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Abstract 

This thesis deals with the design steps, development and validation of an appli- 

cator for radio frequency hyperthermia cancer therapy. An applicator design to 

enhance targeted energy coupling is a key enabler for preferential temperature 

increments in tumour regions. A single-element, near-field approacl~ requires 

a niiniaturised solution, that addresses ergonomic needs and is tolerant to pa- 

tient anatomy. The antenna war-field rriodality and the high-dielectric patient 

loading introduce significant analytical and con~putational resource challenges. 

The antenna input impedance has to be sufficiently insensitive to in-band res- 

onant cletuning and the fields in the tissue can he targeted to selected areas in 

the patient. 

An introduction to the medical and biological background of hyperthermia is 

presented. The design requirements of antennas for medical and in particular 

for hyperthermia applications are highlighted. Starting from a conventional 

circular patch, the antenna evolved into a compact circular patch with a con- 

centric annular ring and slotted groundplane, operating at the 434 MHz Indus- 

trial Scientific and Medical frequency band. Feed point location is optimized 

for an energy deposition pattern aligned with the antenna centre. 

The applicator is assessed with other published approaches and clinically 

used loop, dipole and square patch antennas. The antennas are evaluated for 

the unloaded condition and when loaded with a tri-layer body tissue numerical 

model. This model comprises skin, fat and transverse fiber of muscle of vari- 

able thicknesses to account for different body locations and patient. anatomy. A 
waterbolus containing de-ionized water is added at  the skin interface for super- 

ficial tissue cooling aud antelina matching. The proposed applicator achieves a 
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penetration depth that supersedes other approaches while remaining compact 

and an ergonomic fit to tumour areas on the body. 

To consider the inner and peripheral complex shapes of human bodies, the 

full human body numerical model developed by Remcom is used. This model 

was segmented from 1 mm step computed tomography (CT) and magnetic 

resonance imaging (MRI) cross-sections through and adult male and it com- 

prises twenty-three tissue types with thermal and frequency-dependent dielec- 

tric properties. The applicator performance is evaluated at three anatomical 

body areas of the model to assess its suitability for treatment of tumours at 

different locations. These three anatomical regions present different aperture 

coupling and tissue composition. 'Different conformal waterbolus and air gap 

thickness values are evaluated. 

The models used in this work are validated with measurements performed in 

a phantom containing a lossy liquid with dielectric properties representative of 

homogeneous human body tissue. The dosimetric assessment system (DASY) 

is used to evaluaxe the specific absorption rate (SAR) generated for the antenna 

into the liquid. The measurement setup with the antenna, phantom and liquid 

are simulated. Simulated and measured results in terrms of specific absorption 

rate and return loss are evaluated. 
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1. Introduction 

TaE American Cancer Society estimates that there were 1,479,350 new 

diagnosed cancer cases and 562,340 deaths from the disease in the USA in 

the year 2009 [I]. In Europe, there are 2.9 million new cases and 1.7 million 

cancer deaths per year [2]. The World Health Organization (WHO) established 

that cancer is one of the leading causes of death (along with heart disease 

and stroke) and deaths from cancer are expected to continue rising with an 

estimation of 12 million deaths worldwide in 2030 [3]. 

Early cancer detection and adequate treatment are crucial in the control 

of the disease [4]. While radiotherapy, chemotherapy and surgery, are the 

worldwide established conventional cancer treatments, some tumours cannot 

be treated by these therapies. Hypoxic cells are resistant to radiotherapy. 

Tumours with insufficient perfusion are unresponsive to chemotherapies. And 

tumours a t  high risk locations such as those located very close to the spine are 

not suitable for surgical resection [5-71. 

1.1. Radio Frequency Hyperthermia 

Radio frequency (RF) hyperthermia is an adjunct cancer treatment used with 

radio- or chemo-therapies [5-81 to increase their effectiveness. The performance 

of an RF hyperthermia system is proportional to the energy transfer into the 

targeted region. External RF hyperthermia antenna applicators are designed 

to non-invasively couple electromagnetic (EM) energy through hurnan skin. 



1. Introduction 

-ter Tissue 

Figure 1.1.: Hyperthermia system schematic representation, 

Figure 1.1 shows a schematic representation of a hyperthermia system. The 

antenna is a critical element in the hyperthermia system and its performance 

determines the EM energy deposition into the tissue, and the system quality. 

The energy is deployed in regions with cancerous tumour-masses to elevate the 

temperature to approximately 40 - 44°C. Since tumours have reduced rates of 

temperature cooling due to naturally impeded blood flow, the non-ionizing ap- 

plication aims to selectively infuse the additional energy without damaging the 

enclosing healthy tissue. Benefits include the direct kill of raised temperature 

tumours cells, increased cell oxygenation, stimulation of the immune system, 

increased metabolic activity and an improved drug uptake in cells [5]. 

The &st international congress on hyperthermic oncology in 1975 instigated 

the research and new interest in the hyperthermia field. After an encouraging 

first decade, the initial curiosity diminished following unsatisfactory clinical re- 

sults [5] mainly due to the difficulties in adequately heating turnours [6]. Nowa- 

days results of randomized clinical trials showing the effectiveness of improved 

hyperthermia therapy have generated a renewed and optimistic interest [5]. 



1.2. Motivation and Research Objectives 

Enhancing tumour temperatures with EM energy is a complex task. Determin- 

ing factors include the type, size and proximity of the applicator, the frequency 

of the power source, the applied-field polarization and the non-ul~iformity of pa- 

tient anatomies [9]. Additionally, differing physiological responses to localized 

elevated temperatures and the consequent changes in the dielectric properties 

of the tumour can produce time-dependent variances during treatment. 

The close presence of tissue and consequently near E-field interaction is a 

challenging environment for an applicator compared to the standard free space 

condition. The human body presents a variety of complex impedances which 

make it difficult for the systematic delivery of power from a transmitter via 

the antenna. Modelling the complexity of the human body requires powerful 

computational resources and the time required is proportional to the model 

accuracy. Dedicated resources are required for accurate simulation. 

The main objectives of this research were to develop antennas for use in 

RF hyperthermia systems. While design criteria for medical antennas and 

in particular for hyperthermia antennas are detailed in Chapter 3; the main 

antenna requirements pursued in this work are listed as follows: 

Minimizing the size and weight of the applicator to simplify access to the 

treatment region, manoeuvrability during treatment and integration into 

a portable system; 

The antenna should remain sufficiently matched to the source frequency 

during unloaded and variably-loaded conditions to simplify the overall 

system stability, 

The applicator should present tangentially aligned E-fields to increase 

the penetration into the body tissue and to reduce the power necessary 

to couple energy into the tumour area; 

Avoidance of matching circuits to increase the efficiency of the system 

and simplify the specialized clinical use. 
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1.3. Multi-Disciplinary Research 

This thesis highlights the background of hyperthermia from the medical point 

of view and describes the development, performance and evaluation process of 

a novel compact RF hyperthermia applicator. 

The final goal is to further stimulate interest and research in hyperthermia 

technology for clinicians and engineers, and consequently, make this technique 

widely available to more patients suffering of cancer. 

While the core work of this thesis was carried out in the Antenna & High 

Frequency Research Centre at the Dublin Institute of Technology, Dublin; and 

in the RF and Optical Department at the Institute for Infocomm Research, 

Singapore; this work involved collaboration with the Radiation & Environ- 

mental Science Centre, Focas Institute, Dublin; Institute of Technology Sligo, 

Sligo; and the Rose Lodge Clinic, Dublin. The collaboration involved exchange 

of ideas and advice. 

1.4. Outline of this Thesis 

Chapter 2 describes a general background for the work carried out in the the- 

sis. The definition and historical evolution of hyperthermia are depicted. The 

physics of hyperthermia as well as clinical trials and treatments are described 

from the medical point of view. Bellefits of ultrasouud arid radio frequency 

techniques for hyperthermia treatment are given. The concept of hyperther~nia 

treatment planning is introduced. The interaction between antenna and hu- 

man tissue and the dependence on frequency of operation and tissue dielectric 

properties is highlighted from the engineering point of view. Specific absorp- 

tion rate and temperature calculations are introduced in addition to modelling 

techniques. 

In Chapter 3 the antenna design requirements for hyperthermia applications 

are introduced, and the design process of the proposed compact patch antenna 

is presented. The antenna is evaluated next to a layer of homogeneous muscle 

tissue. 
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Chapter 4 evaluates the compact patch antenna with the clinically used wire 

loop and dipole designs and with the conventional square patch antenna in the 

presence of a tri-layer tissue human model. 

Chapter 5 is devoted to an evaluation of the compact patch antenna when 

locaced at different anatomical regions of a realistic human body model. The 

investigation includes the use of conformal waterboluses and a study of various 

antenna-to-tissue air gap separations. 

Chapter 6 concentrates on the explanation of the modelling validation, and 

the measurements conducted with the dosimetric assessment system (DASY) 
in a phantom containing a lossy liquid with dielectric properties representative 

of homogeneous human body tissue. 

Chapter 7 brings together the main conclusions of this work, while an out- 

look to domains of possible future study are presented. 

Findings published during this work have been presented in journals and 

conferences which are listed separately in the List of Publications. 



2. Background 

T H I S  chapter introduces hyperthermia as well as a brief historical evolution. 

The fundamental physics of hyperthermia is described and the medical back- 

ground of the different methods, clinical trials and treatments are summarised. 

The'benefits of RF hyperthermia are compared to ultrasound techniques. The 

engineering aspects of hyperthermia are detailed with special consideration to 

the frequency of operation and the dielectric properties of tissues that form 

the basis of antenna-human tissue interaction. The specific absorption rate 

and mechanism of temperature rise within the tissue is explained, and to con- 

clude the chapter, the modelling and simulation methods used in this work are 

presented. 

2.1. Introduction to Hyperthermia 

2.1.1. Definition 

Hyperthermia, also called thermal therapv, is defined as a medical treatment 

in which body tissue temperature is raised to between 40 and 44°C [5]. Hy- 

perthermia is used to treat muscular traumas and some cancer types. When 

used for muscular treatments it is usually for treating acute muscle injuries in 

sports, with the benefits of reducing pressure pain and contraction in phys- 

ical medicine and rehabilitation [lo]. When used in cancer treatment it is 

applied as adjunctive of conventional treatments, such as chemotherapy or ra- 

diotherapy, to increase their effectiveness. Hyperthermia increases the blood 



flow which leads to an increase in perfusion and concentration of oxygen in 

the tumour region. The increase of oxygen enhances the effectiveness of ra- 

diotherapy and the increase in perfusion improves the drug uptake in cells for 

chemotherapy [7]. This work is focused on hyperthermia as a cancer treatment. 

2.1.2. Historical Background of Hyperthermia 

The use of heat as medical treatment can be traced to the age of the Egyptian 

Edwin Smith surgical papyrus (3,000 - 2,500 B.C.) in Egypt [Ill; Ramajama 

(2,000 B.C.) in India, Hippocrates (400 B.C.) in Greece and Galen (200 A.D.) 

in Rome, when hot irons were applied to superficial tumours as a pain pallia- 

tive 1121. 

In 1898, Westermark found that hot water-circulation cisterns could be used 

to treat advanced inoperable carcinomas of the uterus and also as palliative 

shedding of different tumours [12]. 

It was the first decade of the 2oth century when high frequency currents were 

first used in hyperthermia treatments with the research from d'Arsonva1, Telsa 

and others [13]. Diseases such as arthritis, asthma, multiple sclerosis, syphilis 

and gonorrhoea were treated with hyperthermia in the early part of the 20th 

century [14, 151. Later, in 1926, electromagnetic waves were first considered 

for cancer treatment with the research of Nagelschmidt [12]. 

The first clinical trials of hyperthermia in cancer patients began on the 70s 

and 80s [16, 171 and the first hyperthermia session at a congress was organized 

in 1974 by Dr. Eugene Robinson at the International Congress of Radiation 

Research, in Seattle, WN, USA. The following year, Robinson organized the 

first International Congress 011 Hypertherrnic Oncology, in Washington, DC; 

USA [5, 181. 

Nowadays, there are different hvperthermia societies around the globe such 

as the Society for Thermal Medicine (STM) [19] in the USA; the Asian Society 

for Hyperthermic Oncology (ASHO) [20] or the European Society for Hyper- 

thermic Oncology (ESHO) [21]. Hyperthermia combined with radiotherapy is 
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one of the standard treatment approaches for patients diagnosed with locally 

advanced cervical cancer in the Netherlands [22]. The Atzelsberg Circle is an 

international working group with the endeavour of hyperthermia in clinical 

practice and performing clinical protocols. 

2.1.3. Physics of Hyperthermia 

Surgery, radiotherapy and chemotherapy are the most established cancer treat- 

ments worldwide. However, sometimes due to the patient's state of health or 

to the pathological characteristics of the tumour, these therapies cannot be 

endured or present a high risk to the patient. Surgical resection is not suitable 

in cases of metastases, leukaemia, or in some tumours located very close to the 

spine. Also, cells that present hypoxia, low pH areas, or are in the synthesis 

period (S-phase) are resistant to radiotherapy, aud cells with insufficient per- 

fusion are unresponsive to chemotherapy, as the drug concentration in these 

cells is low [5, 61. 

When hyperthermia is applied to a tissue, the metabolism tries to reduce the 

heat generated by increasiug the blood flow. Wheu norrrlal healthy tissue is ex- 

posed to hyperthermia the blood vessels can enlarge to facilitate an increased 

blood flow in the region which produces a reduction in the temperature. Tu- 

mour tissues present a chaotic vascular architecture with regions of hypoxia, 

low pH and lack of perfusion compared with the normal vascularity of healthy 

tissue. Those physiological deficiencies dictate that when tumour tissue is ex- 

posed to hyperthermia, although the blood flow is increased, tumour tissue 

cannot expand efficiently and its ability to increase blood flow is limited, with 

a consequential rise in temperature [8]. This process ensures that the tem- 

perature in the normal tissue does not increase greatly and the oxygenation 

and perfusion enhancement in the tumour area results in an increased accep- 

tance of radip or chemo-therapy respectively [5]. With a significant increase 

of temperature in the tumour tissue, some cells die or the tumour may shrink 

facilitating a surgical removal. Additionally, it has been shown that some 



drugs as mitomycin C, nitrosureas, cisplatin, doxorubicin and mitoxantrone 

are potentiated by heat and they can counteract drug resistance 151. 

A target of hyperthermia is proteins, because protein denaturation is one of 

the main mechanisms for cell death, which has been observed at temperatures 

greater than 40°C. Some of the effects of prorein denaturation are damage 

to the DNA repair systems and alterations to the cell membrane with the 

consequent higher drug concentration [5, 81. 

Glucose provides energy for cell division and multiplication. This process is 

realized in the presence of oxygen for normal cells and as an anaerobic process 

for cancer cells. If oxygen is present, the ability of cancer cells to multiply will 

decreased [23]. The 1931 Novel Laureate Dr. Otto Warburg stated that cancer 

cells require 10 to 50 times more glucose than normal healthy tissue [24]. Holt's 

theory 1231 states that hyperthermia induces cancer cells to consume certain 

drugs which mimic glucose, but actually they block the glucose absorption 

from the blood and contain oxygen (glutathione, alpha lipoic acid, etc.). This 

leads to a reduction of the cancer cells ability to multiply and increase the 

effectiveness of radie  and chemo-therapies. 

2.1.4. Types of Hyperthermia Treatment 

Heating techniques or hyperthermia treatments can be categorized into three 

broad types: local, regional or whole body hyperthermia. 

Local Hyperthermia 

Local hyperthermia involves the treatment of tumours up to 5 to 6 cm in the 

longest dimension 181. Depending on the applicator positioning, local hyper- 

thermia can be classified into superficial or interstitial/endocavitary. 

Superficial hyperthermia involves the treatment of tumours in the skin or 

up to 4 to 6 cm below the skin, and it is performed with an external applica- 

tor [25]. Waveguides and microstrip antennas are common external applica- 

tors [26, 271. Some cancers that can be treated with superficial hyperthermia 
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are lymph-node metastases of head and neck tumours, breast cancer, cuta- 

neous metastases or chest wall recurrences and melanomas [7]. Gabriele et 

a1 [28] concludes that the combined treatment of hyperthermia and radiother- 

apy should be the first choice in the treatment of superficial recurrences. 

Interstitial hyperthermia requires the insertion of the heat source into the tu- 

mour. The  heat source can be microwave antennas, radio frequency electrodes 

or other types of applicators or ferromagnetic seeds [7]. Microwave antennas 

are inserted into catheters and then placed into the tumour [29]. Some head 

and neck tumours, prostate, or breast cancer are examples of tumours that can 

be treated with interstitial antennas. Ferromagnetic seeds are injected into the 

tumour tissue and then heated using a magnetic field. It can treat tumours 

situated in deep body regions such as the skull (recurrent glioblastoma) or 

pelvis (such as prostate and cervical carcinoma) [8]. Endocavitary applicators 

are inserted in natural openings such as the oesophagus, urethra, vagina or rec- 

tum [7]. Prostate (urethra, rectum); rectal, vaginal cervix or oesophagus are 

examples of cancer that can be treated with endocavitary applicators. Inter- 

stitial or endocavitary techniques can raise the tumour temperature more than 

external applicators and without damaging the surrounding normal tissue [16]. 

Thermoablation is another cancer therapy which uses invasive applicators and 

radio frequency. Tumour temperature is raised to over 50°C with the conse- 

quent cellular coagulation and tissue necrosis. Tumours which can be treated 

with thermoablation techniques include small focal tumours located within the 

liver, lung, kidney or bones [8]. 

Regional Hyperthermia 

Regional hyperthermia involves the heating of a large part of the body as the 

abdominal cavity, limbs or organs. When regional hyperthermia has to treat 

deep-seated tumours, arrays of antennas can be used. The Sigma-60 applicator 

is one of the most common hyperthermia array systems [30]. Advanced cervi- 

cal, prostate, bladder, colorectal, ovarian, liver, stomach or some melanomas 

are example of tumours that can be treated with regional hyperthermia [7]. 
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Whole Body Hyperthermia 

Whole body hyperthermia is usually indicated for the treatment of carcinomas 

with distant metastases. Various methods such as hot water blankets, thermal 

chamber or infrared radiators are used. This hyperthermia treatment usually 

requires general anaesthesia or deep sedation. Examples of tumours which 

can be treated with whole body hyperthermia include melanomas, soft tissue 

sarcomas or leukaemia [7, 81. 

2.1.5. Hyperthermia Treatment Clinical Trials 

Numerous studies have shown the efficiency of hyperthermia when used in 

combination with radio- or chemo-therapies. Clinical trials show evidence of 

improved local control, improved survival and no change in morbidity when 

adding hyperthermia to conventional therapies [6]. Some examples of clini- 

cal trials of hyperthermia in combination with radio- or chemo-therapy are 

summarized in Table 2.1. 

Table 2.1 shows that in a summary of the nine clinical trials evaluated there 

was a complete response end point mean rate of 35% for the treatments without 

hyperthermia while the complete response end point mean rate increased up to 

60% in treatments where hyperthermia was combined with radio- or chemo- 

therapies. The follow up considered the survival rate and the tunlour local 

control. The mean survival rate increased from 21% in treatments without 

hyperthermia to 38% in treatments with hyperthermia. The local control 

increased from 23% in treatments without hyperthermia to 42% in treatments 

with hyperthermia. 

2.1.6. Medical Hyperthermia Treatment 

A hyperthermia treatment takes around 5 weeks; usually it is administered 

once or twice per week in sessions that last around 60 to 90 minutes [22]. The 

temperature reached in the tumour and surrounding tissue is monitored by 



Table 2.1.: Hyperthermia treatment clinical trials. N: number of patients, 
Freq: frequency of hyperthermia system, NDA: no data avail- 
able, LC: local control, HT+RT: hyperthermia plus radiotherapy, 
HT+ChT:hyperthermia plus chemotherapy. 

Tumour Reference N Treatment Freq Complete Respor~sc Follow up 
[MHz] No HT With HT No HT With HT 

Bladder Van der Zee, 2000 [31] 101 HT+RT 433 51% 73% 23% surv a t  28% surv a t  
3 years 3 years 

Breast Sherar, 1997 1321 120 HT+RT NDA 41% 61% NDA ND A 

Cervix Fra~lckeria, 2008 1331 114 HT+RT 7U-120 57% 83% 20% surv a t  37% surv at 
12 years 12 years 

Head Datta, 1990 [34] 65 HT+RT 27.12 31% 55% 19% surv at 33% surv a t  
18 months 18 months 

Mela~lornas Overgaard, 2009 [35] 70 HT+RT 144915 35% 62% 28% LC at 46% LC at 
2 years 2 years 

Rectum Berdov, 1990 1361 56 HT+ltT 915 1.7% 16.1% 6.6% surv a t  35.6% surv a t  
5 years 5 years 

Superficial Jones, 2005 [37] 109 HT+RT 433 42 % 66% 18.7% LC a t  37% LC a t  
5 years 5 years 

Bladder Colombo, 199G [38] 52 HT+ChT 915 22% 66% NDA ND A 

Peritoileal Verwaal, 2003 [39] 105 HT+ChT NDA NDA NDA 39% surv at 56% surv at 
21.6 ~nontlls 21.6 lnonths 

Summary 
Incall valucs 

35% 60% 21% surv 38% surv 
23% LC 42% LC 



temperature sensors. Variations of those guidelines depend on the patients 

and treatment conditions. If radiotherapy is administered, this is delivered 

before or after the hyperthermia treatment. In general, it is accepted that 

irradiating during the heating period maximizes cell killing and as the time 

between hyperthermia and radiotherapy increases, the effect of improved ac- 

ceptation of radiation decreases [6] .  When chemotherapy is administered, it is 

usually delivered during the hyperthermia treatment [38]. 

Hyperthermia may induce in some tissues a temporary resistance to increase 

its temperature; this phenomenon is known as thermotolerance or thermoresis- 

tance [6 ] .  The consequence is that when a patient is treated with hyperthermia 

the sessions cannot be repeated with a periodicity of less than 3 or 4 days. If 

this non-session period is not respected, the following session treatment can be 

less effective because the tu~rlour increases the thermoresistance and nlore ell- 

ergy would be necessary to deposit inside the tissue for the same temperature 

increase. 

2.1.7. Ultrasound and Radio Frequency Hyperthermia 

While radio frequency hyperthermia (usually 27 MHz to 2.45 GHz) is the tech- 

nique considered in this work, ultrasound hyperthermia (usually lOOkHz to 

10 MHz) techniques have also been used in cancer treatments [40]. A penetra- 

tion up to 12 cm can be obtained and as the wavelengths are small compared 

with their sources, good focusing can be achieved. There is no significant heat- 

ing at the interfaces of fat and muscle tissues. Some disadvantages are that 

ultrasound waves do not propagate through air which can cause heating of in- 

terfacing tissues, organs containing air or air cavities such as lungs or stomach. 

There is high absorption in bones, causing overheating and pain (151. 
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2.1.8. Hyperthermia Treatment Planning 

Hyperthermia treatment planning is a modality to design, control, document 

and evaluate a treatment with the aim of optimizing the treatment and increase 

the quality of the hyperthermia [41]. 

The first step of hyperthermia treatment planning is to obtain the anatomy 

of the area to treat with a computed tomography (CT) or magnetic resonance 

imaging (MRI) scan. Anatomies have to be segmented, and dielectric, temper- 

ature and perfusion properties have to be assigned. The 3 0  - patient model 

has to be generated and imported into the electromagnetic simulator. The 

applicator has to be positioned in the model and the electromagnetic distri- 

. bution and temperature will be computed and optimized. The treatment will 

be planned. Before the hyperthermia treatment can be performed, the ther- 

mometry is positioned to monitor the treatment area. After the treatment is 

conduced, all the procedure and results have to be analyzed for possible future 

improvements. 

Magnetic resonance (MR) guided hyperthermia is a hybrid system where the. 

temperature rise produced by the hyperthermia system can benon-invasively 

real-time monitored by the use of the proton resonance frequency shift (PRFS) 

method [42]. Research is being conducted to investigate algorithms for online 

hyperthermia system response to MR thermal imaging [43, 441. 

2.2. ISM Frequency Bands. 434 MHz 

When working on medical applications which require energy deposition into 

tissue, the frequency selection balances improved energy penetration depths by 

longer wavelengths against increased antenna dimensions and focus, although 

larger sizes can inhibit optimal proximity positioning at concaved areas of the 

body. 

Depending on the spectrum jurisdiction, hyperthermia applicators [9] have 

exploited frequencies in various Industrial Scientific and Medical (ISM) fre- 



quency bands (or similar) at  27, 434, 915 and 2450MHz. The longer wave- 

length of 434 MHz (A,= 0.690m) has shown a more uniform specific absorp- 

tion rate (SAR) distribution and a greater penetration depth than 915MHz 

(A,= 0.327m) [45] and 2450 MHz (A,= 0.122 m) [46]. Holt employed 434MHz 

throughout thirty years of successful cancer treatments [47]. However, when 

lighter-weight, low-permittivity dielectric substrates are used for lower fre- 

quency antennas, it is usually necessary to  increase the dimensions for efficient 

coupling from the longer wavelength resonant modes. This work is based on 

the frequency of 434 MHz. 

2.3. Dielectric Properties of Tissues 

The different water content of different body tissues determines their dielectric 

properties, and consequently the RF energy absorption [48]. Due to their water 

content, tissues are considered wet (skin and muscle) or dry (fat). 

The dielectric properties of a tissue are frequency dependent. ' ~ i ~ u r e  2.1 

shows the relative permittivity, Figure 2.2 the conductivity and Figure 2.3 the 

penetration depth for skin, fat and muscle tissue in the range of frequency 

from 100 to  1000 MHz [49]. 

It is shown that the permittivity decreases with frequency for the three 

tissues, but the fat presents a very low permittivity with little change in fre- 

quency. Skin and muscle present greater values of permittivity with a greater 

reduction rate at low frequencies. The conductivity increases with frequency 

and again it is shown that fat tissue presents the lowest values. Skin and 

muscle tissue present a similar increase rate. The penetration depth, or skin 

depth, 6 [m] ,  is defined as the distance within a material at  which the field 

reduces to  l / e  (approximately 36.78%) of its value at  the interface [50] and it 

can be calulated with the equation 
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Figure 2.1.: Permittivity of skin, fat and muscle tissue. 

where w is the angular frequency [l/s], p and E are the permeability [N/A2] 

and permittivity [F/  m] of the tissue, p=u/w& and u is the tissue conductivity 

[S/m]. The field amplitude decays exponentially when the depth increases. 

The penetration depth decreases with frequency and fat tissue presents the 

greatest values. In this case, the rate of decrease for fat is larger than for skin 

or muscle tissue. 

Dielectric properties of human tissue may vary signiiicantly among patients, 

tissue types and during treatment [43]. Normal and tumour tissues present 

different dielectric properties, and in general, tumour tissue presents greater 

conductivity and permittivity. For frequencies between 50 to 9OOMHz the 

differences between normal and tumour tissue for kidney were around 6% and 

4% for permittivity and conductivity respectively, while for mammary gland 

the differences were around 233% and 577% [51]. 

Other benefit of using hyperthermia as a medical treatment is that hyper- 

thermia increases the contrast between cancer and healthy tissue. Cancer 

tissue has enhanced energy absorption due to the higher water content with 

respect to their normal counterparts. A breast thermoacoustic CT of three pa- 
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Figure 2.2.: Conductivity o f  skin, fat and muscle tissue. 
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Figure 2.3.: Penetration depth of skin, fat and muscle tissue. 
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tients with known breast cancer showed increased energy absorption whereas 

no absorption enhancement was seen in two other patients who had a complete 

pathologic cancer remission after chemotherapy [52]. This increased contrast 

could facilitate tumour location and monitoring of the tumour regression with 

thermoacoustic CT or ultra wide bandwidth (UWB) imaging antennas. 

2.4. Antenna-Human Tissue Interaction 

Since the body has low permeability, the absorbing effect is principally asso- 

ciated with tissue permittivity losses. There are three principal ways in which 

energy can be transferred from an electric field to an absorbing object: 

Transfer of kinetic energy to free electrons, 

Friction associated with the alignment of electric dipoles with the internal 

electric field, . Friction associated with ionic and molecular vibrational and rotational 

rnotion associat,ed with the internal electric field. 

A lossy substance absorbs electromagnetic energy when it is exposed to an 

electromagnetic field. The more water or other "polar"molecu1es a substance 

contains per unit volume, the greater the loss, and the drier a substance is, 

the less lossy it is [53]. 

The interaction of an E-field with a tissue is described using its complex 

permittivity given by the equation 

where EO is the permittivity of the free space, E' (also represented by E,) is the 

real part or relative permittivity (dielectric constant), and E" is an indicative 

of the energy transferred from the incident E-field to the tissue. The larger E", 

the greater the loss in the tissue, and it can be calculated with the equation 
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Tissue 1 I Tissue 2 

Figure 2.4.: Normal and tangential E-field representation a t  the  interface 
between two tissues. 

where u is the tissue conductivity [S/m], and w is the angular frequency 

[l/s]. The E-fields can propagate between tissues and penetrate deeply into 
the adjacent tissue if the fields are tangential to the interface. However, the 

propagation is dependent on the tissue permittivit,y if the fields axe normal to 

the interface. This is known as boundary conditions and it is represented with 

the equations 

where Etl and Etz are the tangential field components, Enl and En2 are 

the normal field components and EI and cz are the permittivities, of the first 

and second tissue at both sides of the interface. Figure 2.4 shows a schematic 

representation of the tangential and normal E-fields at the interface between 

two tissues. 
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The power absorbed per unit of volume and time averaged can be described 

with the equation 

where o is the tissue conductivity [S/m], and IEl is the rms magnitude 

[V/ m] of the incident E-field in a point. 

2.5. Specific Absorption Rate 

The specific absorption rate (SAR) is an index that quantifies the rate of energy 

absorption in biological tissue. It is the power absorbed per unit of volume, P, 

in a tissue (equation 2.6) normalized to its density to have the ratio of power 

absorbed per unit mass of tissue, and it is proportional to the ratio between 

conductivity and density of the exposed tissue as shown in the equation 

where P is the power absorbed in the tissue [W]; p is the mass density of 

the medium [kg/ m3], CJ is the electrical conductivity [S/m], and IEl is the rms 

magnitude of the electric field strength vector [V/ m]. 

The dielectric parameter values at 434MHz for fat (ofat = 0.041 S/m and 

pfat=916 kg/ m3) and muscle (cJ,,,,~, = 0.805 S/m and p,,,,l,=1041 kg/ m3) 

[49] cause that the SAR in fat tissue is 5.78% of the SAR in muscle tissue for 

the same incident E-field. The SAR is expressed ill watts per kilogram [W/kg] 

and it is generally quoted as a figure averaged over a volume corresponding to 

either 1 g or l og  of body tissue [53]. 

The SAR can be determined by E-field measurements at a point, as shown 

in the equation 2.7 or by the rate of temperature increase as shown in equa- 

tion 2.8. This is only if the measurements are made under "deal" conditions, 

where the heat transfer or blood flow is not considered. This equation is not 

valid for in-vivo exposure conditions. . . 
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CAT 
S A R  = - at ' 

where C is the specific heat capacity of the exposed tissue [J/kg/"C], AT is 

the change in temperature ["C 1 ,  and and At is the exposure duration [s]. 

2.6. Temperature 

The increase of temperature inside the human body is determined for two 

factors, absorbed and lost energy. The absorbed energy is a function of the 

frequency of operation, incident E-field, and dielect,ric properties of the tissue. 

The lost energy is a function of the generated blood flow in the tissue and the 

conduction of heat. 

A waterbolus is a bag filled with circulating water, whose temperature call 

be controlled. In superficial hyperthermia, the waterbolus is positioned inter- 

facing the skin and has the functions of enhancing the transfer of energy into 

the tissue and to control the skin temperature. 

The Pennes bio-heat equation [54] (equation 2.9) is used to calculate the 

temperature rise in the exposed human tissue. Heat exchange mechanisms 

such as blood flow, heat conduction, metabolism heat and electromagnetic 

heating are considered in this equation 

where p is the material density [kg/m3], C is the specific heat capacity 

[J/kg/"C], T is the variable quantity of temperature ["C ] a t  a time t [s], K 

is the thermal conductivity [ W/ m/ "C], pblood is the blood density [kg/m3], 

w is the perfusion by blood [ml/lOOg/min], Cblood is the blood heat capacity 

[J/kg/"C], T,,,, is the blood temperature ["C 1 ,  Qm is the heat generated by 

metabolism [ W/ m3]. 
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The boundary condition between the body model (skin) and the surrounding 

air or waterbolus is given by the equation 

where 6n is the vector unit normal to the skin, h is the convection coefficient 

[W/  m2/"C] and TA is the air (or waterbolus) temperature 1°C 1 .  
The time step must be chosen based on all materials used in the calculation 

and is determined with the equation [55, 561 

where A, [ m  ] is the smallest cell size in the geometry, and B is the blood 

flow constant [W/m3/"C] which is determined with the equation 

The simulation platform initially solves the Pennes bio-heat equation (equa- 

tion 2.9) without considering the external sources, only as the metabolism 

heats the tissue and the blood flows to cool the tissue. This process is itera- 

tively repeated until a steady state is reached. 

The temperature of the tissues a t  the steady state would be considered as 

the baseline. Then, the Pennes bio-heat equation is solved again considering 

the absorbed energy with the SAR term. The temperature rise is the difference 

between the calculated temperature or baseline and the temperature with the 

addition of the SAR term [56]. 

In order to properly control the treatment, the temperature inside the tu- 

mour has to be monitored. To monitor this internal temperature, usually mi- 

crothermometers are inserted through the skin into the tumour [16]. However, 

the probability of metastases developing might increase with the disruption of 

blood vessels if probes are inserted into the tumour or the heat is delivered 

invasively. 
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2.7. Modeling and Simulations 

The commercially available electromagnetic simulators CST MWS [57] and 

XFDTD 1581 were used to model the antennas and the body anatomies. Both 

simulators provide a user-friendly computer aided design (CAD) environment 

to generate the different geometries. CST is based on the Finite Integration 

Technique (FIT) whereas XFDTD is based on the finite difference time domain 

method (FDTD). 

Both FIT and FDTD are time domain solutions of Maxwell's equations 

whose origins call be traced ill the work of Yee in 1966 [59]. The FIT was first 

proposed by Weiland in 1977 1601 and the FDTD was proposed by Taflove in 

1980 [61]. In both methods the entire computational domain is divided into 

cells that form the mesh. The equations in integral and differential form are 

solved in the FIT and FDTD method respectively, to calculate the field on 

the edges of each mesh cell. While manual subgriding has to be used in the 

FDTD method to improve the accuracy at  the boundaries, adaptive automatic 

meshing is provided with the FIT method. 



3. Hyperthermia Antenna 

Development 

D IFFERENT antennas have been employed for medical use, both for diag- 

nostic and/or therapeutic applications. A novel compact patch antenna for 

hyperthermia applications has been developed and the design evolution is pre- 

sented. 

In this chapter antennas for medical applications and hyperthermia antenna 

design requirements are introduced. While there are increasingly sophisticated 

hyperthermia systems, this work is focused on a single applicator, which is low 

cost and easy to  manufacture. Pursuing the requirements criteria, a com- 

pact patch antenna is developed. The design evolution and analysis of the 

feed point locatioli, E-field and SAR distribution are presented. The antenria 

groundplane features and actual antenna geometry are depicted. In this chap- 

ter the geometry of the antenna is presented, while the next chapter compares 

the proposed antenna with clinically used and previously published applica- 

tors. 

3.1. Antennas for Medical Applications 

The use of antennas in medical applications [62], tissue parameters analysis [63] 

and epidemiological studies has been the research topic of many investigators 

in the last few years [64]. The main requirement in many medical applications 
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is that the electromagnetic energy is coupled into deeper tissues of the body 

without damaging the skin and superficial tissues [65]. Energy deposition can 

penetrate deeper at low frequency (see Section 2.3) but the large wavelength 

produces that energy cannot be localized to small areas and consequently, large 

regions are heated. At low frequencies, the applicator will be electrically small 

if its physical size is manageable, and the near-field can overheat the superficial 

tissues. 

Medical application antermas call be classified into two groups: i n f o r ~ ~ ~ a -  

tion transmission and therapeutic antennas. Radio frequency identification 

(RFID), wearable or implantable monitors, magnetic resonance imaging (MRI) 

and microwave imaging for breast cancer detection are some of the most in- 

vestigated information transmission applications. Various waveguide and horn 

apertures have been used in microwave imaging systems [65]. Thermal therapy 

such as hyperthermia or thermoablation are some of the therapeutic applica- 

tions. 

Hypertl~ermia antennas can be classified into non invasive and invasive [65]. 

Son invasive or not penetrating antennas can be classified into E-type, H-type 

and radiative applicators. E-type applicators mai~lly produce elect,ric fields 

that heat the tissue. Capacitor plates are examples of E type  applicators [66]. 

These applicators operate at the relatively low frequencies of 13.56MHz or 

27.12 MHz and can heat deep tissue but they produce large ~lorlr~al field COIII- 

ponents which can overheat the superficial and interfacing tissues. H-type a p  

plicators primarily produce a magnetic field, which in turn induces the Efield 

that heats the tissue. Coaxial current loops are examples of H-type applica- 

tors [67]. Eddy currents circulate around the axis of the loop and the heating 
" 

in the centre is very snlall. Relatively high currents are usually needed to get 

adequate heating, but the advantage over E-type applicators is that they pro- 

duce tangential Gfield components which prevent overheating of superficial 

and interfacing tissues. Waveguide and microstrip antennas are very common 

radiative applicators. Waveguides are simple and can be loaded with dielectric 

to improve the impedance matching, but for compactness and weight, mi- 



3. Hvoerthermia Antenna Develo~ment 

crostrip applicators have a fundamental advantage. Invasive or intracavitary 

applicators can efficiently heat specific locations but the intrusive nature is 

not practical for all tumours. Coaxial antennas are inserted into a catheter to 

avoid the contact between the antenna and the tissue, and then located inside 

the tumour mass [29, 681. Ferromagnetic particles can be injected into the tu- 

mour tissue and if they are stimulated with an alternating magnetic field they 

produce heat due to Brownian and Nee1 relaxation process. This approach can 

be specially indicated for deep-seated and poorly accessible tumours [69]. 

3.2. Hyperthermia Antenna Requirements 

Distance related losses (DRL) and mismatch losses (ML) are two limitations 

that need to be considered when working with antennas for medical applica- 

tions. The antenna has to be close to the tissue to have the minimum possible 

DRL and provide the highest amount of energy into the tissue. On the other 

hand, the antenna normally has to be far from the tissue to have the minimum 

possible ML and detuning the antenna operating frequency [70]. The human 

body presents a high permittivity complex load (variable tissues of different di- 

electric properties) to an antenna when located in its near-field and can detune 

the antenna from the system frequency and impair the coupling performance. 

In practical clinical applications selecting the appropriate distance between 

antenna and human body is a critical task. 

An antenna that remains sufficiently matched to the source frequency dur- 

ing unloaded and variably-loaded conditions can simplify the overall system 

stability [62]. The applicator will be suitable for various tissue loads while the 

system source, typically 50 - GOdBm, will have reduced vulnerabilit,y to de- 

structive power reflections. Conventional applicators exhibit tissue-dependent 

or distance-dependent matching performance. A suitable hyperthermia appli- 

cator has to provide good matching without detuning from the operational 

resonant frequency. 
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Deeper energy deposition requires low frequency of operation. The frequency 

of operation is inversely proportional to the antenna size. This compromises 

the suitability of the antenna to treat tumours located in curved sites of the 

human body and the antenna efficiency when miniaturizing the geometry. The 

antenna must couple well with tissue despite its small size. In order to produce 

elevated temperatures, the applicator has to generate high SAR at the required 

depth in tissue, and in order to limit overheating of the superficial tissues and 

t,issue interfaces, the applicator should produce tailgelltial Efields that can be 

transferred from one interface to the next. 

An unbalanced input connection to the antenna facilitates simple feed sys- 

tems as they do not require balanced-to-unbalanced (balun) transitions which 

can increase volume and incur loss [70]. In order to facilitate manageability 

in a clinical environment the applicator has to be low weight, low cost and 

easy to manufacture. Reducing the complexity of the hyperthermia system 

can facilitate its use by non antenna experts clinicians. 

Knowing that the effect of the human body can change the performance 

of the antenna, strategies are needed to maintain the detuning resilience at 

the resonant frequency. The antenna network matching impedance [71] is de- 

pendent on antenna-tetissue distance, waterbolus dimensions; human body 

region and patient anatomy. Dielectric stepped impedance has been previ- 

ously reported [72] ,  but this method increases the weight, volume and cost 

of the hyperthermia system. If the applicator operational band can be in- 

creased, the detuning becomes less of an issue as long as the detuned band 

is still within the system resonant frequency [73]. Using geometries which al- 

low distance-dependent mode changes to occur can facilitate current paths for 

differelit loactii~g conditions witliout detuning tlie operatioiial frequellcy. For 

wire antennas with only one possible current path (i.e. dipole or loop) this is 

not possible. 
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3.3. Compact Patch Antenna 

3.3.1. Compact Patch Antenna Design Steps 

The basic element chosen for the antenna design was a microstrip patch an- 

tenna. Different miniaturization, input impedance and bandwidth enhance- 

ment techniques have been used in the design of the proposed applicator. The 

antenna was initially designed in free space conditions, and later optimized 

next to  a waterbolus interfacing simulated human tissue. 

Initially, the antenna evolved from a circular patch to an annular ring patch 

antenna. The circular patch antenna presents a fundamental resonant fre- 

quency of [74]: 

2h 
ae = GCP [ I +  - (In (y) + 1.7726)] l i 2 ,  

TaCpEr 
(3.2) 

where Q is the speed of the light in the vacuum, E, is the dielectric constant 

of the substrate, h is the substrate thickness [em], a, is the effective radius 

to account the fringing that makes the patch look electrically larger [em], and 

a c p  is the physical radius of the circular patch [cm]. 

The fundamental resonance frequency for the annular ring patch antenna 

can be calculated with [75]: 



3. Hyperthermia Antenna Development 

Figure 3.1.: Geometry of the (a) circular patch and (b) annular ring patch 
antenna. 

where ~ ~ ~ f f - ~ ~ ~ - " ~ ~  is the effective dielectric constant, and aARp [cm] and 

bARp [cm] are respectively the inner and outer radius of the annular ring patch. 

Figure 3.1 shows the geometry of the simulated circular and annular ring 

patch antennas resonant at 434MHz. The antennas are modelled on Taconic 

RF 35 (E, = 3.5) dielectric substrate of thickness h = 2.97mm. The ground- 
plane extends beyond the outer radius of the circular patch and annular ring 

models by 3 mm. 

The conventional circular patch antenna has the specifications: a circular 
patch radius, w p ,  of 107mm and a groundplane length of 220mm. The con- 

ventional annular ring patch antenna has the dimensions: an annular ring 

patch inner radius, a m ,  of 27mm, an annular ring patch outer radius, bARp, 
of 97mm and a groundplane length of 200mm. The feed point is located at 

the rectangular coordinates x = y = -20- for both antennas. The area of 

the annular ring antenna is 17.35% smaller than the area of the circular patch. 

Loading the annular ring with a circular patch as shown in Figure 3.2 (a) 

further reduces the circular patch area up to 23.83%, however this antenna is 
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Figure 3.2.: Geometry of the (a) annular ring with concentric circular patch 
and (b) annular ring with concentric circular patch and gmund- 
plane slots antenna. 

difEcult to match to 50Cl input impedance without a feeding network. The 
dimensions of this antenna are: an annular ring patch inner radius, a a ~ p ,  

of 32mm, annular ring patch outer radius, bARP, of 93mm, circular patch of 

radius, c ~ p ,  20 mm and a groundplane length of 192 mm. 
The addition of a c r d  slot and a circular slot in the groundplane as shown 

in Figure 3.2 (b) was the next step in the antenna evolution. The crossed 
slot forces the surface current to be meandered and affords an antenna area 

reduction of 65.08% with respect to the conventional circular patch. Not only 
do the crossed slots in the groundplane enable miniaturisation, but they also 

provide wide bandwidth and resilience to proximity detuning. The circular slot 

improves the antenna input impedance. A detailed geometry of this proposed 
applicator is presented in Section 3.4. 

The general annular ring dimensional design strategies are that increasing 
the outer radius of the annular ring produces a reduction of the resonant fre- 

quency and improves the matching, whiie enlarging the inner radius of the 
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Figure 3.3.: Antenna evolution progress. (a) Circular patch, (b) annular 
ring. (c) annular ring with concentric circular patch and (d) an- 
nular ring with concentric circular patch and groundplane slots 
antenna. 

annular ring reduces the resonant frequency but degrades the antenna match- 
ing. increasing the circular patch radius improves the matching but increases 

the resonant frequency. 

Figure 3.3 shows the antenna miniaturization evolution process considering 

a 130 mm x 130 mm groundplane, circular patch or annular ring outer radius of 
62 mm and feed point located at the rectangular coordinates x = y = -10mm. 
Figure 3.3 (a) presents the circular patch antenna. Figure 3.3 (b) shows the 

annular ring geometry with an annular ring patch inner radius, a ~ ~ p ,  of 12 mm. 
Figure 3.3 (c) presents the annular ring applicator of dimensions: an annular 

ring patch inner radius, aaRp, of 51 mm and a circular patch of radius, ccp, 

42mm. Figure 3.3 (d) presents the annular ring applicator with concentric 

circular patch and rectangular and circular slots in the groundplane. 
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Figure 3.4.: Simulated free space S l l  for the different models of the minia- 
turization evolution. CP (circular patch), AR (annular ring), 
AR-CCP (annular ring with concentric circular patch). AR-CCP- 
GPS (annular ring with concentric circular patch and ground- 
plane slots) antenna. 

The S11 of these progressively more complex models (Figure 3.3) is shown 

in Figure 3.4. The circular patch antenna presents a resonant frequency of 
732.8MHz. When the circular patch evolves into an annular ring the rese 

nant frequency decreases by 3%. If a concentric circular patch is added at 
the annular ring geometry the resonant frequency decreases by 32.72% of the 

circular patch resonant frequency. Adding a crossed slot and a circular slot in 

the groundplane further reduce the resonant frequency by 40.77%. 

3.3.2. Feed Location, E-field and SAR Analysis 

Further analysis shows that in the annular ring with concentric circular patch 

and groundplane slots antenna, locatin the feed point in the annular ring as 
opposed to locating the feed in the circular patch produces different antenna 

performance, improving the matching and broadening the bandwidth for both 
the free space and tissue-loaded condition. The free space S11 of the two 
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Frequency, MHz 

Figure 3.5.: Simulated free space S l l  for the AR-CCP-GPS antenna with 
circular patch fed and annular ring fed. 

approaches with circular patch feed at the rectangular coordinates x = y = 

-10mm and annular ring feeding at the rectangular coordinates x = y = 

-40 mm is shown in Figure 3.5. 

The S l l  at 434 MHz is -11.21 dB (with a -6 dB bandwidth from 433.57 to 

435.17MHz, 0.36%) for the circular patch fed (CPF) antenna and -15.78dB 

(with a -6dB bandwidth from 432.41 to 435.24MHz, 0.65%) for the annular 
ring fed (ARF) antenna. The ARF antenna presents a real part of the input 

impedance between 37 and 57 0 across the -6 dB bandwidth, while for the CPF 

antenna the minimum input impedance is 720. 

As the operational situation of this antenna is to work in close proximity to 
human tissue and produce tangentially aligned Efields to increase penetration 

and prevent overheating superficial or interfacing tissue, the two antenna feed 

approaches were evaluated when the antenna was loaded with simulated human 

muscle tissue at 2.7mm (Xo/256) from the antenna. The S l l  (Figure 3.6) 
at 434 MHz is -5.58 dB (with a -6dB bandwidth from 401.1 to 432.5 MHz of 

7.53%) for the CPF antenna and -7.69 dB (with a -6dB bandwidth from 424.1 

to 480.8 MHz 12.53%) for the ARF antenna. 



3. Hyperthermia Antenna Development 

Frequency, MHz 

Figure 3.6.: Simulated 511 fwthe AR-CCP-GPS antenna with circular patch 
fed and annular ring fed when located at 2.7 mm from simulated 
muscle tissue. 

Figure 3.7 and Figure 3.8 show the tangential Efield and SAR distribution 

cr-section for the circular patch and annular ring patch antennas for 2.7mm 
antenna-tissue distance normalized to 1W of antenna input power. The cross- 
section corresponds with a plane through the feed point and antenna centre. 

The circular patch fed antenna produces a tangential Efield distribution 
with two hot spots near the surface. However the annular ring fed antenna 

generates a tangential Efield distribution focused at the patch centre and 
achieves the highest coupling penetration into the tissue. Evidence of some 

reflection from the far tissue boundary can be seen in Figure 3.7. 

The circular patch fed antenna SAR distribution (Figure 3.8 (a)) is charac- 

terized by large values at the superficial tissues with two hot spots on deeper 

tissues. The annular ring fed antenna (Figure 3.8 (b)) presents a low SAR dis- 

tribution on the superficial tissues with SAR concentrated and focused at the 

pa~ch centre for deeper tissues. At superficial tissues larger SAR is achieved 

with the circular patch fed antenna and at deeper tissues enhanced SAR is 
attained with the annular ring fed antenna. The l g  averaged spatial peak 
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Figure 3.7.: Tangential E-fields crossection for the AR-CCP-GPS antenna 
for 2.7 mm antenna-tissue distance and through the feed point 
and the antenna centre for (a) circular patch fed and (b) annular 
ring fed antenna. 

Figure 3.8.: SAR cross-section for the AR-CCP-GPS antenna for 2.7 mm 
antenna-tissue distance and through the feed point and the an- 
tenna centre for (a) circular patch fed and (b) annular ring fed 
antenna. 
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Figure 3.9.: Simulated free space 511 for the AR-CCP-GPS antenna with 
different groundplane crossed slot lengths (L1 and L2). 

SAR is 1.39 W/kg and 2.03 W/kg for the circular patch fed and the annular 

ring patch fed antenna, respectively. 

3.3.3. Crossed Slots Dimensions Analysis 

A parametric study of the crossed slots showed that the optimum dimensions 

for L1 and L2 are 106mm and 108mm, respectively. Figure 3.9 shows the 

free space S11 of t,he anternla for different combiiiat,ioiis of L1 and L2. When 

the slots have equal length of 106mm the antenna detunes to 443MHz with 

very poor matching. When the slots have equal length of 108 mm; the antenna 

resonant frequency is at 434MHz with again very poor matching. Offsetting 

the slots lengths (L1 = 106 mm and L2 = 108mm or L1 = 108 mm and L2 = 

106 mm) produces a phase differei~ce 011 the slot tip currents and eiihances the 

antenna matching at the 434 MHz resonant frequency. 



3. Hyperthermia Antenna Development 

50 f l  Feed 

Figure 3.10.: Proposed compact patch AR-CCP-GPS antenna (a) the front 
annular-ring/patch surface and (b) the rear gmundplane/slots 
surface. 

3.4. Geometry of the Proposed Compact Patch 

Antenna 

The proposed compact patch antenna geometry is shown in Figure 3.10. This 

applicator comprises a circular patch of radius QP, a concentric annular ring 

of inner radius aARp and outer radius b ~ ~ p ,  on 130mm x 130mm x 2.97mm 

of Taconic FW 35 dielectric substrate (E, = 3.5). The groundplane extends 

to the four edges and has two rectangular slots, of width w, that intersect 

an impedance matching circular slot, of radius dcs, positioned concentrically 

behind the circular patch. The rectangular slots have unequal lengths L1 and 

L2. The optimized dimensions are: ~p = 42mm, a A R p  = 51mm, bAm = 

62mm, dcs = lOmm, L1 = 106mm, L2 = 108 mm, w = 4mm. The 50 R 
feed is in the concentric annular ring at the rectangular coordinates x = y = 

-40mm and the centre of the circular patch coincides with the coordinate 

origin. 

The antenna frequency is adjusted by coupling resonant currents on the 

circumferences of the circular patch and the annular ring. The orthogonal 
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groundplane slots disrupt the resonant currents on the circular patch and an- 

nular ring to reduce the overall patch dimensions. Offsetting the slot lengths, 

L1 and L2, increases the bandwidth, and broadening the slot widths, w, re- 

sults in a second-order enhancement for the Q-factor. The lengths and width 

of the slots were iteratively optimized to prevent mismatch and for antenna 

resonant frequency stability when in free space and when loaded with tissue. 

Positioning the feed point in the annular ring matches the antenna with 

50 R and creates a SAR pattern that converges concentrically as opposed to 

locating the feed in the circular patch, which produces a lower and diverging 

SAR distribution. 

3.5. Conclusions 

Antennas for medical applications with emphasis on hyperthermia antenna 

types have been introduced in this chapter. The design of a novel compact 

patch for superficial hyperthermia treatment has been described. The evolu- 

tionary process of the proposed antenna has been described following the de- 

sign criteria. Starting from the conventional circular patch antenna, evolving 

into an annular ring and subsequent annular ring with embedded concentric 

circular patch, the proposed compact patch antenna has been designed and 

developed. The proposed compact patch antenna area is 34.92% of the size of 

the conventional circular patch applicator. The design overcomes the geomet- 

rical constraints of other applicators. An analysis of the feed point location in 

terms of matching, E-field and SAR distribution shows that locating che feed 

point in the annular ring patch as opposed to the circular patch improves the 

matching, produces deeper tangential Efields illto the tissue located at close 

distances from the antenna, and generates greater and focused SAR aligned 

with the antenna patch centre. In the next chapter, the compact patch an- 

tenna is assesed with other previously published approaches and loop, dipole 

and square patch antennas in terms of energy deposition into the tissue. 
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Assessment 

s INGLE element loop, dipole and conventional square patch antennas have 

been used as hyperthermia applicators in the treatment of cancerous human 

cells at  superficial depths inside the body. 

In this chapter, the performance of the novel compact patch antenna, which 

geometry was presented in the previous chapter, is assessed with that of the 

loop, dipole and conventional square patch when the antennas are located at  

very close proximity to  a body tissue numerical model. The compact patch 

antenna produces an enhanced specific absorption rate pattern without signif- 

icant frequency detuning or impedance mismatch. For computation efficiency 

and clarity in the syntl~esized hvpertller~nia treatment co~~ditions, sinlplified 

planar tri-layered tissue models interfaced with a waterbolus are used to study 

the permittivity loading on the antennas and the resultant specific absorption 

rates. 

4.1. Introduction 

A patient's sensitivity to contact pressure by an applicator relates to the sever- 

ity of the tumour growth and their tolerance is increased if the device is light- 

weight. Similarly, smaller antenna dimensions allow a better fit to concave 

anatomical areas and can minimize power loss due to separation distance from 
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the tumour region. When in close proximity to a patient, the antenna per- 

formance is dependent on several influences. The waterbolus [26, 76, 771 and 

the patient's tissue [78, 791 impose a bulk load of high permittivity on the 

antenna's radiating near-field regions. The thicknesses and depths of the con- 

stituent skin, fat and muscle layers in human tissue alter considerably across 
the body and among patients [8(t82]. 

While hyperthermia array applicators [70, 831 with sophisticated control 
systems [84,85] offer advanced targeting for treating different cancers, a range 

of complementary single element designs continue to offer simple solutions [86]. 
Various 434MI-h single element applicator types have been reported and l /e2 
(13.53%) of the peak SAR or temperature values are used to compare the 
penetration depths for the following references. The theoretical penetration 

depth due to a 120mm x 160mm dielectrically loaded waveguide aperture was 

~ 5 3 . 8 -  in [87]. By substituting the dielectric with water to overcome tissue 

hotspots close to the aperture, an applicator size was further reduced to 28 mm 
x 56mm and achieved -33mm penetration depth [88]. While the aperture 
efficiency of these approaches its desirable, the cumbersome dimensions of 

practical implementations would also have to be considered. The deposited 

energy area was enhanced by a 100 mm x 100 mm flared horn aperture with 

dielectric inserts and while applicator volume and weight remained large, the 

penetration depth improved to -36mm [26]. The analytical optimization of a 

90.3 mm x 125.5mm water-loaded modified box-horn in [46] further enhanced 

the SAR penetration depth to 40.1- but increased the applicator volume. 

Microstrip solutions offer several ergonomic advantages over waveguide and 
horn approaches [89, 901. A 434MI-h microstrip shorted loop on a circa 

87 rnm groundplane with 3.2 mm profile was optimized for ~ 2 8  mm penetration 

depth [27]. To reduce an applicator size, a higher permittivity design resulted 

in a rectangular printed patch on a 50mm x 70mm x 25mm, E, = 80 sub- 
strate [91] with a similar penetration to [27]. A 5.5mm profile microstrip 
applicator with a 150mm x 160mm dipole-like radiator produced a larger 

aperture of tangential Efields and a penetration depth of ~ 1 4 m m  [86]. 
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The dominant energy deposition patterns due to applicators in 126, 27; 91- 

941 are considered with homogeneous body tissue numerical models but the 

effects of superficial hotspots due to inhomogeneous models with fat layers 

should not be discounted [87]. Tr-layered skin-fat-muscle tissue models with 

fixed layer thicknesses [46, 881 have provided further detail but do not quantify 

the effects for the range of layer thickness in human tissue. 

The novel 434 MHz compact patch antenna which geometry was presented 

in the previous chapter contains the shapes of a loop, dipole and square patch 

designs. The simulated analysis contrasts the compact patch with these basic 

antenna elements and the applicator performances are assessed with SAR > 
0.5 W/kg for variable skin-fat-muscle tissue layer thicknesses. The frequency 

detuning due to different separation distances from the load is also consid- 

ered. The proposed compact applicator remains ergonomically shaped while it 

achieves a deeper SAR penetration than the aforementioned referenced designs 

and is insensitive to variations in tissue layer thicknesses and to variations in 

the proximity from the tissue models. 

4.2. Materials and Methods 

4.2.1. Antenna Geometries 

Despite being optimized for unloaded far-field performance at 434MHz, treat- 

ment clinics have successfully used loop [47, 951, dipole [83] and conventional 

square patch [96] applicator designs. In this chapter the performance of those 

previously published applicators is assessed with the proposed compact patch 

antenna whose geometry was described in the previous chapter. 

The full-wavelength wire loop antenna dimensions are a loop inner radius 

of 113.5 mm, a loop outer radius of 115.5 mm and a feed gap of 1.8 mm. The 

half-wavelength wire dipole antenna has the specifications: a wire length of 

324.8mm, a wire radius of l.Omm and a feed gap of 1.8mm. The half- 

wavelength square patch antenna [74] has the dimensions: a patch length of 
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182 mm and a groundplane length of 232 mm on Taconic RF 35 (E, = 3.5) di- 

electric substrate of thickness 2.97mm. The radiating patch and groundplane 

are centered on the origin of the rectangular coordinate system atid the offset 

feed point is located at x = 0, y = 37.5mm. 

When loaded by the tissue models, the 434MHz resonant lengths on the 

loop and dipole wire antennas become shorter than the mechanical (free space) 

dimensions. Consequently, their effective electrical lengthening produces anti- 

phased currelit reflectiolls that superirripose 0x1 the shortened resonances tso 

reduce the radiating efficiency. To repalr the radiating efficiency of the wire 

antennas next to the tissue loads, the shortened loop and dipole antennas 

were also compared. The short-loop inner radius is 76.5 mm and outer radius 

is 78.5mm. The short-dipole length is 239mm and both geometries have a 

feed gap of 1.8 mm. 

4.2.2. Waterbolus and Body Tissue Numerical Model 

Parameters for inhomogeneous body tissues are defined [97] and whole-body 

electromagnetic models with highly resolved and detailed subterraneous ge- 

ometries [98, 991 exist for in-silico analysis (1001. To minimize con~putational 

resources and for clarity, a tri-layered tissue model was used. The inhomo- 

geneous planar tissue model represents the skin, fat and transverse fiber of 

muscle [I011 and a waterbolus containing de-ionized water was added at  the 

skin interface for superficial tissue cooling. The model dielectrically loads the 

antenna fields and renders the principal SAR pattern due to the coupled energy. 

Table 4.1 details the dielectric parameters of relative permittivity (E , ) ,  conduc- 

tivity (u S/m) [49] and density ( p  kg/m3) [I021 at 434 MHz. The square side 

dimension of the waterbolus and tissue model was 458mm (5 x A,), where 

A, is the wavelength inside the muscle. The thickness of the tissue models 

was limited to 100mm, since the muscle layer depth had sufficient losses to 

discount reflections that would otherwise occur from inhomogeneous features 

in full body numerical models [loll .  
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Table 4.1.: Permittivity, conductivity, density and thickness of tissue material 
for 434 MHz. 

Permitivity Conductivity Density Body tissue layer summed 
1 ~ ~ 1  [a ,  S/m 1 [P, kg/m31 t o  100 mm thickness [mm] 

Water 76.00 0.001 1000 5.0 5.0 5.0 5.0 5.0 5.0 

Skin 46.05 0.702 1100 0.4 0.4 0.4 2.6 2.6 2.6 

Fat 5.566 0.041 916 0 15 30 0 15 30 

For all body regions, the skin thickness ranges from minima at the thorax, 

abdomen, spine and limbs in children to maxima at the adult thorax [82]. 

In this study, the lower and upper limit skin layer thicknesses of 0.4mm 

and 2.6mm were considered. If obese conditions are disregarded, fat stor- 

ing adipose tissue thicknesses range from Omm to 23.2mm [go]. To account 

for greater variations [103], fat layer thicknesses of Omm, 15mm and 30mm 

were evaluated. The waterbolus was 5 mm thick. Figure 4.1 shows a schematic 

representation of the antenna and the layered tissue model. 

4.2.3. Methodology 

The key performance criterion for the antennas is the efficient transfer of en- 

ergy into the layered tissue models. The antenna input impedances, resonant 

surface currents and the electric near-fields were analyzed to il~terpret the ba- 

sis for the SAR responses due to the four basic applicator types. Practical 

distances between the antenna and waterbolus which corresponded with frac- 

tional wavelengths were selected. Evaluation studies for all of the antennas 

were made at 43.2mm (Xo/16), 10.8mm (Xo/64), 8.1 mm (3A0/256): 5.4mm 

(2X0/256) and 2.7mm (X0/256) with each of the various combinations of tri- 

layered tissue thicknesses which are summarized in Table 4.1. 

Using a 3.4 GHz PC with 4 Gbytes of RAM, the applicator geometries were 

modelled in CST MWS [57]. Memory requirements ranged from 224 Mbytes for 
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WB Antenna 

Figure 4.1.: Anntenna and layered tissue model. 

the dipole near the waterbolus and body tissue numerical model combination 
to 551 Mbytes for the square patch. Figure 4.2 illustrates good agreement 

between the numerical and measurement result for the compact patch when 

placed 5.4mm from a load consisting of a waterbolus and homogeneous 10 g/l 

saline solution liquid [70]. 

4.3. Results and Discussion 

The illustrated results are a review of the experiments that investigate the 

modelling accuracy and compare the different antenna types by considering the 

frequency detuning and matched impedance stability, the patterns of electric 

field intensity and the resultant specific absorption rate patterns, normalized 
to 1 W of antenna input power. Figure 4.3 - Figure 4.9 show the tissue loading 

conditions in the various parameter studies due to an intermediate dimensioned 

body tissue numerical model with 2.6- skin, 15 mm fat and 82.4mm muscle. 
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Figure 4.2.: Simulated and measured 511 with homogeneous 10g/l saline 
solution liquid for the compact patch antenna. 

4.3.1. Matched Impedance 

The S11 simulations in Figure 4.3 - Figure 4.4 are used to compare the an- 

tennas for frequency detuning stability and their matched impedance. The 

antenna-waterbolus distance of 43.2 mm does not significantly detune the free- 

space dimensioned antennas from 434 MHz but the short-loop and short-dipole 

resonate at frequencies that are too high. The impedance match of the compact 
patch resonant frequency remains sufficient stable when the separation distance 

is reduced by a small wavelength fraction of 40.5mm (&/17) to 2.7mm. The 
other antenna designs exhibit a higher sensitivity to this change in permittivity 

loading. 

4.3.2. Electric Field Patterns 

The electric field patterns for the different antenna types at 2.7mm distant 

from the waterbolus and tissue model are shown in Figure 4.5. In the case of 
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Frequency, 

Figure 4.3.: Simulated S l l  for 43.2 mm antenna-waterbolus distance. 

-1 8 11 -&&pt~h 1 
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Figure 4.4.: Simulated 511 for 2.7rnm antenna-waterbolus distance. 
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the loops, the flux lines curve with the circumferences and are tangential to 

the skin surface. The short-loop has a greater intensity and consequently a 

greater coupling compared with the detuned full-wavelength loop. Similarly, 

the dipole field patterns are tangential with the skin but the intensity of aligned 

fields exceeds that of the loops. The shorter, tuned dipole produces a deeper 

tissue penetration distributed along the structure. The conventional square 

patch presents fields normal to the tissue and results in the weakest coupling. 

The cornpact patch electric field pattern is a converging distribution of tali- 

gential fields focused at the patch center and it achieves the highest coupling 

penetration into the tissue. In general, inspection of antenna geometries and 

the electric fields next to the tissue show that higher coupling corresponds 

with an increased aperture of tangentially distributed fields. 

4.3.3. Specific Absorption Rate Patterns 

Tlle plots show the skin surface profile and the cross-section; in Figure 4.6 

and 4.7 due to the applicators being 2.7mm distant and in Figure 4.8 and 4.9 

due to compact patch at various distances. The scale is clamped at 1 W/kg 

for finer resolution illustration of the lower and medium SAR patterns. 

By inspection, Figure 4.6 (a, b) shows that SAR profiles of the loop and 

short-loop align to the circumference of the wire elements and that the peak 

values, 0.27 and 0.54 W/kg respectively, are located near the feed points. Un- 

der the loaded conditions, the shorter loop sustains an even distribution of 

energy with 3.66cm2 at the SAR> 0.5 W/kg threshold; while in contrast, the 

shortened resonant current length on the larger loop produces a very low SAR 

diagonally opposite the feed. Figure 4.6 (c; d) illustrates that the dipole and 

short-dipole elements have larger patterns, 6.79 cm2 and 89.44cm2 respectively, 

a t  the SAR> 0.5 W/kg threshold. The peak values, 0.52 and 0.95 W/kg re- 

spectively, are centered on the feed points. SAR patterns due to the conven- 

tional square patch and the compact patch are illustrated in Figure 4.6 (e, 

f ) .  In the square patch, the radiating edge adjacent to the feed point domi- 
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Figure 4.5.: Electric field crowsection for 2.7mrn antenna-waterbolus d is  
tance. (a) Loop, (b) short-loop, (c) dipole, (d) short-dipole, 
(e) conventional square patch and (f) compact patch antenna. 
Plots (a) - (b) in the plane y = O m m ,  plots (c) - (e) in the 
plane z = O m m  and plot (f) in the plane rp = 45". 
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Figure 4.6.: SAR at tissue surface for 2.7 mm antenna-waterbolus distance. 
(a) Loop, (b) short-loop, (c) dipole, (d) shortdipole. (e) con- 
ventional square patch and (f) compact patch antenna. 
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nates the SAR. profile while the pattern due to opposite edge is reduced. Peak 

values are less than 0.07W/kg and a large null exists in the patch centre. 

The SAR> 0.5 W/kg profile of the colrlpact patch is do~riinant at the two lo- 

cations where a diagonal line through the origin ((0=45') intersects with the 

loop aperture. The area covered is 91.52cm2 and the peak value is 1.32 W/kg. 

Figure 4.7 illustrates the absorption patterns of the peak SAR body tissue 

numerical model cross-sections for each of the antennas. Shortening the loaded 

loop antenna circumference (Figure 4.7 (a, b)) increases both the SAR pen- 

etration depth into the muscle layer and the peak value by a factor of three 

to 0.3 W/kg at the loop centre point. The 0.5 W/kg penetration depth for 

the short-loop is 0.64cm. Similarly, the short-dipole SAR cross-section ex- 

ceeds that for the dipole (Figure 4.7 (c, d))  by a factor of two with a level of 

0.4 W/kg. The SAR pattern is concentrated at the feed point but is distributed 

evenly across the length of the short-dipole. The 0.5 W/kg penetration depths 

for the dipole and short-dipole are 0.57cm and 2.89 cm, respectively. The con- 

ventional square patch SAR pattern cross-section (Figure 4.7 (e)) shows values 

of about 0.06 W/kg in the patch centre reaching the muscle layer. The SAR 

cross-section of the compact patch (Figure 4.7 (f))  is concentrated within the 

smaller aperture and it exhibits the deepest tissue penetration. The 0.5 W/kg 

threshold is 5.21 cm below the surface and the l/e2 penetration depth is 63 mm. 

Figure 4.8 and 4.9 show the SAR front profile aud cross-sectio~i patterns 

for the compact patch as the antenna-waterbolus separation distance reduces. 

Despite the increased permittivity load on the antenna electric fields, the res- 

onant modes remain matched at the source frequency and the SAR increases 

due to improved tissue coupling. The similar SAR profiles for the 5.4mm 

and 2.7mm separation distances show that the compact patch is insensitive to 

changes in high dielectric loading at very close proximities. Table 4.2 compares 

the dimensions and SAR values for each of the antennas. The resultant SAR 

levels are primarily a function of the antenna geometry and the compatibility 

of field coupling with the tissue at a given distance. Reducing the separation 

distance further increases the SAR, provided the antenna remains frequency 
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Figure 4.7.: SAR cross-sections for 2.7 mm antennbwaterbolus distance. (a) 
Loop. (b) short-loop, (c) dipole. (d) short-dipole, (e) conven- 
tional square patch and (f) compact patch antenna. Plots (a) 
- (b) in the plane y = Omm, plots (c) - (e) in the plane z = 
0 mm and plot (f) in the plane p = 45". 
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Table 4.2.: Summary of antenna dimensions, peak SAR and SAR pattern pa- 
rameters for 2.7 mm antenna-waterbolus distance. (Normalized 
t o  1 W antenna input power). 

Largest Antenna Peak Body model Body model 
dimension area SAR area with penetration depth 

[cml [cm2] [W/kg] SAR>O.5 W/kg SAR>0.5 W/kg 
[cm2] Icml 

Loop 22.6 404.7 0.27 sAR10.5 W/kg sAR10.5 W/kg 

Dipole 32.4 6.5 0.52 6.79 0.57 

Short-dipole 23.9 4.7 0.95 89.44 2.89 

Conv. Sq. Patch 33.0 538.2 0.07 SAR<O.S W/kg SAR<O.5 W/kg 

Compact Patch 18.4 169.0 1.32 91.52 5.21 

and impedance matched with the source. Variations in the tissue layer thick- 

ness are less influelltial on the SAR rates. The ~liicker skin layer produces a 

reduced SAR penetration and the thickest layer of fat results in greater pene- 

tration. The differences in SAR due to the tissue layer thickness changes are 

summarized in Table 4.3. 

4.3.4. Resonant Function of the Compact Patch Antenna 

The compact patch area is 31% of the conventional square patch and 40% 

of the loop, and compared to the dipoles, the smaller dimensions make it an 

improved ergonomic shape for placing next to the human body. 

The compact patch input impedance is characterized by a pair of resonance 

modes. At very close distances to the waterbolus-tissue load, the paired res- 

onance modes combine to be indistinguishable. As the antenna approachei 

the waterbolus, the loaded currents on the groundplane constrict to the pe- 

riphery of the slots. Unlike the wire element antennas, changes in the input 

impedance of the compact patch are desensitized by the dielectric substrate 

which shadows/buffers the near-field evanescent modes from direct loading 

by the tissue. The bandwidth is increased (Figures 4.3 - 4.4) and the input 

impedance mismatch is reduced. 
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Figure 4.8.: SAR at tissue surface for the compact patch. (a) Antenna ge 
ometry and coord. syst. Antenna-waterbolus distance: (b) 
43.2 mm, (c) 10.8 mm, (d) 8.1 mm, (e) 5.4mm and (f) 2.7 mm. 
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Figure 4.9.: SAR cross-sections for the compact patch (plane q = 45") for 
antenna-waterbdus distances: (a) 43.2mm. (b) 10.8mm, (c) 
8.1 mm, (d) 5.4mm and (e) 2.7 mm. 
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Table 4.3.: Compact patch SAR penetration for various combinations o f  
skin, fat  and muscle layer thicknesses for 2.7mm antenna- 
waterbolus distance. (Normalized t o  1 W antenna input power). 

Tissue Layers 
Skin Fat Muscle 
[mml lmml lmml 

0.4 0 99.6 

0.4 15 84.6 

0.4 30 69.6 

2.6 0 97.4 

2.6 15 82.4 

2.6 30 67.4 

Body model penetration depth 
for SAR>O.5 W/kg 

[cml 

4.90 

5.42 

5.78 

4.79 

5.21 

5.31 

4.4. Conclusion 

The design of the compact patch antenna presented in the previous chapter 

is contrasted with basic loop, dipole and conventional square patch anten- 

nas which have been previously used in clinical settings. It also has low-cost, 

ease of manufacture and low profile advantages over other waveguide and horn 

applicators. The slotted features in the antenna geometry afford a 69% areare- 

duction with respect to the conventional square patch design and also prevent 

load suppression of the resonant modes. The dominant electric field flux lines 

on the antenna are tangentially aligned to produce a larger coupling aperture 

with the tissue layers. This results in a l /e2 SAR penetration depth of 63mm 

which exceeds the performance of other waveguides, horn and microstrip de- 

signs. The next chapter evaluates the suitability of the compact patch antenna 

for  he treatment of tumours located at three different regions of the human 

body. 



5. In-silico Performance of the 

Compact Patch Antenna at  

Various Human Anatomical 

~ I M P L I F I E D  planar-layered or homogeneous body tissue numerical models 

do not include the complex internal shapes of heterogeneous biological bodies. 

Heterogeneous body modelling provides more credible and higher peak SAR 

values due to the interfaces between wet and dry tissues. 

In this chapter the applicator performance is evaluated at three body areas 

of a heterogeneous full-body model to assess the suitability of the proposed 

a ~ ~ t e r ~ r ~ a  for different patient anatomy. These three anatomical regions preseut 

diverse aperture coupling and tissue composition. Different conformal wa- 

terbolus and air gap thickness are evaluated. Antenna impedance matching, 

specific absorption rate and thermal distribution are reported. 

5.1. Introduction 

Positioning a patient within the radiating near-field of an antenna c a l  enhance 

mutual interaction between the radiator and the body. Standard electromag- 

netic body tissue numerical models do not account for the tissue perfusion 
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variability due to patient individuality and temporal biological responses but 

the specific absorption rate and estimated temperature maps can assist in 

clinical dosage planning [104]. 

An effective, near-field-loaded antenna design should maintain a stable res- 

onant frequency, efficient matched impedance and a tolerance of various di- 

electric loads due to different patients or anatomy locations. Simulation of 

the antenna-to-body tissue numerical model interaction is essential for basic 

understanding and is particularly dependent on the electromagnetic accuracy 

of the numerical human model. 

Onedimensional [105]: coarse-resolution homogeneous [27] and planar lay- 

ered [I031 body tissue numerical models can reveal a basic coupled energy 

distribution. However, such models can underestimate the actual peak SAR 
and patterns, which could have implications for patient comfort and applica- 

tion strategies during clinical treatment. 

The commercial heterogeneous body tissue numerical model used here has 

5 mm resolution voxels that were segmented from 1 mm stepped CT and MRI 
cross-sections through an adult male [106]. While the resolution limited the 

tissue and organ detail to outline shapes, the inter-tissue boundaries intro- 

duce reflection, transmission and dispersion effects that occur in the body. 

Modelling inaccuracies occur where the electric field or surface current orien- 

tations align with under-resolved features in the model geometry. A steady 

state thermal response to the electromagnetic coupling is produced by post 

processing with the Pennes equation. However, the calculation does not factor 

dynamic physiological responses in the temperature rise predictions and can 

underestimate the natural cooling processes. 

While the effects of waterbolus tliickness have been investigated wit11 siinpli- 

fied body models [107, 1081, this work explores the antemla-to-waterbolus air 

gap and conformal-shaped waterbolus thickness effects for the compact patch 

antenna, which geometry was detailed in the previous chapters, a t  three loca- 

tions on the human body. The antenna was positioned in the coronal plane in 

front of the stomach, at the rear of the head and between the shoulder blades 
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Figure 5.1.: Fabricated antenna and dimensions viewed from (a) front side. 
towards the tissue and (b) rear side, away from the tissue. 

areas to study differing coupling mechanisms of the antenna. Those three loca- 
tions are respectively named epigastric, inter-scapular and head region through 

this work. 

5.2. Methodology 

5.2.1. Compact Patch Antenna 

Figure 5.1 shows a photograph of the compact patch antenna [log] which is 
discussed in Chapter 3. Chapter 4 compares the basic functionality of the 

design with other published approaches and clinically used antennas. 

5.2.2. Human Body Tissue Numerical Model 

The human body tissue numerical model used in this work was developed by 

Remcom with data from the Visible Human Project [106] for compatibility 

with the XFDTD electromagnetic solver [58]. The body model is 1 .801~ long, 

has a mass of 103 kg and comprises twenty-three tissue types with thermal 
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Table 5.1.: Dielectric properties of the tissues at 434MHz [49] for the sim- 
ulated body areas. 

Permittivity Conductivity Density a l p  ratio 

[&?I [a, S/ml [P, kg/m31 x 1 w 4  
Blood 63.826 1.361 1058 12.9 

Cancellous bone 22.257 0.241 1920 1.26 

Cartilage 45.140 0.598 1097 5.45 

Cortical bone 13.071 0.094 1990 0.47 

CSF - Cerebrospinal Fluid 70.630 2.260 1007 22.4 

Fat, yellow marrow . 5.566 0.041 916 0.45 

Gray matter, cerebellum 56.814 0.751 1038 7.24 

Lung 23.579 0.380 260 14.6 

Muscle, heart, spleen, 
colon, tongue 56.866 0.805 1041 7.69 

Nerve 35.038 0.455 1038 4.39 

Pancreas, tendon, 
aorta, liver, other 47.120 0.568 1220 4.66 

Skin 46.059 0.702 1100 6.24 

Small intestine 65.266 1.922 1042 18.4 

Stomach, esophagus 67.186 1.013 1050 9.65 

White matter 41.659 0.451 1038 4.35 

and frequency-dependent dielectric properties. Table 5.1 lists the conductiv- 

ity, density and relative permittivity values of the tissues a t  434 MHz for the 

simulated body areas [49]. 

An adaptive mesh, with 1 mm cell resolution, was set for the antenna struc- 

ture and the analysed body locations. This improves simulation accuracy and 

complements the FDTD constraint of having 10 cells per wavelength [110]. 

For cerebrospinal fluid (~,=70.63), the highest permittivity in the treatment 

area, a l m m  cell is 1.21% of guided wavelength (82.2mm). More than 20 

million cells were generated and required 1.03 Gbytes of memory. A Gaussian 

monocycle was used to calculate the broadband impedance performance and 

a sinusoidal source centred at 434MHz is required for steady state analysis. 
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The simulation time was typically 10 hours on a 3.4 GHz PC with 4 Gbytes of 

RAM. 

Comparisons of cubic cell sizes in numerical human body models, between 

5 mm and 3 mm meshes [98] and between 6 mm and 2 mm meshes [ I l l ] ,  indicate 

that a finer resolution is only necessary for SAR accuracy in tiny organs (e.g. 

eye lens). Increased body model accuracy here reveals the complexity of the 

coupling to multiple tissues. 

When magnetic resonance images (MRI) are used in custom-made hyper- 

thermia treatment planning, this numerical body model can provide inter- 

institutional reference for hyperthermia applicator comparison. Limitations of 

this model are related to limited resolution and constant perfusion rates. Fu- 

ture temperature analysis tools should account for spatial and time dependent 

perfusion rates. 

5.2.3. SAR and Temperature Analysis 

The E-field distribution in the exposed body tissue is calculated and then 

the specific absorptioli rate (S.4R) is co~r~puted as seen ill equatioli 2.7. The 

conductivity-to-density ratio is a measure of absorbed energy into a tissue, and 

the value a t  434MHz for the tissues a t  the simulated body areas is listed in 

Table 5.1. 

S.4R patterns were normalized to 1 W of antenna input power and evaluated 

for 1 g averaged spatial peak SAR to mitigate against FDTD approximated 

hotspots [112, 1131. The 50% iso-SAR and the l/e2 penetration are reported 

as ESHO quality guidelines for homogeneous or layered body models. The 25% 

iswSAR was found to be a better analytical factor for hyperthermia treatment 

planning in a study of 196 patients [114, 1151. In this work, the 50%, 25% and 

l /e2  iso-SAR contours are reported. 

The temperature increase due to the SAR in each of the simulated body areas 

is calculated with the Pennes bio-heat equation [54] and computed as seen in 

Section 2.6. Table 5.2 lists the specific heat capacity, thermal coiiductivity; 
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Table 5.2.: Thermal properties [58] of the tissues for the simulated body 
areas. 

Heat Thermal Perfusion Metabolic 
ca~acitv conductivitv w heat . " 

C K [m1/100 g/ min] Q ,  
[J/kg/"Cl [W/ m/"Cl [ W/ m31 

Blood 3600 0.51 1000 0 

Cancellous bone 2238 0.36 3 0 

Cartilage 3400 0.45 14.3 1000 

Cortical bone 1300 0.36 1.4 0 

CSF - Cerebrospinal Fluid 4200 0.60 0 0 

Fat, yellow marrow 2300 0.23 2.8 293.1 

Gray matter, cerebellum 3680 0.56 67.1 5370 

Lung 2354 0.45 40 0 

Muscle, heart, spleen, 
colon, tongue 3500 0.49 5 758 

Nerve 3640 0.53 56 332.1 

Pancreas, tendon, 
aorta, liver, other 3600 0.51 100 390.4 

Skin 3150 0.34 12 1125 

Small intestine 3600 0.55 100 333.6 

Stomach, esophagus 3500 0.52 40 703.5 

White matter 3600 0.50 23.7 5370 

perfusion by blood and heat generated by metabolism values of the tissues for 

the simulated body areas [58]. 

While temperature increase in the range of 43 to 45°C was the objective of 

past hyperthermia treatments, contemporary research is placing greater inter- 

est in target the temperature range of 40 to 43"C, also called mild tempera- 

tures [104]. The aim is to improve radiotherapy killing of cancerous cells by 

overcoming hypoxic protection [116]. The power required to achieve a max- 

imum temperature of 43°C at the sin~ulated body areas is reported in this 

work. 



5. In-silico Performance of the Compact Patch Antenna at  Various Human 

Anatomical Regions 

5.3. Antenna-Body Locations 

When evaluating the suitability of an antenna for different types of cancer, 

while conductivity-to-density ratios indicate absorption rates across the body, 

other features needs to be considered. Factors such as aperture loading of 

tissue volumes, organ shapes, contoured tissue layers and proximity distances 

have to be investigated for each anatomical body regions 

5.3.1. Relevance to Types of Cancer Treatments 

The antenna is evaluated at three typical locations during cancer treatment, as 

shown in Figure 5.2. The antenna is centered and parallel to the sagittal and 

coronal plane, respectively. At the epigastric location, the antenna is located 

600mm from the top of the scalp, which can be applied for the treatment of 

superficial adenocarciuoma. The antenna placed at  the head locatio~l, which is 

100mm from the top of the scalp, can be commonly applied for the treatment 

of different kind of brain or meninges cancers. At the inter-scapular locat,ion, 

the antenna is located 350mm from the top of the scalp and can be used to 

treat melanoma. vertebral or sarcoma cancer. 

5.3.2. Variations of Tissue Types and how These are 

Indicative of Variations Across the Body 

The body tissue composition at the three locations is significantly different 

as outlined in Figure 5.3. The epigastric area is modelled with a layer of 

skin followed for a very thick layer of fat (around 100mm) which contains 

parts of muscle, small intestine, pancreas, and the stomach. The head area 

is modelled as an abrupt layer of skin next to a layer of yellow marrow and 

muscle, followed by cortical and cancellous bone structures with cerebrospinal 

fluid (CSF) iuvolving grey and white inatter. The inter-scapular area of the 

body is modelled with a 10mm thick layer of skin next to a variable layer of 
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Figure 5.2.: Human body model and antenna locations. 
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fat tissue and muscle. The cortical bone and white matter precedes the spine, 

mainly modelled with cancellous hone; cartilage and nerves. 

5.3.3. Waterbolus and Aperture Loading 

A bolus interfacing the skin of the exposed body region is used to cool the 

body surface and for improved antenna coupling [107]. In clinical trials the 

water circulates in a temperature controlled system and in this work values are 

reported for a water temperature of 27°C. Different water temperature analysis 

are not the aims of this work. 

The radiating aperture suffers various tissue-loading, depending on its lo- 

cation with respect to the different body shapes. Around 41.4%, 22.4%, and 

100% of the radiating aperture area is loaded when the antenna is placed at  the 

epigastric, head, and inter-scapular region, respectively. Different curvature 

loading at the different antenna-body locations produces different waterbolus 

thicknesses. 

Volume and surface wave oscillations are generated inside the waterbolus if 

the thickness of the waterbolus exceeds a frequency dependent value. Equa- 

tions for maximum waterbolus thickness were derived [107, 1081 and thinner 

waterbolus are required as the frequency of the applicator is increased. The 

mhximum waterbolus thickness at the frequency of 434MHz is found to be 

19mm. In [107, 1081 the waterholus and body model were considered rect- 

angular: but here a more realistic conformal waterbolus and body model are 

analyzed. 

5.4. Results 

5.4.1. Antenna Performance with Waterbolus 

The effect of different wat,erbolus thickness and air gap values are analyzed for 

each body region and the optimum combination in terms of S11 and peak SAR 
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Figure 5.3.: Tissue composition for (a) epigastric, (b) head and (c) inter- 
scapular location. 
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is determined. Waterbolus of 6; 8 and lOmm minimum thickness (i.e, a t  the 

antenna centre, because due to the conformability of the bolus around the body 

the waterbolus thickness is larger on the antenna sides than on the antenna 

centre for the epigastric and head location) and air gaps from 2 to 16mm with 

2 mm interval were considered. Thinner waterbolus values were not considered 

because the cooling effects are reduced, and 5 to 10mm thick waterboluses were 

found to be optimum for even SAR distribution [107, 1081. The antenna in 

contact with the waterbolus was not analyzed in this work because of detuning 

and the antenna performance was compromised. Figure 5.4 summarizes the 

antenna S11 with constant 10mm air gaps and variable waterbolus thickness 

values, and for constant waterbolus thickness of 6mm with variable air gaps 

for the epigastric (Figure 5.4 (a) and Figure 5.4 (b)); head (Figure 5.4 (c) and 

Figure 5.4 (d)) and inter-scapular location (Figure 5.4 (e) and Figure 5.4 ( f ) ) .  

Increasing the minimum thickness of the waterbolus from 6 to lOmm pro- 

duces a drop in resonant frequency of 0.5 MHz for the epigastric, 1 MHz'for 

the head and 3 MHz for the inter-scapular location with a simultaneous degra- 

dation in S11 by 3.3dB., 0.94dB and 2.12dB for the three regions respectively. 

On average for the three antenna-body locations, increasing the waterbolus 

thickness from 6 to lOmm, reduces the resonant frequency by 1.5MHz and 

degrades the S11 by 2.1 dB. 

Increasing the air gap from 2 to 16mm increases the resonant frequency 

by 40MHz for the epigastric, 44MHz for the head and 29MHz for the inter- 

scapular location. The increase in air gap improves the S11 by 10.8 dB for the 

epigastric, 15.1 dB for the head and 20.24dB for the inter-scapular location. 

On average for the three antenna-body locations, increasing the air gap from 

2 to 16mm, increases the resonant frequency by 37.6MHz and improves S11 

by 15.3dB. 

Figure 5.5 shows a summary of the combination of S11 at 434 MHz and peak 

SAR for the different combinations of waterbolus and air gaps investigated. 

Increasing the thickness of the waterbolus with a constant air gap 10mm thick 

(Figure 5.5 (a)) produces a degradation of the S11 at  434MHz and small 
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Figure 5.4.: Simulated S11 for different values of waterbolus (WB) and 
air gaps (AG) thicknesz for epigastric, head and inter-scapular 
location. 
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Figure 5.5.: Simulated 511  and SAR for different combinations of (a) wa- 
terbolus and (b) air gaps. 

variances in peak SAR (around 0.8 W/kg). Increasing the thickness of the air 

gap with a constant waterbolus 6mm thick (Figure 5.5 (b)) produces a deeper 

S11 value at 434MHz from 2 to 12mm, and for larger air gaps produces a 

poorer S11. The peak SAR reduces as the air gap increases. 

A waterbolus 6mm thick and an air gap of lOmm are found to be the 

optimum values in order to have an S11 of at least -8dB and highest peak 

SAR at 434 MHz. 

5.4.2. In-silico Specific Absorption Rate 

The SAR cross-section at the medium sagittal plane for the epigastric, head 

and inter-scapular locations is shown in Figure 5.6. The scale for the SAR is 

clamped at 4 Wlkg for finer resolution illustration of the lower and medium 

SAR patterns. The different tissues at those locations were specified in Section 

5.3. The peak SAR for the three antenna locations was found at 6 f 1 mm 

from the surface and aligned with the antenna centre. For the three antenna 

locations, the SAR is characterized for the 50% iso-SAR being restricted to 

the skin-fat interface, followed by a cold-spot that coincides with fat tissue 

for epigastric and inter-scapular location and yellow marrow for the head 

cation. Behind the fat or yellow marrow location, a secondary SAR hotspot 
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Table 5.3.: Peak SAR and iso-SAR penetrations for the heterogeneous body 
tissue numerical model. 

Peak SAR 50% SAR 25% SAR Sec. 25% SAR l / e 2  SAR 
[W/kg] penet. [mm] penet. [mm] penet. [mm] penet. [mm] 

Epigast. 6.14 7 9 51 55 

Head 6.41 10 15 28 44 

Inter-scap. 5.28 10 17 52 60 

aligned with the antenna centre follows the contours of the tissues with greater 

conductivity-to-density ratio, in particular the small intestine for epigastric, 

gray matter for head and muscle tissue for inter-scapular location. 

The epigastric location presents a peak SAR of 6.14 W/kg. The 50% iso-SAR 

area has a length of 82 mm and a penetration of 7 mm. The 25% iso-SAR area 

has a length of 95mm and a penetration of 9mm. The 25% SAR secondary 

penetration is 51 mm and the l/e2 SAR penetration is 55 mm. 

The head location presents a peak SAR of 6.41 W/kg. The 50% iso-SAR 

area has a length of 57mm and a penetration of 10 mm. The 25% iso-SAR area 

has a length of 77mm and a penetration of 15mm. The 25% SAR secondary 

penetration is 28 mm and the l/e2 SAR penetration is 44mm. 

The inter-scapular location presents a peak SAR of 5.28 W/kg. The 50% 

iso-SAR area has a length of 78mm and a penetration of 10rnm. The 25% 

iso-SAR area has a length of 106mm and a penetration of 17mm. The 25% 

SAR secondary penetration is 52 mm and the l/e2 SAR penetration is 60mm. 

Peak SAR differences and iso-SAR penetration for the three locations of the 

heterogeneous body model are summarized in Table 5.3. 

5.4.3. In-silico Temperature 

The temperature increase cross-sections at the medium sagittal plane for the 

epigastric, head and inter-scapular locations is shown in Figure 5.7. A max- 

ilnu~n final temperature of 43°C is considered. The waterbolus prevents the 



.q. In-silico Performance of the Compact Patch Antenna a t  Various Human 
Anatomical Re~ions 

Figure 5.6.: SAR distribution at the sagittal plane for (a) epigastric. (b) head 
and (c) inter-scapular location. 
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temperature increase from the surface up to 2 to  5mm depth, reaching the 

maximum increase at around 6mm depth. In order to get the 43°C temper- 

ature threshold, the required power source is 78 W for the epigastric, 75 W 
for the head, and 92 W for the antenna placed at  the inter-scapular location. 

Although the maximum temperature increase is dominated by SAR hotspots 

located near the surface; the heterogeneity of thermal tissue properties dictates 

that temperature increase diverges from SAR distribution at deep distances. 

At the epigastric location, the internal hotspot coincides with the small intes- 

tine and stomach, and it can be seen how the temperature increases in the a,ir 

filled cavities of those organs. At the head location it can be seen that the 

cooling properties of the tissues at the medium sagittal plane result that the 

maximum temperature in this plane does not reach the 43°C. At the inter- 

scapular location, the length of the temperature increase hotspot is reduced 

compared with the SAR hotspot. The secondary temperature increase hotspot 

follows the l/e2 iso-SAR. 

Correlation between simulation and measured data was improved when per- 

fusion values were double that of the initial value [104]. In our study, when 

doubling the value of the initial perfusion values, to reach the 43°C threshold, 

the required power source has to increase by 3 W for the epigastric, 4 W for 

the head and 7 W  for the inter-scapular location, with respect to the initial 

power values 

'5.4.4. Layered Planar and Homogeneous Muscle Body 

Model 

In order to improve the understanding of how the power deposition mechanism 

in body anatomies are related to different antenna apertures or different tissue 

loading, the SAR performance was analyzed for a layered planar model and 

the body model with homogeneous muscle tissue. 

The layered planar model has been modelled with three layers of skin, fat 

and muscle of 5 mm, 20 mm and 75mm respectively. These are the tissues 
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Figure 5.7.: Temperature distribution at the sagittal plane for (a) epigastric, 
(b) head and (c) inter-scapular location. 
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Figure 5.8.: SAR distribution through the antenna centre for layered planar 
model. 

and thicknesses found at the epigastric location through the antenna centre. 

Figure 5.8 shows the SAR profile through the antenna centre for this layered 

model. The peak SAR is 5.54 W/kg. The 50% iso-SAR area has a length of 

78mm and a penetration of 7rnm. The 25% iso-SAR area has a length of 

106mm and a penetration of 9mm. The 25% SAR secondary penetration is 

38mm and the l/e2 SAR penetration is 51mm. 

Figure 5.9 shows the SAR profile through the sagittal plane for the epigas- 

tric, head and inter-scapular locations when the antenna is loaded with the 

homogeneous muscle body model. The maximum SAR is aligned with the 

antenna centre and presents a smooth distribution only distorted at the epi- 

gastric location, when the energy reaches air filled cavities at the stomach and 

small intestine. With the homogeneous muscle body model, the epigastric lo- 

cation presents a peak SAR of 3.95 W/kg. The 50% iso-SAR area has a length 

of 82mm and a penetration of 25mm. The 25% iso-SAR area has a length 

of 105mm and a penetration of 47mm. The l/e2 SAR penetration is 56mm. 

The head location presents a peak SAR of 4.20 W/kg. The 50% iso-SAR area 

has a length of 57mm and a penetration of 22 mm. The 25% iso-SAR area has 
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Table 5.4.: Peak SAR and iso-SAR penetrations for the homogeneous muscle 
body tissue model. 

Peak SAR 50% SAR 25% SAR l/e2 SAR 
[W/kg] penet. [mm] penet. [mm] penet. [mm] 

Epigast. 3.95 25 47 56 

Head  4.20 22 37 53 

Inter-scap. 3.75 32 49 60 

a length of 60mnl and a penetration of 37mm. The 1/e2 SAR penetration is 

53 mm. The inter-scapular location presents a peak SAR of 3.75 W/kg. The 

50% iso-SAR area has a length of 78 mm and a penetration of 32 mm. The 25% 

iseSAR area has a length of 130mm and a penetration of 49mm. The l/e2 

SAR. penetratiorl is 60nu11. Peak SAR. differences and iso-SAR, penetrat,ioli 

for different anatomical regions of the muscle tissue model are summarizes in 

Table 5.4. 

5.5. Discussion 

Rectangular waterbolus interfacing a homogeneous muscle tissue models [I071 

and fat-muscle layered models [I081 showed that waterbolus thickness is a criti- 

cal parameter for clinical hyperthermia applications. The optimum waterbolus 

in terms of best S11 and higher peak SAR for the three antenna locations has 

been found to be 6mm thick at the antenna centre, but the different body 

shapes produces different waterbolus thickness at the antenna sides for each 

location. 

The experiment with waterbolus of different thicknesses (Figure 5.4) showed 

that thicker waterbolus produces poorer S11 values for the antenna-body areas 

investigated. Figure 5.10 shows the S11 for the antenna at the three body areas 

with the optimum waterbolus and air gap combination. The smaller antenna 

loading aperture for the head location with a 22 to 34mm thick waterbolus in 

the antenna edges (in [107; 108) the maximum waterbolus thickness a t  434 MHz 
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Figure 5.9.: SAR distribution at the sagittal plane for homogeneous muscle 
body model for (a) epigastric, (b) head and (c) inter-scapular 
location. 
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Figure 5.10.: Simulated S11 for the optimum waterbolus and air gap 
combination. 

is 19mm) produces that both volume and surface wave oscillations can be 

generated inside the waterbolus [107]. This generates a poorer S11 for the 

antenna at this location compared with the antenna at the epigastric and 

inter-scapular location. 

The highest peak SAR was found at the head location, which presents the 

smaller antenna aperture loading. The smaller antenna aperture produces that 
the tangentially aligned Efield [log] perpendicularly intercepts the skin with 

the consequential greater peak SAR. 
In terms of SAR penetration, at the epigastric location, the tissue which 

produces the deeper penetration is the small intestine, which is the tissue with 

the second highest conductivity-to-density ratio. The deepest penetration at 

the head and inter-scapular locations are found at the grey matter and muscle, 

respectively. These two tissues present similar conductivity-to-density ratios. 

Small differences were found for the current density distributions at the 

antenna patch surface for the three antenna-body locations as shown in Fig- 
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ure 5.11 as an indication of antenna stability for different loading conditions. 

Currents remain stronger at the annular ring and weaker at the circular patch 

for the antenna at the head location compared with epigastric and the inter- 

scapular location. The presence of the thick waterbolus a t  the annular ring 

(which can generate volume and surface wave oscillations), prevents the acti- 

vation of the parasitic circular patch. 

The temperature prediction analysis has to be improved due to the lack of 

understanding of tissue perfusion variances at different temperatures, perspi- 

ration variances and other factors. However, to have an initial approximation, 

the temperature distribution was analysed following the criteria mentioned in 

Section 5.2 at the three antenna-body areas, and the required power source in 

order to get the 43°C threshold was determined. The required power source 

is inversely proportional to the peak SAR obtaiued for the different locations 

and there is a linear relation between peak SAR and required power for the 

epigastric (peak SAR = 6.14W/kg, required power = 78 W), head (peak SAR 

= 6.41 W/kg, required power = 75 W) and inter-scapular location (peak SAR 

= 5.28 W/kg; required power = 92 W. The small differences are due to the dif- 

ferent thermal properties of the tissues at the different locatioxls. The thicker 

skin and muscle tissue (which presents 76% and 44% higher perfusion than fat 

tissue) for the inter-scapular location demands a greater increase in required 

power source when doubling the tissue perfusion, in order to get the 43°C 

threshold. 

To improve the understanding of the different loading effects on the an- 

tenna performance, the SAR distribution has been analysed for a layered pla- 

nar model and the homogeneous muscle body model. The simplified layered 

body model of similar tissue thickness to those found at the epigastric area 

and aligned with the antenna centre underestimates peak SAR by 9.77% and 

presents lower penetration compared with the heterogeneous body model. 

It was found that peak SAR is related to the permittivity gradient between 

interfacing tissues [117]. The peak SAR in the body tissue models reduces sim- 

ilarly from the heterogeneous to the homogeneous muscle models with values 
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Figure 5.11.: Current density distribution at the antenna patch surface for 
(a) epigastric, (b) head and (c) inter-scapular location. 
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of 35.6%, 34.4% and 28.9% for the epigastric, head and inter-scapular regions, 

which is an average reduction of 32.9%. SAR penetration for the body models 

increases for the homogeneous muscle model compared with the heterogeneous 

model for the three locations investigated, but the lower penetration was found 

for the head location, in which the power absorption in the superficial tissues 

prevent the energy reaching deep tissues. 

The head region presents the highest values of peak SAR for both body 

heterogeneous and homogeneous muscle models. For the heterogeneous body 

model, peak SAR reduces by 4.21% between the head and epigastric region 

and by 17.6% between the head and inter-scapular region. For the homoge- 

neous muscle body model, peak SAR reduces by 5.95% between the head and 

epigastric region and by 10.7% between head and inter-scapular region. 

5.6. Conclusions 

The performance of a compact patch hyperthermia applicator has been de- 

scribed for potential use in the treatment of cancers located at the epigastric, 

head or inter-scapular body regions. These three locations present different 

aperture loading and have different tissue composition. Optimum waterbolus 

thickness and air gap values have been determined in terms of best S11 and 

highest peak SAR following the evolution of previous analysis with rectangular 

layered models. The tangentially aligned electric field generates the highest 

SAR at  the head location, which presents the smaller antenna aperture loading. 

The required power for a maximum temperature threshold of 43°C is inversely 

proportional to peak SAR. The power source has to increase from 78 to 81 W 

for the epigastric, from 75 to 79 W for the head and from 92 to 99 W for the 

inter-scapular location in order to get the same temperature threshold of 43 "C 

when doubling the perfusion value of each tissue. Future applications should 

consider perfusion rates with spatial, temporal and temperature dependence 

to have more accurate models. In the next chapter, modeling validation and 

measurements for the compact patch antenna are presented. 



6. Model Validation and 

Measurement Setup 

T HE human body comprises a complex anatomy with organs and tissues 

of arbitrary shape and frequency-dependent dielectric properties. Electromag- 

netic models have been implemented to simulate the interaction between anten- 

nas and human bodies. Liquids have been developed with dielectric properties 

representative of homogeneous human bodies. A radiating antenna can be lo- 

cated in close proximity to a phantom containing the liquid and the resultant 

field distribution inside the liquid can be evaluated with an electromagnetic 

E- and H-field probes. 

In order to validate the models used in this work, measurements are per- 

formed in a phantom containing liquid which simulates homogeneous human 

tissue. In this chapter, the recipe of the liquid, the preparation, and the dielec- 

tric property measurement processes are highlighted. The dosimetric assess- 

ment system (DASY) is used to evaluate the specific absorption rate (SAR) 

generated for the compact patch antenna which is detailed in the previous 

chapters. The measurement setup with antenna, phantom and liquid is simu- 

lated in the XFDTD electromagnetic solver. Simulated and measured results 

in term of SAR and S11 are evaluated. 
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6.1. Liquid Preparation 

Different representations of human tissue have been proposed in the litera- 

ture [118, 1191 and liquid simulating homogeneous human tissue are some of 

the most used [112, 1201. 

The liquids are usually sugar-water or glycol based. In this work, a sugar- 

water based solution was used. The ingredients of the liquid were water, salt, 

sugar, cellulose and preventol D7. Water is the basis for the liquid and it 

increases the liquid relative permittivity and decreases the conductivity. Salt 

increases the conductivity and decreases the relative permittivity. Sugar de- 

creases the relative permittivity. The cellulose increases the liquid viscosity 

and keeps the sugar in solution. The preventol D7 is a preservative which 

prevents the spread of bacteria and moulds [112, 1211. 

Permittivity values with an error of 5% and conductivity values with an error 

of 10% are given for the frequencies of 450 MHz and 835 MHz [121]. Interpo- 

lating those values at the frequency of 434MHz gives values that are in the 

range of error of the recipe at 450MHz. Consequently the recipe a t  450 MHz 

(E ,  = 44.5, u = 0.86 S/m) was used. The recipe was: 513.24g of water, 50.0 g 

of salt, 750.9g of sugar, 3.33g of cellulose and 1.6g of preventol D7. In one 

litre of liquid, adding 20 ml of water increases the relative permittivity by 

0.8 and decreases the conductivity by 0.01 S/m. Adding 1 g of salt increases 

the conductivity by 0.05 S/m and decreases the relative permittivity by 0.8. 

Adding 60g of sugar decreases the relative permittivity by 3.0 [121]. 

When the liquid was being prepared, the room temperature was 22.3%. 

The water was heated and stirred in a container. After 30 minutes, the water 

temperature was 26°C. Salt, cellulose and preventol were added into the water 

and stirred. Once the liquid was transparent again, the sugar was added and 

stirred until it was completely dissolved. Then, the heat was removed and 

when the liquid was at room temperature, the dielectric properties were mea- 

sured. Figure 6.1 shows the liquid preparation setup with the liquid container, 

hotplate/magnetic stirrer and thermometer. Figure 6.2 shows a detailed view 
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Figure 6.1.: Hotplate/magnetic stirrer, thermometer and liquid container. 

of the liquid and magnetic stirrer with the temperature and stirrer speed con- 

trols. 

6.2. Dielectric Properties of the Liquid 

The Agilent 85070D dielectric probe kit was used to measure the dielectric 

properties of the liquid simulating homogeneous human tissue. The dielectric 

probe kit was connected to the Agdent 8510C vector network analyzer (VNA), 

and the Agilent 82357A USB-GPIB converter connected the VNA to a PC. 
Figure 6.3 shows a schematic representation of the setup for the measurement 

of the dielectric properties of the liquid. 

Before the measurements can be performed, the system has to be calibrated 

in short circuit, openlair and loadlwater configuration as shown in Figure 6.4. 
The liquid has to be at constant temperature and be perfectly homogeneous. 

With 1°C of temperature increase the permittivity and conductivity increases 

and decreases respectively by about 0.5% and 1.0%. Air bubbles in the liq- 

uid can be a source of errors in the measurements. The measured dielectric 

properties of the liquid at the frequency of 434MHz were found to be relative 
permittivity of 45.07 and conductivity of 0.82S/m. 
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Figure 6.2.: Detail of the hotplatelmagnetic stirrer. 
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Figure 6.3.: Setup for the measurement of the dielectric properties of the 
liquid. 
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Figure 6.4.: Dielectric probe kit calibration (a) short circuit, (b) openlair 
and (c) loadlwater configuration. 

6.3. DASY System 

The Dosimetric Assessment System (DASY) is a measurement package which 
allows SAR distribution evaluation inside a lossy liquid contained in a phan- 

tom. 

A PC with the DASY software is connected to the system, and the main 

parts that can be identified in the package are a measurement server, robot 

controller, robot, electro optical converter (EOC) box, data acquisition elec- 

tronic (DAE) box, probe with proximity sensor, liquid, phantom and device 

holder. Figure 6.5 shows a schematic setup representation. 

The DASY software controls the measurement server and monitors the robot 
exact location as shown in Figure 6.6. The measurement server communicates 

with the robot controller, and with the DAE via the EOC. The robot con- 
troller manages the robot movement. The EOC converts electro-optical sig- 

nal between the measurement server and the DAE or proximity sensor which 

automatically detect the phantom surface. Figure 6.7 shows a detail of the 

proximity sensor and DAE connected to the EOC which it is located inside 

the robot arm. The DAE processes optical signal from the probe and sends the 

information to the measurement server. The probe measures the field that the 

antenna under test (AUT) generates inside the lossy liquid which is contained 
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Figure 6.5.: DASY system measurement setup xhematic representation. 

in the phantom. Figure 6.8 shows a detailed view of the probe approximating 
to the lossy liquid. The device holder keeps the radiating antenna near the 
phantom at a fixed location during the measurement. A light beam unit is 

installed at a fixed, easily reached and safe position respect the robot which 

provides high precision alignment of the probe tip to the robot coordinate sys- 

tem with a red LED signal. Figure 6.9 shows a detailed view of the light beam 

unit aligning the probe. 

6.4. Measurements 

The antenna was located at a distance of 10mm kom the flat section of the 
phantom without using waterbolus as shown if Figure 6.10. SAR measure- 

ments were performed with the DASY system and S11 measurements with the 

Agilent 8510C network analyzer and 8517B Sparameter test set. The antenna- 

DASY system mearmrement setup was modelled on the XFDTD electromag- 

netic solver. The phantom was modelled with a 2mm fibreglass shell [I211 of 

E, = 3.7. Phantom and antenna dimensions are shown in Figure 6.11. 
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Figure 6.6.: The actual robot-phantom positioning is monitored in the PC. 

6.4.1. SAR Measurements 

The SAR presents a hotspot along the feed diagonal (FD) and an almost- 
symmetric distribution with the FD as axis of symmetry. The asymmetric 

shape of the phantom is why the SAR is not perfectly symmetric. The mea- 
surement shows a smaller amount of energy absorbed at the left side of the 

antenna compared to the simulation, where the distribution is similar in both 

right and left side. Simulated and measured SAR distribution is shown in 

Figure 6.12. 
Peak SAR values were 1.76 W/kg and 1.68 W/kg, the 50% iseSAR covered 

an area of 67.25cm2 and 65.25cm2, and the 25% iso-SAR covered an area 
of 146cm2 and 139cm2 for simulation and measurement, respectively. This 

represents errors between simulation and measurement of 4.54%, 2.97% and 

4.79%, for peak SAR, 50% b S A R  and 25% b S A R  areas respectively. 

Distribution, peak SAR, and iseSAR values between simulations and me& 
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Figure 6.7.: Detail of the mbot arm, DAE, proximity sen=, probe and EOC. 

Figure 6.8.: Phantom with lmsy liquid. 
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Figure 6.9.: Detail of the light beam unit aligning the probe. 

Figure 6.10.: Antenna located near the flat &ion of the phantom. 
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Figure 6.11.: Flat section of the phantom with antenna dimensions. 

surements present good agreement. The differences are attributed to a slight 

non-parallel alignment of the antenna and measured phantom and the met+ 

surement system sensitivity to dielectric parameter accuracy. 

Figure 6.13 shows the difference between simulated and measured SAR dis- 

tribution. The maximum difference was 0.5 W/kg. The greater difference on 

the left side of the plot shows that this part of the antenna was farther from 

the phantom that the right side on the measurements. 

Figure 6.14 shows the cumulative distribution function of the simulated and 
measured SAR results, where X is the SAR value and F ( X )  is the proportion 

of SAR values less than or equal to a certain value. Good agreement is observed 

between simulation and measurement, especially at high SAR values. 

6.4.2. S11 Measurements 

The simulated and measured S11 for the antenna located at 10mm from the 

DASY phantom is shown in Figure 6.15. Loading the antenna with the phan- 

tom containing the liquid detunes the resonant frequency by 7.7MHz and 
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(a) (b) 

Figure 6.12.: SAR distribution (a) simulated and (b) measured. 

SAR, W k g  

Figure 6.13.: SAR distribution of simulated less measured results. (a) - (b) 
in Figure 6.12. 
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Figure 6.14.: Cumulative distribution fuction of simulated and measured 
SAR results. 

9.1 MHz for the simulated and measured S l l ,  respectively. The value of the S11 

at the resonant frequency is -15.2 dB and -14.8dB for the simulation and me& 

surement respectively. The S11 at the 434MHz source frequency is -9.51 dB 
and -10.9 dB for simulation and measurement respectively. The -8 dB band- 

width increases from 18.8MHz (432.3 - 451MHz) for the simulation up to 

29.9 MHz (424.4 - 454.3 MHz) for the measurements. 

The antenna was centered and parallel to the sagittal and coronal plane, 

respectively, at the epigastric location of a volunteer without using waterbolus. 

Figure 6.16 shows the antenna S11 when located at the distances between 
20mm and Omm from the body. It can be obsewed that the curves follow 

a similar trend and the S11 degrades as the antenna is located closer to the 

body. 

6.5. Conclusions 

While SAR measurements to generate energy absorption maps in actual hu- 

man bodies (in-vivo) cannot be performed, liquids that simulate homogeneous 
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Figure 6.15.: Simulated and measured S l l  for antenna at 10mm from DASY 
phantom. 
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Figure 6.16.: Measured S l l  for antenna at different distances of a volunteer. 
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human tissues have been developed. The validity of simulated electromag- 

netic models relies on the agreement between simulation and measurement 

performed in those liquids. 

This chapter explains the preparation of the homogeneous human tissue 

simulating liquid at 434 MHz and how the dielectric properties were measured. 

The DASY system and its component parts was introduced. A comparison 

of measured SAR and S11 is made. Differences of 4.54%: 2.97% and 4.79% 

were obtained for the peak SAR, 50% iso-SAR and 25% iso-SAR respectively 

between measurements and simulations. S11 had also shown good agreement 

between measurements and simulations. 



7. Conclusions and Future Work 

T w s  chapter combines general conclusions of the thesis as well as some 

identified topics of relevant future work. 

7.1. Conclusions 

A multi-disciplinary work which merges the engineering and medical field in 

a comprehensive way to improve the understanding of antenna-human tissue 

interaction has been presented in this thesis. The goal of this work was to 

develop a compact antenna to efficiently deploy energy in human tissue for use 

as a hyperthermia applicator for cancer treatment. The work was carried out 

in the Antenna & High Frequency Research Centre at the Dublin Institute of 

Technology, Dublin; and in the RF and Optical Department at the Institute 

for Infocomm Research, Singapore. 

The physics of hyperthermia, clinical trials and medical treatment were high- 

lighted from the medical point of view. Different types of hyperthermia de- 

pending on the tumour physiological characteristics, dimensions, location and 

involved organs were described. Applicators for different hyperthermia types 

were outlined. The basics of antenna-human interaction, as well as the method- 

ology to determine both specific absorption rate and temperature rise within 

the exposed tissue, were presented. The modelling and simulation methods 

used in this work were introduced. 

The desirable features of antennas for medical applications and in particular 
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for hyperthermia as a cancer therapy have been identified. Antenna compact- 

ness for the treatment of tumors located on curved sites of the body, and the 
generation of tangential Efields for coupling the energy into deeper tissues 

without damaging superficial tissues are some of the criteria for determining 

the suitability of a hyperthermia applicator. Low frequency of operation is re- 

quired in order to get deep penetration. However, the frequency of operation 

is inversely proportional to a n t e ~ a  size and, consequently, miniaturization 

techniques are necessary. The antenna has to be well matched to the system 

frequency for different tissue loading conditions. 

A compact patch antenna operating at the frequency of 434MHz has been 
developed. The design steps and miniaturization process have been detailed. 

The antenna was initially designed in free space and later optimized next 

to human tissue. The antenna evolved from a conventional circular patch 

to an annular ring with concentric circular patch and slotted groundplane, 

which realised an area size reduction of 65.08%. The design overcomes the 

geometrical constraints of other applicators. The feed location was optimized 

in terms of input impedance, Efield distribution and specific absorption rate 

in a homogeneous muscle tissue. 

The merits of the compact antenna have been compared with previously 

published applicators. A detailed performance evaluation of c l in idy  used 

dipoles, loop and square patch antennas was shown in terms of S11, Efield 

and SAR distribution patterns. The proposed applicator has shown an en- 

hanced specific absorption rate pattern without significant frequency detuning 

or impedance mismatch when the antenna was loaded with a tri-layer tissue 

model. The human model comprised layers of skin, fat and muscle of vari- 

able thickness to account for different patients and tissues. The dominant 

tangential Efields produced greater coupling with a l/e2 SAR penetration 
depth of 63mm which exceeds the performance of other waveguides, horn and 

microstrip designs. 

The full human body model, based on data from the Visible Human Project 

and developed by Remcom, was used to assess the performance with a more 
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realistic human body. This model comprised twenty-three dielectric and ther- 

mally frequency-dependent clusters of tissues. The antenna was evaluated at 

the epigastric, inter-scapular and head anatomical regions. These locations 

present different antenna aperture loading and different tissue composition. 

The thickness of the conformal waterbolus and air gap between antenna and 

waterbolus was evaluated for each location. Performance in terms of S11; SAR 

and temperature distribution was shown. The required power source to pro- 

duce a temperature increase up to 43°C for each of the considered body regions 

was investigated. The higher perfusion of the tissues at the inter-scapular lo- 

cation demands a greater increase in required power source when doubling the 

tissue perfusion to get the 43°C threshold. 

In other to validate the model, measurements were performed with the Dosi- 

metric Assessment System (DASY) package. A liquid simulating homogeneous 

human tissue a t  434MHz was produced. The liquid composition, preparation 

process and dielectric properties measurement were detailed. The phantom of 

the DASY system was filled with this liquid. The specific absorption rate and 

the S11 for the compact antenna in proximity to the phantom were measured. 

The measurement setup was modeled in the XFDTD electromagnetic solver. 

Good agreement between measurements and simulations in terms of SAR and 

S l l  was obtained. 

7.2. Future Work 

Many techniques have been investigated to reduce the rearward radiation from 

microstrip patch antennas. Filled cavity-backed patch antennas can suppress 

surface waves [122], however as back radiation depends on the surface sur- 

rounding the antennas, planar soft surfaces have been efficiently used [123]. 

Suppressing the antenna back radiation in a clinical environment can be ben- 

eficial for clinicians and EM compatibility with other equipments. Further 

analysis can focus on evaluating the antenna in a realistic clinical environment 
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Figure 7.1.: Geometry of compact patch antenna with two feed ports. 

and designing a miniaturiz,ed effective soft surface in order to suppress possible 

rearward radiation. 

It has been shown that the addition of a feed port to a patch antenna can 

modify the patch current distribution 11241. Possible future work could focus 

on the optimization of a second feed port position on the annular ring of 

the compact patch antenna as shown in Figure 7.1. Two highly decoupled 

feed ports could increase the current distribution on the patch and generate a 

greater SAR distribution in the tissue. 

The computational time of electromagnetic simulations is a function of mesh 

refinement and it is an important issue when modeling complex geometries such 

as the human body. When improved computational resources become avail- 

able, a h e r  mesh of would improve the model accuracy without compromising 

the computational time. 

Actual tissue thermal and dielectric properties differ among patients 1431. 

Tissue blood perfusion varies spatially and temporally during treatment [104]. 

Further research could be devoted to improve the understanding on dielectric 

properties and perfusion mechanisms in healthy and tumour tissue, and to use 

adaptive models, which can lead to a more accurate temperature analysis. 

The contrast in dielectric properties between healthy and tumour tissue is 
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the basis of microwave cancer detection (1251. In addition, dielectric properties 

of liver tissue in the frequency range between 0.5 and 20 GHz have been shown 

to be temperature-dependant [126]. Further investigations could analyse the 

dependence of dielectric properties on temperature, for both healthy and tu- 

mour tissues. It will be valuable research to determine whether exposing tissue 

to hyperthermia produces an increased dielectric contrast between tumour and 

healthy tissue (temperature increases more in tumour than in healthy tissue 

for the same incident Efield) which can facilitate turriour detection and/or 

progress monitoring with a microwave imaging system. Research can focus on 

combining a hyperthermia and a microwave imaging system. 

The development of medical implants as pacemakers, sphincter sensors or 

intracranial pressure sensor has increased in the last few years [127] and they re- 

quire advanced external devices to communicate with. The developed compact 

patch antenna could be used to communicate with these and others medical 

implants. 

While model validation had been proved performing S11 and SAR mea- 

surements in a liquid simulating homogeneous human tissue at the frequency 

of 434MHz further possible investigation should focus on the evaluation of 

antenna performance in clinical experiments. 
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