much higher than for caffeine. Caffeine is 

highly water soluble, peaks in the blood 30– 40 min after ingestion, and has a half-life 

of 2.5–5 h, while theobromine is less water soluble, attains peak blood concentrations 

2–3 h after ingestion and has an estimated half-life of 7– 12 h (Baggott et al., 2013). 

Theobromine consumption is generally safe for humans but for dogs it is highly toxic. 

The half-life of theobromine in dogs is 17.5 h. Theobromine median lethal dose (LD50) 

is about 1000 mg/ kg in humans and in dogs 300 mg/kg (Ahlawat et al., 2014). The 

three main metabolites of caffeine are paraxanthine (84%) theophylline (4%) and 

theobromine (12%) (Santos et al., 2015). The positive health benefits associated with 
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caffeine could be partly due to the products of its metabolism such as theobromine and 

theophylline (Martínez-Pinilla et al., 2015).  

1.8.2 Green Tea 

Tea from the Camellia sinensis plant is a popular drink that is consumed worldwide 

and is specifically noted for its beneficial health effects. These health benefits are 

attributed to the leaf polyphenols. These flavonoids account for the majority of green 

tea polyphenols (GTPs) (Steinmann et al., 2013; Table 1.5). 

 

Table 1.5: The chemical dry composition of green tea (Sinija and Mishra, 2008) 

Polyphenols  30% 

Proteins  15 - 20% 

Fibre  26% 

Carbohydrates  5 - 7% 

Lipids  7% 

Minerals and trace elements  5% 

Amino acids 1 - 4% 

Pigments  2% 

 

The steaming of tea leaves during processing inactivates the enzyme (Polyphenol 

Oxidase, EC. 1.14.18.1). This enzyme is responsible for the breakdown of polyphenols 

and colour pigments and its inactivation gives the tea its green colour - in contrast to 

enzymatically fermented black tea (Cabrera et al., 2010). Many health benefits have 

been associated with green tea and numerous studies carried out to investigate these 

claims. Health benefits are thought to include the prevention of cancer, diabetes, 

inflammation, heart disease, Parkinson’s disease and obesity (Chacko et al., 2010; 

Hara, 2001; Schneider and Segre, 2009; Sinija and Mishra, 2008). See Fig. 1.10. 
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Fig. 1.10.  An overview of Green Tea Polyphenols health benefits in a range of diseases. Arrows 

indicate an increase or decrease in effect. 

 

1.8.2.1 Polyphenols 

Polyphenols are secondary metabolites found in plants that have been reported to act 

as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and 

antimicrobial agents in human health (Daglia, 2012). Polyphenols can be broken into 

subclasses such as phenolic acids, lignans, stillbenes, isoflavones and flavonoids. 

Flavonoids can be further subdivided into flavanols, flavonols, anthocyanins, 

flavones, flavanones and flavanonols. For instance, flavonols include quercetin and 

kaempferol while flavanols include the catechins; Epigallocatechin gallate (EGCG) 

and Epicatechin gallate (ECG) (González-Castejón and Rodriguez-Casado, 2011).  

 

The most abundant type of polyphenols found in green tea are flavonoids of which 

catechins are the most abundant (Fig. 1.10). The four most significant catechins are 

epigallocatechin gallate (59%), epigallocatechin (19%), epicatechin gallate (13.6%) 

and epicatechin (6.4%) (Steinmann et al., 2013). 
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Polyphenols may be useful in ameliorating the deleterious effects associated with 

obesity. Cellular studies demonstrated that dietary polyphenols reduce viability of 

adipocytes and proliferation of pre-adipocytes, they suppress adipocyte differentiation 

and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation and 

reduce inflammation. Animal studies strongly suggest that commonly consumed 

polyphenols have a pronounced effect on obesity. Their administration gives rise to 

lower body weight, fat mass, and triglycerides. They seem to act through enhancing 

energy expenditure and fat utilization, and by modulating glucose hemostasis. (Wang 

et al., 2014a). Epigallocatechin gallate (EGCG) has been the compound most widely 

explored (Chen et al., 2011;Wang et al., 2014a). 

 

 

Fig. 1.11. Chemical structures of the four most abundant polyphenols found in green tea. Images 

acquired from (https://www.ncbi.nlm.nih.gov/pccompound). 
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1.8.2.2 Green Tea Polyphenols in Health  

Studies have shown that GTPs, particularly EGCG, contribute to the prevention of 

cancer. (Chen et al., 2011) have shown that EGCG protects DNA from methylation 

and mutation which can be a first step in the formation of cancer. GTPs can prevent 

oncogene expression of cancer-causing genes, promoting expression of p53 and p27 

thus inducing apoptosis. Furthermore, GTPs inhibit proteasome activity, which can 

prevent the degradation of regulatory cell proteins that can also lead to cancer. In vivo 

studies by Chacko and colleagues (2010), demonstrated that the administration of 

GTPs lowered plasma glucose levels in diabetic rat models at a dose of GTPs at 100 

mg kg-1 and that EGCG exhibited an insulin mimic effect, lowering glucose levels by 

44% whilst concomitantly increasing tyrosine phosphorylation of the insulin receptor 

(Chacko et al., 2010).  

 

Inflammation studies with EGCG, the principal polyphenol of Green Tea, at                

100 mmol/L showed 50% inhibition of TNFα production in a dose-dependent fashion 

in a macrophage cell line. EGCG also showed 30–40% inhibition at 100 mmol/L of 

TNFα mRNA expression and nuclear NF-ΚB–binding activity (Guo et al., 2009; Yang 

et al., 1998) which could be a factor for GTPs and associated decrease in 

inflammation. 

 

1.8.3 Amino Acids  

Amino Acids are involved in protein formation and cell signaling and are regulators 

of gene expression and are also precursors of many hormones (Wu, 2009). Free AAs 

are readily available through the diet, have primary amine groups and can therefore 

serve as potential modulators of PrAO. 
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In the present study, research interest in AAs and PrAO modulation was spurred by 

previous findings in these laboratories (Olivieri et al., 2007) which showed L-lysine 

binding to PrAO. L-lysine, showed inhibition of VAP-1/PrAO and gave an apparent 

Ki value 166 ± 48 µM. L-lysine could not inhibit directly, but required the presence of 

H2O2 to have an inhibitory effect (Olivieri et al., 2007). 

 

1.8.4 Vitamins and Health Benefits 

Vitamins A, C, D, K and E have all been examined as agents in cancer prevention 

(Block, 1991; Klein et al., 2003; Lotan, 1980; Ness et al., 2015). Many of the exact 

mechanisms of actions with regards to these health benefits have not been fully 

characterised. For example, studies with vitamin B supplements demonstrated a 

positive effect with Alzheimer’s patients (Dangour et al., 2010), although the exact 

mechanism was not fully elucidated.  

 

An area of research where vitamins have been shown to inhibit enzymes was reported 

with the inhibition of lactoperoxidase, an enzyme that functions as a bactericide and 

uses hydrogen peroxide as an oxidising agent (see Table 1.6). Vitamins reported to 

have an inhibitory effect on this enzyme include vitamin C, K3 and folic acid. 

Reported inhibition mechanism for all three vitamins showed a competitive type of 

inhibition mechanism, Sisecioglu et al. (2010). 

Table 1.6: Selection of vitamins that have a modulating effect on lactoperoxidase, 

(Sisecioglu et al. 2010). 

Inhibitor IC50 Values Ki Values 

Folic Acid 0.0925 mM 0.0218 ± 0.0019 mM 

Vitamin K3 0.025 mM 0.0107 ± 0.0044 mM 

Vitamin C 2.03 µM 0.508 ± 0.257 µM 
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Fernando and Soysa (2015) examined the oxidant scavenging activity of Vitamin C 

and related compounds. The test method employed 4-aminoantipyrine, in the presence 

of horseradish peroxidase (HRP), to produce a pink coloured quinoneimine dye. This 

is the same method used to detect activity rates of PrAO in the visible region through 

conjugation of H2O2 to produce the quinoneimine dye (see Section 2.5.1). False 

inhibition results can be observed if compounds that have antioxidant properties are 

being screened as potential inhibitors, as happened with the reported inhibition by 

Sisecioglu et al. (2010), using vitamin C, K3 and folic acid. These compounds are all 

antioxidants that caused interference where the assay detection method involves 

hydrogen peroxide as the oxidising agent. Careful controls must be set in place for 

ligands screened with PrAO, to account for such antioxidant interactions.   

 

1.9 Computational Modelling 

Traditionally, laboratory-based methods were used to discover novel leads in drug 

discovery via strategies such as high-throughput screening. Some disadvantages of 

this approach include high cost, the use of significant resources and frequent low hit 

rates (Williams et al., 2015). The completion of the human genome project has 

permitted drug targets to be identified and studied via computational approaches. This, 

coupled with recent advances in biological structure analysis, such as X-ray 

crystallography and nuclear magnetic resonance (NMR) structure determination has 

opened new avenues for analysing and predicting ligand-target binding interactions 

(Voet et al., 2014). Moreover, advances in computing power and software have 

resulted in faster and cheaper in-silico methods becoming available in early-stage drug 

discovery. Such in-silico methods are growing in popularity (Cosconati et al., 2010) 

and can be used to predict the interactions of a ligand with a protein binding site as 
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well as estimating their binding strengths or relative affinity (Yuriev and Ramsland, 

2013). 

 

There are two main approaches to computational modelling: ligand based drug design 

(LBDD) and structure based drug design (SBDD) modelling. Ligand based modelling 

is applied when the molecular target is not known or fully understood but experimental 

binding/functional data is available for given ligands with a certain protein or 

molecular target. A “training set” of ligands that are known to bind or interact with a 

molecular target are employed where similar features among these ligands such as 

size, charge and functional groups, aid in describing the structure-activity 

relationships (SARs) (Kaserer et al., 2015). In the structure-based approach the 

macromolecule structure or target complexes are known and are obtained either from 

computational homology modelling, experimental nuclear magnetic resonance 

(NMR) data or X-ray crystallography. The main purpose of SBDD techniques such as 

molecular docking is to design or analyse ligands with specific electrostatic and 

stereochemical attributes to achieve high receptor binding affinity. These compounds 

can then be used for developing potential therapeutics (Ferreira et al., 2015).  

 

1.9.1 Molecular Docking 

Molecular docking, which is an SBDD approach, is a computational method that 

predicts the binding of a small a molecule or ligand to a known macromolecule 

receptor-binding site. There are many docking tools in use today such as Autodock, 

GOLD, FlexX or ICM (see Table 1.7), which   can generate various poses of a ligand 

and receptor and employ mathematical algorithms such as Monte Carlo, genetic 

algorithms or fragment-based algorithms to select the best interacting binding poses 
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(see Table. 1.7) (Azam and Abbasi, 2013). Autodock and GOLD employ a genetic 

algorithm based on an iterative process. They begin by docking the ligand into various 

conformational spaces allowing the optimum binding conformations to go forward to 

another round of modelling.  In the first round the software eliminates energetically 

unfavorable conformations. DOCK and FlexX employ an incremental reconstruction 

algorithm where fragments are identified, docked into a receptor until the completed 

ligand is added step by step: only the highest scoring fragments progress to subsequent 

rounds of modelling (Agarwal and Mehrotra, 2016).  

 

To achieve virtual docking of a ligand to a binding site a target structure is 

computationally modelled or experimentally solved, for example, by X-ray 

crystallography. The ligand and target structures are prepared by assigning tautomeric, 

stereoisomeric and protonation states. Docking generally gives rise to two main 

interrelated outcomes where:  

i. A series of binding conformations or interactions of a given ligand (with 

tautomer/stereoisomers/protonation states enumerated) with a protein are 

generated 

ii. Docking poses are ranked in order of predicted binding affinity via an algorithm 

scoring function.  

 

The scoring function can be either empirical, knowledge based or employ force field 

computation (Liu and Wang, 2015). Empirical scoring functions have been developed 

to reproduce experimental binding affinity data, knowledge-based functions have 

been developed based on the statistical analysis of interacting atom pairs from known 
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protein–ligand complexes with available three-dimensional structures (Cheng et al., 

2012).  

 

Force field, which is the scoring function used in this study, utilises a probe atom, 

typically carbon, to estimate the free binding energy of a target macromolecule at a 

certain grid point location. The force field calculation accounts for the bonded (bond, 

angle and dihedral) and non-bonded (Van der Waals and electrostatic forces) 

interactions.  A ranked list is then provided of the lowest predicted binding energy 

scores (Hill and Reilly, 2015).  

 

Attempts at computationally docking small ligands to PrAO have been reported. A 

library of 48 potential compounds that could potentially bind to PrAO were reduced 

to the most favorable 20, based on the best scores achieved for each compound. Of 

those 20 lead compounds 3 newly discovered hits or substrates were found.  These 

hits resulted in a good correlation between docking calculations and experimental data 

when these substrates were tested for activity with PrAO (Yraola et al., 2006).  

 

Another study used Glide docking software where PrAO and MAO were both 

computationally docked and subsequently assayed with a range of phenolic 

compounds (quercetin, resveratrol, pterostilbene and caffeic acid). Experimental data 

showed that none of the phenolic compounds inhibited PrAO and only quercetin and 

resveratrol had any effect on MAO (Carpéné et al., 2016).  
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Table 1.7: A selection of docking tools and their respective algorithms. The table highlights 

the pros and cons of each type (Chaudhary and Mishra, 2015; Morris et al., 2009). 

Docking Tool Algorithm 
Scoring 

Function 
Pros Cons 

AutoDock  

 

Genetic algorithm, 

Lamarckian genetic 

algorithm, Simulated 

annealing 

 

Auto Dock 

(force-field 

methods)  

 

Targeted flexible 

docking 

Target protein too 

flexible, 

Flexible ligands  

Gold Genetic algorithm Gold score, 

Chem score, 

User defined, 

Small binding sites, 

Opened cavities, Small 

hydrophobic ligand  

 

Flexible ligands, Highly 

polar ligands,  

Very flexible ligands  

 

FlexX Incremental construction FlexX score, 

PLP 

Small binding sites, 

Opened cavities, 

Small hydrophobic 

ligands,  

Small binding sites  

 

Highly polar ligands,  

Flexible ligands  

 

Glide Monte Carlo Glide Score, 

Glide Comp 

Flexible ligands, Small 

hydrophobic ligands 

Ranking very polar 

ligands, 

Slow speeds 

 

1.9.2 Molecular Docking with AutoDock Tools 

For this study, AutoDock Tools V1.5.6 was used to simulate bindings of ligands to 

PrAO. AutoDock has been in use since 1990 (Hsieh et al., 2016) and over the years 

has been an effective tool in predicting bound conformations as well as binding 

energies for ligands with a chosen molecular target (Jung et al., 2016; Morris et al., 

2009; Wang et al., 2014b).  
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The AMBER force field scoring function is used by AutoDock tools 

(http://autodock.scripps.edu) and the calculation used to predict the list of binding 

affinity scores is as follows:  

 

ΔGBinding = ΔGvdW + ΔGelec + ΔGhbond + ΔGdesolv + ΔGtors 

Where ΔGvdW accounts for the Van der Waals energy and calculates the “fitting” of 

the molecule thereby defining the pocket or space where a ligand may dock to a 

macromolecule. ΔGelec calculates the ionic or polar interactions between charged 

atoms, ΔGhbond calculates hydrogen bonding between, for example, bases and carboxyl 

groups, ΔGdesolv accounts for water molecules that surround the ligand and binding site 

that need to be displaced for binding to occur, ΔGtors calculates the entropy or degrees 

of freedom of the ligand and macromolecule. (Santos-Martins et al., 2014). 

 

One major limitation of many docking simulations is setting the ligand and/or 

macromolecule to be too rigid where rotatable bonds are set in a fixed position. 

Although this may be considered a disadvantage it greatly reduces the computational 

time needed to perform docking simulation. Rigidity of the macromolecule does not 

allow for ligand-induced fit that is a critical factor when looking at enzyme ligand 

interaction. This “rigidity” disadvantage can be overcome with Autodock whereby 

side chains that are known to be important in binding interactions may be allowed to 

be flexible.  This creates a more computationally intensive but more accurate 

simulation with a better docking fit and score (Morris et al., 2009).  

 

Previous studies have shown Autodock’s ability to screen binding interactions of small 

ligands with PrAO. In one study a PrAO physiological substrate methylamine was 
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successfully docked with PrAO. The lowest computational score showed methylamine 

to be bound in the active site and the amine of methylamine to be hydrogen bonded to 

TPQ and Asp336 as expected (Bonaiuto et al., 2010). A computational docking 

simulation was employed to design a multi-target inhibitor to simultaneously inhibit 

two enzymes, PrAO and acetyl-cholinesterase. AutoDock software was used to 

compare a crystallised bound ligand / PrAO complex with the in-silico bound 

equivalent to validate the method. Binding of a known ligand, galantamine, with the 

co-factor TPQ in an X-ray structure was compared to a computationally docked 

galantamine equivalent with PrAO. Thereinafter, known inhibitors from each target 

were deconstructed into small fragments that were modelled into the in-silico model. 

In all, this study produced four potential molecules that were designed in-silico for 

experimental testing (Gharaghani et al., 2013).  

 

These examples show Autodock to be effective in predicting probable binding 

interactions between a ligand and macromolecule target, effectively scoring these 

ligands in order of optimum interaction. 

 

1.10 Proposed Research and Aims 

The proposed research involves the exploration of the interaction between PrAO and 

selected phytochemicals. Several compounds will be chosen as possible inhibitors of 

PrAO. Compounds such as polyphenols and methylxathines are of particular interest. 

These compounds are known to be associated with health benefits that offset the 

negative effects associated with overly expressed PrAO. At the outset, we employed 

a plate reader assay that monitored H2O2 produced from PrAO-catalyzed oxidation of 

benzylamine. A direct spectrophotometric assay was employed to monitor the product 
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benzaldehyde produced by benzylamine oxidation by PrAO at a wavelength of 254 

nm. Enzyme kinetic studies were used to estimate IC50 and Ki for significant inhibitors.  

Finally, computational docking software was used to predict binding interactions and 

active site binding locations of some inhibitors of interest. 

 

The aims of this research were to explore selected phytochemicals with known health 

benefits for activity as PrAO inhibitors. The study focused on establishing the mode 

of inhibition and identifying the structural features necessary to be a useful PrAO 

inhibitor.  We aimed to support our observations using computational modelling in an 

attempt to identify inhibitor binding sites on the enzyme surface.  
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2.1 List of Reagents 

Reagent Supplier 

Acetonitrile Sigma 

Acrylamide Sigma 

Adenine Sigma 

Adenosine Sigma 

4-Aminoantipyrine Sigma 

4-amino-phenol Sigma 

L-Alanine Sigma 

L-Arginine Sigma 

Ascorbic Acid Sigma 

Benzaldehyde Sigma 

Benzylamine Sigma 

Benzylhydrazine Dihydrochloride Sigma 

8-Bromocaffeine Sigma 

Caffeic Acid Sigma 

Caffeine Sigma 

Catechol Sigma 

2 Chloromethyl benzimidazole Sigma 

L-Cysteine Sigma 

Cystic Acid Sigma 

EGTA Sigma 

Epicatechin Sigma 

Epicatechin Gallate Sigma 

Epigallocatechin Gallate Sigma 

D-Ethionine Sigma 

GABA Sigma 

Green Tea Twinings 

Horseradish Peroxidase Sigma 

Hypoxanthine Sigma 

Isatin Sigma 

D-Iso-Leucine Sigma 

Methyl Gallate Sigma 

1-Methyl-L-histidine Sigma 

1-Methylimidazole Sigma 
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1,7-Dimethylxanthine Sigma 

7-Methylxanthine Sigma 

Monoamine Oxidase In house  

N-alpha-methylhistamine Dihydrochloride Sigma 

D-Norvaline Sigma 

Octopamine Sigma 

Lisofylline Sigma 

L-Ornithine Sigma 

Phenylalanine Sigma 

Phloroglucinol Sigma 

Potassium Phosphate Dibasic Sigma 

Pyridoxine Sigma 

Quercetin Sigma 

Riboflavin Sigma 

Rutin Sigma 

Saponin Sigma 

Semicarbazide Sigma 

Primary Amine Oxidase Langanbach Services 

D-Serine Sigma 

Spermidine Sigma 

Spermine Sigma 

Sucrose Sigma 

Sulphanilamide Sigma 

Theobromine Sigma 

Theophylline Sigma 

Trigonelline Sigma 

TRIS VWR 

Tryptamine Sigma 

Umbelliferone Sigma 

Uric Acid Sigma 

Vitamin B1 Sigma 

Vitamin B12 Sigma 

Vanillic Acid Sigma 

Xanthine Sigma 
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2.2 List of Instrumentation & Equipment 

 

 Instrument/Equipment Manufacturer & Type 

Balance Weigh Scales Mettler – college 150 

6-Cell Automated Cuvette Changer  Shimadzu CPS-240A 

Centrifuge Eppendorf – 5415 R 

Filter Paper WhatmanTM 0.45 μM Polyamide 

Hand Held Homogeniser Thomas 

Heating Bath Julabo - 5 

Heating Block and Stirrer IKA RH – KT/C 

HPLC Waters 2690 

HPLC Acquisition Software Empower 2 

HPLC Detector Waters 2487 Dual Absorbance 

Visible Kinetics Software Softmax Pro – 6.2.1 

UV Kinetics Software UV Probe – 2.42 

UV-Vis Spectrophotometer Shimadzu - UV-2600 

pH Meter Corning - 240 

UV-Vis Spectrophotometer Plate Reader Molecular Devices – Spectra Max M3 

Vortex mixer Wisemix – VM-10 

Water Purification Unit Millpore Milli-U10 

Sample Vials VWR Glass 2 mL 

Separation Column Nucleosil C18 (3.9 x 150 mm) 

Spectrophotometer Plate Reader UV-Vis Molecular Devices – Spectra Max M3 

Vacuum Pump WELCH  -  MPC090E 

96 Well Plates Greiner – Flat Bottom Crystal Clear Plate 
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2.3 Preparation of PrAO for Storage and Use 

Lyophilised bovine plasma PrAO was purchased from Langanbach Services. 

PrAO was reconstituted to a final concentration of 10 mg.mL-1 from a pure 

lyophilised state with 50 mM phosphate buffer (pH 7.2) which was gently inverted 

to mix and aliquoted into 0.5 mL aliquots into 1.5 mL eppendorfs. The enzyme 

solution was retained in long-term storage at -20ºC. From these aliquots working 

stock concentrations of PrAO were made up to approximately 0.3 mg.mL-1  by 

adding 30 µl to a final volume of 1000 µl of buffer. This was then brought to a 

final working activity concentration of 1.2 U.µl-1 by adding 50 µl of working stock 

solution to 200 µl of a final assay volume.  

 

All working stock solutions were stored on ice during use. For short-term storage, 

the working concentration of enzyme was refrigerated at 4ºC due to an observed 

decrease in enzyme activity beyond three freeze thaw cycles. The enzyme was 

placed on ice at all times while assays were being carried out. 

 

2.4 Preparation of Substrates, Controls and Inhibitor Solutions 

All solutions were prepared with deionised water from a Millipore Milli-U10 

water purification system and compounds were weighed using a 4 decimal place 

balance (Mettler – College 150 weigh scales). Volumes were measured either with 

0.5 μL – 5000 μL pipettes (Gilson) or by use of appropriate volumetric glassware. 

Where solutions were required at a certain pH, a Corning – 240 pH meter was used 

to monitor pH during buffer preparation, with adjustments made using an 

appropriate acid/base. The pH probe was calibrated when first used each day with 

pH 4, 5 and 10 standard buffer solutions as per manufacturer’s recommendations. 

Any poorly soluble compounds tested were either solubilized in DMSO or ethanol, 
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as advised by the supplier’s chemical data sheet, at a minimal percentage to 

solubilise to a maximum of 5% (v/v) concentration. A control using this 

percentage of solvent solution was examined in the presence of the enzyme under 

normal experimental conditions to identify any inhibitory effects on catalysis, if 

any. 

 

2.5 Standard U.V. Spectrophotometric assay of PrAO; Monitoring 

Benzaldehyde Production at 254 nm 

The oxidative deamination reaction of PrAO was recorded by monitoring 

benzaldehyde aldehyde production from benzylamine at 254 nm. This was a 

continuous spectrophotometric assay. The substrate used was benzylamine (final 

concentration: 5.0 mM), which PrAO converts to benzaldehyde, ammonia and 

H2O2. The reaction mixture contained 1.2U of PrAO, 50 mM potassium phosphate 

buffer (pH 7.2) and benzylamine (5 mM).  When required, a selected inhibitor or 

semicarbazide (1 mM) were added to provide a control, to a total final volume of 

1 mL in a Quartz cuvette. Reaction rates were monitored in a Shimadzu UV-2600 

UV-Vis Spectrophotometer with a 6-cell cuvette automated changer, employing 

the UV Probe–2.42 software. All components of the reaction mixture were 

screened for absorbance interference in the 254 nm or 498 nm range via a spectral 

scan between 200 nm – 500 nm or 350 nm – 700 nm depending on assay method 

in question. Each compound tested was examined in the buffer being used for the 

assay, before and after each assay, to verify that no unusual spectral readings that 

might offset, or interfere with, the data were obtained. Quartz cuvettes were used 

and cleaned after each use by soaking cuvettes in 50% (v/v) sulfuric acid 2.0M and 

50% (v/v) de-ionised water to remove any residues that may occur over time. 
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Positive controls for PrAO, without inhibitor, and negative controls using 1 mM 

semicarbazide, a well-established inhibitor of PrAO (O'Sullivan et al., 2004) at 

this concentration, were employed. All assays were performed in triplicate at 37ºC. 

 

2.5.1 Holt Coupled-Assay of PrAO Monitoring Hydrogen Peroxide 

Production at 498 nm. 

In addition to the continuous spectrophotometric assay we also employed a 

colourimetric assay (the method of Holt and Palcic (2006). This assay was easily 

automated as a plate reader assay and was used for initial screening of possible 

inhibitors. It monitors H2O2 production via a coupled reaction and formation of a 

quinoneimine dye (see below section 2.5.2) and can therefore use a wider range of 

substrates than the spectrophotometric assay (section 2.5). However, as detailed 

below, we found certain substrates or inhibitors, could react with the redox dye 

used in this assay to provide anomalous readings.  

The activity of PrAO was determined by following the production of H2O2 at 498 

nm, by the method of Holt and Palcic (2006). The enzyme was typically assayed 

in the presence of 5.0 mM benzylamine and 1.2U PrAO. Triplicate assays were 

carried out in a total reaction volume of 200 µL in 96-well microtitre plates, at 

37ºC, using a SpectraMax 340PC plate reader (Molecular Devices, Inc. Sunnyvale, 

CA 94089-1136, USA). Control assays for the coupling system, in the presence of 

0.lM H2O2, 1mU/mL HRP but in the absence of PrAO were employed. Each 

compound was assayed both in intra and inter triplicates, at a final concentration 

of 1 mM at 37ºC, before adding substrate.  
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GraphPad Prism (Version 5.0) was used for all curve fitting procedures. Double-

reciprocal plots were created for illustrative purposes only. Mean standard errors 

were determined from at least 3 separate experiments. 

 

2.5.2 Preparation of Chromogenic Solution for H2O2 Detection and Initial 

Rate Determination. 

The chromogenic solution for the detection of H2O2 produced by oxidation of 

amines by PrAO contained 1 mM vanillic acid, 0.5 mM 4-aminoantipyrine and 

horseradish peroxidase (4U/mL) in a ‘physiological’ buffer (200 mM potassium 

phosphate buffer, pH 7.6). The pH of the buffer was adjusted to 7.6 with 0.1M 

NaOH. The solution was then stored at 4ºC in a universal tube and covered in 

tinfoil, since the solution is light sensitive. The peroxidase produces a coupled 

reaction via H2O2 production, resulting the formation of a quinoneimine dye, 

which absorbs strongly at 498 nm. 

 

2.5.3 HPLC Assay for Monitoring Inhibition of Benzaldehyde at 254 nm 

Benzaldehyde formation from benzylamine by PrAO was monitored at 254 nm 

using a Waters 2487 dual absorbance detector and a Waters 2690 separations 

module. A Nucleosil C18 (3.9 x 150 mm) separation column was used with a flow 

rate of 0.8 mL/min and at a working pressure of approx 800 psi. This HPLC assay 

method was performed using isocratic elution with an optimum mobile phase 

blend of Acetonitrile and deionised water (50:50), which was filtered and 

degassed. Chromographic data was acquired and processed using an EmpowerTM 

2, chromatography data software package. 
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Benzaldehyde standards were first prepared as controls and peaks eluting were 

monitored at 254 nm to measure retention times and peak areas. Standards were 

prepared from pure Benzaldehyde (99.9%; Sigma) dissolved in a 50 mM 

potassium phosphate buffer pH7.4. The standard curve was produced with seven 

concentrations ranging from 10 μM – 120 μM to determine PrAO product (i.e. 

benzaldehyde) concentrations. 

 

Inhibition assays were carried out in triplicate in a 50 mM phosphate buffer (pH 

7.2) containing 1.2 U of PrAO, 5 mM benzylamine and variable concentrations of 

selected inhibitor in a final volume of 1 mL. All inhibition reactions and controls 

were thoroughly mixed, allowed to incubate for 3hrs at room temperature (22 °C) 

and then simultaneously quenched by heating at 85°C for ten minutes. The samples 

were centrifuged at 20,800 g for 20 minutes. 10 μL of each sample was injected 

with an acquisition time of 6 minutes for each sample. Positive and negative 

controls were included as standard U.V. spectral analysis method (see Section 2.5). 

 

 

2.6 Green Tea Extraction 

A crude extract of green tea (Twinings) was prepared from dried tealeaves in 

distilled water. In brief, this entailed boiling 2.5 g tealeaves in 100 mL of dH2O 

(prepared by passage through a Millpore Milli-U10 purification unit) for 5 

minutes. The extract was then sieved and initially filtered through standard grade 

Whatman filter paper, then filtered using a 0.45 μM cartridge filter and stored at 

4°C. The inhibition range was obtained by serial dilution with assay buffer until 

an inhibiting rate was achieved (noted as 1:100 dilution of the original extract). 
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2.7 IC50 Inhibition Plots 

IC50 plots utilizing GraphPad Prism were carried out to ascertain 50% inhibition 

concentrations for each compound showing significant inhibition (Version 5.0). 

Assays were carried out with PrAO saturated with substrate (5 mM Benzylamine) 

in the presence of the chromogenic coupled reaction solution and inhibitor as 

previously (see Section 2.5.2). Rates were recorded in units of mAbs.min-1. Kinetic 

assays were performed under steady state conditions, as defined by a linear 

reaction progress curve. All kinetic parameters were calculated using the 

Michaelis-Menten equation function within GraphPad Prism. All assays were 

carried out in triplicate. IC50 sigmoidal curve plots were produced by plotting 

initial rate against the logarithmic concentration of inhibitor using GraphPad 

Prism.  

 

2.8 Lineweaver Burk Plots and Ki Estimation 

Lineweaver Burk plots at different inhibitor concentrations were employed to 

identify the pattern of PrAO inhibition as determined by the observable effects on 

Km and/or Vmax parameters. Ki values were estimated from resulting slope values 

replots.  In brief, this approach provided a simple screening mechanism to examine 

compounds that demonstrated significant inhibition. Assays were carried out using 

1 mM to 5 mM substrate concentrations for each inhibitor concentration. As per 

Section 2.8, kinetics analyses were performed employing the Michaelis-Menten 

equation to estimate kinetic parameters. All assays were carried out in triplicate. 

Plots were then graphed using GraphPad Prism (Version 5.0) and employed the 

embedded Lineweaver Burk equation function which subsequent non-linear 

regression analysis. The slopes from the individual reciprocal plots, were used to 

determine corresponding Ki values.  
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2.9 PrAO Computational Docking Studies 

AutoDock tools 4.0 (ADT; http://autodock.scripps.edu) was the computational 

docking software used to examine binding interactions between PrAO and various 

ligands. The software and hardware resources of the DJEI/DES/SFI/HEA Irish 

Centre for High-End Computing (ICHEC) were utilized. Ligand files were sourced 

in the ChEMBL section of the European Bioinformatics Institute (EMBL-EBI) 

website (https://www.ebi.ac.uk/chembl/) and saved in a mol2 format. Ligand 

tautomers and stereoisomers were enumerated using Biovia Discovery Studio 

(Version 4.0). Ligand files were then converted to a Protein Data Bank, Partial 

Charge (Q), & Atom Type (T) format (PDBQT) using ADT and rotatable bonds 

were identified and set for flexible ligand docking. 

 

The enzyme structure of bovine PrAO was taken from the protein data bank (PDB; 

http://www.rcsb.org/pdb/home/home.do) under the PDB ID 2PNC (Holt et al. 

2008). Structurally relevant hydrogen atoms were added to heavy atoms such as 

carbon, oxygen and nitrogen to fulfill valency requirements. The structure was 

checked for any additional water molecules that could be added from the original 

x-ray-crystallography structure and saved. A separate, flexible, file was created 

that permitted certain side chains of the macromolecule to be flexible. Flexible 

residue side chains were chosen based on prior research as noted in the literature 

and were: Arg173, Asp177, Ile232, TPQ470, Asn469, Leu468, Thr466, Thr381 

and Met384. These amino acids and or location were noted in the literature to be 

involved in inhibitor interactions (Jakobsson et al., 2005; Bligt-Lindén et al., 2013; 

Gharaghani et al., 2013). 
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2.9.1 Grid File Generation 

The parameter file for each atom type found on the structure of bovine PrAO was 

created from the known energy values for each atom hosted within the internal 

AutoDock valuation file. A grid file was generated from this validation file. 

AutoDock’s parameter atom file may not have all atom parameters available and 

some were added manually (http://autodock.scripps.edu/faqs-help/how-to/adding-

new-atom-parameters-to-autodock). In this study, the value for a copper atom was 

not found in this file and was manually inserted 

(http://bioinf.modares.ac.ir/Courses/Docking/AD4 parameters.dat). 

 

2.9.2 Grid Size Determination  

A rectangular grid size of 38Å × 40Å × 70Å with a spacing of 0.375Å was selected 

as the default grid size. A grid center location of 41.807 × -10.752 × 27.939 was 

placed on the bovine PrAO structure covering the active site entrance, the active 

site and active site funnel. The grid point and the interaction energies between the 

probe and the target point are computed from the parameter atom file. Grid points 

spacing typically ranged from 0.2Åto 1.0Å, where the default was 0.375Å. This 

completed the entire grid value of energies for each atom type selected in the grid 

box and was subsequently used as a reference during the docking simulation, 

thereby speeding up the calculation process (Morris et al., 2009). 

  

 

 

  

http://bioinf.modares.ac.ir/Courses/Docking/AD4%20parameters.dat
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2.9.3 Docking Algorithm  

The docking algorithm chosen was a Genetic Algorithm (GA) with 50 GA runs 

with a maximum number of evaluations of 2,500,000 and a set value of the number 

of GA generations of 27,000. All other algorithm variables were set to the default 

parameters. 

 

Docking results were analysed using the ADT software. The resulting output file 

provided a ranked list in order of the top hit (this being the lowest binding energy) 

of each pose, along with a lowest mean bind. Resulting images, or poses, were 

generated with Biovia Discovery Studio (Version 4), in combination with Python 

Molecular Viewer (PMV) (http://mgltools.scripps.edu/documentation/tutorial/ 

python-molecular-viewer). In this research the poses are represented in stick 

model or atomic fill display, visually indicating the predicted hydrogen bonding, 

electrostatic charges, pi-pi interactions and Van der Waals forces of the docked 

ligand interaction with side chains of the enzyme. 
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3.1 Introduction 

A wide range of molecules found in foods and beverages have been associated 

with health benefits (Chapter 1, Section 1.0). In this Chapter the effect of a range 

of polyphenols, methylxanthines, selected amino acids and vitamins on PrAO 

activity are investigated. The aim was to examine whether these compounds might 

influence PrAO activity and provide a link between the health benefits ascribed to 

specific food components and a known therapeutic target. This approach was 

prompted by previous studies in these laboratories establishing that caffeine was 

an inhibitor of PrAO (Olivieri and Tipton, 2011) and the suggestion that caffeine 

might be used therapeutically to treat a range of conditions (Che et al., 2012). 

Despite the interest in caffeine as a potential PrAO inhibitor, little is known about 

the effect of related methylxanthines on its activity, or indeed, the effects of a 

broader class of phytochemicals on the enzyme. In the course of this study a range 

of phytochemicals were examined as well as some structurally related xenobiotics.  

  

The research herein is separated into sections that focus on green tea catechins, 

methylxanthines, selected amino acids and vitamins as well as specific 

endogenous and xenobiotic compounds. Data are primarily represented in bar 

graph form with associated tables indicating statistical significance throughout the 

chapter. Furthermore, a synoptic table of results can be found at the end of the 

chapter (see Tables 3.3 and 3.4). Where compounds were of particular interest, 

IC50 and Ki estimations were performed. Where compounds showed significant 

inhibition, molecular modeling software was utilized in an attempt to identify their 

binding sites on PrAO.  
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Colorimetric and UV-Vis spectrophotometric assays were initially employed to 

study the effect of polyphenols on PrAO activity. However, the assay results were 

anomalous with some polyphenols inhibiting PrAO at low concentrations whilst 

giving increased activity at higher concentrations. This necessitated the 

development of an alternative HPLC assay that was not subject to interference and 

provided a direct readout of product formation. Our initial screening studies relied 

on a colorimetric assay or the spectrophotometric assay described in Chapter 2 

while the HPLC assay was adopted for all later studies involving polyphenols.  

 

3.2 HPLC-based PrAO assay monitoring benzaldehyde formation  

A simple HPLC based assay to monitor Benzaldehyde formation from 

Benzylamine was devised. Figure 3.1 shows a pure benzaldehyde standard 

chromatogram using the HPLC method. 

 

 

Fig. 3.1. HPLC chromatogram of a 40 μM pure benzaldehyde standard. The HPLC eluate was 

monitored at 254 nm as described in Section 2.5.3. A retention time for Benzaldehyde of 

approximately 3.0 minutes was observed.  AU represents Absorbance Units.  
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Benzaldehyde formation from the substrate benzylamine (Fig.3.2), produces a 

similar chromatogram showing a peak with a comparable retention time (approx. 

3 minutes) thereby verifying the HPLC method’s ability to monitor benzaldehyde 

formation. This assay was kept as standard for inhibition studies as described in 

section 2.5.3 for all further studies.   

 

 

Fig. 3.2. HPLC chromatogram of benzaldehyde produced from PrAO-catalyzed oxidation of 

Benzylamine. Benzylamine was converted to the product Benzaldehyde as described in section 

2.5.3 (i.e. 1.2 units of enzyme, 5 mM benzylamine in 1 mL of phosphate buffer pH.7.2). The assay 

duration was 3.0 hrs. Enzyme activity was quenched by heating to 85 ºC and protein removed by 

centrifugation before HPLC injection.  

 

A chromatogram showing the effect of PrAO inhibition by the potent and specific 

inhibitor semicarbazide is shown in Fig. 3.3. Semicarbazide addition caused the 

disappearance of the benzaldehyde peak as expected. This clearly showed that the 

benzaldehyde formed was as a result of enzyme activity.  This experiment 

established that the HPLC method could be used to measure PrAO activity.  
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Fig. 3.3. HPLC chromatogram showing PrAO inhibition using 1 mM semicarbazide. The assay 

was performed by monitoring benzaldehyde production at 254 nm as described in section 2.5.3. 

Assay time was 3hrs. Enzyme activity was quenched by heating to 85 ºC and protein removed by 

centrifugation before HPLC injection. 

 

 

An HPLC assay standard curve using pure benzaldehyde standards was linear over 

the working range (Fig. 3.4), indicating that the HPLC method is appropriate for 

detecting benzaldehyde over the range of concentrations used in this study.  
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Fig. 3.4. HPLC assay standard curve pure benzaldehyde (99.9%). Standard concentrations of 

Benzaldehyde were injected ranging from 10 μM to 120 μM. The measuring of peak area at 254 

nm was as described in section 2.5.3. linear regression R² = 0.9976. 

 

Fig 3.5 shows a 3.0hr PrAO assay progress curve monitoring benzaldehyde 

production monitored at 254 nm using the UV spectrophotometric assay. The 

production of Benzaldehyde product over the three-hour incubation time was 

linear.  Assay conditions for this plot are the same as for the standard assays used 

in all HPLC screening of PrAO as described in the methods section 2.5.3.   
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Fig. 3.5. Progress curve of PrAO benzaldehyde formation over a 3hr period. Absorbance readings 

were monitored continuously at 254 nm. Assays were carried out using the standard conditions as 

described in section 2.5.3. The horizontal axis units are in seconds.  

 

The HPLC assay was clearly a convenient method to monitor PrAO activity and 

was not subject to the interference we had observed in our initial studies with the 

colorimetric assay. This assay was used to examine the effect of a range of 

bioactive compounds on PrAO activity.  
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3.3 Polyphenol Screening of PrAO Modulation 

3.3.1 Green Tea Catechins 

Green Tea catechins have long been associated with a wide variety of health 

benefits (see Chapter 1 Section 1.8.2). It was of interest to examine the interaction 

of these compounds with PrAO. In this section, Green Tea extracts along with pure 

green tea catechins; epigallocatechin gallate, epicatechin gallate and epicatechin 

(Fig 3.6) were examined for inhibition of PrAO.  

 

As indicated above (section 3.2), the colorimetric assay used for PrAO inhibition 

studies was found to give problems in our hands. That prompted us to devise an 

HPLC based assay method to monitor PrAO activity.  In the following section we 

describe the issues that arose with the colourimetric assay and how reliance on this 

assay can give rise to misleading conclusions.  

 

3.3.1.1  Crude Green Tea extracts 

Initial screening of green tea extracts used a colorimetric microtiter plate reader 

assay (see Chapter 2, section 2.5.1) since it was convenient and allowed for 

screening of a large number of compounds simultaneously.   
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Fig. 3.6. Structures of selected catechins screened for PrAO inhibition. 

http://www.chemspider.com/Chemical-Structure 

 

The first experiments examining at the effect of Green Tea on PrAO activity were 

performed with a crude extract that was prepared as described in Section 2.6.   Fig. 

3.7 shows a 1:100 dilution of crude green tea extract tested for inhibition of PrAO 

at various concentrations. These results show an apparent inhibition at low 

concentrations and, surprisingly, an apparent increase in PrAO activity at higher 

concentrations. These findings pointed to inhibition by Green Tea components 

followed by subsequent activation. GABA a primary amine present in Green Tea 

was first tested as it was a likely compound to be a substrate or inhibitor of PrAO, 

but no modulation was found upon testing (see Table 3.3). Since it was not possible 

to envisage a mechanism whereby an inhibitor would become an activator at 

higher concentrations we were prompted to this explore this phenomenon further 

using pure components of Green Tea.  It is well known that the major bioactive 

properties of Green Tea are ascribed to the catechins. The dominant catechins 

found in Green Tea are epigallocatechin gallate (EGCG), epicatechin (EC) and 

epicatechin gallate (ECG).   
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Fig. 3.7. 1:100 dilution of crude green tea extract was examined in an inhibition assay ranging 

from 1µl to 250µl of extract added to a final volume of 1000µl. The data show inhibition by the 

Green Tea extract at low concentrations and an apparent rise in PrAO activity as concentration of 

green tea extract increases. Assays were performed using the colorimetric plate reader assay at 

250nM, as described in chapter 2, Section 2.5, monitoring dye reduction. All assays were 

performed in triplicate. Positive and negative controls were employed. Data were analyzed using 

ANOVA, Significant differences are denoted by an asterisk (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) 

using ANOVA and Dunnett’s test. 

 

 

3.3.1.2 Catechins as PrAO inhibitors 

It was possible that inhibition studies using a crude Green Tea extract might be 

complicated due to the large number of compounds in the crude extract. 

Accordingly, we decided to examine components of Green Tea individually.  

Firstly, epicatechin testing of PrAO showed no significant inhibition across the 

range of concentrations tested (Fig. 3.8). 
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Fig. 3.8. Epicatechin inhibition of PrAO with concentrations of epicatechin from 0.65μM to 

680μM. The data show no significant decrease in rate (% activity) as concentration increases 

compared to control. Assays were performed at 250nM using the spectrophotometric U.V assay 

monitoring aldehyde production in intra and inter triplicates as described in section 2.5. Positive 

controls with PrAO and substrate and negative inhibition controls with PrAO, substrate and 1 mM 

semicarbazide were included. 

 

Surprisingly, micromolar concentrations of EGCG, when tested as an inhibitor of 

PrAO, showed inhibition at lower concentrations and a rise in activity as 

concentration increased (Fig. 3.9). Since this was broadly the same pattern of 

inhibition/activation observed with a crude extract we concluded that EGCG was 

responsible for this puzzling behavior.  

 

 



 

 

68 

C
o n tr

o l

In
h ib

it
io

n  C
o n tr

o l

5 0 0  n
M

1  u
M

1 0  u
M

1 5  u
M

2 0  u
M

3 0  u
M

5 0  u
M

8 0  u
M

1 0 0  u
M

1 5 0  u
M

2 5 0  u
M

5 0 0  u
M

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

C o n c e n tra t io n  o f  E G C G

A
c

ti
v

it
y

 (
%

 m
e

a
n


 S
E

)

* * *

* * *

* * *

* * *
* * *

* * *

* * *
* * *

*

 

Fig. 3.9. Epigallocatechin gallate inhibition of PrAO at concentrations ranging from 500nM to 

500μM. Data show an initial decrease in activity at low concentrations followed by an increase in 

rate (% activity) as concentrations increase when compared to the control. Assays were performed 

at 250nM using the colorimetric plate reader assay as described previously, see chapter 2 section 

2.5, monitoring aldehyde production in triplicate. Positive controls with PrAO and substrate and 

negative inhibition controls with PrAO, substrate and 1 mM semicarbazide were included. An 

asterisk denotes a significant difference between treatments and the control (**P ≤ 0.05; ***P ≤ 

0.001) using ANOVA and Dunnett’s test. 

 

It was even more surprising when the same pattern of inhibition followed by 

activation was found with epicatechin gallate (Fig 3.10), i.e. inhibition at low 

concentrations with an increase in rates at a higher concentration of the inhibitor; 

although the increase in rates at high concentrations was much less than observed 

with epigallocatechin gallate  
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Fig. 3.10. ECG Inhibition of PrAO. with concentrations from 1μM to 100μM. Assays were 

performed at 250nM using the colorimetric plate reader assay monitoring aldehyde production in 

intra and inter triplicates as described in chapter 2 section 2.5. Positive controls with PrAO and 

substrate and negative inhibition controls with PrAO, substrate and 1 mM semicarbazide were 

included. An asterisk denotes a significant difference between treatments and the control (***P ≤ 

0.001) using ANOVA and Dunnett’s test. 

 

Since there was a possibility that the colourimetric assay might be interfering with 

the findings we decided to make use of the HPLC based assay method that could 

directly monitor benzaldehyde formation. This assay was free of the redox dye 

which might react with catechins and cause anomalous findings.  The HPLC assay 

revealed a startling reaction: we observed the formation of benzaldehyde in the 

absence of enzyme. In fact, when the non-enzymatic formation of benzaldehyde 

(deamination) was subtracted from the rate due to enzyme catalysis it was seen 

that continuous inhibition of PrAO was occurring as EGCG and ECG 

concentrations were increased (Fig 3.11 and 3.12). 
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Fig. 3.11. EGCG inhibition of PrAO subtracting the non-enzymatic deamination reaction of 

EGCG with benzylamine (autodeamination). PrAO activity was measured by HPLC at 254nM for 

benzaldehyde detection. Assays used the HPLC assay described in Chapter 2, section 2.5.3.  
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Fig. 3.12. Epicatechin gallate inhibition of PrAO subtracting absorbance values due to the non-

enzymatic deamination reaction between epicatechin gallate and benzylamine. PrAO activity was 

monitored by HPLC at 254nM for benzaldehyde detection. Assays were performed as single data 

points using the HPLC assay described in materials and methods section 2.5.3. These findings 

show that micromolar levels of catechin can inhibit PrAO but that such inhibition may be masked 

by a non-enzymic reaction between Benzylamine and catechins.  
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Upon further investigation of the literature it was discovered that a research team 

(Akagawa et al., 2005) had previously documented this reaction and provided a 

proposed mechanism (Fig 3.13). Thus, a non-enzymatic reaction between 

polyphenols and certain amines can give rise to deamination that mimics Amine 

Oxidase activity.  

 

 

Fig. 3.13. Schematic showing the proposed deamination reaction between a polyphenol and a 

primary amine forming the products H2O2, benzaldehyde and ammonia. This is similar to the PrAO 

oxidation reaction mechanism with a primary amine forming the same end products (Akagawa et 

al., 2005). 

 

3.3.1.3 Caffeic Acid as an inhibitor of PrAO 

Caffeic acid is a minor polyphenol component of coffee. It is known to react non-

enzymatically with polyphenols as previously reported by Akagawa and co-

workers (2005; Fig. 3.13). Caffeic acid (Fig. 3.14) was screened as an inhibitor of 

PrAO using the HPLC method. The previously reported non enzymic reaction with 

benzylamine was observed. Unlike the reaction with catechins no residual PrAO 

inhibition was observed (Fig 3.15). 
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Fig. 3.14. Structure of caffeic acid. http://www.chemspider.com/Chemical-Structure 
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Fig. 3.15. Caffeic acid inhibition of PrAO. By subtracting the observed non-enzymatic 

deamination reaction between caffeic acid and benzylamine. PrAO activity was measured by 

HPLC at 254nM for benzaldehyde detection. Assays were carried as single data points out using 

the HPLC assay described in materials and methods section 2.5.3.   
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3.3.1.4 Catechin stability test 

There was a possibility that under the conditions of the assay being used in these 

studies that catechins might be unstable leading to the formation of new species.  

EGCG was examined for stability over a 4hr period- the time taken to carry out 

the inhibition assays with PrAO (Fig. 3.16).  

 

Fig. 3.16. A 4hr time dependent scan of a 100μM concentration of EGCG to monitor the stability 

of EGCG over time. EGCG control, EGCG with hydrogen peroxide and EGCG heated to 37°C 

were scanned. Lambda max for EGCG is approx. 279nM and spectral scans were taken spanning 

this wavelength.  

 

 

These data clearly show that the non-enzymic formation of benzaldehyde is 

causing apparent activation at high concentrations of ECG or ECGC. Such a 

reaction is expected to increase as the concentration of catechin rises. The 

subtraction of this rate from the overall rate of benzaldehyde formation shows that 

a residual inhibition of PrAO observed.  This finding shows that the observed 

effect of EC and ECGC on PrAO has two components: a non-enzymic rate that is 
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more pronounced at high catechin concentrations and an apparent direct effect on 

PrAO catalysed benzaldehyde formation. The experiment with caffeic acid 

showed that this type of interaction was not found for all polyphenols and appears 

to be unique to catechins containing the gallate moiety. 

 

3.3.2 Computational Modelling of the binding of ECG, EGCG, and 

Epicatechin to PrAO 

Computational modelling of ECG, EGCG and EC was carried out to examine 

binding interactions with PrAO. A computational model for Bovine PrAO was 

constructed as described in Section 2.9.  The top ranking scores (the more negative 

the ranking value the more energetically favorable the binding) and binding 

interactions between inhibitor and PrAO residue side chains are detailed. Figure 

3.17 shows a molecular surface representation of epicatechin gallate binding to 

PrAO.  

 

 
Fig. 3.17. Modelling Epicatechin gallate binding to PrAO. This interaction had a top rank docking 

score of -5.76 (Gbind) as calculated by AutoDock Tools 1.5.6 when bound to PrAO. A molecular 

surface representation with polarity shading is depicted for the docking interaction of ECG and 

PrAO, indicating the active site entrance of PrAO and binding location of epicatechin gallate. 

Residues labeled are Asn469, Asn231 and Arg173, which are at or near the active site entrance. 

Polarity regions are indicated by grey hydrophobic, blue positively charged and red negatively 

charged. 
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Figure 3.18 depicts a computational stick model of the same binding depicted in 

Figure 3.17 giving a more detailed image of the bindings and residues involved.  

 

 

 

Fig. 3.18. A computational stick model representation of Figure 3.17. Image A shows epicatechin 

gallate, shown in grey, to be externally bound to the enzyme in close proximity to the active site 

entrance. Image B is a magnification of the binding interaction of image A, depicting polarity 

regions such as blue for positively charged and red for negatively charged binding interactions. 

The grey shading indicates hydrophobic regions. Image C shows the removal of the surface 

representation, which depicts the hydrogen binding interactions via the gallated phenol group 

binding to the amine group of Asn231 and also binding via other phenol groups to the amine group 

of Asn469 and the hydroxyl group of Thr466, while giving a better visual of the ligand and 

interacting side chains involved.  

 

It is clear that binding of ECG at the active site covers a wide area and could block 

substrate entry. Figure 3.19 and Figure 3.20 show similar molecular docking for 

epigallocatechin gallate.   
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Fig. 3.19. Epigallocatechin gallate had a top rank docking score of -6.91 (Gbind) as calculated by 

AutoDock Tools 1.5.6 when bound to PrAO. A molecular surface representation with polarity 

shading is depicted for the docking interaction of ligand and macromolecule, indicating the active 

site entrance of PrAO and binding location of epigallocatechin gallate. Asn469 and Thr233 are 

highlighted at or near the active site entrance. Polarity regions are indicated by blue, positively 

charged and red, negatively charged, indicating potential charged binding interactions. The grey 

shading depicts hydrophobic interactions. 

 
Fig. 3.20. A computational stick model of Figure 3.19. Image A shows epigallocatehin gallate, 

shown in grey, to be externally bound to the enzyme in close proximity to the active site entrance. 

Image B is a magnification of the binding interaction of image A, depicting polarity regions such 

as blue for positively charged and red for negatively charged, indicating potential charged binding 

interactions. The grey shading indicates hydrophobic regions. Image C is the removal of the 

surface representation, which depicts hydrogen bonding via the phenol groups of the gallate 

binding to hydroxyl groups of both Thr466 and Tyr238, while giving a better visual of the ligand 

and interacting side chains involved.  
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Epicatechin gallate and epigallocatehin gallate were computationally modelled as 

they significantly inhibited PrAO. Modelling of Epicatechin (EC), Figures 3.21 

and 3.22, which did not significantly inhibit PrAO was performed to compare with 

the other catechins.  

 

 

Fig. 3.21. Epicatechin had a top rank docking score of -5.30 (Gbind) as calculated by AutoDock Tools 

1.5.6 when bound to PrAO. A molecular surface representation with polarity shading is depicted for 

the docking interaction of ligand and macromolecule, indicating the active site entrance of PrAO and 

binding location of epicatechin. Asn469, Pro237 and Arg173are highlighted at or near the active site 

entrance. Polarity regions are indicated by grey hydrophobic, blue positively charged and red 

negatively charged, indicating potential binding interactions. 
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Fig. 3.22. A computational stick model of Figure 3.21. Image A shows epicatechin, shown in grey, to 

be externally bound to the enzyme in close proximity to the active site entrance. Image B is a 

magnification of the binding interaction of image A, depicting polarity regions such as blue for 

positively charged and red for negatively charged, ionic charged interactions between Asn469 Thr466 

and Tyr238 with hydroxyl groups of epicatechin. The grey shading indicates hydrophobic regions. 

Image C is the removal of the surface representation, which depicts the ligand and interacting side 

chains involved more clearly 

 

An overview of observations and findings of PrAO modulation with crude green 

tea extract and a number of green tea catechins and related compounds is shown 

in Figure 3.23.  

 
 

Fig. 3.23 Overview of methods employed, and main findings observed with testing crude green 

tea extract and green tea catechins as PrAO inhibitors.   
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A summary table is shown below detailing inhibition and binding interactions 

between catechins and PrAO (Table 3.1). 

 

 

Table 3.1. Summary of binding interactions for selected catechins with PrAO as 

predicted by AutoDock. 

 

Docked 

Compound 

Experimental 

PrAO 

Inhibition 

Docking 

Score 

(Gbind) 

Hydrogen 

Bonding 

Hydrophobic 

Interactions 

Ionic 

Interactions 

Epicatechin 

gallate 

Yes -5.76 Asn231, 

Asn469 

Thr466 

Leu468  

Pro237 

------------- 

Epigallocatechin 

gallate 

Yes -6.91 Thr466 

Tyr238 

Pro237 -------------- 

Epicatechin No -5.30 --------- Pro237 Thr466 

Tyr238 

 

3.3.3 Octopamine Inhibition of PrAO 

Octopamine is a primary amine that is ubiquitously found in nature (Fig. 3.24). 

Figure 3.25 shows octopamine at two concentrations, compared against a control 

for activity as a PrAO inhibitor.  

 

Fig. 3.24. Structure of octopamine. http://www.chemspider.com/Chemical-Structure 
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Fig. 3.25. Inhibition of PrAO by 1mM and 0.5mM concentrations of Octopamine. Assays were 

performed by HPLC at 250nM monitoring aldehyde production and in triplicate. Positive controls 

with PrAO and substrate and negative inhibition controls with PrAO, substrate and 1 mM 

semicarbazide were included.  An asterisk indicates a significant difference using ANOVA was 

(**P ≤ 0.01; ***P ≤ 0.001). 
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Since Octopamine showed significant inhibition of PrAO its kinetics were 

explored further. Figure 3.26 is an IC50 plot for inhibition of PrAO by Octopamine.  

 

 

Fig. 3.26. Octopamine IC50 plot of log concentration of inhibitor Vs % activity. , A  IC50 of 3.26mM 

± 0.8mM was estimated. Inhibitor concentrations ranged from 0.1mM to 100mM. Data shown are 

the mean values ± SEM. Assays were performed in triplicate using the plate reader based 

colourimetric assay at 37°C and pH 7.2.  Data were fitted by non-linear regression analysis with 

the aid of computer software GraphPad Prism, 5.0. 
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Figure 3.27 shows the effect of Octopamine on the Km for benzylamine. The 

resulting plot shows a mixed pattern of inhibition.  

 

 

 

Fig. 3.27. Substrate (benzylamine) pattern of inhibition of PrAO by octopamine. A mixed type 

pattern of inhibition is observed. All samples contained increasing concentrations of octopamine 

(from 0.1mM to 10mM) and benzylamine from 1 to 5 mM. Data shown are the mean values ± 

SEM, error bars not evident were less than the representation of the points. The initial rates (v = 

abs 498 nm × 10−3 min) of hydrogen peroxide formation were determined at 37◦C and pH 7.2. 

Data were fitted to the Michaelis–Menten equation with the aid of GraphPad Prism, 5.0 software.  
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3.3.4 Quercetin  

Quercetin is the most abundant plant polyphenol in the human diet - it belongs to 

the flavanoid group. This molecule has many reported beneficial health properties 

that are associated with many of the diseases associated with raised PrAO activity 

as discussed in Chapter 1, Section 1.8. Figure 3.28 is the chemical structure of 

quercetin.  Figure 3.29 depicts quercetin being screened at two concentrations. Fig. 

3.30 depicts an IC50 graph of Quercetin inhibition of PrAO while Figure 3.31 

depicts a Lineweaver Burk plot.  

 

 

Fig. 3.28. Chemical structure of quercetin. http://www.chemspider.com/Chemical-Structure 
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Fig. 3.29. Quercetin inhibition assay of PrAO with control, inhibition control and experimental 

assay with 100μM and 40μM concentrations. Assays were performed at 498nM monitoring H2O2 

production in triplicate. Positive controls with PrAO and substrate and negative inhibition controls 

with PrAO, substrate and 1 mM semicarbazide were included. An asterisk denotes a significant 

difference between treatments and the control (***P ≤ 0.001) using ANOVA and Dunnett’s test. 
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Fig. 3.30. Quercetin IC50 inhibition plot showing log concentration of inhibitor Vs % activity, 

giving an IC50 of 52.20μM ± 33.75μM. Inhibitor concentration ranged from 10μM to 500μM and 

substrate concentration of 5mM benzylamine. Data shown are the mean values ± SEM, error bars 

not evident were less than the representation of the points. Assays were performed in triplicate and 

IC50 readings gained at 498nM at 37°C and pH 7.2.  Data were fitted with non-linear regression 

analysis with the aid of computer soft- ware GraphPad Prism, 5.0.  

 

 

 

 

R2 0.898 
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Fig. 3.31. Substrate (benzylamine) patterns of inhibition of PrAO by quercetin. An uncompetitive 

pattern of inhibition is observed. All samples contained increasing concentrations of quercetin 

(from 0.02μM to 0.250μM) and benzylamine 1 to 5mM. Data shown are the mean values ± SEM, 

error bars not evident were less than the representation of the points. The initial rates (v = abs498 

nm × 10−3 min) of hydrogen peroxide formation were determined at 37◦C and pH 7.2. Data were 

fitted to the Michaelis–Menten equation with the aid of computer soft- ware GraphPad Prism 5.0.  
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3.3.5 Umbelliferone 

Umbelliferone is a natural product of the coumarin family. Like quercetin, it is a 

phenolic metabolite found ubiquitously in plants. Figure 3.32 depicts the structure 

of umbelliferone. In Fig. 3.33, umbelliferone was screened for inhibition at two 

concentrations. There was a significant difference between both treatments and the 

control using ANOVA (P ≤ 0.001). 

 

Fig. 3.32. Chemical structure of umbelliferone. http://www.chemspider.com/Chemical-Structure 
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Fig. 3.33. Umbelliferone inhibition assay of PrAO with blank, control, inhibition control with 

semicarbazide and experimental assay with 1mM and 100μM concentrations. Assays were 

performed at 250nM monitoring aldehyde production and in triplicate. Positive controls with 

PrAO and substrate and negative inhibition controls with PrAO, substrate and 1 mM semicarbazide 

were included .  An asterisk denotes a significant difference between treatments and the control 

(**P ≤ 0.01; ***P ≤ 0.001) using ANOVA and Dunnett’s test. 

 

Umbelliferone 
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3.4 Methylxanthines and related compounds as PrAO inhibitors 

Previous work in our laboratory had shown caffeine, a methylxanthine was an 

inhibitor of PrAO. We decided to extend this work to examine related 

methylxanthine structures found in the diet as PrAO inhibitors. The structures of 

the methylxanthines screened in this study are shown in Figure 3.34. The effect of 

caffeine, paraxanthine, theophylline, theobromine and 7-methylxanthine on PrAO 

at fixed concentrations of 500 µM and 1.0 mM were examined using the HPLC 

assay as outlined above (Section 3.2). 

 

Fig. 3.34. Structures of the caffeine related methylxanthines considered in this study. These 

naturally occurring compounds are all N-methylated derivatives of xanthine. 

http://www.chemspider.com/Chemical-Structure. 

 

Of the five methylxanthines screened only caffeine and theobromine showed 

substantial inhibition of PrAO. This was a highly significant finding and showed 

that a specific pattern of methylation was required for inhibition. Surprisingly, the 

other compounds tested, theophylline, paraxanthine and 7-methylxanthine, had 
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relatively little effect (Fig. 3.35) despite their structural similarity to caffeine and 

theobromine.    
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Fig. 3.35. Effect of selected methylxanthines at 500µM and 1 mM concentrations on PrAO 

activity. Activity was measured at 254 nm for benzaldehyde detection. Assays were performed 

using the HPLC assay described in materials and methods section 2.5.3. Positive controls with 

PrAO and substrate and negative inhibition controls with PrAO, substrate and 1 mM semicarbazide 

were included. All assays were carried out in triplicate. An asterisk denotes a significant difference 

between treatments and the control (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) using ANOVA and 

Dunnett’s test. 

 

 Since caffeine is a derivative of xanthine, several related compounds were tested 

as PrAO inhibitors. Figure 3.36 shows that neither xanthine nor a range of similar 

compounds had a significant inhibitory effect on PrAO activity at the 

concentrations used herein. The structures of these compounds are shown in Fig 

3.37.  
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Fig. 3.36. Effect of selected xanthines and related compounds at 500µM and 1 mM concentrations on PrAO 

activity. Benzaldehyde formation was measured at 254 nm using the HPLC method. Assays were performed as 

described in materials and methods Section 2.5.3 Positive controls with PrAO and substrate and negative 

inhibition controls with PrAO, substrate and 1 mM semicarbazide were included and results carried out in 

triplicate. 

 

 

Fig. 3.37. Structures of selected compounds structurally related to caffeine: adenine, adenosine, 8-

bromocaffeine, nicotinamide, uric acid and xanthine screened for PrAO inhibition. 

http://www.chemspider.com/Chemical-Structure 
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Caffeine contains an imidazole ring attached to a pyrimidinedione ring structure. 

Therefore, a range of diazoles were tested for PrAO inhibition (Fig. 3.38). 

Imidazole was the only compound of this group to show significant albeit modest 

inhibition (P ≤ 0.05), but at a higher concentration than caffeine or theobromine, 

so further testing was not pursued. Structures of the diazoles are given in Fig. 3.38. 
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Fig. 3.38. Effect of selected diazoles screened at 500µM and 1 mM for inhibition of PrAO. Assays 

were performed using the HPLC assay described in materials and methods Section 2.5.3. Positive 

controls with PrAO and substrate and negative inhibition controls with PrAO, substrate and 1 mM 

semicarbazide were included and results carried out in triplicate. An asterisk denotes a significant 

difference between a treatment and the control (*P ≤ 0.05) using ANOVA and Dunnett’s Test.  

 

Fig. 3.39. Structures of Imidazole, 1-Methyl-Histidine and Methylimidazole diazole compounds 

selected for PrAO inhibition. http://www.chemspider.com/Chemical-Structure 
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            As shown in Figures 3.35, 3.36 and 3.38, theobromine is the most potent inhibitor 

of PrAO of all the caffeine-related compounds tested. An IC50 plot (Fig 3.40) 

showed that theobromine had an IC50 of 427.9 μM ±108 µM for the oxidation of 

benzylamine by PrAO. 

 

 

 
 

Fig. 3.40. Theobromine IC50 inhibition plot showing log concentration of inhibitor vs % activity. 

From this data an IC50 of 427.9 μM ±108 µM was estimated. Inhibitor concentrations ranged from 

0.1 mM to 5 mM using concentration 5 mM benzylamine as substrate. Data shown are the mean 

values ± SEM, error bars not evident were less than the representation of the points. Assays were 

performed in triplicate and IC50 readings obtained at 498 nm at 37°C and pH 7.2 using the 

colorimetric assay described in Chapter 2.  Data were fitted with non-linear regression analysis 

with the aid of GraphPad Prism, 5.0 software.  

 

The nature of PrAO inhibition by Theobromine was further explored by examining 

its effect on kinetic parameters for benzylamine oxidation.  (Fig. 3.41).  

 

R2 0.9772 
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Fig. 3.41. Pattern of inhibition of PrAO catalysed benzylamine oxidation by theobromine. A Non-

competitive pattern of inhibition is observed. Concentrations of theobromine were varied from 100 

to 600 μM and benzylamine from 1 to 5 mM. Data shown are the mean values ± SEM, where error 

bars are not evident they were less than the representation of the points. The initial rates (v = 

abs498 nm × 10−3 min) of hydrogen peroxide formation were determined at 37◦C and pH 7.2. Data 

were fitted to the Michaelis–Menten equation with the aid of computer software GraphPad Prism, 

5.0. The values of 1/Vmax app were plotted against the concentration of inhibitor to obtain a Ki 

estimate (−Ki = intercept on the X axis of the plot on the right) of approximately 275.6 μM (+/- 63 

μM) as shown in the inset graph. 
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3.4.1 Testing of Lisofylline as an inhibitor of PrAO 

Lisofylline, a therapeutic used for the treatment of diabetes and inflammation, two 

diseases associated with raised PrAO activity, was examined due to its close 

similarity in structure to methylxanthines. The mechanism of action for this drug 

is not clearly understood and testing was performed (Fig. 3.42) to probe PrAO 

inhibition. There was a statistical significance between treatments and the control 

(P ≤ 0.001), although the effect was not dramatic. The structure of lisofylline is 

shown in Fig. 3.43. 
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Fig. 3.42. Lisofylline inhibition of PrAO at 1 mM and 0.5 mM concentrations. Assays were carried 

out at a wavelength of 498 nm using the Holt method as described in the methods section 2.5.1 

monitoring H2O2 production. Positive controls with PrAO and substrate and negative inhibition 

controls with PrAO, substrate and 1 mM semicarbazide were included. All assays were carried out 

in triplicate. Data shows a small but significant difference (*P ≤ 0.05; ** P ≤ 0.01) value according 

to ANOVA and Dunnett’s test. 
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Fig. 3.43. Structure of lisofylline. This compound was screened for PrAO inhibition. 

http://www.chemspider.com/Chemical-Structure 

 

 

The degree of inhibition by Lisofylline was not found to be similar to that of 

Caffeine or Theobromine.  This finding indicates that the 5-Hydroxyhexyl 

substituent on Lisofylline substantially reduces binding to PrAO.  

 

3.4.2 Modelling of Caffeine, Theobromine and Theophylline interactions 

with PrAO 

In view of the noncompetitive pattern of binding observed in this study for 

Theobromine (Fig 3.41) and by Olivieri and Tipton (2011) for caffeine it was of 

interest to investigate their binding site(s) on PrAO.  A computational approach 

was employed using AutoDock software 4.0 in an attempt to identify possible 

methylxanthine binding sites. A computational model for Bovine PrAO was 

constructed as described in Section 2.9.  The top ranking scores (the more negative 

the ranking value the more energetically favorable the binding) and binding 

interactions between molecule and PrAO residue side chains are detailed. 

 

Computational docking of theobromine, caffeine and theophylline were 

investigated to broaden our understanding of the binding interaction between these 

compounds and PrAO. Figure 3.44 is a molecular surface computational model 
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showing predicted binding of theobromine near the active site entrance of PrAO. 

Figure 3.45 is a stick model representation showing potential binding interactions 

between theobromine and PrAO residues in greater detail. Figures 3.46 and 3.47 

show a similar exercise carried out for binding of caffeine to PrAO while Figures 

3.48 and 3.49 show theophylline binding depicted in the same manner. Caffeine 

has not been previously computationally modeled for its binding with PrAO and 

is a useful comparison to theobromine for binding interactions. Theophylline is a 

useful comparator here since it did not inhibit PrAO to the same degree as either 

theobromine or caffeine. 

 

For each compound, a surface molecular image is shown to illustrate binding 

interactions and show the location of the ligand on the enzyme surface. Also shown 

is a stick model image to illustrate the binding interactions with PrAO side chains.  

Relevant amino acid side chains are labelled to highlight the active site entrance 

location and binding interactions. The software computes binding affinity at 

different sites as a numerical score. A summary table can be found below detailing 

inhibition and binding interactions (see Table 3.2). 
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Fig. 3.44. A molecular surface representation with polarity shading is depicted for the docking 

interaction of Theobromine and PrAO.  Theobromine is shown as a stick structure binding to the 

surface of PrAO.  Docking of Theobromine had a top rank docking score of -2.59 (Gbind) as 

calculated by AutoDock Tools 1.5.6. The diagram indicates the active site entrance of PrAO and 

binding location of theobromine. Gate-acting Leu468, Asn469 and Pro237 residues are highlighted 

at or near the active site entrance. Polar regions are indicated in blue for positively charged, and 

red for negatively charged residues. Hydrophobic residues are indicated in in grey. 

 

 

Fig. 3.45. A computational stick model representation of Figure 3.44. Image A (center) depicts 

theobromine, shown in grey, bound to the enzyme in close proximity to the active site entrance. 

Image B is a magnification of the binding interaction of image A showing polar regions in blue 

for positively charged and red for negatively charged residues. The grey shading indicates 

hydrophobic regions. Image C shows the removal of the surface which better depicts potential 

hydrogen bonding between the carbonyl group of theobromine and the amine group of Asn469 by 

a green line of spheres. 
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Fig. 3.46. Caffeine had a top rank docking score of -2.30 (Gbind) as calculated by AutoDock Tools 

1.5.6 when bound to PrAO. A molecular surface representation with polarity shading is depicted 

for the docking interaction of ligand and macromolecule, indicating the active site entrance of 

PrAO and binding location of caffeine. Asn469, Thr466 and Arg173 are highlighted at or near the 

active site entrance. Polar regions are indicated by blue, positively charged and red negatively 

charged, binding interactions. The grey shading depicts hydrophobic interactions. 

 

 
Fig. 3.47. A computational stick model representation of Figure 3.46. Image A depicts caffeine, 

shown in grey, to be externally bound to the enzyme in close proximity to the active site entrance. 

Image B is a magnification of the binding interaction of image A, depicting polarity regions as 

blue for positively charged and red for negatively charged binding interactions. The grey indicates 

hydrophobic regions. Image C is the removal of the surface representation, which better depicts 

hydrogen bonding between the carbonyl group of caffeine and the amine group of Asn469 by a 

green line of spheres. 
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Fig. 3.48. Theophylline had a top rank docking score of -2.75 (Gbind) as calculated by AutoDock 

Tools 1.5.6 when bound to PrAO. A molecular surface representation with polarity shading is 

depicted for the docking interaction of ligand and macromolecule, indicating the active site 

entrance of PrAO and binding location of theophylline. Asn469 and Arg173 are highlighted at or 

near the active site entrance. Polar regions are indicated by blue for positively charged, red for 

negatively charged binding interactions. 

 

 

Fig. 3.49. A computational stick model of Fig. 3.48. Image A shows theophylline, shown in grey, 

to be externally bound to the enzyme in close proximity to the active site entrance. Image B is a 

magnification of the binding interaction of image A, depicting polarity regions such as blue for 

positively charged and red for negatively charged binding interactions. The grey indicates 

hydrophobic regions. Image C is the removal of the surface representation, which better depicts 

hydrogen bonding shown by a green line of spheres between the amine group of theophylline and 

the amine group of Leu468, while giving a better visual of the ligand and interacting side chains 

involved. 
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Table 3.2. Summary of binding interactions for selected Methylxanthines with PrAO, 

predicted by AutoDock. 

Docked 

Compound 

Observed 

PrAO 

Inhibition 

Docking 

Score 

(Gbind) 

Hydrogen 

Bonding 

Hydrophobic 

Interactions 

Theobromine Yes -2.59  Asn469 Tyr238  

Leu468 

Pro237 

Caffeine Yes -2.30 Asn469 Leu468   

Pro237 

Theophylline No -2.75 Leu468 Leu468 

 

 

 

An overview of methods and findings of methylxanthines and related structures 

that were tested for PrAO modulation can be found below (see Figure 3.50). 

 

 

 
 
Fig. 3.50. Overview of main findings observed and methods used in the testing of 

methylxanthine and related compounds assayed for PrAO modulation.  
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3.5 Amino Acids 

An interest in screening amino acids was based upon previous work in this lab, 

namely the inhibition of PrAO by lysine in the presence of H2O2. As lysine 

inhibited PrAO structurally related amino acids such as ornithine and L-arginine 

(Fig. 3.54 and 3.56) were screened for similar inhibitory effects. Cysteine, an 

amino acid with a thiol group yielded significant inhibition (Fig. 3.52), D-

ethionine also having a thiol group (Fig. 3.55) was screened with no inhibition 

evident. Other similar short chained amino acids were appropriate to screen, for 

example; the thiol group of cysteine was replaced with a hydroxyl group of D-

serine (Fig. 3.57.) or methyl groups of D-norvaline (Fig. 3.53.). In an aligned sub-

study, alanine, iso-leucine, threonine and phenylalanine were also tested. A full 

list of test results can be found in Table 3.3. These amino acid structures are 

depicted in Fig. 3.51. All data were obtained using the UV plate reader 

spectrophotometric assay (see section 2.5) monitoring the product benzaldehyde. 

The concentrations of amino acids tested for inhibition were 1.0 mM and 100 μM 

to verify potential physiologically relevant inhibition.  

 

 

Fig. 3.51. Chemical structures of selected amino acids. http://www.chemspider.com/Chemical-Structure. 

http://www.chemspider.com/Chemical-Structure
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3.5.1 L-cysteine 

L-cysteine inhibition assay of PrAO (Fig. 3.50) revealed a significant difference 

between treatments and the control using ANOVA (P ≤ 0.001). Although there 

was a significant difference between the lower concentration of L-cysteine (100 

μm) and the control, the higher concentration (100 mM) was not significantly 

different to the control (P > 0.05; Fig. 3.50).  
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Fig. 3.52. L-cysteine inhibition assay of PrAO with blank, control, inhibition 

control and experimental assay with 1 mM and 100 μM concentrations. Assays 

were performed at 254 nm monitoring benzaldehyde production in triplicate. 

Positive controls with PrAO and substrate and negative inhibition controls with 

PrAO, substrate and 1 mM semicarbazide were included. An asterisk denotes a 

significant difference between treatments and the control (***P ≤ 0.001) using 

ANOVA and Dunnett’s test. 
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3.5.2 D-norvaline 

D-norvaline significantly inhibited at a concentration of 1.0mM (*P ≤ 0.05) PrAO 

(Fig. 3.51).  

   
 

Fig. 3.53. D-norvaline inhibition assay of PrAO with blank, control, inhibition control and 

experimental assay with 1 mM and 100 μM concentrations of. Assays were performed at 254 nm 

monitoring aldehyde production and in triplicate. Positive controls with PrAO and substrate and 

negative inhibition controls with PrAO, substrate and 1 mM semicarbazide were included. An 

asterisk denotes a significant difference between treatments and the control (*P ≤ 0.05) using 

ANOVA and Dunnett’s test. 
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3.5.3 Ornithine 

Ornithine inhibition assay of PrAO (Fig. 3.52) revealed a slight decrease in the 

activity rate (mAbs/min); however, neither the 100 μm or 1 mM of ornithine 

significantly inhibited PrAO (P > 0.05; Fig. 3.52).  
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Fig. 3.54. Ornithine inhibition assay of PrAO with blank, control, inhibition control and 

experimental assay with 1 mM and 100 μM concentrations. Assays were performed at 254 nm 

monitoring aldehyde production and in triplicate. 

 

3.5.4 D-ethionine 

D-ethionine did not significantly inhibit PrAO (P > 0.05; Fig. 3.53). 
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Fig. 3.55. D-ethionine inhibition assay of PrAO with blank, control, inhibition control and experimental 

assay with 1 mM and 100 μM concentrations of D-ethionine. Assays were performed at 254 nm monitoring 

aldehyde production and in triplicate. Positive controls with PrAO and substrate and negative inhibition 

controls with PrAO, substrate and 1 mM semicarbazide were included.                                                             
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3.5.5 L-arginine 

L-arginine did not significantly inhibit PrAO (P > 0.05; Fig. 3.54). 
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Fig. 3.56. L-arginine inhibition assay of PrAO with blank, control, inhibition control and experimental assay 

with 1 mM and 100 μM concentrations. Assays were performed at 254 nm monitoring aldehyde production 

and in triplicate. Positive controls with PrAO and substrate and negative inhibition controls with PrAO, 

substrate and 1 mM semicarbazide were included. 

 

  



 

 

106 

3.5.6 D-serine 

The D-serine inhibition assay of PrAO (Fig. 3.55) exhibited a slight decrease in 

PrAO activity (mAbs/min) but did not significantly inhibit PrAO (P > 0.05; Fig. 

3.55). 
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Fig. 3.57. D-serine inhibition assay of PrAO with blank, control, inhibition control and 

experimental assay with 1 mM and 100 μM concentrations. Positive controls with PrAO and 

substrate and negative inhibition controls with PrAO, substrate and 1 mM semicarbazide were 

included. 
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3.6 Vitamins as PrAO modulators 

As discussed in Chapter 1 Section 1.8, vitamins are being actively researched for 

their specific health benefits in numerous diseases such as cancer and diabetes, and 

therefore have relevance in being tested as natural dietary inhibitors for PrAO 

modulation. Thiamine (Vitamin B1) and Pyridoxine (Vitamin B6) (Fig. 3.58) 

showed statistically significant inhibition when tested using the Holt method 

monitoring H2O2 production as described in Section 2.5.1. IC50 values, patterns of 

inhibition and Ki values were determined for each inhibitor. A full list and results 

of all vitamins tested can be found in Table 3.3. 

 

Fig. 3.58. Chemical structure of thiamine and pyridoxine. 

http://www.chemspider.com/Chemical-Structure 
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3.6.1 Thiamine 

The thiamine inhibition of PrAO (Fig. 3.57) revealed a significant difference 

between treatments using ANOVA (P ≤ 0.01). Fig. 3.58 exhibits the IC50 inhibition 

of thiamine and Fig. 3.59. depicts the Lineweaver Burk plots of thiamine. 
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Fig. 3.59. Thiamine inhibition assay of PrAO with blank, control, inhibition control and 

experimental assay with 1 mM and 0.5 mM concentrations. Assays were performed at 498 nm 

monitoring H2O2 production in triplicate. Positive controls with PrAO and substrate and negative 

inhibition controls with PrAO, substrate and 1 mM semicarbazide were included. An asterisk 

denotes a significant difference between treatments and the control (**P ≤ 0.01) using ANOVA 

and Dunnett’s test. 
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Fig. 3.60. Thiamine IC50 inhibition plot showing log concentration of inhibitor Vs % activity, 

giving an IC50 of 5.046 mM ±1.15 mM. Inhibitor concentration ranged from 0.1 mM to 50 mM 

and substrate concentration of 5 mM benzylamine. Data shown are the mean values ± SEM, error 

bars not evident were less than the representation of the points. Assays were performed in triplicate 

and IC50 readings gained at 498 nm at 37°C and pH 7.2.  Data were fitted with non-linear regression 

analysis with the aid of computer soft- ware GraphPad Prism, 5.0. 

 

 

 

 

 

 

 

 

R2 0.986 
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Fig. 3.61. Substrate (benzylamine) patterns of inhibition of PrAO by thiamine. A competitive type 

pattern of inhibition is observed. All samples contained increasing concentrations of thiamine 

(from 0.25 mM to 2.5 mM) and benzylamine (from 1 to 5 mM). Data shown are the mean values 

± SEM, error bars not evident were less than the representation of the points. The initial rates (v = 

abs498 nm × 10−3 min) of hydrogen peroxide formation were determined at 37◦C and pH 7.2. Data 

were fitted to the Michaelis–Menten equation with the aid of computer soft- ware GraphPad Prism, 

5.0.  
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3.6.2 Pyridoxine 

Pyridoxine significantly inhibited PrAO at 0.5 mM (P ≤ 0.01) and 1 mM (P ≤ 

0.001; Fig. 3.62). Fig. 3.63 exhibits the IC50 inhibition plot of pyridoxine and Fig. 

3.64 depicts the pyridoxine Lineweaver Burk plots.  
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Fig. 3.62. Pyridoxine inhibition of PrAO with a control, inhibition control and experimental assay 

with 1.0 mM and 0.5 mM concentrations. Assays were performed at 498 nm monitoring H2O2 

production in triplicate. Positive controls with PrAO and substrate and negative inhibition controls 

with PrAO, substrate and 1 mM semicarbazide were included. An asterisk denotes a significant 

difference between treatments and the control (**P ≤ 0.01; ***P ≤ 0.001) using ANOVA and 

Dunnett’s test. 
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Fig. 3.63. Pyridoxine IC50 inhibition plot showing log concentration of inhibitor Vs % activity, 

giving an IC50 of 5.55 mM ± 2.81 mM. Inhibitor concentration ranged from 125 mM to 25 mM 

and substrate concentration of 5 mM benzylamine. Data shown are the mean values ± SEM, error 

bars not evident were less than the representation of the points. Assays were performed in triplicate 

and IC50 readings gained at 498 nm at 37°C and pH 7.2.  Data were fitted with non-linear regression 

analysis with the aid of computer soft- ware GraphPad Prism, 5.0.  

   

 

 

 

 

 

 

 



 

 

113 

 

 

 

Fig. 3.64. Substrate (benzylamine) pattern of inhibition of PrAO by pyridoxine. An un-competitive 

type pattern of inhibition is observed. All samples contained increasing concentrations of 

pyridoxine (from 0.125 mM to 2.5 mM) and benzylamine (from 1 to 5 mM). Data shown are the 

mean values ± SEM, error bars not evident were less than the representation of the points. The 

initial rates (v = abs498 nm × 10−3 min) of hydrogen peroxide formation were determined at 37◦C 

and pH 7.2. Data were fitted to the Michaelis–Menten equation with the aid of computer soft- ware 

GraphPad Prism, 5.0.  

 



 

 

114 

   

3.8 Non-dietary Xenobiotics as PrAO inhibitors 

A selection of xenobiotic compounds such as benzylhydrazine, 4-amino-phenol 

and acrylamide were tested to further the knowledge of structures that may inhibit 

PrAO. These compounds were selected due to either having primary amines or 

being structurally similar to other compounds with some potential to be PrAO 

modulators. A summary these results can be found in Table 3.4.  Benzylhydrazine 

(Fig. 3.65) was the only compound tested that showed statistically significant 

inhibition (Fig. 3.66). Additional experimentation was performed on this 

compound and the corresponding results are detailed below in bar graph form with 

IC50 values, patterns of inhibition. Benzylhydrazine significantly inhibited PrAO 

at 1.0 nM and 4.0 nM (P ≤ 0.001; Fig. 3.66). IC50 inhibition plot of 

benzylhydrazine is displayed in Fig. 3.67, the Lineweaver Burk plot of 

benzylhydrazine is exhibited depicting probable mode of inhibition in Fig. 3.68. 

 

 

Fig. 3.65. Chemical structure of benzylhydrazine. 
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Fig. 3.66. Benzylhydrazine inhibition assay of PrAO with blank, control, inhibition control and 

experimental assay with 1 nM and 4 nM concentrations. Assays were performed at 254 nm 

monitoring aldehyde production in triplicate. Positive controls with PrAO and substrate and 

negative inhibition controls with PrAO, substrate and 1 mM semicarbazide were included. Result 

show a significant difference, denoted by an asterisk (***P ≤ 0.001) using ANOVA and Dunnett’s 

post hoc analyses. 
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Fig. 3.67. Benzylhydrazine IC50 inhibition plot showing log concentration of inhibitor Vs % 

activity, giving an IC50 of 6.628 nM ±3.2 nM. Inhibitor concentration ranged from 0.5 nM to 25 

nM 25 mM and substrate concentration of 5 mM benzylamine. Data shown are the mean values ± 

SEM, error bars not evident were less than the representation of the points. Assays were performed 

in triplicate and IC50 readings gained at 498 nm at 37°C and pH 7.2.  Data were fitted with non-

linear regression analysis with the aid of computer soft- ware GraphPad Prism, 5.0.  

R2 0.965 
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Fig. 3.68. Substrate (benzylamine) patterns of inhibition of PrAO by benzylhydrazine. An un-

competitive type pattern of inhibition is observed. All samples contained increasing concentrations 

of benzylhydrazine (from 0.125 mM to 2.5 mM) and benzylamine (from 1 to 5 mM. Data shown 

are the mean values ± SEM, error bars not evident were less than the representation of the points. 

The initial rates (v = abs498 nm × 10−3 min) of hydrogen peroxide formation were determined at 

37◦C and pH 7.2. Data were fitted to the Michaelis–Menten equation with the aid of computer 

soft- ware GraphPad Prism, 5.0.  
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Table 3.3. Summary table of various compounds tested for significance of inhibition of 

PrAO at 254 nm for benzaldehyde production. Compounds in each category are presented 

in order of significance with P values attached. 

Compound Type 
Concentration 

(mM) 

Significance of 

inhibition vs. 

control 

P value 

Caffeine Analogs 

Caffeine Endogenous 1.00 *** ≤ 0.001 

Theobromine Endogenous 1.00 *** ≤ 0.001 

Caffeic acid Endogenous 1.00 *** ≤ 0.001 

Theophylline Endogenous 1.00 ** ≤ 0.01 

7-Methylxanthine Endogenous 1.00 ** ≤ 0.01 

§Lisofylline  Xenobiotic 1.00 ** ≤ 0.01 

Paraxanthine Endogenous 1.00 ** ≤ 0.01 

Xanthine Endogenous 1.00 N/S ≤ 0.05 

Tryptamine Endogenous 1.00 ** ≤ 0.01 

8-Bromocaffeine Endogenous 1.00 N/S > 0.05 

Adenine Endogenous 1.00 N/S > 0.05 

Uric acid Endogenous 1.00 N/S ≤ 0.05 

Nicotinamide Endogenous 1.00 N/S > 0.05 

Adenosine Endogenous 1.00 N/S > 0.05 

Diazole     

Imidazole Endogenous 1.00 * ≤ 0.01 

1-Methyl-L-histidine Endogenous 1.00 N/S > 0.05 

1-Methylimidazole Endogenous 1.00 N/S > 0.05 

Phenols 

Epigallocatechin gallate Endogenous 0.02 *** ≤ 0.001 

Epicatechin gallate Endogenous 0.025 *** ≤ 0.001 

§ Quercetin Endogenous 0.05 *** ≤ 0.001 

Epicatechin Endogenous 0.68 N/S > 0.05 

Catechol Endogenous 0.68 N/S > 0.05 

Rutin Endogenous 1.00 N/S ≤ 0.05 

Methyl gallate Endogenous 0.05 N/S ≤ 0.05 

Gallic acid Endogenous 0.05 N/S ≤ 0.05 
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Amino acids 

L-cysteine Endogenous 1.00 *** ≤ 0.001 

D-norvaline Endogenous 1.00 * ≤ 0.05 

L-ornithine Endogenous 1.00 N/s ≤ 0.05 

D-ethionine Endogenous 1.00 N/s > 0.05 

L-arginine Endogenous 1.00 N/S > 0.05 

Pyrocatechol Endogenous 1.00 N/S > 0.05 

Phenylalanine Endogenous 1.00 N/S > 0.05 

L-alanine Endogenous 1.00 N/S > 0.05 

D-serine Endogenous 1.00 N/S > 0.05 

D-Iso-leucine Endogenous 1.00 N/S > 0.05 

Cystic acid Endogenous 1.00 N/S > 0.05 

Vitamins 

§Pyridoxine Endogenous 1.00 ** ≤ 0.01 

§Thiamine (B1) Endogenous 1.00 ** ≤ 0.01 

§Ascorbic Acid Endogenous 1.00 N/S > 0.05 

§Vitamin B12 Endogenous 1.00 N/S > 0.05 

§Riboflavin (B2) Endogenous 1.00 N/S > 0.05 

Dietary Endogenous 

Umbelliferone Endogenous 1.00 *** ≤ 0.001 

Octopamine Endogenous 1.00 ** ≤ 0.01 

GABA Endogenous 1.00 N/S > 0.05 

§Trigonelline Endogenous 1.00 N/S > 0.05 

Ethanolamine Endogenous 1.00 N/S > 0.05 

Non-dietary Xenobiotic 

Benzylhydrazine Xenobiotic 0.004 *** ≤ 0.001 

4-amino-phenol Xenobiotic 1.00 N/S > 0.05 

2 Chloromethyl 

benzimidazole 
Xenobiotic 1.00 N/S > 0.05 

Sulphanilamide Xenobiotic 1.00 N/S > 0.05 

4-acetoamidophenol Xenobiotic 1.00 N/S > 0.05 

Tetrabenzine Xenobiotic 1.00 N/S > 0.05 

Acrylamide Xenobiotic 1.00 N/S > 0.05 

Note: § represents activity being monitored at 498 nm. 
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Table 3.4. Summary table of various inhibitors tested using the standard plate reader 

colourimetric assay at 498 nm, where IC50 and Ki values were obtained. 

Compound Type 
Concentration 

Range 

IC50 

Value 

Mode of 

Inhibition 
Ki Value 

Benzylhydrazine 
Non-endogenous 

primary amine 
0.5 – 25 nM 6.628 nM non-competitive N/A 

Quercetin 

 
Endogenous flavonoid 10 – 500 μM 52.2 μM N/A N/A 

Theobromine Xanthine 0.1 – 5 mM 427.9 μM uncompetitive 275.6 μM 

Octopamine 
Endogenous trace 

amine 
0.1 – 100 mM 3.26 mM mixed mode N/A 

Thiamine 
Endogenous dietary 

supplement (Vit-B1) 
0.1 – 50 mM 5.046 mM competitive N/A 

Pyridoxine 
Endogenous dietary 

supplement (Vit-B6) 
0.125 – 25 mM 5.55 mM non-competitive N/A 
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3.7 Summary 

In summary, the most significant findings were that theobromine and caffeine were 

the only methylxanthines to inhibit in the micromole range from the selection of 

methylxanthines and related compounds tested. Potential binding site and residue 

interactions were modelled with the aid of computational modelling software and 

showed a possible interaction at the base of the active site entrance funnel. 

Epigallocatechin gallate and epicatechin gallate could not be excluded as PrAO 

inhibitors but their assessment was complicated by non-enzymatic reactions that 

gave rise to ill-defined products.  

 

A selection of amino acids, vitamins and xenobiotics were screened showing 

lysine and cysteine being the only significant inhibitors of PrAO. Other significant 

inhibition was observed with pyridoxine and thiamine, octopamine and quercetin 

along with the xenobiotic benzylhydrazine.  
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CHAPTER 4 

4 Discussion 
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4.0 General Introduction 

In Chapter 1 the important role played by PrAO in a wide range of diseases such as 

diabetes, cancer and vascular disease was described in depth. There are few proteins 

in the body that play a key role in such a wide range of disease processes. A large 

number of studies in animals have shown that inhibition of this enzyme has the ability 

to positively affect inflammation, cancer progression and vascular damage (Becchi et 

al., 2017; Kinemuchi et al., 2004a; Wang et al., 2018). In the present study we 

explored the possibility that components present in the diet might influence PrAO 

activity. Therefore, we decided to look at bioactive compounds in plants that might 

have a protective effect on health through their inhibition of PrAO. Dietary 

methylxanthines and phytochemicals from green tea were the main focus of our efforts 

along with selected amino acids and vitamins.  

 

The location of PrAO on the vascular endothelium (Hafezi-Moghadam, 2018) means 

it will come in contact with absorbed dietary compounds and their breakdown products 

as well as endogenous effectors and xenobiotics. This research focused on identifying 

molecules with known bioactive properties that could modulate PrAO activity.  

 

4.1 Methylxanthines in PrAO Inhibition  

Previous work in this laboratory, in collaboration with a group in Trinity College 

Dublin, showed caffeine to be a modulator of bovine PrAO although not a potent 

inhibitor with a Ki of 1.0mM (Olivieri and Tipton, 2011). This work was followed up 

by a laboratory in China who looked at the effect of caffeine consumption on PrAO 

activity in vivo using a rat model. They showed that caffeine could reduce PrAO 

activity in vivo and suggested that caffeine might be useful as a therapeutic for 
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lowering PrAO activity. This finding prompted us to explore the possibility that other, 

structurally related, methylxanthines might inhibit PrAO.  Caffeine is one of several 

methylxanthines present in the diet and it is metabolized to a range of metabolites 

whose action against PrAO had not been explored. Caffeine analogs that were 

examined in this study were theophylline, theobromine, 7 methylxanthine and 

paraxanthine as well as a variety of related compounds that represented components 

of those structures. The objective was to attempt to identify structural features required 

for inhibition of PrAO. 

 

Methylxanthines structurally contain two coupled rings: a pyrimidinedione ring and 

an imidazole ring (Zacharis et al., 2013).  

Theophylline (1,3-dimethylxanthine; Fig. 3.34) is a metabolite of caffeine (1,3,7-

trimethylxanthine; Santos et al., 2015) and is found in cocoa and tea (Martínez-López 

et al., 2014). Theophylline has been used as a therapeutic for asthma, acting as a 

bronchodilator (Cosío et al., 2016) and is used in the treatment of respiratory diseases 

such as chronic obstructive pulmonary disease (Kirkham et al., 2014). This compound 

inhibited PrAO by approximately 20%, at 1.0 mM compared to caffeine which 

inhibited PrAO by ca. 60% at the same concentration (see Fig. 3.35).  

 

Since theophylline and caffeine differ only by a single methyl group at position 7 on 

the imidazole ring it was clear that methylation at this point was important for 

inhibition and that the diazole moiety of xanthine could play a role in PrAO inhibition.  

We examined a number of diazoles (imidazole, 1-methyl-L-histidine and 1-

methylimidazole; see Fig. 3.39) at a 1.0 mM concentration and they showed little or 

no inhibition of PrAO (Fig. 3.38). These observations indicated that the entire xanthine 
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molecule was required for inhibition with the position and number of methyl groups 

playing an important role.   

 

The methylxanthines; 7-methylxanthine, theobromine, and paraxanthine (Fig 3.34) 

along with xanthine nucleus (Fig. 3.37) were examined for inhibition of PrAO (see 

below Fig. 4.1). Of these, it was found that theobromine inhibited PrAO activity to 

approximately 30% at 1 mM.  The theobromine data showed that N-methyl groups 

were critical for inhibition (see Fig. 3.35 and Fig. 3.36). It was clear that a 

methylxanthine with N-methylation at positions 3 and 7 was required for significant 

inhibition of PrAO.  The presence of a methyl group in position 1, as in caffeine, 

seemed to decrease the inhibitory effect presumably for reasons of steric hindrance.   

 

Fig. 4.1. Caffeine structure showing the N-methyl groups numbered around the xanthine nucleus. 

 

Theobromine showed an IC50 value of 427.9 μM +/- 100 μM (Fig. 3.40) and a Ki of 

276 µM +/- 32 µM (Fig. 3.41). Thus, it was clear that Theobromine was a more potent 

inhibitor than caffeine with a reported IC50 value of 800 μM +/- 300 μM and a Ki value 

of 1.0 mM. Of the methylxanthines we examined, theobromine was the only one more 

potent than caffeine for PrAO inhibition.  This is of particular interest since 
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theobromine, as well as being present in high amounts in dark chocolate among other 

sources, is a metabolite of caffeine (See Fig. 4.2).  

 

Fig. 4.2. The metabolites of caffeine in vivo are shown. These metabolites are generated by removal of 

a methyl group from caffeine. 

  

Since theobromine was the most potent methylxanthine found to date associated with 

PrAO inhibition we looked at the pattern of inhibition by measuring the Km for 

benzylamine in the presence of increasing concentrations of theobromine. A 

noncompetitive pattern was observed (Fig. 3.41).  This pattern consists of a series of 

lines all intersecting on the horizontal axis. Such a pattern shows that the Km for the 

substrate benzylamine was not changed by the presence of the inhibitor but Vmax was 

altered. This type of inhibition is interpreted as indicating that the presence of the 

inhibitor does not influence the binding of substrate but does influence the catalytic 

rate (Fig. 4.3).  
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Fig. 4.3. Mechanism of noncompetitive Inhibition. The Enzyme (E) can bind substrate (S) to form an 

ES complex which, after catalysis, releases product (P). The scheme also shows that inhibitor (I) can 

bind to both the enzyme (E) and the ES complex. Thus, the binding of substrate does not prevent the 

binding of inhibitor (their binding sites do not overlap). Such a mechanism will give rise to a pattern of 

lines intersecting on the horizontal axis.  

 

A similar inhibition pattern was observed for caffeine with benzylamine as substrate 

(Olivieri and Tipton, 2011).  Therefore, this inhibition pattern clearly shows there is a 

site on the surface of PrAO that can interact with both of the methylated nitrogen 

moieties of theobromine and caffeine. 

 

In humans the plasma concentration of theobromine has been reported to be as high 

as 63 μM following the consumption of chocolate (Oñatibia-Astibia et al., 2017). 

Taking the Ki as 276 μM we can calculate the effect on PrAO of levels of theobromine 

as high as 63 μM using the relationship between Ki and inhibitor concentration for a 

noncompetitive inhibitor given by equation 1: 

 

𝑉𝑚𝑎𝑥 𝑎𝑝𝑝 =
𝑉𝑚𝑎𝑥

1 +
𝐼

𝐾𝑖

 

Equation 1. Noncompetitive inhibition: The relationship between maximum velocity (Vmax app, - the 

apparent maximum velocity) in the presence of an inhibitor (I) and the maximum velocity in the 

absence of an inhibitor (Vmax). The term Ki refers to the inhibitor binding constant.  
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Using a figure of 63 μM for [I] and 276 μM for Ki we can calculate that the maximum 

rate in the presence of this concentration of inhibitor is reduced by approximately 20%.  

This suggests that a plasma concentration of theobromine of 63 μM could reach levels 

in vivo sufficient to inhibit PrAO by roughly 20%, which may be sufficient to influence 

associated diseases (see chapter 1, section 1.6 and 1.7). 

 

The finding that Theobromine and caffeine bind at a site other than the active site on 

PrAO was particularly interesting. This meant that there was a site that could influence 

activity that was separate to the active site. This had not been reported before. These 

studies showed that the N-methylation at positions 3 and 7 were important for 

inhibition. 

 

Interestingly, imidazoline binding sites for PrAO have been described through X-ray 

crystallography of two bound molecules: clonidine (Holt et al., 2008) and imidazole 

(Elovaara et al., 2011). Clonidine an inhibitor of bovine PrAO, is shown to undergo 

pi-stacking with the aromatic rings of TPQ and Tyr472 forcing TPQ into an inactive 

“on state” bound to the copper atom in the active site whereby the deamination of 

primary amines cannot occur (Holt et al., 2008b). It seems unlikely that the N-methyl 

groups described here would interact in the same manner but cannot be fully excluded. 

In another study it was found that imidazole could form hydrogen bonds to TPQ in the 

inactive on-state conformation (see Fig. 1.6). A second imidazoline binding location 

was also identified in the substrate channel where imidazole bound to Tyr394 and 

Thr212 (Elovaara et al., 2011). It is possible that this site might be involved in 

theobromine binding but the interaction with imidazole was much weaker than that for 



 

 

128 

theobromine.  Additionally, computational modeling of theobromine binding to PrAO 

in this study did not indicate any involvement in binding (see Section 4.2).  

 

None of the other related caffeine-related compounds tested showed significant 

inhibition (Chapter 3, Fig. 3.36). For example, neither 8-bromocaffeine, nor Uric Acid 

could significantly inhibit PrAO, despite structural similarity to xanthine (one more 

carboxyl group on the imidazole ring). Closely related purine molecules adenine and 

adenosine were also examined since they have similar structures to caffeine except for 

having no amides in the ring structures: these also resulted in no significant inhibition 

of PrAO. These findings all indicate that the xanthine structure alone cannot be the 

main cause of PrAO inhibition. Inhibition requires specific methyl groups at specific 

locations around the structure to have maximum inhibitory effect.  

 

4.1.2. PrAO inhibition by Lisofylline 

Lisofylline is a methylxanthine-derived small molecule with anti-inflammatory 

properties that may be useful in treatment of type 1 diabetes (Fig. 4.4).  

 

Fig. 4.4. The structure of lisofylline (left) compared to caffeine (right). Lisofylline is similar to caffeine 

but where caffeine has a methyl group (CH3) at position 1 lisofylline has a bulky hydroxyhexyl group. 

 

The exact mechanism of action of lisofylline is not known. Given its structural 

similarity to caffeine it seemed likely that it might inhibit PrAO. We reasoned that if 
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it were a PrAO inhibitor it would provide a link between this drug and a molecular 

target.  At a concentration of 1 mM, Lisofylline yielded significant inhibition (25%, 

Fig. 3.42). However, it was a poorer inhibitor than caffeine. We can conclude that the 

increased bulk at position 1 is leading to this loss in potency. Thus, theobromine with 

no substituent at position 1 is a better inhibitor than caffeine which has a methyl group 

at position 1. Lisofylline, with an even larger substituent at position 1, is even poorer 

than caffeine as a PrAO inhibitor.  Thus, it is unlikely that the mechanism of action of 

this drug in vivo involves modulation of PrAO activity.  

 

4.2 Computational Docking of Methylxanthines to PrAO 

In an attempt to get a better understanding of the site of interaction between PrAO and 

inhibitors we constructed an in silico model of PrAO and looked at molecular docking 

of methylxanthines onto the enzyme. The software output ranks candidate dockings 

assigning a docking score to each binding mode.  

 

The computational docking findings for caffeine, theobromine and theophylline all 

produced a rank-1 binding docking score for these compounds to a site at the base of 

the PrAO active site entrance funnel. Docking poses are computed for the most energy 

efficient binding per docking pose interaction as explained in chapter 2, section 2.9. 

The more negative the docking score the more efficient binding is predicted for that 

particular docking location.  
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4.2.1 Computational Docking Interactions with Theobromine, Caffeine and 

Theophylline 

Theobromine had a rank 1 docking score of -2.59 (Gbind). Hydrogen bonding is 

predicted between the carbonyl group of theobromine the heterocyclic aromatic amine 

of Asn469 on PrAO (Fig. 3.45). Hydrophobic interactions are predicted between 

Tyr238, Leu468 and Pro237.  Caffeine had a rank 1 docking score of -2.30 (Gbind) 

and is similarly involved in a hydrogen bond formation with amide group of Asn469 

(Fig. 3.47). Hydrophobic interactions were predicted between Leu468 and Pro237. 

  

Theophylline, which also bound near the active site, had the most energetically 

favourable docking score of -2.75 (Gbind). Hydrogen bonding was predicted between 

the heterocyclic aromatic amine of theophylline and the carbonyl group of the side 

chain residue Leu468 (Fig. 3.49). Table 3.2 highlights the important residues involved 

in hydrogen binding with methylxanthines, Asn469 and Leu468, while for 

hydrophobic interactions residues Pro237 and Leu468 are prominent along with 

Tyr238.  

 

4.2.2 Computational modelling of PrAO Inhibition by Theobromine, Caffeine 

and Theophylline 

In vitro assays had shown that caffeine and theobromine inhibited PrAO, while 

theophylline had little or no inhibition. Common hydrogen binding patterns predicted 

for the two most significant methylxanthines (caffeine and theobromine) showed an 

interaction with Asn469 and with both carbonyl groups of theses methylxanthines in 

the same position, showing the importance of this group in hydrogen bonding 

interactions with Asn469 of PrAO. Asn469 is located internally in the active site, but 

is also part of the external wall structure.   
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Asn469 has significance in bovine PrAO catalysis where it is required to rotate away 

from the internal pocket and face the mouth of the entrance channel to permit substrate 

docking (Holt et al., 2008b). The binding of caffeine and theobromine to Asn469 may 

hinder this rotation, preventing substrate from interacting with the TPQ co-factor.  

 

Leu468 is understood to act like a gate-controlling side chain as discussed in chapter 

1, section 1.3.1. It is located at the active site entrance and therefore has a significant 

effect on substrate access. From the computational modelling data for theophylline, it 

is possible that binding to Leu468 may keep the side chain in the open position and 

therefore not interfere with substrate access or catalysis in the active site.  

 

Theobromine has greater hydrophobicity than caffeine (see Section 1.8.1); 

theobromine displays a 0.5mg/mL solubility concentration in H2O 

(https://pubchem.ncbi.nlm.nih.gov/compound.ncbi.nlm.nih.gov/compound/2519#sec

tion=Melting-Point), which could indicate that theobromine might preferentially bind 

in the hydrophobic pocket at the base of the PrAO active site funnel. Docking studies 

for theobromine and caffeine (Fig. 3.44 and 3.46) show that these ligands are bound 

near the active site entrance in a predominantly hydrophobic pocket. Hydrophobic 

interactions for both caffeine and theobromine in this pocket are reported to be with 

Tyr238, Leu468 and Pro237 (See Table 3.2). These interactions may account for the 

greater affinity and potency observed in the docking score for these compounds and 

help to explain the experimental findings for theobromine inhibition compared to 

caffeine.   
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4.2.3  Methylxanthines Summary  

We have shown for the first time that theobromine is an inhibitor of PrAO. It is more 

effective than caffeine. Comparing the structures of compounds that significantly 

inhibited PrAO against those that did not, we were able to identify N-methylation at 

positions 3 and 7 of the xanthine nucleus as necessary for inhibition. We further 

showed that the presence of bulky substituents at position 1 caused inhibition to 

decrease.  Both caffeine and theobromine were found to inhibit PrAO significantly in 

the micromole range: computational docking predicted the importance of positions 3 

and 7 containing methyl groups thereby allowing the carbonyl group contained 

between these positions to be involved in hydrogen bonding to Asn469. 

  

Theophylline with methyl groups at positions 1 and 3, hydrogen bonding occurred 

with the free amine at position 7 and with the amino group of the PrAO residue 

Leu468. This then leads to the hypothesis that it is crucial for positions 3 and 7 on the 

xanthine structure to have methyl or possibly other functional groups to have a notable 

inhibitory effect on PrAO. 

 

4.3 Inhibition of PrAO by polyphenols  

Polyphenols have shown great potential in treating diseases such as cancer, diabetes, 

inflammation and obesity (Chen et al., 2011; Chacko et al., 2010; Wang et al., 2014). 

Our interest in screening polyphenols as potential inhibitors of PrAO was underpinned 

by reported health benefits for these compounds especially the correlation noted 

between the health benefits of dietary polyphenols and PrAO-associated disease. 

Many of the diseases correlated with abnormal PrAO activity such as cancer, diabetes, 

inflammation, heart disease, Parkinson’s disease and obesity (Chacko et al., 2010; 
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Hara, 2001; Schneider and Segre, 2009; Sinija and Mishra, 2008) are also targets of 

polyphenols. 

 

4.3.1 Green Tea  

A crude extract of undiluted green tea was initially assayed to explore any modulatory 

effects that green tea might have on PrAO activity.  In our initial trial experiments 

green tea extract resulted in a large increase in PrAO activity rates. When the extract 

was diluted 1:100 instead of a leveling of rates compared to the control, which would 

have been expected, inhibition of PrAO was evident (Fig. 3.7).  Inhibition at low 

concentrations of an inhibitor followed by activation at high concentrations was an 

obviously anomalous finding. There is no simple mechanism whereby binding at a 

single site on an enzyme can give rise to inhibition at low concentrations and activation 

at high concentrations.   

 

One possibility was that individual components of the Green tea extracts might have 

competing effects. We initially looked at amines in green tea. Green tea contains 

GABA (gamma-aminobutyric acid) with a dry weight content in leaves of approx. 

50μg/g (Syu et al., 2008). GABA was a possible modulator of PrAO as discussed in 

chapter 1, section 1.5 and 1.7.  In plants, GABA plays a metabolic role and in 

mammals acts as a potent neurotransmitter (Anju et al., 2014). This small molecule 

has the potential to be either a substrate for PrAO which could potentially have been 

the cause of the increase in rates or an inhibitor. However, GABA showed no effect 

on PrAO activity when tested to a concentration exceeding the possible dry weight 

content found in green tea (see Table 3.3). 
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Other prominent bioactive compounds in Green tea are the green tea polyphenols. 

Although they lacked an amine group there was a possibility that they might react with 

PrAO bound copper. Epicatechin (EC), epicatechin gallate (ECG) and 

epigallocatechin gallate (EGCG), (Fig 3.6) were all tested due to their reported health 

benefits (see Section 1.8). When screened against PrAO, the three catechins mimicked 

the findings originally found with green tea extracts (i.e. an increase in rates with 

higher concentrations with inhibition being observed at lower concentrations, 

especially with EGCG and ECG, suggesting further study was appropriate.  

 

These findings were unusual since they were carried out using pure compounds and 

therefore could not be due to competing components in green tea extracts. In an 

attempt to further understand the observations, we used a UV spectrophotometric 

assay (see section 2.5) to monitor PrAO inhibition. This assay directly monitored 

benzaldehyde production at 254 nm. The results generated from monitoring 

benzaldehyde using the spectrophotometric assay showed inhibition for EGCG (Fig. 

3.9) and ECG (Fig. 3.10), but not for epicatechin (Fig. 3.8).  

 

This finding suggested that epicatechin was somehow acting as an inhibitor in the 

coupled Holt assay method but not when the catalysis was monitored using the direct 

spectrophotometric assay monitoring benzaldehyde production.  Furthermore, the 

concentrations of EGCG and ECG required for observable inhibition were also greater 

when monitoring rates using the direct spectrophotometric method indicating 

systematic interference with the Holt colorimetric method. 
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Further investigation of the Holt method of PrAO inhibition monitoring resulted in 

clear interference by green tea catechins resulting in false inhibition of rates through 

H2O2 sequestering. This affected all findings with catechins when monitoring PrAO 

activity relying on H2O2 production, namely the Holt colorimetric method. This 

observation was confirmed by adding a low concentration of H2O2 to the colorimetric 

dye solution, whereupon formation of the pink quinoneimine dye was not observed 

compared to a control equivalent.  

 

Similar H2O2 scavenging was noted with the Holt assay method by Fernando and 

Soya’s lab (Fernando and Soysa, 2015) when testing other phenolic compounds 

extracted from plants as noted in chapter 1, section 1.8.  Once catechin H2O2 

sequestering was confirmed all inhibition characterization was carried out using the 

direct spectrophotometric assay. Epicatechin was shown to not inhibit PrAO when 

assayed using the direct spectrophotometric method. The same observation was found 

for EGCG and ECG (except requiring higher concentrations of both compounds); 

these being an increase in rates at high concentrations of EGCG and ECG and at lower 

concentrations an inhibition effect was noted. It was noted that control experiments 

with both catechins and substrate without enzyme present was producing an apparent 

rate using the Holt and direct spectrophotometric method but it was unclear what 

metabolite was being formed. These confusing results required the need for a further 

change in assay method to fully elucidate what was occurring. 

 

4.3.2 HPLC Method Development 

In order to fully elucidate what the anomalous inhibition/activation profile was due to 

an HPLC method was developed to separate products and separately monitor 
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benzaldehyde production. For this method to work effectively a suitable mobile phase, 

separating column and flow rates were devised. A standard curve of pure 

benzaldehyde was prepared (Fig. 3.4). Enzyme assay times were increased from an 

average of 15min to 3hrs so as the production of benzaldehyde by the enzyme would 

fall within the standard curve range for accurate activity monitoring of PrAO. A 

control assay was performed to show that benzaldehyde production by PrAO was 

linear over this time period (Fig. 3.5).  

 

4.3.3 Deamination of Benzylamine by Catechins 

It was found, with the aid of the HPLC method, that an increase in peak area for 

benzaldehyde production at higher EGCG or ECG concentrations was observed (see 

Fig. 3.11 and 3.12). At lower concentrations an inhibition effect was evident matching 

the results obtained with the spectrophotometric assay at 254 nm (see Fig. 3.9 and 

3.10).  

 

When the HPLC assay was run in the absence of PrAO benzaldehyde formation was 

still observed at high concentrations of EGCG and ECG. This non-enzymatic 

formation of benzaldehyde clearly accounted for the observed activation seen at high 

concentrations of EGCG and ECG (see Fig. 3.9 and 3.10).  This type of non-enzymatic 

reaction between benzylamine and catechins was a complicating factor in measuring 

inhibition of PrAO by catechins.  

 

A search of the literature revealed that Akagawa and co-workers (2005) had previously 

described this type of non-enzymatic reaction between polyphenols and benzylamine 

to produce benzaldehyde. They briefly mentioned the possibility that PrAO inhibition 
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testing could be compromised by catechin deamination when benzylamine was a 

substrate.  

 

It was clear that the confusing activation/inhibition profile we had observed was due 

to a mixture of factors: firstly, there was a reaction between some catechins and the 

components of the colorimetric assay. More significantly there was a non-enzymatic 

reaction between catechins and benzylamine producing benzaldehyde. This latter 

reaction was more pronounced at high concentrations of catechins and was almost 

absent at low concentrations. This clearly interfered with the assay methodology in a 

manner that gave the impression of higher activity at high concentrations.  

 

4.3.4 Subtraction of the non-enzymatic Deamination Reaction by Catechins  

In this experiment, benzylamine and inhibitor (EGCG and ECG) were left to 

deaminate in the absence of enzyme. A parallel experiment was run using identical 

concentrations of benzylamine and catechin but including PrAO.  Benzyaldehyde 

formation in the non-enzymatic reaction was subtracted from that of the reaction in 

the presence of enzyme (see Fig. 3.11 and 3.12). Once the background deamination 

reaction was removed inhibition of PrAO was evident (see Fig. 3.11 and 3.12).   

 

When comparing EGCG and ECGs ability to deaminate benzylamine, EGCG is 

approximately 4 times more efficient than ECG yet has similar potency of inhibition 

when the deamination reaction is subtracted. This would suggest that the deamination 

reaction neither causes nor contributes to PrAO inhibition and provides further 

evidence that EGCG and ECG are directly inhibiting PrAO.  
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Finally, we found that another polyphenol, caffeic acid, produced a deamination 

reaction with the substrate benzylamine. However, subtraction of the non-enzymatic 

rate showed no inhibition of PrAO for this polyphenol (Fig. 3.15).  

While inhibition is difficult to assess when competing reactions are being examined 

our findings indicate that the possibility that catechins directly inhibit PrAO cannot be 

ruled out.   

 

4.3.5 PrAO Substrates that may deaminate  

A range of PrAO substrates were tested to explore whether the same deamination 

reaction would occur. Methylamine, spermine and spermidine, all known PrAO 

substrates (see Section 1.5) were screened. Screening was unsuccessful due to these 

compounds either absorbing strongly in the 254 nm region or the inability to detect 

product being formed, leaving only H2O2 to monitor which would be affected by 

reacting with catechin giving rise to assay interference.  

 

4.3.6 Gallated Polyphenol Inhibition of PrAO  

Since EGCG and ECG inhibited PrAO and epicatechin did not it was hypothesized 

that the gallate moiety of the compound might be responsible for the inhibition 

observed. In order to explore this in more detail other gallate like molecules were 

screened such as; gallic acid, methyl gallate and a related, non-phenolic trigonelline. 

None of these compounds were found to inhibit (see Table 3.3) indicating the whole 

molecule to be necessary to have an inhibitory effect. 

 

Gallated polyphenols have been shown to interact with and modulate a series of 

enzymes most probably through hydrogen bonding to the many phenolic groups 
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present allowing for interaction with varying hydrogen bond accepting and negatively 

charged amino acid side chains. Other studies add weight to this hypothesis like that 

of Sánchez-del-Campo and co-workers (2009) who examined how human 

dihydrofolate reductase (DHFR) was inhibited by EGCG and ECG but interestingly 

not by other non-gallated catechins. The binding of ECG and EGCG were proposed 

to be due to the 7 or 8 phenolic groups present and their ability to act as hydrogen bond 

donors (Sánchez-del-Campo et al., 2009). 

 

A study by Hara and Honda (1990) showed that α-amylase was non-competitively 

inhibited by gallated catechins and less so by the non-gallated type as indicated by 

ID50 measurements: ECG 130µM, EGCG 260µM, other non-gallated catechins and 

Gallic Acid were above 1000µM. Additional inhibiting molecules included theaflavin, 

theaflavin mono-gallates and theaflavin di-gallate (Hara and Honda, 1990), Such 

findings align with observations in this study: the two catechin gallates of EGCG and 

ECG inhibit in the mid to low micro-molar range, while the non-gallate epicatechin 

displays little or no effect.  

 

4.4 Molecular docking of Selected Catechins with PrAO. 

4.4.1 Residue Binding Interactions and Location of ECG, EGCG and 

Epicatechin on PrAO 

In this study, and for the first time, ECG, EGCG and epicatechin were all 

computationally screened to explore potential binding sites and binding interactions 

with PrAO.  ECG had a top rank docking score of -5.76 (Gbind). The predicted 

hydrogen bonding interactions occur with the gallate phenol group of ECG binding to 

the primary amine of the PrAO residue Asn231 and between other ECG phenol groups 
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and the PrAO primary amine of Asn469 as well as the hydroxyl group of the side chain 

Thr466. Hydrophobic contacts were indicated with side chains Leu468 and Pro237.  

Binding of ECG is shown to be externally at the base of the wide funnel near the active 

site where it completely blocks the active site entrance indicating steric inhibition (Fig. 

3.17).  

 

EGCG with a predicted docking score of -6.91 (Gbind) had the most energetically 

favorable binding of all three catechins tested. Hydrogen bonding is represented via 

the phenol group of the gallate moiety of EGCG binding to the hydroxyl group of the 

PrAO side chain residue Thr466 and also the EGCG ester group to the PrAO hydroxyl 

group of side chain Tyr238. Hydrophobic contact was predicted with the side chain 

Pro237. EGCG is externally bound at the base of the funnel and partially blocks the 

active site entrance, indicating steric inhibition as evidenced with ECG (Fig. 3.19).  

Epicatechin had a predicted docking score of -5.30 (Gbind) when bound to PrAO. 

Ionic charged interactions were shown for both side chains Thr466 and Tyr238 via the 

phenol groups of epicatechin. Hydrophobic contact is with Pro237. The binding of 

epicatechin is shown externally at the base of the funnel but is seen not to block the 

active site entrance (Fig. 3.21). 

 

As can be seen from the findings, residue side chains involved in ionic type bindings 

were Asn231, Asn469 Thr466 and Tyr238 while notable non-charged interactions 

were predicted with Pro237 and Leu468. These findings indicate that compounds with 

phenol group arrangements around their structure as with green tea catechins or, as 

shown by Hara and Honda’s research, other phenolic compounds such as theaflavin, 
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theaflavin mono-gallates and theaflavin di-gallate (Hara and Honda, 1990) may have 

an improved inhibition of PrAO. 

 

4.4.2 Comparison of Computational Docking Results and Experimental Results 

The computational results for ECG, EGCG and Epicatechin correlate with the 

experimental inhibition screening of PrAO with the catechins examined in this study. 

Both EGCG and ECG inhibited PrAO in the low micromolar range while epicatechin 

did not. In the modeled binding of ECG and EGCG the gallates were involved in 

hydrogen bond interactions with PrAO with EGCG showing the ester group also being 

involved. 

 

A similar study by Glisan and colleagues (2014) examined tea polyphenols ability to 

inhibit digestive enzymes such as pancreatic lipase. EGCG non-competitively 

inhibited this enzyme in the micromolar range where computational modelling studies 

predicted that EGCG interacted with residues around the active site and therefore, 

hindered substrate access and binding (Glisan et al., 2014). Furthermore, the phenol 

groups attached to the catechins are primarily responsible for ionic binding 

interactions of catechins (Fig. 3.17 and 3.19). Although patterns of inhibition could 

not be reliably carried out in the present study due to the deamination reaction between 

catechins and the substrate benzylamine a competitive inhibition pattern is the most 

likely based on the computational models presented here. 

 

4.5 Octopamine Inhibition of PrAO 

Octopamine (Fig. 3.24) showed an IC50 value of 3.26 mM ± 0.8 mM when assayed 

using benzylamine as substrate. A double reciprocal plot inhibition pattern showed a 
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mixed inhibition pattern (Fig. 3.27). Physiological concentrations of octopamine in 

blood plasma of humans were found to be in the range of 0.0026 +/- 0.0014 μM 

(Yonekura et al., 1988), indicating that this compound to have little physiological 

effect. In the literature there is conflict as to whether octopamine is an inhibitor or 

substrate. In one study octopamine is reported to act as an inhibitor and in others 

(Castillo et al., 1998; Visentin et al., 2001) to act as a weak substrate. To test whether 

octopamine was a substrate or an inhibitor it was added to an assay mixture at a 

concentration of 50 mM. The reaction was monitored for 15 minutes using the Holt 

colorimetric assay method at 498 nm for evidence of catalysis and production of H2O2. 

No rate was observed, leading to the conclusion that octopamine is not a substrate for 

bovine PrAO but an inhibitor. 

 

To further investigate octopamine inhibition similar structures of 4-aminophenol and 

4-acetoamidophenol were examined for inhibition of PrAO. 4-aminophenol is the first 

hydrolytic product of the breakdown of the mild analgesic 4-acetoamidophenol (Fan 

et al., 2011) and is different to octopamine in having one less carbon and hydroxyl 

group. Conversely, 4-acetoamidophenol (paracetamol) differs from 4-aminophenol by 

an addition of an acid group attached to the nitrogen forming an amide bond. Neither 

of these two compounds showed any inhibition of PrAO suggesting that the distance 

of the primary amine from the main phenol structure is key to enzyme modulation. 

 

4.5.1 Inhibition of PrAO by Quercetin 

Quercetin (Fig. 3.28) is a flavonoid that is ubiquitous in foods ranging from plants and 

vegetables to teas and wines. It is an antioxidant that is thought to protect against 

various diseases including cancer, diabetes, lung and heart disease (Boots et al., 2008).  
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Flavonoids, in general, are known to have strong antioxidant properties mainly due to 

their aromatic hydroxyls groups and can scavenge reactive oxygen and nitrogen 

species (Li et al., 2007). Quercetin consists of two polyphenol rings linked by a 

pyranose ring structure (Day and Williamson, 2001). In this study, quercetin gave an 

IC50 of 52.20 μM ± 33.75 μM. 

 

Previous studies (Lee et al., 2002) have shown moderate PrAO inhibition by quercetin 

through a using zymogram staining. As part of the current study, Rutin, a glycoside of 

quercetin was also tested at 1 mM and 0.5 mM concentration and showed no 

significant inhibition.  

 

4.5.2 Additional Phenolic Compounds Screened for PrAO Inhibition. 

Other phenolic compounds examined were tetrabenzine and umbelliferone. 

Tetrabenzine is a xenobiotic drug used to treat a variety of hyperkinetic movement 

disorders by reversibly binding to the type 2 vesicular monoamine transporter 

tetrabenzine as an antichorea therapy in Huntington disease. This drug showed no 

effect on PrAO.  

 

4.6 Amino Acids 

Amino acids were of interest in this study due to being found in the diet and having 

primary amino groups (chapter 1, section 1.5 and 1.7). This would suggest that these 

compounds could be potential substrates or inhibitors of PrAO. In this study, eleven 

amino acids were tested at concentrations of 1 mM and 100 μM. Only two of these 

eleven amino acids gave significant inhibition at 1 mM concentrations, L-cysteine and 

D-norvaline.  
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4.6.1 L-lysine inhibition of PrAO and Testing of Similar Amino Acids 

Previously L-lysine was reported as an uncompetitive inhibitor of bovine PrAO in the 

presence of H2O2 with a Ki value of 103 ± 14 μM with benzylamine as the substrate 

(Olivieri et al., 2010). Ornithine and Arginine showed no inhibition of PrAO (Fig. 

3.54 and 3.56).  

 

4.6.2 Cysteine inhibition of PrAO and Testing of Similar Amino Acids 

Cysteine, a short chain amino acid with a thiol group showed a significant inhibitory 

effect (P ≤ 0.01). Cysteine is a low abundance amino acid that is highly reactive, 

polarizable and redox-active (Marino and Gladyshev, 2012) At a 1 mM concentration 

L-cysteine gave an inhibition of approximately 50% (Fig. 3.52). Cysteine contains a 

thiol group, which becomes reactive at neutral pH; the thiol group reacts with metals 

such as copper (Kim et al., 2014) and may directly interact with PrAO’s copper atom 

in the active site. Human blood plasma concentration of cysteine reported is 197.00 

(+/- 56.00 μM; Pastore et al., 1998), and based on the results of this study suggests 

that cysteine at the typical blood plasma concentration may have an effect on PrAO 

activity. To test if the thiol groups were significant in the inhibition of PrAO, the 

structurally similar amino acid, ethionine, was examined. This showed no inhibitory 

effect, indicating that thiol groups alone were not important (Fig. 3.55). 

 

Alanine, having a methyl group side chain shoed no inhibition. Longer chained amino 

acids, namely Iso-leucine and norvaline, were examined as they have one more carbon 

on the side chain compared to cysteine, with methyl groups attached. Iso-leucine being 

the same as norvaline except for an additional methyl group branching off, showed no 

inhibition, but norvaline displayed an approximate 12% inhibition (Fig. 3.53).  
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Phenylalanine showed no effect on PrAO. Serine and Threonine showed no effect on 

PrAO.  

 

4.7 Modulation of PrAO by selected Vitamins 

Vitamins which are naturally found in the diet and important for human health were 

examined for PrAO inhibition. 

 

4.7.1 Pyridoxine Inhibition of PrAO 

Pyridoxine inhibited PrAO un-competitively with an IC50 result of 5.55 mM ± 2.81 

mM. Physiological concentrations of Pyridoxine found in human blood plasma were 

reported as 0.025 μM (Gori et al., 2006) which may not be sufficient to have any 

significant physiological effect given the IC50 result found in this study. Interestingly, 

studies carried out with rabbit lung and heart membrane bound PrAO found that 

another form of the vitamin B complex pyridoxamine inhibited these forms of PrAO.  

 

4.7.2 Inhibition of PrAO by Thiamine (Vitamin B1) 

Thiamine (Vitamin B1) was an inhibitor of PrAO with an IC50 value of 5.046 mM 

±1.15 mM. Physiological concentrations found in blood plasma can be as high as 0.12 

μM (Hung et al., 2001). The fact that a competitive inhibition was observed indicated 

that this molecule binds in the active site competing with substrate binding. Interaction 

could be via the positive charge on the imidazole ring structure binding to the negative 

charge of TPQ, while the amine group on the pyrimidine ring could possibly hydrogen 

bond to nearby polar residues Asn469 or Tyr383.  
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4.7.3 Other Vitamins Assayed 

Vitamin B12 and riboflavin (B2) were tested. Vitamin B12 was of interest based on 

the six primary amines attached to its structure, therefore qualifying to be a potential 

modulator of PrAO. Another B vitamin of interest was riboflavin (B2), due to the 

hydroxyl and amine groups present. However, both showed no significant inhibitory 

effect on PrAO (see Table 3.3). 

 

4.8 A Selection of Non-Dietary Compounds Chosen for the Testing of PrAO 

Inhibition 

4.8.1 Inhibition of PrAO by Benzylhydrazine 

Benzylhydrazine IC50 results were 6.628 nM ±3.2nM (Fig. 3.67). Lineweaver Burk 

plot results showed an un-competitive inhibition pattern. Studies with another species 

of PrAO Arthrobacter globiformis, showed benzylhydrazine to be covalently bonded 

in the active site. Findings showed a covalent bond forming a Schiff base to the C5 

atom of the TPQ quinone ring whereby the reaction product is stabilized and prevented 

from releasing an aldehyde in the first reduced steps of the ping-pong reaction 

mechanism (Langley et al., 2008). Small molecule phenyl-hydrazine type structures 

have generally been shown to bind either reversibly or irreversibly to the active site of 

amine oxidases (see section 1.7). Phenelzine, a known PrAO and MAO-A inhibitor 

(Wang et al., 2006) (see chapter 1 section 1.1), is structurally similar to 

benzylhydrazine and was shown to be a reversible inhibitor in bovine PrAO from lung 

tissue (Lizcano et al., 1996). Studies with similar hydrazine inhibitors have shown 

effects arising from additions to the molecule. For example, it was noted that any 

addition to the phenyl ring structure, such as a fluorine atom can effect selectivity 

between MAOs and PrAO (Wang et al., 2006).  
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4.8.2 Testing of Sulphanilamide for PrAO Inhibition 

Sulphanilamides have been extensively used as a bactericidal compound (Venkatesh 

et al., 2013). This molecule having a primary amine and sulphanomide group was of 

particular interest in this study due to its similarity to known PrAO inhibitors.   

 

4.8.3 Testing of Acrylamide for PrAO Inhibition 

Acrylamide is a neurotoxic carcinogen that is gaining interest since it is produced by 

the Maillard reaction from cooking carbohydrate rich foods at high heat (Basiri et al., 

2016) and is therefore naturally found in the diet. This molecule was chosen as it is a 

small molecule with a primary amine attached and is readily found in the diet, but 

upon testing had no effect (see Table 3.3). 

 

4.9 Conclusion/Future work 

Key results from this study highlight the key modulating roles that theobromine and 

caffeine can have on PrAO. It would be of interest to examine a wider range of 

methylxanthines with substituents at other positions for their effect on PrAO.  

Moreover, there are a range of other bioactive compounds present in foods such as 

rutin, curcumin, thymol, lupeol as well as a host of others that might be interesting to 

test as PrAO inhibitors.  

 

The extension of this work to studies on the human form of PrAO is another important 

next step.  If the inhibition is similar or even more pronounced it would be of 

considerable impact. The results from this study indicate that consuming foods and 

beverages containing theobromine like cocoa or caffeine may have health benefits 
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associated with modulated PrAO. Moreover, the fact that theobromine can arise as a 

metabolite of caffeine shows that inhibition may be prolonged by metabolites.  

 

The effect of these compounds on other amine oxidases would also be of interest. 

Thus, monoamine oxidase and plasma amine oxidase may also be inhibited by 

methylxanthines, for example. This is of significance since these enzymes also play 

critical roles in the body in the regulation of amines and especially neurotransmitter 

metabolism.  

 

The potential of green tea catechins to have an inhibitory role is suggested by the data 

and requires future exploration. It may be that such inhibition is irreversible and it 

might be possible to isolate an enzyme inhibitor complex. Mass Spectrometry of 

native PrAO versus inhibited PrAO would be useful in this regard.  

 

Finally, the compounds identified herein may act as potential lead compounds for the 

discovery of novel PrAO inhibitors. 
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