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Abstract

Mycelial morphology is a critically important process property in fermentations of

filamentous micro-organisms, as particular phenotypes are associated with maxi-

mum productivity. The design of systems capable of rapidly and accurately char-

acterising morphology within a given process represents a significant challenge to

biotechnologists, as the complex phenotypes that are manifested are often not easily

quantified.

A system has been developed for high-resolution characterisation of filamen-

tous fungal growth, using membrane immobilization and fully-automatic image-

processing software. The system has been used to quantify the early-stage hyphal

differentiation of Aspergillus oryzae on solid substrates, by measuring spore pro-

jected area and circularity, the total length of a hyphal element, the number of tips

per element, and the hyphal growth unit. Spore swelling expressed as an increase

in mean equivalent spore diameter was found to be approximately linear with time.

Widespread germination of spores was observed by 8 h after inoculation. From

approximately 16 h, the number of tips was found to increase exponentially. The

specific growth rate, maximum hyphal tip extension rate and specific branching

frequency of a population of hyphae were calculated as approximately 0.27 h-1,

27 µm tip-1 h-1 and 2.3 × 10−3 tips µm-1 h-1 respectively. The robustness of the

image-analysis system was verified by testing the effect of small variations in the

input parameters.

Subsequent experimentation focussed on investigating the morphological devel-

opment of A. oryzae in submerged culture and the associated influence on α-amylase

production. The temporal variation in pellet structure and α-amylase production

over time was quantified and the potential for the use of membrane-immobilisation

in submerged culture was examined. Variation in carbon source type had little
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morphological impact, although increasing starch concentration caused a shift from

a pelleted form to dispersed, ‘pulp-like’ growth. Increasing inoculum concentra-

tion was found to result in a decrease in mean pellet diameter and an increase in

α-amylase production. The supplementation of fermentation media with non-ionic

detergents caused a significant increase in α-amylase production (up to 149%), but

this increase did not seem to be related to observed morphological variation.

Recently, fractal geometry has been employed in the study of filamentous mi-

crobes, but a clear link between fractal dimension and branching behaviour has not

been demonstrated. This thesis presents an alternative means of enumerating the

fractal dimension of fungal mycelial structures, by generating a ‘fractal signal’ from

an object boundary. In the analysis of a population of A. oryzae mycelia, both frac-

tal dimension and hyphal growth unit were found to increase together over time,

while cultivating populations of Penicillium chrysogenum and A. oryzae mycelia

under a variety of different conditions revealed a strong correlation between fractal

dimension and hyphal growth unit. The technique has the potential to be adapted

and applied to any morphological form that may be encountered in a fermenta-

tion process, providing a universally-applicable parameter for more complete data

acquisition.
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“We must not forget that when radium was discovered, no one knew that it would

prove useful in hospitals. The work was one of pure science and this is a proof that

scientific work must not be considered from the point of view of the direct usefulness

of it. It must be done for itself, for the beauty of science, and then there is always

the chance that a scientific discovery may become, like the radium, a benefit for

humanity.”

Marie Curie
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particular, Ms. Bŕıd Ann Ryan for her assistance when it was required.

The technical support staff, especially Ms. Patricia Taylor for her patience in an-

swering my every conceivable question.

Thanks to all the students whose projects I have been involved with. Your efforts

provided valuable insights for my own research.

To the considerable number of undergraduate and postgraduate students who have

passed through Lab 230 over the course of my work.

To my friends and family.

And finally, to Zara, my supervisor outside DIT, for a seemingly limitless supply of

support and encouragement.

vi



List of Publications

1. D. J. Barry, C. Chan, and G. A. Williams, “Nitrocellulose as a general tool

for fungal slide mounts,” J Clin Microbiol, vol. 45, no. 3, pp. 1074-5, 2007,

doi: 10.1128/JCM.01609-06.

2. D. J. Barry, C. Chan, and G. A. Williams, “Kinetic analysis of fungal differen-

tiation in solid state culture via a novel image analysis method,” in Abstracts

of European BioPerspectives, Köln, Germany, May 2007.
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Notation & Abbreviations

Fungal growth

E Mean rate of hyphal extension (µm tip-1 h-1)

kb Specific branching constant (tips µm-1 h-1)

ktip Maximum tip extension rate (µm h-1)

Kr Colony radial expansion rate (µm h-1)

Kt, Kg, Ks Monod saturation constants

lgerm Germ tube length (µm)

qgerm Germ tube extension rate (µm h-1)

qtip Mean hyphal tip extension rate (µm h-1)

s Nutrient concentration (L-1)

t Time (h)

w Colony peripheral growth zone width (µm)

x Biomass (mg mL-1)

YX/S Yield coefficient

µ Specific growth rate (h-1)

µmax Maximum specific growth rate (h-1)

Morphological parameters

Ac Convex projected area (µm2)

Af Area of pellet filamentous region (µm2)

Ap Projected area (µm2)

Ap,min Minimum projected area (µm2)

C Circularity

Ch,max Maximum hyphal circularity

Cs,min Minimum spore circularity
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NOTATION & ABBREVIATIONS

Dp Pellet diameter (mm)

Ds Spore diameter (µm)

Lhgu Hyphal growth unit (µm)

Lb,min Minimum branch length (µm)

Lth Total hyphal length (µm)

Lmh Main hyphal length (µm)

n Population size

N Number of hyphal tips per mycelium

P Perimeter (µm)

Pc Convex perimeter (µm)

r Radius (mm)

V Volume (mm3)

Other image processing & mathematical symbols

D Fractal dimension

F (ω) Fourier transform

P (ω) Power spectrum

R2 Coefficient of determination

T Grey-level threshold

x Mean

∆f Laplacian operator

σ Standard deviation

σ2 Variance

	 Erosion

⊕ Dilation
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NOTATION & ABBREVIATIONS

Abbreviations

ANN Artificial neural network

CCD Charge-coupled device

CMC Carboxymethylcellulose

DAPI 4’,6-diamidino-2-phenylindole

DCW Dry-cell weight

DEAE Diethylaminoethyl cellulose

EDCF Energy dissipation/circulation function

EDM Euclidean distance map

FITC Fluorescein isothiocyanate

LPCB Lactophenol cotton blue

PBS Phosphate-buffered saline

RBBR Remazol brilliant blue R

RGB Red-green-blue colour space

ROI Region-of-interest

SmF Submerged fermentation

SSF Solid-state fermentation
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Chapter 1

General Introduction

Filamentous microorganisms are exploited in industry for the production of a wide

range of compounds of economic importance, including enzymes, organic acids, vi-

tamins, antibiotics and, increasingly, various compounds of medicinal value [6–8].

Historically, the fermentation of such microbes has been associated with the pro-

duction of traditional oriental foods such as miso, shōyu (soy sauce) and tempeh,

which involves the cultivation of organisms such as Aspergillus oryzae (kōji mould)

on solid substrates. While this practice is still common in the Far East, the sub-

merged culture format became increasingly popular for industrial processes during

the course of the 20th century, primarily due to reduced space requirements, and is

now the more commonly employed culturing method.

During cultivation in submerged fermentation, there are a range of phenotypes

that can be manifested (Fig. 1.1), depending on the physiology of the organism and

the prevailing environmental conditions. Furthermore, there is significant evidence

that the morphological form adopted by a microbe during the course of a submerged

process can have a considerable influence on the level of metabolite produced, both

directly and indirectly [8]. As such, developing a thorough understanding of the

role of environmental variables in structural variation and the subsequent impact

on productivity is a key target in the optimisation of fermentation processes.
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1 GENERAL INTRODUCTION

Figure 1.1: Different morphological forms of filamentous microbes. Growth com-

mences from approximately spherical spores (typically < 10 µm in diameter), which,

over time, produce simple branched hyphal structures (hyphal diameter is gener-

ally < 10 µm). These can, in turn, develop into complex, composite architectures

termed mycelia, while the agglomeration of biomass in submerged culture can result

in the formation of dense, approximately spherical configurations termed ‘pellets’,

which may be up to several millimetres in diameter.

2

• .. --
• . .. 

• J 
• • 



1.1 THE FUNGI

Prior to the advent of the digital era, fungal architecture was often characterised

using subjective, qualitative descriptions. However, with the proliferation of per-

sonal computers and digital cameras in the 1990’s came the application of image

processing techniques to the characterisation of morphology; systems capable of un-

supervised, fully automated analysis of mycelial structures were soon realised [5, 9].

However, despite this early progress, many of the image processing systems de-

scribed in recent studies are not fully automated and rely on some degree of manual

operation for the production of accurate data [10–13]. Furthermore, other recent

studies still lack quantitative data, reporting ambiguous, qualitative descriptions

of macroscopic forms such as ‘pulpy growth’, ‘smooth pellets’ and ‘fluffy pellets’

[14, 15]. There is therefore a pressing need for further development of automated

imaging systems for this purpose.

1.1 The fungi

As saprotrophs, fungi play an important role in nutrient cycling in a variety of

ecosystems, degrading organic matter to inorganic molecules, which may subse-

quently be exploited by other organisms [16]. Although traditionally included in

many botany curricula and textbooks, fungi are evolutionarily more closely related

to animals [17]; green plants are phototrophic autotrophs (producing complex or-

ganic compounds from simple inorganic molecules via photosynthesis), whereas

fungi, like animals, are chemotrophic heterotrophs (organic compounds, such as

glucose, are metabolised to release energy and obtain carbon for growth). The

Kingdom Fungi consists solely of hyphal species, or those closely related to hyphal

species, that are exclusively absorptive in their mode of nutrition [7]. However,

there is no unique, generally accepted classification system at the higher taxonomic

levels and there are frequent name changes at every level, from species up to phylum

3



1.1 THE FUNGI

(or division). For example, the phylum designation of the Zygomycota is contro-

versial and it was not included as a formal taxon in the ‘AFTOL classification’ of

Fungi [18]. Efforts to establish and encourage usage of a unified and more consistent

nomenclature are ongoing [18, 19].

The major phyla of fungi have been classified mainly based on the morphology

of sexual reproductive structures. However, asexual reproduction, via efficient dis-

persal of spores or spore-containing propagules from specially-adapted structures or

through mycelial fragmentation, is common; it maintains clonal populations adapted

to a specific niche, and allows more rapid dispersal than sexual reproduction [20].

Some species may allow mating only between individuals of opposite mating type,

while others can mate and sexually reproduce with any other individual or itself. In

sexually reproducing fungi, compatible individuals may combine by fusing their hy-

phae together into an interconnected network; this process, anastomosis, is required

for the initiation of the sexual cycle. Sexual reproduction exists in all fungal phyla

(with the exception of the Glomeromycota), but differences exist between fungal

groups, which have been used to discriminate species by morphological differences

in sexual structures and reproductive strategies [21, 22].

The Ascomycota (commonly known as the ‘sac fungi’) are the largest phylum of

Fungi, with over 64,000 species, which may be either single-celled (yeasts), filamen-

tous (hyphal) or both (dimorphic). The defining feature of this fungal group is the

‘ascus’, a microscopic sexual structure in which non-motile spores, called ascospores,

are formed. However, many species of the Ascomycota are asexual, meaning that

they do not have a sexual cycle and thus do not form asci or ascospores. Instead,

asexual reproduction occurs through the dispersal of conidia, produced from fruit-

ing bodies termed conidiophores, the morphology of which can vary extensively

from species to species. Perhaps the most famous member of this phylum is the

mould Penicillium chrysogenum (formerly Penicillium notatum), which, through
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1.2 FUNGAL GROWTH

the production of the antibiotic penicillin, triggered a revolution in the treatment

of bacterial infectious diseases in the 20th century. Some ascomycetes (Penicillium

camemberti, Penicillium roqueforti and A. oryzae, for example) have been employed

for hundreds or even thousands of years in the production of various foods. More

recently, ascomycete fungi (the genus Aspergillus in particular [23]) have proved

to be suitable candidates for heterologous protein expression, enabling large-scale

microbial production of therapeutic proteins such as insulin and human growth

hormone.

Basidiomycota is one of two large phyla that, together with the Ascomycota,

comprise the sub-kingdom Dikarya (often referred to as the ‘higher fungi’). The

most conspicuous and familiar Basidiomycota are those that produce mushrooms,

on which are sexual reproductive structures called basidia that bear basidiospores,

although this phylum also includes some yeasts and asexual species. Among the

‘lower fungi’, the traditional division of the Zygomycota (‘pin’ or ‘sugar’ moulds)

consists of organisms typically found in soil and animal dung, as well as on fruits high

in sugar content, such as strawberries. Among the more extensively studied fungi in

this (disputed) taxon are the Mucorales, containing genera such as Mucor, Rhizopus

and Mortierella. Zygomycota are defined and distinguished from all other fungi by

sexual reproduction via zygospores and asexual reproduction by sporangia, within

which non-motile, single-celled sporangiospores are produced. Most Zygomycota,

unlike the so-called ‘higher fungi’, form hyphae that generally lack septae.

1.2 Fungal growth

The life cycle of filamentous microorganisms typically begins and ends as a spore,

which are produced from the microbe’s fruiting bodies and dispersed by air, water,

or possibly by animals. The spore will usually remain dormant until the necessary
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1.2 FUNGAL GROWTH

environmental conditions for activation are met, but how this dormancy is main-

tained is poorly understood. There is evidence that low levels of metabolic activity

are necessary to maintain spore viability; O2 consumption and CO2 production by

Neurospora ascospores were found to be 1 – 4% that of vegetative cells [7]. However,

prolonged viability has been demonstrated in the absence of metabolism; fungi have

been grown from glacial ice cores estimated to be up to 140,000 years old [7].

Various physical agents, such as light, temperature and chemical compounds,

can cause activation of fungal spores [24]. Of most importance however is the avail-

ability of water and a minimum water activity1 of approximately 0.65 is required for

growth of most fungi [25]. The germination rate of P. chrysogenum spores has been

demonstrated to be highly dependent on water activity [26], while both temperature

and water activity were shown to be significant in determining the germination rate

of Aspergillus ochraceus spores [27]. Some microbes may also require nitrogen or

carbon sources for spore activation [28], while others can germinate in pure water,

the growth being supported by endogenous reserves [7]. Large numbers of spores

in close proximity may fail to germinate (self-inhibition); in some species, the fre-

quency of germination increases as the concentration of spores is decreased [29].

Some species require a ‘trigger’, such as heat or chemical stimulus, that may not

necessarily be required to maintain vegetative growth, to initiate spore germination.

For example, exposure to temperatures of 50 – 60◦C for approximately 20 minutes

is required by ascospores of Neurospora to initiate germination [29]. Germinative

potential has implications for industrial processes, as variations in the number of

viable spores in the inoculum can have a considerable influence on the outcome of

a fermentation (Section 1.4.1).

Once the conditions for activation have been met, spores undergo a swelling

1aw; ratio of vapour pressure of water in a substance to the vapour pressure of pure water at

the same temperature
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process, during which their size may increase up to four-fold due to the uptake of

water [30]. Trinci reported that during the first 4 hours after inoculation, Rhizopus

stolonifer sporangiospores increased linearly in diameter [31]. In their analysis of

the development of A. oryzae, Spohr and colleagues found that the spores remained

approximately spherical during enlargement, although it was difficult to differenti-

ate between exponential growth in the spore volume and a linear increase in the

spore equivalent diameter [4]. The swelling process culminates in the emergence

of one or more germ tubes from the spore, the extension rate of which increases

exponentially until a constant rate is attained [31], which varies between species

and is also dependent on the prevailing environmental conditions. The extension

of the germ tube (qgerm) may be described by the following empirical, Monod-type

expression [4]:

qgerm = kgerm .
lgerm

lgerm +Kgerm

(1.1)

where kgerm is the maximum extension rate and Kgerm is a saturation constant.

Alternatively, the length of the germ tube (lgerm) at time t is given as follows [32]:

lgerm =

 l0e
k1t t ≤ tl

ll + k2t t > tl

(1.2)

where k1 and k2 are constants, tl represents a point in time when lgerm >> Kgerm

(∴ qgerm ≈ kgerm) and l0 and ll are germ tube lengths at t = 0 and t = tl respectively.

Such empirical kinetic expressions are generally based on experimental data, with

little or no knowledge of the underlying growth mechanisms. This is as opposed

to mechanistic models, which are typically more complex to enable quantitative

consideration of assumptions on growth [32].

Extension of the germ tube, or hypha, is confined to the apical region; extension

occurring in sub-apical regions would result in ‘buckling’ and distortion of the hypha.
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Early studies of this mechanism involved ‘dusting’ sub-apical hyphal regions with

particles and noting any displacement of these particles over time as the growth

of the organism proceeded; those particles that adhered to hyphae did not alter

their position [7]. Apical advancement is a result of internal hydrostatic pressure

within the hypha forcing the thin, plastic apical cell wall outward; hyphae contain

high concentrations of solutes, resulting in water entering the cells by osmosis and

generating positive turgor pressure [33]. As growth proceeds, the cell wall in sub-

apical regions becomes thicker, more rigid and more resistant to turgor pressure

[34], restricting hyphal growth to the apical region. The advancement of apical cells

often occurs at the direct expense of cytoplasm in sub-apical cells, resulting in the

formation of vacuoles, which are typically not seen in the proximity of hyphal tips

[35]. The cell wall formation driving hyphal extension is a vesicle-based process, with

the vesicles2 (containing the precursors required for cell wall formation) believed

to be supplied by the Vesicle Supply Centre (VSC) [36], also known as the apical

body or Spitzenkörper. The VSC, visible under phase-contrast microscopy as a dark

region located just behind an advancing hyphal tip, has been implicated in ‘guiding’

hyphal growth. The formation of a new branch is preceded by the formation of a

new Spitzenkörper, while a change in direction in hyphal growth is preceded by a

displacement of the apical body [7].

In the higher fungi, internal cross-walls termed septae are formed at regular

intervals as the hypha extends, sub-dividing the hypha into individual cells. In

the event that a breach of the cell wall occurs, the pores within these septae are

‘plugged’, so that loss of cytoplasm is confined to one particular cellular compart-

ment and death of the entire hypha does not occur. It has been demonstrated that

cutting a sub-apical compartment does not result in the death of the apical cell,

although a reduction in extension rate may be observed [37].

2A vesicle is a sac that stores or transports substances intra-cellularly
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1.2 FUNGAL GROWTH

When a hypha has attained a certain length, a branch is formed laterally to

the parent, typically towards the end of the period of exponential extension [1, 32].

An expression similar to Equation (1.1) may be used to describe the extension of

branches, but the value of the saturation constant, Ki, may vary significantly within

a single mycelium; there is evidence suggesting Ki is proportional to the distance

between a newly-formed branch and the tip of the ‘primary’ hypha [4]. The process

of branching is poorly understood, although a correlation with septation has been

proposed, as branches often form just behind septae [7]. It has been postulated

that a hypha will produce a branch if the material supply to a hypha exceeds

that required for the maintenance of growth of a single hypha, or, when transport

of material distant from the tip becomes limited. This may be explained by the

formation of a septum behind the advancing tip, after which extension is dependent

on biosynthesis within the apical region [32]. Branches are typically formed in

acropetal succession behind the primary tip, with the formation of a new branch

preceded by a softening of the rigid sub-apical cell wall at the location where the

new branch emerges [29].

The critical branch length that results in a new branch being spawned is referred

to as the hyphal growth unit (Lhgu), which is approximately equal to the total hy-

phal length (Lth) divided by the total number of tips (N) on any given element.

First proposed by Plomley [38], this represents the mean length of hypha required

to support tip growth. If mycelial growth involves the duplication of a ‘growth unit’,

it follows that Lth and N increase exponentially at approximately the same specific

growth rate. That is, branching attains an exponential rate, with each individual

branch growing at approximately the same linear rate, resulting in a similar expo-

nential increase in biomass. This was first demonstrated experimentally by Trinci

in a study of Neurospora crassa, Aspergillus nidulans, Geotrichum candidum, Mucor

hiemalis and P. chrysogenum [1]. Colonies were cultivated on cellophane-covered
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1.2 FUNGAL GROWTH

media (to restrict growth to two dimensions) and measures of the dimensions were

made on enlarged photographic prints. After an initial period of discontinuous

branch production, exponential growth was observed (Fig. 1.2), although a wide

variation in the growth rate of individual branches was noted. Measured specific

growth rates varied from approximately 0.25 h-1 for A. nidulans up to 0.60 h-1 for

M. hiemalis. The growth unit was also studied in batch cultures of G. candidum

by Caldwell and Trinci, who reported that total hyphal length and the number of

branches per mycelium increased exponentially with biomass, suggesting that the

ratio of total mycelium to number of tips was constant [39]. Furthermore, it was

found that the hyphal growth unit remained relatively constant for specific growth

rates ranging from 0.173 to 0.385 h-1, supporting the hypothesis that the mould had

a functional unit of hyphal growth.

In young mycelia exhibiting undifferentiated growth, the mean rate of hyphal

extension (E; µm tip-1 h-1) may be calculated as follows [32]:

E =
2(Lth − Lth0)
Nt +N0

(1.3)

where Lth0 and Lth are the total hyphal lengths at time t = 0 and 1 hour later,

while N0 and Nt are the respective number of hyphal tips. The mean extension rate

may then be related to the specific growth rate (µ; h-1) as follows:

E = µLhgu (1.4)

Over time, nutrient limitations will arise at the centre of the colony, where ger-

mination occurred, eventually resulting in the cessation of growth at this location

(and often sporulation occurs) [32]. A differentiated colony is thus formed, in which

growth is restricted to the colony periphery, where abundant nutrients are still avail-

able. The active region is referred to as the peripheral growth zone, the width of

which (w) may be determined by modifying the formula proposed by Trinci [37]:
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Figure 1.2: Growth of a mycelium of Geotrichum candidum on solid medium, as

described by Trinci [1], showing number of tips (�), total hyphal length (◦) and

hyphal growth unit (•). Reproduced with permission from the Society for General

Microbiology.

w =
Kr

µ
(1.5)

where Kr is the radial expansion rate of the colony (µm h-1). Alternatively, if an

estimate for w is known, then µ may be calculated by measuring the change in colony

radius over time. However, such an approach would not take into consideration

aerial hyphae or hyphae growing into media substrata [29]. Furthermore, variations

in the direction of growth of individual hyphae will affect their contribution to radial

extension [32].

Growth in such a manner results in the formation of a ‘sink’, into which nutrients
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1.2.1 GROWTH IN SUBMERGED BATCH CULTURE

diffuse, and a ‘source’, from which metabolites effuse, and, consequently, concen-

tration gradients develop within the medium. An analysis conducted by Olsson

showed graphically that such gradients existed in medium supporting the growth of

Fusarium oxysporum colonies [40], with a particularly steep decline in glucose and

phosphate concentration at the colony edge, while the concentration of both nutri-

ents was virtually zero at the colony centre. Radially-directed growth away from the

colony centre is probably a consequence of such gradients [7], but the mechanism

by which fungi grow in such patterns, efficiently exploiting the available substrate,

is not fully understood. The tendency of hyphae to avoid each other is particularly

evident at the edge of a colony, where branches are formed at acute angles, and

may be a response to a signalling metabolite secreted by the hyphae themselves

(autotropism) or a localised depletion of oxygen (or higher concentration of carbon

dioxide) around the hyphae (chemotropism) [30].

1.2.1 Growth in submerged batch culture

In a closed, ‘batch’ system, a volume of media is inoculated and growth proceeds

until the concentration of an essential nutrient becomes limiting, or toxic compounds

have reached a critical, growth-inhibiting level. A stationary liquid culture will

result in the formation of a fungal ‘mat’ on the media surface. Agitation results

in the formation of submerged culture, in which the growth form varies between a

homogeneous suspension of dispersed hyphae and discrete pellets (Fig. 1.1). Non-

septate organisms typically grow poorly in such environments, as the shear forces

caused by agitation result in excessive loss of cytoplasm from cells.

The early stages of growth of filamentous microbes in submerged liquid culture

are similar to those described above for an undifferentiated mycelium. The growth

is well described using kinetic equations derived from unicellular bacterial studies,

such that biomass, substrate and product are assumed to be uniformly distributed

12
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[32]. Following an initial lag phase3, during which the organism acclimatises to a

new environment after inoculation, branching attains an exponential rate. The rate

of change of biomass (x) may therefore be described as:

dx

dt
= µx (1.6)

Integrating yields:

lnxt = lnx0 + µt (1.7)

where xt is the level of biomass at time t and x0 is biomass at time t = 0. This

equation may also be written as:

xt = x0 e
µt (1.8)

This growth phase, following the initial lag, is thus termed the exponential growth

phase (Fig. 1.3) and will continue as long as the necessary environmental conditions

to support it exist (nutrients in excess, adequate aeration, favourable tempera-

ture and pH). In industry, this growth phase is of interest for the production of

biomass and growth-associated metabolites, such as amylases, cellulases and pro-

teases, which are typically required for the synthesis of nutrients. The secretion of

these metabolites can be influenced by the media composition, as the production

of certain enzymes may be induced by the presence of a particular substrate. Fur-

thermore, if a mixture of sugars is present in the medium, low-molecular weight

substrates, such as glucose in particular, will typically be preferentially consumed

by the organism. This is typically achieved by the inhibition (or repression) of the

synthesis of enzymes involved in the catabolism of other carbon sources (known as

catabolite repression) [29].

3If the fermentation was inoculated with an exponentially-growing culture, growth continues

exponentially and no lag phase occurs
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Figure 1.3: Typical growth profile of a microorganism grown in submerged culture,

where x denotes biomass.

The specific growth rate attained during the exponential phase is dependent on

nutrient concentration; if all nutrients required for growth are present in excess, then

the specific growth rate attains a maximal value (µmax). The empirical relationship

between µ and nutrient concentration (s) may be expressed in terms of Monod

kinetics (Fig. 1.4):

µ = µmax.
s

s+Ks

(1.9)

where Ks is a saturation constant, which is typically very small relative to the

concentration of the relevant nutrient in the media. As such, in a laboratory envi-

ronment in which a chemically-defined medium is used, all nutrients will typically

be present in amounts vastly greater than the respective saturation constants and

the specific growth rate will approximate µmax during the exponential phase.

The exponential growth phase is ended as a result of the exhaustion of a nutrient

required for growth or the accumulation of growth-inhibiting compounds. The cul-

ture then enters the stationary phase of growth, the transition involving substantial
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µ
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Figure 1.4: Specific growth rate (µ) versus nutrient concentration (s) according

to Monod kinetics. Half of the maximum specific growth rate (µmax) is attained

when s is equal to the saturation constant Ks.

physiological changes, which again, may be influenced by media composition. Dur-

ing the stationary phase, cell growth is balanced by cell death, but compounds of

industrial interest, such as organic acids, vitamins and lipids, may be accumulated

in the culture. A fourth growth phase, termed the decline phase, may follow the

stationary phase, during which cell growth is outpaced by cell death and biomass

declines as a result.

An important variant of the batch culture format is ‘fed-batch culture’, in which

biomass is initially grown in a batch system until a pre-determined point in time,

perhaps relating to the exhaustion of a chosen medium component. Fresh nutrient is

then added, typically as a concentrated form of a component of the original medium.

Conducting fermentations in this manner may be used to, for example, minimise

medium viscosity in the event that a starch substrate is employed, or, if glucose is

utilised as substrate, to maintain the concentration below repressing levels. The fed-

batch format may also be used to add an inducer to initiate secretion of a particular

15
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1.2.1 GROWTH IN SUBMERGED BATCH CULTURE

metabolite, or to maintain the limiting nutrient conditions necessary for secondary

metabolite production. The majority of large-scale industrial fungal fermentations

are of the fed-batch variety.

Growth in the form of pellets

Depending on the organism, pellet formation can result from the aggregation of

spores prior to germination, aggregation of spores and germ tubes or, less commonly,

the aggregation of mycelia [32]. A wide range of physiochemical parameters may

affect the pellet formation process, some of which will be discussed in Section 1.4.

Pelleted cultures have long been assumed to follow cube root kinetics [41, 42]:

x1/3 = x0
1/3 + kt (1.10)

where x is biomass at time t, x0 is biomass at time t = 0 and k is a constant.

The growth of fungi in the form of pellets is somewhat analogous to colony growth

on solid substrates; over time, growth of the pellet will be restricted to an outer

‘active layer’ (the width of which, w, is dependent on the diffusional properties of

the mycelium [32]) as the core of the pellet suffers from diffusion limitations [43].

Changes in the pellet radius may be described by:

r = r0 + wµt (1.11)

If the pellet is assumed to be spherical with a constant biomass density (ρ), increase

in biomass can be rewritten as follows:

x = x0 +

(
4

3
πρn

)1/3

wµt (1.12)

where n is the number of pellets. Exponential growth is predicted (while r ≤ w)

until restrictions to diffusion of nutrients through the pellet mass reduce growth
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rates in the centre of the pellets (r > w); subsequent growth will then follow cube-

root kinetics.

Over time, diffusion limitations will lead to a cessation of biomass production at

the pellet core and the onset of autolysis. This leads to a reduction in stability and

the pellet becomes more susceptible to damage by mechanical forces. Furthermore,

hyphal elements at the pellet surface become weakened by ageing and vacuolation,

making them more susceptible to shearing. Consequently, the macroscopic morphol-

ogy can change considerably [44]. Pellet break-up often results in growth renewal,

provided nutrient requirements are met (the medium will be enriched by nutrients

from autolysed biomass), since fragments can act as centres for new growth [8]. This

complex relationship between pellet growth, fragmentation and regrowth has been

studied in a variety of organisms (Table 1.1).

The growth of A. oryzae in the form of pellets was studied in detail by Carlsen

and colleagues [45]. In the time period of 18 to 32 hours post-inoculation, the num-

ber of pellets was almost constant and the pellet radius increased with a constant

rate of 37.5 µm h-1, which was very similar to the value of 35 µm h-1 reported for the

hyphal tip extension rate in freely dispersed cultures. After 35 hours of cultivation,

the pellet concentration rapidly increased, whereas the mean pellet radius decreased,

but the growth in biomass was described very well by the cube-root law prior to

pellet break-up (t > 35 h). Thereafter, a smaller fraction of the biomass was mass-

transfer limited, resulting in an increase in µ. Oxygen limitation in pellet cores set

in approximately 23 hours after inoculation and, after 35 hours, approximately 50%

of the biomass was estimated to be limited by oxygen. The concentration of ethanol

in the media was found to increase with the estimated oxygen-limited biomass con-

centration, while no ethanol production was detected in batch cultivations grown

as freely dispersed hyphal elements.
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Table 1.1: Recent reports in the literature on the development of fungal pellets in

batch cultivations.

Organism Report Reference

A. oryzae Pellet radius increased linearly up 35 hours before onset of

fragmentation

[45]

A. niger Pellet formation completed 15 h post-inoculation - pellets

increased in size but not in numbers. Active region of pellets

decreased from 20 h

[46]

A. terreus Pellet size increased up to approximately 75 h and remained

relatively constant thereafter in shake-flasks inoculated with

pellets, although free mycelia were visible after 120 h

[47]

A. niger Pellet size increased continuously with cultivation time in

shake-flask culture

[48]

A. niger Pellet diameter levelled off between approximately 50 and

100 h cultivation, depending on the inoculum concentration

[49]

C. militaris Pellet size increased over the course of 8-day fermentation,

but sucrose concentration was high (40 g/L)

[50]

A. terreus Pellets in stirred-tank reactors increased in size before falling

in later stages

[51]

A. niger Approximately 50 hours post-inoculation, a transition from

‘smooth’ to ‘hairy’ pellets took place, indicated by a decline

in fullness ratio (area/convex area)

[35]

P. baumii Small pellets with filamentous growth changed into

‘feather-like’ mycelial clumps. Diameter declined from 5.2 to

2.6 mm after 12 days

[52]

P. gilvus Pellets were compact and smooth until latter stages of

fermentation when hollow cores formed and diameter

declined

[52]

P. linteus Pellets exhibited compact central cores with loose

filamentous outer zones. Diameter, core area and circularity

increased during fermentation

[52]
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1.3 Industrial fermentation of fungi

Filamentous microbes, and fungi in particular, are perhaps traditionally associated

with destructive and parasitic behaviour, incurring immense economic losses in the

process. Their invasive growth strategies enable colonisation of a wide variety of

plants, trees, insects, fish, animals and even humans. Some of the most devastating

crop failures in recorded history have been attributed to fungal disease, such as the

Irish potato famine of 1845 (Phytophthora infestans) and the Bengal rice famine of

1943 (Cochliobolus miyabeanus).

However, the saprophytic mode of nutrition of many filamentous microbes has

been exploited to produce a wide range of compounds of economic significance,

such as enzymes, antibiotics, plant growth regulators and vitamins (Table 1.2).

This list is by no means exhaustive and in fact the range of products obtainable

from filamentous fungi is frequently expanded upon. For example, investigations

into the use of fungi for the production of diesel-like compounds (‘myco-diesel’) are

well underway [53], while the utilisation of novel cultivation formats can result in

increased productivity [48] or even the discovery of new metabolites of potential

utility [54]. The future economic potential of industrial biotechnology has been

outlined in several reports, with the British Department of Business Enterprise and

Regulatory Reform (BERR) recently estimating that the global market for bio-based

products will grow to US$250 billion by 2020 [55].

The exploitation of fungi by man is by no means a recent phenomenon, with

processes such as the fermentation of alcoholic beverages dating back to ancient

times. Some authors have suggested that the beginnings of biotechnology were

coincident with the dawn of agriculture; the advent of large-scale grain production

and the domestication of cows and goats was probably quickly followed by early

forays into the production of alcoholic beverages and fermented milk products [56].
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1.3 INDUSTRIAL FERMENTATION OF FUNGI

Table 1.2: A selection of metabolites produced in industry by fungi, their uses and

some of the organisms used in their production [6–8].

Metabolite Uses Producer organisms

Biomass Food industry A. bisporus, F. venenatum

Amylases Food industry, detergents A. niger, A. oryzae,

A. awamori, R. oryzae,

T. viride

Glucoamylases Food industry A. niger, A. awamori,

A. oryzae, R. oryzae

Cellulases Food processing, pulp &

paper industry

A. niger, A. terreus,

T. reesei, T. viride

Lipases Detergents A. niger, A. oryzae,

R. arrhizus

Phytases Animal feedstuffs A. niger

Ethanol Chemical industry, biofuels S. cerevisiae

Organic acids (citric,

gluconic, itaconic)

Food, soft drinks and

pharmaceutical industries

A. niger, A. terreus,

T. viride

Riboflavin Food supplement, various

clinical applications

A. gossypii

Penicillins Antibiotics P. chrysogenum

Cephalosporins Antibiotics C. acremonium

Statins Cholesterol-lowering drugs P. citrinum, M. ruber

Cyclosporin A Treatment of

organ-transplant patients

T. inflatum

Gibberellins Fruit cultivation G. fujikuroi

Lactones, peptides,

terpenoids

Food industry (flavourings) T. viride, G. fujikuroi, M.

circinelloides, P.

blaksleeanus

Heterologous proteins Healthcare industry A. niger, A. oryzae, A.

nidulans, T. reesei
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Many traditional Japanese foods, such as soy sauce and miso, have been produced in

fermentation processes for thousands of years [57] and the Japanese biotechnology

industry has used this vast experience to establish itself as a world-leader in the

production of fungal metabolites. Fungi have also been traditionally utilised as

sources of food themselves, as is the case with mushrooms (Agaricus bisporus, for

example). More recently, Fusarium venenatum has been developed as single-cell

protein for human consumption under the trade name of QuornTM, the protein

of which is comparable in nutritional quality to that of chicken. However, the

conversion of ‘feedstock’ into protein is more efficiently achieved by F. venenatum

than by chickens [58]. A chicken gains approximately 49 g of protein per kilogram

of protein-containing feed consumed and the animal doubles in weight in 3 weeks.

However, F. venenatum requires just a simple feed consisting of glucose and some

inorganic salts, each kg of which is converted into 136 g of protein, with biomass

doubling every 6 hours!

Up to the early 1980’s, the majority of products derived from microbial fer-

mentation were for use in the food industry, making up an estimated 80% of the

market value of biotechnology applications in 1981 [58]. However, since the use of

microbes for the production of therapeutic compounds was clinically approved in

1982 (initially for the production of insulin by Escherichia coli), successful attempts

have been made to exploit fungi as expression hosts of heterologous proteins [59],

due to their capacity for high levels of excretion and the GRAS status4 obtained

by many (such as A. oryzae). This has resulted in many compounds of medicinal

value, previously only obtainable from mammals, being produced using microbes.

Diabetics, for example, were previously prescribed insulin derived from animal pan-

creatic tissue, which occasionally provoked immune responses in patients, but also

carried a risk of infection from harmful pathogens [60]. Recombinant microbes have

4‘Generally regarded as safe’; US Food and Drug Administration

21



1.3.1 SUBMERGED INDUSTRIAL PROCESSES

also been used to produce factor IX, a deficiency of which causes hemophilia B, ob-

viating the requirement for blood transfusions and the associated risks of infection

[60]. The production of these proteins was initially conducted using E. coli, but the

intra-cellular accumulation of the proteins of interest by the bacterium requires the

use of expensive extraction techniques, which result in the inactivation of a portion

of the product [6]. Filamentous microbes, however, secrete enzymes prodigiously in

their natural environment and, as such, they are a more suitable choice of host or-

ganism for such processes. Research into microbial development of vaccines against

human diseases such as hepatitis, influenza, rabies and HIV is also underway [58].

1.3.1 Submerged industrial processes

Production facilities typically employ ‘trains’ of bioreactors ranging from 20 to

250,000 L (or even larger for some processes) [2], although it is desirable to keep the

number of reactors to a minimum, as the costs associated with a reactor increase

in proportion to (reactor volume)0.7−0.8 [61]. Culturing begins in the smallest vessel

and at a predetermined point in time during the exponential growth phase, the

contents are used to inoculate the next fermenter in the chain (each vessel is usually

approximately ten times larger than its predecessor). When the biomass level has

increased sufficiently, the culture is transferred to the next fermenter in the chain,

continuing in successive stages until the largest vessel (the production fermenter) is

reached. This inoculum ‘work-up’ avoids the long lag phase that would otherwise

result from inoculating a large vessel with a relatively low level of biomass. Further-

more, inoculating with exponentially-growing cultures minimises any lag in growth

at each stage in the chain. At the end of the process, the biomass is separated from

the medium and the metabolite of interest is extracted. Industrial fermentations are

commonly conducted on a large scale in a stirred-tank bioreactor, although airlift

and bubble column reactors are also used extensively [2].
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The bioreactor was first introduced in the 1940’s for the large-scale production

of penicillin from P. chrysogenum (known at the time as P. notatum) [7] and the

basic design remains unaltered, although monitoring equipment has increased in

sophistication. In addition to the those components shown in Figure 1.5, reactors

are also fitted with side ports for pH, temperature and dO2 probes as minimum

requirements, in addition to connections above the liquid level for acid and alkali

addition (for pH control), antifoam addition and inoculation. A foam breaker or

foam rake will sometimes be fitted in the headspace above the liquid for processes

where the use of antifoam is unacceptable. The exterior of the vessel is typically

fitted with a water jacket to dissipate the heat of metabolism and that generated

from culture agitation. Temperature control in this manner can be problematic in

large vessels, as surface area for heat transfer decreases with increasing volume, and,

as such, larger vessels will often be equipped with internal heat exchanger coils.

Most industrial fermentation processes are aerobic, air typically being introduced

via a sparger with small holes below the impeller shaft. This facilitates the pro-

duction of small air bubbles whose presence in the medium is prolonged as a result

of the turbulent flow created by the impellers, aiding convective mixing and max-

imising their residence time. The combination of small bubbles (large total surface

area) and long residence time maximises the diffusion of oxygen from the bubble

into the medium and carbon dioxide from the medium into the bubble. Introducing

air at the foot of the vessel also takes advantage of a relatively high hydrostatic

pressure, which reduces bubble volume, therefore increasing surface-to-volume ra-

tio, and maximising diffusion. Maintaining a positive pressure within the bioreactor

can also aid diffusion.

Mechanical agitation, which also aids in the convective mixing of nutrients

present in the media, is typically provided by Rushton impellers mounted on a
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Sparger

Sterile Air In

Impeller

Baffle

Air Out
Impeller Drive Shaft

Figure 1.5: Schematic of a typical stirred-tank bioreactor. Four baffles are usually

used to prevent vortexing, with the baffle width ranging from D/10 to D/12, where

D is the vessel diameter. The number of impellers used is determined by the aspect

ratio of the vessel, which is typically ∼ 3.5. The lower-most impeller is located

∼ D/3 from the bottom of the reactor, with additional impellers spaced ∼ 1.2

impeller diameters (d) apart, where d ≈ D/3 (dimensions from [2]).
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central vertical shaft5. Together with medium sterilisation, culture mixing is one

of the most energy-intensive aspects of fermentation, but the power requirement

for agitation depends greatly upon the rheological properties of the broth, which in

turn depends upon the growth form of the cultivated organism; pelleted structures

will typically result in a Newtonian fluid6, but filamentous growth often results in

a pseudo-plastic, non-Newtonian fluid (viscosity decreases with increasing shear).

For some processes, in which the cost of power required for mechanical agitation

is deemed to be prohibitive, ‘tower’ fermenters are employed, in which agitation is

provided by supply of compressed air. Agitation can also have a significant impact

on the morphology of the organism (Section 1.4.2).

Other significant costs associated with fermentation processes are raw materials

for use as substrate and transport of same. In a laboratory environment, medium

composition is typically strictly defined with the use of pure chemicals. However, on

an industrial scale, this is not practical as the volume of media required is several

orders of magnitude greater than that used in a bench-top fermenter. A cheap,

carbon-rich feedstock must therefore be sourced and quite often, waste products

from other industries, such as molasses (waste liquor from sugar refineries), are

well-suited. The costs associated with transporting large quantities of these raw

materials can often be considerable and, as a result, the fermentation plant may be

sited near the source of raw materials. Medium ingredients alone can represent up

to 60% of operating costs, with the carbon source alone constituting up to 90% of

raw material expenditure [61].

5A Rushton impeller consists of six to twelve flat, rectangular plates mounted perpendicularly

on a horizontal disc, with the plates’ horizontal alignment being radially coincident with the disc.
6A Newtonian fluid is characterised by a linear relationship between stress and strain rate, the

constant of proportionality being the viscosity. The flow properties of a non-Newtonian fluid are

not described by a single constant value of viscosity.
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1.3.2 Solid-state processes

Solid-state fermentation (SSF) involves the cultivation of microbes on solid particles,

typically under conditions of low water activity. The majority of SSF processes are

aerobic, involve filamentous fungi (although some involve bacteria and yeasts), and

may be classified as either natural (indigenous), such as ensiling or composting, or

pure culture, using individual or mixed strains [62, 63].

The success of submerged culturing (SmF) during the 20th century has led to

a decline in the use of SSF. However, the practice is still ongoing and has shown

promise for the production of many enzymes, acids and bioactive compounds, lead-

ing to increased research interest [62, 64]. However, due to the different physical

nature of SSF compared to SmF (particularly, the presence of solid-air interfaces in

SSF), hyphal extension and branching patterns in mycelial organisms may be quite

different between the two systems [62]. Recent studies have indicated differential

protein expression in solid culture by several organisms [59, 65], exemplifying fu-

ture potential application of this fermentation format. There is also evidence that

solid-state cultivation can result in higher biomass yields and higher enzyme titres

compared to submerged fermentation [66, 67], possibly due to the closer resemblance

to the natural environment of the microbes [68]. Furthermore, different products

may be produced in SSF. For example, Ruijter and colleagues found that A. oryzae

accumulates polyols (glycerol, erythritol and arabitol) at low water activity on a

solid substrate [69]. It was suggested that this might be typical for SSF due to the

specific growth conditions present during growth on a solid substrate. However,

much of this investigative work remains confined to laboratories; the potential of

SSF to operate reliably at a large scale has not been investigated to the same degree

as the SmF format [64]. However, examples of production-scale SSF facilities do
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exist, such as that operated by Alltech7 in Serdan, Mexico, claimed to be the first

in enzyme technology based on SSF.

Traditionally associated with the production of oriental foods, the use of solid

media has certain merits, such as low energy requirements, abundance of cheap

raw materials and a low water requirement [66]. Agro-industrial crop waste and

residues are typically utilised as substrates and, while wheat bran has proved to be

the most popular choice, a variety of other substances have been investigated, such

as cassava, soya bean, sugar beet, potato, crop residues and residues of the fruit-

processing, coffee-processing and oil-processing industries (reviewed extensively by

Pandey and colleagues [64]). However, the substrate may require chemical or me-

chanical pre-treatment prior to fermentation [70] and the sterilisation of a solid

substrate is typically more difficult to achieve than a liquid medium. However, SSF

often involves an organism capable of tolerating low water activity, and, if an active

inoculum is added to a (cooked) substrate, the process organism is able to out-

compete potential contaminating organisms, meaning that strict aseptic operation

of the bioreactor may not be essential [64].

However, SSF is often slower, is difficult to control due to the lack of suitable

sensors and probes and the dissipation of metabolic heat is often problematic [66].

Environmental parameters in SSF, such as temperature, pH, concentrations of oxy-

gen and nutrients, porosity and other physical properties of the solid matrix as

well as fungal biomass are difficult or even impossible to measure online due to

the lack of free liquid, the complexity and heterogeneity of the solid material as

well as the intimate interactions between the microorganisms and their substrates

[71]. Furthermore, there may be severe restrictions in the supply of O2 to a sig-

nificant proportion of the biomass, large nutrient concentration gradients can exist

within solid particles and the movement of solid particles can cause impact and

7http://www.alltech.com
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1.4 INFLUENCE OF PROCESS VARIABLES ON MORPHOLOGY AND
METABOLITE PRODUCTION IN SUBMERGED FERMENTATIONS

shear damage to hyphae [62]. SSF is also generally more labour-intensive, although

a fully automated system for soy sauce production has been developed in Japan [67]

and several commercial enzymes are produced using solid substrates [68]. However,

while a variety of computational and modelling methods have been applied to the

study of solid-state fermentations, experimental data on this culture format is still

lacking [71].

1.4 Influence of process variables on morphology and

metabolite production in submerged fermentations

The diffusional limitations associated with pelleted growth would perhaps suggest

that a dispersed mycelial morphology is preferable for increased product yield. How-

ever, while a pelleted form typically results in a broth exhibiting Newtonian prop-

erties, facilitating easier mixing, dispersed growth often results in non-Newtonian

broth behaviour. This results in mixing problems within the bioreactor, often lead-

ing to substrate gradients and oxygen limitations, which can require substantial

power inputs to overcome. For example, Papagianni and Mattey reported that when

dispersed or clumped growth of Aspergillus niger predominated, dissolved oxygen

levels did not exceed 80% of saturation, while 100% saturation was maintained for

pelleted cultures [72]. The factors that determine the growth form are many and

varied, some of which will now be considered, together with the techniques utilised

in morphological quantification.

1.4.1 Inoculum concentration

The initial inoculum concentration can have a significant influence on the gross

morphology of a process (Table 1.3). A very large concentration of spores provides

a large number of growth centres and a very limited amount of growth from each
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can result in nutrient exhaustion. Conversely, if the initial spore concentration

is low, substantial growth may be required before nutrient exhaustion occurs. The

distribution of biomass may thus be varied between a large number of small elements

and a small number of large elements. However, in practice, the relationship is often

considerably more complex and while simple, linear correlations between inoculum

size and pellet diameter have been reported for some organisms, more abrupt, step-

change phenotypic shifts have been described for others.

A direct linear relationship between the number of pellets formed per unit vol-

ume and the initial spore concentration was proposed by Bizukojc and Ledakow-

icz for Aspergillus terreus cultivations [47]. It was estimated that approximately

10,400 spores formed a single pellet and, therefore, a higher inoculum concentration

resulted in a greater number of smaller pellets (diameter < 1.5 mm), which were

favourable for mevinolinic acid (lovastatin) production. A methyl blue-staining and

subsequent cross-sectioning technique was used to visualise intra-structural regions

of different metabolic activity within pellets. The fraction of actively growing cells

at the pellet periphery was correlated with mevinolinic acid production, while the

specific (+)-geodin formation rate was found to increase as the size of the active

region declined. However, the methodology involved in the preparation of pellets

for microtome sectioning was laborious and time-consuming and does not lend itself

to high-throughput processing.

A decrease in pellet size for increased inoculum concentration was also obtained

by Xu and colleagues in cultures of a recombinant A. niger strain [74]. An unusual

means of evaluating mean pellet diameter (according to Jianfeng and colleagues

[78]) was employed, which involved filtering culture samples through a set of sieves

with pore sizes in the range 0 – 6 mm, resulting in pellets being divided into six

fractions. The mean diameter (Dp) of the population was estimated as:
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Table 1.3: Reports in the literature indicating a link between morphology and

initial inoculum concentration

Organism Report Reference

A. awamori Increased Lhgu and faster growing hyphal tips at higher

inoculum concentrations

[73]

A. niger Reduction in pellet size for increasing inoculum

concentration. Pellets were optimal for minimising

protease production while maximising green fluorescent

protein yield

[74]

A. niger Increases in inoculum concentration induced dispersed

morphology. Increase in Lhgu also noted as inoculum

concentration was increased

[72]

A. terreus Mean pellet diameter was inversely proportional to

initial spore concentration, with pellet count per unit

volume directly proportional to inoculum concentration

[47]

P. chrysogenum Transition from cultures containing large, smooth and

compact clumps to more dispersed growth as inoculum

level increased. Sharp transition observed from 5× 104

to 5× 105 spores ml-1.

[75]

R. chinensis A 10-fold increase in spore concentration sufficient to

shift morphology from single agglomerate to dispersed

growth

[76]

R. nigricans Reduction in pellet size for increasing inoculum

concentration.

[15]

S. hygroscopicus Increasing spore concentration from 104 to

105 spores ml-1 caused a slight increase in pellet

diameter. Further increase to 106 spores ml-1 resulted

in a decrease

[77]
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Dp =
1

2

5∑
i=0

Ei(2i+ 1) (1.13)

where Ei is the dry-cell weight of pellets in fraction i. A sharp reduction in Dp

from 3.6 to 0.5 mm was observed when the inoculum level was increased from 105

to 107 spores ml-1, with free mycelia also discernible at high inoculum concentra-

tions. Protease activity increased approximately 3-fold and green fluorescent pro-

tein (GFP) production declined approximately 64% when the morphology shifted

from pelleted to free mycelial growth. Biomass yield increased 29% as pellet size

decreased, indicating the influence of mass transfer limitation on cell growth; O2

limitation within pellets was suggested to be responsible for the reduction in pro-

tease activity. However the accuracy of Dp estimates is questionable and, as no

microscopic analysis was conducted, microscopic structural variations cannot be

ruled out.

Larger increases in inoculum concentration were demonstrated by Papagianni

and Mattey to induce a completely dispersed growth form in A. niger [72]. As

the inoculum level was increased from 104 to 109 spores ml-1, a large decrease in

the size and ‘compactness’ (ratio of area of hyphae in clump/pellet to total area

enclosed by perimeter) of pellets and mycelial clumps was found, accompanied by

an increase in ‘roughness’ (circularity). Morphological variation was also reported

at the microscopic level, with increases in the mean main hyphal length, mean

total length and branching frequency of mycelia observed as the inoculum level

was increased from 104 to 108 spores ml-1. Large pellets (approx. 1.0 to 1.2 mm2)

were associated with maximal glucosamine production and it was suggested that

a relationship between dissolved oxygen levels (dO2) and ammonium ion uptake,

which reflects biosynthesis of glucosamine, may have existed.

Sharper transitions in growth form have been reported in other studies. For ex-

ample, Teng and colleagues found that a ten-fold increase in initial spore concentra-
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tion was sufficient to shift the morphology of Rhizopus chinensis from a single large

agglomerate (described as ‘fully entangled mycelia’) to dispersed mycelial growth

[76]. Furthermore, large agglomerates were found to be optimal for mycelium-

bound lipase production compared to other phenotypes. An inoculum of 3.3 ×

109 spores ml-1 resulted in dispersed mycelia, but large agglomerates were obtained

for inocula between 3.3 × 107 and 3.3 × 108 spores ml-1. A micro-morphological

influence was also observed, with the mean hyphal length of individual mycelia be-

ing lower when large agglomerates formed, while the number of tips per mycelium

was higher. However, the prevalence of free mycelia in cultures containing large

agglomerates was not specified and, as such, it is not clear what population size

these results were based on.

A micro-morphological influence of variation in inoculum concentration was also

noted by Johansen and colleagues in their study of Aspergillus awamori [73]. Dif-

ferent values of total hyphal length (Lth) were obtained for different inoculum con-

centrations in the early stages of fermentation; a lower inoculum resulted in a lower

rate of sugar consumption and a larger value of Lth per element before the onset

of substrate exhaustion. A lower inoculum concentration also resulted in a greater

degree of branching and lower tip extension rates, although a limited effect on cuti-

nase production was observed. It was suggested that a constant number of vesicles

were supplied per unit length of hypha and therefore a greater number of tips results

in a lower number of vesicles supplied to each individual tip and, consequently, a

lower tip extension rate. Assuming enzyme production to be coupled to specific

growth rate, it was proposed that lower production per tip may have been related

to slower growing tips, although ‘artificial tips’ resulting from fragmentation may

have biased measurements. Furthermore, derived trends were based on a limited

number of data points and large standard deviations were evident, possibly owing

to the low number of tips (5 – 7) measured per hyphal element.
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Other studies have suggested that the influence of inoculum concentration can

vary depending on medium composition. Domingues and colleagues reported that

higher protein and cellulose levels were produced using a more concentrated inocu-

lum (attributed to the absence of pellet formation) in cultures of Trichoderma reesei

[14]. However, when the media was supplemented with Tween-80, yeast extract and

peptone, it was found that a lower inoculum concentration produced higher protein

and cellulase yields; a more concentrated inoculum resulted in a higher initial growth

rate and nutrient exhaustion in the early stages of fermentation, which may have

resulted in lower metabolite yields. However, morphological classification was lim-

ited to the description of growth as either pelleted or ‘pulpy’ and, as such, the full

extent of structural variation that may have occurred (and the effect on production)

is not known.

1.4.2 Mechanical agitation

Mechanical agitation is a general requirement in the fermentation of filamentous

microbes in order to ensure adequate mixing and aeration. However, the turbulent

flows generated, together with the shearing forces of impellers, can have a significant

influence on morphology (Table 1.4). Stress-inducing localised pressure variations

in the fluid cause mycelial fragmentation if the tensile strength of the hyphae is ex-

ceeded, while the peripheral regions of pellets can be sheared away if sufficient force

is applied, dispersing the biomass and creating new centres of growth. Papagianni

and colleagues demonstrated that increased agitation in batch cultures of A. niger

can reduce hyphal vacuolation [79]. In batch cultures, both clump perimeter and

filament length decreased with increasing agitation, while the percentage of vac-

uolated hyphal volume, as well as the mean diameter of vacuoles, were higher at

lower agitation speeds. This suggested that higher levels of hyphal fragmentation

occurred at higher agitation levels, which caused a reduction in vacuolated hyphae,
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indicating that fragmentation can aid in regrowth and limiting of vacuolation. How-

ever, high levels of agitation can cause excessive levels of mycelial damage, reducing

biomass yield and compromising productivity [46].

A relationship between agitation intensity and the growth form of A. niger was

described by Papagianni and colleagues, who proposed the ‘relative mixing time’

(derived from analysis of pH response to an alkali pulse in both tubular-loop and

stirred-tank reactors) as a significant process-controlling factor [80]. As agitation

intensity was increased, the perimeter length of mycelial clumps decreased, while

citric acid production increased. The increased citric acid yield was attributed to

morphological variation, but reduced dissolved oxygen concentration was noted at

lower agitation speed, which may have influenced metabolite production. Increased

agitation was also found by Park and colleagues to cause a reduction in the size

of Cordyceps militaris pellets [50]. Pellets were found to be larger and ‘fluffier’ at

low agitation intensity (50 rpm); at high agitation intensity (300 rpm), the outer

filamentous regions were sheared off, resulting in a decrease in pellet size and cir-

cularity, defined as the ratio of the minimum Feret’s diameter8 to the maximum. It

was suggested that the larger pellets formed at low agitation intensity were probably

oxygen-limited at their cores, resulting in autolysis at an earlier stage of fermen-

tation and subsequent formation of hyphal ‘fragments’. Maximum exo-biopolymer

production (15 g L-1) was obtained at 150 rpm, which was attributed to the compact,

spherical nature of the pellets obtained at this agitation intensity.

The influence of shearing forces on pellet morphology was further investigated

by Rodŕıguez-Porcel and colleagues in fermentations of A. terreus [51]. Following

inoculation of fluidised-bed reactors (FBR’s) and stirred-tank reactors (STR’s) op-

erated at 300 rpm with a culture of pellets approximately 1,200 µm in diameter,

the pellets grew to a steady state diameter of approximately 2,300 µm. However,

8The perpendicular distance between parallel tangents touching opposite sides of the perimeter
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Table 1.4: Reports in the literature indicating a link between mechanical agitation

and morphology

Organism Report Reference

A. niger Increased agitation speed resulted in decreasing mean

perimeter length of mycelial clumps. ‘Relative mixing

time’ proposed as significant process-controlling factor

[80]

A. niger Increased agitation inhibited pellet growth in shake-flask

cultures. Small pellets were associated with maximum

phytase production

[81]

A. niger Increased agitation caused reduction of pellets to

‘micro-pellets’ and filamentous growth, resulting in

increased glucose oxidase yield

[46]

A. niger Linear relationship between energy dissipation and pellet

count per unit volume

[82]

A. oryzae Direct relationship derived between projected area of

mycelial clumps and EDCF, while Lhgu was relatively

independent of agitation intensity

[83]

A. oryzae Amyloglucosidase production found to be approximately

proportional to the number of ‘active’ tips in a culture

[84]

A. terreus Steady-state mean pellet diameter correlated with power

input per unit volume. Pellets also became more compact

at higher agitation speeds

[51]

C. militaris Increased agitation resulted in smaller, more spherical

(quantified in terms of circularity) pellets

[50]

T. harzianum Linear relationship between power input (EDCF function)

and mean clump diameter

[85]

T. harzianum Reduction in the diameter of mycelial clumps for

increasing agitation intensity in shake flasks

[86]
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for more intensely agitated STR cultures (600 and 800 rpm), pellet size declined

from inoculation to an average steady state diameter of approximately 900 and

700 µm respectively, which was attributed to ‘erosion’ of the pellet surface. Steady-

state values of mean pellet diameter in all reactors was found to correlate well with

total power input (Pg; including that from expansion of sparged gas) per unit vol-

ume (Pg/V ). For all operating regimens and reactors, the filament ratio ([area of

peripheral ‘hairy surface’]/[total projected area]) declined to 0.4 during the first

72 hours of fermentation; agitation that did not result in a reduction in pellet size

still caused a decrease in the filament ratio. This was attributed to fluid eddies

‘folding’ the peripheral hyphae onto the pellet, compacting the structure. Highly

agitated (800 rpm) STR cultures were an exception, in which a lower stable value

of 0.2 was obtained.

The duration of shearing forces was found to be a significant morphological influ-

ence by Wongwicharn and colleagues in chemostat cultures of A. niger [87]. Values

of mean hyphal length, mean tip number and Lhgu all rose up to a dilution rate (D)

of 0.08 h-1 before falling. This was explained by the greater residence time at low D;

the average length of time hyphal elements were exposed to hydro-mechanical dam-

age was greater than at high D, so in general a shorter, more compact ‘organism’

resulted. Pellet core diameter also increased with D, due to increased growth rate

and decreased mean residence time (less shear damage) as D rose, which emphasises

that duration of exposure to shearing forces can have a discernible effect on growth

form.

The morphological influence of sudden ‘step’ changes in agitation, and associated

implications for metabolite production, were investigated by Paul and colleagues

[44]. In a fermentation inoculated with pellets, diameter increased slightly (up to

approximately 1.5 mm) before decreasing following a step increase in agitation from

500 to 800 rpm. Circularity increased slowly with time, indicating increasingly ir-
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regular pellets, probably due to fragmentation. During most of this fermentation

the citric acid titre was comparable to that in another fermentation inoculated with

spores and cultivated as a dispersed phenotype; evidence that the pellets were too

small for significant diffusional limitations to have occurred. The overall yield how-

ever was greater from the dispersed fermentation (0.74 compared to 0.58 g citric

acid/g glucose). A second fermentation inoculated with pellets was initially main-

tained at 300 rpm, which resulted in a rapid increase in diameter (up to 3.1 mm)

with circularity increasing slowly - a step increase in agitation up to 500 rpm had

little effect. A subsequent step increase to 800 rpm resulted in a rapid decrease

in pellet diameter, accompanied by an increase in circularity, carbon dioxide pro-

duction rate, oxygen uptake rate and a slight increase in growth rate, suggesting

increased agitation caused a reduction in substrate-limited biomass. This fermen-

tation resulted in the lowest yield of citric acid on glucose (0.49), probably owing

to diffusional limitations in large pellets, reflected in a lower rate of glucose uptake,

decreased specific growth rate, decreased specific uptake of oxygen and decreased

specific production of carbon dioxide.

The work of Paul and colleagues suggests that increased agitation can result in

a greater degree of biomass dispersal, a reduction in the fraction of unproductive

biomass and, consequently, an increase in metabolite production. This hypothesis

was further supported by El-Enshasy and colleagues, who reported a reduction in

pellet size and an increase in the fraction of ‘active’ biomass for increased agitation

levels [46]. Agitation speeds of 200, 500 and 800 rpm resulted in mean pellet di-

ameters of 1,500, 400 and 24 µm respectively, although the latter were described

as ‘micro-pellets embedded in a filamentous mesh’, which may have complicated

their measurement. The yield of glucose oxidase increased with increasing power

input and the shift from pelleted to filamentous growth. Staining with acridine

orange indicated that active protein production was restricted to free filamentous
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elements and the outer, peripheral region of pellets. It was also shown that the

active region decreased in size with cultivation time in tandem with a decline in

the specific glucose oxidase production rate. A comparison of cultures grown at 200

and 800 rpm showed similar specific glucose oxidase activities and production rates,

when calculated based on the active fraction of biomass.

However, in their study of A. oryzae, Amanullah and colleagues found that al-

though increased agitation resulted in a decrease in the projected area of mycelial

clumps, no increase in metabolite production was observed [83]. Steady-state values

of mean projected area of biomass (clumps and freely dispersed elements) correlated

well with the Energy Circulation/Dissipation Function (EDCF9). However, no sig-

nificant difference in the hyphal growth unit (Lhgu) was measured and agitation

speed did not have an appreciable effect on production rates (of α-amylase and

amyloglucosidase), although fewer tips per element were measured at higher agi-

tation. It was proposed that because Lhgu was relatively independent of agitation

speed, and assuming that the tip extension rate (which is coupled to enzyme syn-

thesis) was also constant (influenced by dilution rate rather than agitation), the

total number of ‘active’ tips in the culture was approximately independent of agita-

tion speed. This suggested that, within certain limits, agitation could be modified

to regulate mixing and morphology without compromising metabolite production.

In a subsequent study, Amanullah and colleagues used calcofluor white staining to

distinguish between active and non-active tips in A. oryzae [84]. A dependence of

amyloglucosidase production on agitation intensity was found, which was attributed

to the presence of a larger number of active tips at higher agitation speeds; an ap-

proximate correlation (R2 = 0.65) between specific amyloglucosidase production

and % active tips was illustrated.

9P/(KD3tc), where P is the power input, D the impeller diameter, tc, the mean circulation

time, and k is a geometric constant for a given impeller.
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Further physiological influences of mechanical agitation were reported by Rocha-

Valadez and colleagues in cultures of Trichoderma harzianum [85]. While a linear

relationship between power input (EDCF function) and mean clump diameter was

discerned, production of 6-Pentyl-α-Pyrone, which increased with ECDF before

decreasing, was not directly linked to the observed morphological shift. It was pro-

posed that, given the observation of a linear increase in specific CO2 production

and a linear decrease in specific growth rate, a metabolic shift had occurred in re-

sponse to increased hydrodynamic stress, reducing biomass synthesis and metabolite

production.

In addition to influencing hyphal fragmentation and shearing of pellet periph-

eral regions, mechanical agitation can also affect the extent of cellular aggregation.

Amanullah and colleagues found that a ‘step-down’ in agitation speed resulted in

substantial aggregation of A. oryzae mycelia [88]. An increase in mean projected

area from 17, 800 ± 1, 500 to 25, 000 ± 2, 300 µm2 and from 12, 000 ± 1, 300 to

17, 000 ± 2, 000 µm2, at biomass concentrations of 5.3 and 11.2 g L-1 respectively,

was observed between 5 and 15 minutes after a lowering of the EDC from 800 to

50 kWm3s-1. It was estimated that 85 – 115 minutes would have been required if

mycelial growth alone was responsible for these size increases. However, a signifi-

cant increase in mean projected area was not measured in the absence of dissolved

oxygen at either biomass concentration, suggesting that aggregation requires aer-

obic metabolism. It was also shown that an increase in the mean total length of

the freely dispersed biomass fraction was faster than that in the mean projected

area of clumps, leading the authors to speculate that small hyphal elements had

a greater tendency to aggregate than larger elements, possibly due to their larger

contact areas. These findings have implications for processes conducted in large-

scale, aerated fermenters, as mycelia may be repeatedly fragmented and aggregated

as they circulate through a large volume.
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Variations in agitation intensity can also significantly affect spore agglomera-

tion and subsequent pellet formation. Kelly and colleagues reported that increasing

energy dissipation caused an initial decrease in the diameter and growth rate of

A. niger pellets [82]. However, after reaching a minimum, the pellet diameter and

the growth rate both increased again at a higher specific energy dissipation, but

the overall concentration of pellets decreased linearly. It was suggested, perhaps

counter-intuitively, that greater aggregation of spores at the beginning of cultiva-

tion due to higher agitation rates was responsible, resulting in fewer pellets. Each

pellet therefore had a greater amount of substrate available and, in addition, higher

agitation rates improved mass transfer, which together could have explained the in-

creased growth rate and pellet diameter at higher energy dissipations. This assumes

that increased agitation results in increased particle-to-particle interaction and that

spore-spore ‘bonding’ forces are sufficiently strong to withstand increased external

shearing forces at higher agitation levels.

However, in their study of shake-flask cultures of A. niger, Papagianni and col-

leagues reported that increased agitation resulted in the inhibition of pellet forma-

tion [81]. A fermentation conducted at 150 rpm resulted in a mixture consisting

of pellets (average diameter 0.5 mm) and a small number of mycelial clumps. At

higher agitation (300 rpm), no pellets were detected, with the culture consisting

entirely of ‘loose’ clumps and ‘free’ mycelial trees, suggesting that increased agita-

tion inhibited cellular aggregation. The effect of medium viscosity (regulated with

the addition of guar gum) was also investigated and, at 150 rpm, pellet forma-

tion tended to reduce with increasing gum concentration; no pellets appeared at a

gum concentration of 1 g L-1. The morphological shift was attributed to the lower

dissolved oxygen concentration in the presence of gum [81].
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1.4.3 Carbon and nitrogen sources

Certain nutrients are required by most fungi to maintain growth, but the general

composition of the media can be altered to affect metabolism. This is common

practice in industrial fermentation processes, as certain media components are of-

ten required in order to induce production of the metabolite of interest. An organic

source of carbon and a source of nitrogen are almost always required; carbon typ-

ically constitutes approximately 50% of dry-cell weight, while nitrogen is required

to synthesise amino acids and proteins [7]. While fungi are typically capable of pro-

ducing a large number of enzymes for the extra-cellular degradation of substrates,

sugars such as glucose, maltose and starch are commonly used as carbon sources, al-

though some fungi can metabolise organic acids and even hydrocarbons [89]. There

also exists evidence that variations in media composition, and the subsequent influ-

ences on metabolism, can result in changes in morphology (Table 1.5).

Papagianni and Mattey found that increasing glucose concentration resulted

in a decrease in the diameter of A. niger pellets and an increase in citric acid

production in immobilised cultures [48]. At low glucose concentration (50 g L-1),

‘hairy’ pellets predominated with long, thin, unbranched filaments at the surface,

but at higher concentrations (100 and 150 g L-1), pellets were compact with short,

thick filaments with swollen tips (based on SEM images). The rates of citric acid

production increased with glucose level and were always higher with immobilized

mycelium. The increased yield was attributed to the greater mean diffusion path in

pellets compared to the immobilized system; immobilised biomass was considered

to be maximally productive, while pellets were substrate-limited below the surface.

However, the study suffered from a lack of quantitative methods for the microscopic

analysis of filaments, although the routine imaging of immobilised mycelia may be

challenging.
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Table 1.5: Reports in the literature indicating a link between medium composition

and morphology

Organism Report Reference

Aspergilli Correlation between volume of apical compartment and

specific growth rate, regulated by glucose concentration

[90]

A. niger Increasing glucose concentration resulted in decrease in pellet

diameter and increase in hyphal apical volume

[48]

A. niger Hyphae more susceptible to fragmentation at low glucose

levels - increase in vacuolation also noted

[79]

A. oryzae Pulsed addition of carbon during fed-batch fermentation

reduced mean projected area of mycelial elements, reducing

broth viscosity

[91]

M. alpina Increasing carbon to nitrogen ratio (C/N) resulted in increase

in total pellet area (Am) and size of pellet annular region (Af )

for C/N > 20, but Af/Am remained constant

[92]

M. alpina Enriching media by increasing both C and N (with

C/N = 20) resulted in decrease in pellet size

[93]

The manner in which substrate is added to a fermentation has also been deter-

mined to be an important influence on growth. Bhargava and colleagues have shown

that the pulsed addition of substrate during fed-batch fermentations of A. oryzae

can reduce the mean projected area of mycelial elements, reducing broth viscosity

and increasing productivity [91]. Viscosity was found to be inversely proportional

to cycle time (tc; the length of time between pulsed additions of substrate) with

cultures produced with a high value of tc exhibiting viscosities approximately 5

times lower than a continuously fed batch. The reduction in viscosity was likely a

result of changes in morphology, with the average size of fungal elements (clumps or

free mycelia; measured by projected area) decreasing approximately linearly with

log tc. However, this structural variation did not result in a significant impact on
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glucoamylase production (for tc ≤ 300 s), indicating that culture viscosity could

be reduced (reducing requisite power input) without compromising metabolite pro-

duction. However, for longer cycle times (tc ≥ 900 s), a marked reduction in glu-

coamylase levels was observed (approximately 50%), which was likely related to the

increased occurrence of sporulation noted by the authors, caused by low substrate

levels. Low levels of carbon substrate have also been demonstrated to result in

increased hyphal vacuolation and fragmentation in fed-batch cultures of A. niger

[79]. Reducing the glucose concentration from 70 to 17 g L-1 resulted in an increase

in the percentage vacuolated volume of hyphae as well as a reduction in the mean

length of hyphal filaments, suggesting an increase in fragmentation at lower glucose

concentrations.

Müller and colleagues also quantified a micro-morphological and physiological

influence of substrate concentration in cultures of A. oryzae and A. niger [90]. The

average number of nuclei in the apical compartment was found to increase for in-

creasing specific growth rate, but little or no change was observed in sub-apical

compartments. The average length and diameter of an apical compartment also

increased for increasing specific growth rate (the length of sub-apical compartments

was only slightly affected); this increase in volume may have been required to ac-

commodate an increase in cytoplasmic mass, so as to maintain a constant cytoplasm

to nucleus ratio. An increase in apical volume in response to increased glucose con-

centration was also noted by Papagianni and Mattey in cultivations of A. niger

[48].

While it has been suggested that a balanced medium will contain ten times as

much carbon as nitrogen [7], varying this ratio can have a significant influence on

morphology. Park and colleagues found that increasing the carbon to nitrogen ratio

(C/N) in cultivations of Mortierella alpina resulted in both an increase in total

pellet area, Am, and an increase in the size of the pellet annular region, Af (for
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C/N > 20), but the filamentous fraction (Af/Am) remained constant [92]. The

pellet core size was 0.45 mm2 on average, and did not change for C/N < 20, with

the filamentous mycelial area displaying a similar trend (1.1 mm2 on average). The

ratio of the filamentous mycelial area to the whole mycelial area was 0.82 and was

independent of the consumed C/N ratio. When the medium was enriched 3-fold, the

filamentous mycelial area and pellet core size increased 8.6- and 4.7-fold compared

to the control. The ratio of the filamentous mycelial area to the whole mycelial

area was 0.76, which was independent of the consumed C/N ratio despite the use

of enriched media.

However, Koike and colleagues found that enriching medium at a fixed C/N ratio

resulted in a decrease in the whole pellet size and the width of the pellet annular

region in M. alpina, but variations in morphology similar to those described by

Park and colleagues were reported for variations in the C/N ratio [93]. The whole

pellet size (Am) did not change for C/N < 20, but then increased gradually with

an increase in the consumed C/N ratio. The width of the annular region remained

approximately constant for C/N < 20 and then increased linearly with increasing

C/N ratio.

1.4.4 Culture pH

The medium pH is an important environmental factor that can significantly influ-

ence the outcome of a fermentation. While filamentous fungi can grow over a wide

range of pH (typically 4 – 9), maximal growth is often found near neutral pH [7]

and minimising pH drift is often a target in bioprocess design. However pH has also

been shown to impact morphology and, in particular, pellet formation (Table 1.6).

In batch cultivations of A. oryzae, Carlsen and colleagues reported that at pH 3.0

– 3.5 freely dispersed hyphal elements predominated, with pellets becoming more

common as acidity was reduced [45]. At very low pH (≤ 2.5) the mycelium was
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Table 1.6: Reports in the literature indicating a link between pH and morphology

Organism Report Reference

A. nidulans Reduction in electrophoretic mobility of conidiospores for

increasing pH, which was subsequently shown to increase

pellet formation

[94]

A. oryzae At pH 3.0 – 3.5 freely dispersed hyphal elements

predominated, with pellets becoming more common as

acidity was reduced

[45]

Phellinus Macro-morphological effect of pH variation on different

species, but not expressed quantitatively

[52]

R. nigricans Growth suppressed below pH 2. Clumpy growth noted at

pH 3 or above 7, otherwise pelleted growth prevailed

[15]

vacuolated with swollen cell walls, resulting in poor growth, but at pH 3.0 to 3.5,

freely dispersed hyphal elements resulted. As pH was increased further, pellets

became more prevalent, with no free elements discernible at high pH (≥ 6) and pellet

radius increasing with medium alkalinity. At relatively high pH (> 4), agglomerates

containing 10 to 100 spores were observed approximately 10 hours post-inoculation,

whereas at low pH (2.5 to 3.5) only freely dispersed spores were found. When

cultivations were inoculated with freely dispersed hyphal elements no pellets were

witnessed and it was therefore concluded that pellet formation in A. oryzae resulted

from coagulation of spores, which was dependent on medium pH. While no micro-

morphological influence of pH was found (based on measures of total hyphal length

and number of tips per element), the effect of pH on the growth kinetics was studied

and a broad optimum between pH 3 and 7 was found, while the specific α-amylase

production rate had an optimum in the range pH 5 to 7.

Dynesen and Nielsen demonstrated a reduction in the electrophoretic mobility

of A. nidulans conidiospores for increasing pH, which was subsequently shown to in-
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crease pellet formation, although the influence of hydrophobicity was also reported

as significant [94]. Contact angles10 (determined using water droplets on layers of

conidiospores) for strains lacking hydrophobins were lower than those of the control

strain and for all strains, electrophoretic mobility decreased from positive to neg-

ative with increasing pH. The percentage of free mycelia in shake flasks 19 hours

post-inoculation increased with decreasing pH and for all pH values studied (except

pH 5.8), the percentage of free mycelia increased with decreasing hydrophobicity.

Disruption of genes encoding hydrophobins did not affect the surface charge of the

conidiospores, so the reduced pellet formation by the mutant strains could not be

attributed to differences in electrostatic interactions and it was therefore suggested

that a high surface hydrophobicity of A. nidulans conidia favoured pellet forma-

tion. However, since pellet formation by the mutant strain exhibiting the lowest

hydrophobicity was observed at low pH values, the authors concluded that agglom-

eration of A. nidulans conidia could not be attributed to hydrophobic and elec-

trostatic interactions alone; possible chemical interactions such as polysaccharide

bridging, may also have been at play.

Hwang and colleagues displayed the macro-morphological effect of pH level on

different Phellinus species, although the variation was not expressed quantitatively

[52]. P. baumii produced high amounts of free mycelium as the culture pH shifted

to neutral and alkaline ranges. In contrast, P. gilvus displayed pelleted growth at

low pH (4 and 5) whereas free mycelia were predominant at pH 9. P. linteus showed

spherical pellet growth with lesser amounts of free mycelia irrespective of culture

pH.

10The contact angle is the angle at which a liquid/vapour interface meets a solid surface.
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1.4.5 Supplementation with metal ions

Certain essential metals are required for fungal growth and their absence from nu-

trient media can result in developmental abnormalities, while excess levels of certain

ions can induce morphological variation (Table 1.7). For example, omission of Mn2+

ions were found to have a significant impact on the morphology of A. niger by Kisser

and colleagues, although the assessment of variation in form was limited to qual-

itative descriptions [95]. In the presence of manganese (5 × 10−5 M), growth was

initiated by the emergence from spores of germ tubes after 18 – 20 hours. The

germ tubes were thin, had very few branches (described as ‘filamentous’ growth)

and citric acid production was poor (44 mM after 150 h). However, in the absence

of manganese, considerable swelling of spores occurred prior to germ tube formation

and hyphae were characterised as ‘squat, bulbous cells’, which were preferable for a

high citric acid yield (286 mM). An intermediate level of manganese (4×10−7 M L-1)

resulted in both the ‘filamentous’ and ‘bulbous’ phenotypes. The addition of iron

(> 5 × 10−4 M) also resulted in filamentous growth in the absence of manganese,

while the addition of copper (10−4 – 10−3 M) reduced the influence of manganese.

The addition of metal ions has also been used to influence the hydrophobicity of

cells, which subsequently affected cellular aggregation. Dobson and O’Shea found

that the hydrophobicity of Streptomyces hygroscopicus cells could be influenced with

the addition of calcium or magnesium ions [97]. Cultures supplemented with Ca2+

ions were found to be hydrophobic, which resulted in cellular aggregation, while

the addition of Mg2+ ions resulted in hydrophilic cells with the organism growing

as freely dispersed filaments, with shorter, more branched hyphae visible, although

these dispersed elements were not morphologically analysed. Increasing the concen-

tration of Ca2+ from 0.01 to 0.5 g L-1 resulted in a 40% increase in pellet diameter

and a decrease of approximately 70% in the number of pellets per ml, which reflected
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Table 1.7: Reports in the literature indicating a link between metal ion supple-

mentation and morphology.

Organism Report Reference

A. niger Omission of Mn2+ ions resulted in ‘squat, bulbous

hyphae’

[95]

A. niger Addition of Fe2+ and Zn2+ ions resulted in diffuse

pellets

[96]

R. nigricans Increase in mean pellet diameter observed in presence of

Ca2+ ions

[15]

S. hygroscopicus Cultures supplemented with Ca2+ ions were

hydrophobic, resulting in cellular aggregation. Addition

of Mg2+ ions resulted in hydrophilic cells and freely

dispersed filaments

[97]

the extent of aggregation. This increase in pellet size coincided with a decrease in

geldanamycin yield of 85%. Evaluation of the cell-surface hydrophobicity (CSH),

by measuring of contact angles, determined that control cultures were hydrophilic

(contact angle of 37.65± 4.1◦), whereas pelleted cultures containing Ca2+ ions were

strongly hydrophobic (76.64±5.5◦). In contrast, Mg2+-supplemented cultures grow-

ing as dispersed filaments were classed as hydrophilic (22.89± 4.9◦). A relationship

between pellet size and CSH was demonstrated, with increasing hydrophobicity

instigating aggregation and pellet formation.

Metal ion supplementation was also explored by Couri and colleagues in cultures

of A. niger, who found that the addition of Fe2+ and Zn2+ ions resulted in diffuse

pellets compared to the control [96]. Pellet diameter (D), perimeter and pellet

core diameter (d) were measured manually and other measures, such as pellet area

(Ap) and pellet core area (Ac), were derived. The addition of Fe2+ and/or Zn2+

resulted in smaller pellets with smaller cores, while the ratio of D/d was higher and
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Ac/Ap lower in pellets incubated in the presence of both ions, compared to those

fermentations supplemented with just one ion. Polygalacturonase production was

higher in the presence of both ions compared to the control, but specific activity

was higher in control cultures, even though morphologies were similar. However,

control pellets were larger and probably autolysed at the core (based on measures

of weight and volume), which possibly biased measures of specific activity.

1.4.6 Supplementation with surface active agents and polymers

Various surface active agents (surfactants) have also been investigated in attempts to

disrupt cellular aggregation in submerged processes. Žnidaršič and colleagues found

that the supplementation of Rhizopus nigricans cultures with Tween-80 caused a

slight increase in pellet diameter, but higher concentrations (1 – 2 g L-1) also pro-

duced some clumped growth [15]. The increase in pellet size, which was accompanied

by an increase in biomass, was attributed to increased cell membrane permeability,

facilitating more efficient mass transfer of nutrients. Other factors were also inves-

tigated, such as culture pH and the influence of Ca2+ ions, but the morphological

assessment was rather qualitative in nature, with pellets classified as either ‘smooth’

or ‘fluffy’. Conversely, Domingues and colleagues reported that Tween-80 inhibited

pellet formation in T. reesei [14]. Inoculation with 105 spores ml-1 resulted in pellet

formation in a control media, but filamentous growth resulted in the presence of

Tween-80, although only qualitative morphological descriptions were produced. A

more concentrated inoculum (107 spores ml-1) resulted in filamentous growth in both

media. Supplementation with Tween-80 also resulted in elevated yields of both pro-

tein concentration and cellulase production at both inoculum concentrations, with

increased permeability of the cell membrane again suggested as the cause, allowing

more rapid secretion of enzymes which in turn leads to higher enzyme synthesis.

Supplementation of S. hygroscopicus cultures with Tween-80 was reported by
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Table 1.8: Reports in the literature indicating a link between surfactant and/or

polymer supplementation and morphology

Organism Report Reference

A. niger Addition of kaolin resulted in small, compact pellets [98]

A. niger Carboxymethylcellulose shifted morphology from

pelleted to filamentous

[99]

R. nigricans Supplementation with Tween-80 caused slight increase

in pellet diameter

[15]

S. hygroscopicus Supplementation with Tween-80 had minimal influence

on morphology, but Triton X-100 resulted in significant

increase in pellet size

[100]

S. hygroscopicus Concentrations of carboxymethylcellulose up to 3.0%

resulted in decrease in pellet size. Reduction in ‘wall

growth’ also observed

[101]

T. reesei Tween-80 inhibited pellet formation [14]

T. harzianum Tween-40 resulted in reduction in pellet size, with more

dispersed growth

[102]

Dobson and colleagues to have a minimal impact on morphology, but the inclusion

of 0.01% (v/v) Triton X-100 resulted in a considerable increase in pellet size [100].

Further increases in the concentration of Triton X-100 (up to 1.0% v/v) resulted in

a subsequent decrease in pellet size (to control levels). While the addition of Tween-

80 did not have a significant influence on pellet size, an increase in concentration did

result in an increase in pellet count per ml, which was accompanied by an increase

in geldanamycin production. However, control cultures produced a greater or equal

yield of geldanamycin compared to all surfactant-supplemented cultures. Silicone

antifoam was also found to be influential, with an increase in the concentration

present in the medium causing an increase in the dispersion of pellets; pellet sizes

decreased by more than 50% in those cultures supplemented with 5% (v/v) silicone
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antifoam. Antibiotic synthesis appeared to be repressed by the formation of large

pellets, implying that cultures with smaller pellet sizes are optimal for geldanamycin

production.

Supplementation of T. harzianum cultures with Tween-40 also resulted in a re-

duction in pellet size, together with more dispersed growth, and a linear relationship

between Tween-40 concentration and biomass yield was also reported [102]. In the

absence of Tween-40, large, ‘star-like’ pellets were formed, while supplementation

with 0.2 ml L-1 Tween-40 resulted in the formation of spherical pellets, typically

exhibiting a smooth, compact structure and a narrow filamentous outer region, re-

flected in the lower roundness value. With respect to the control, a narrower particle

size distribution resulted in the presence of Tween-40, indicating greater pellet ho-

mogeneity. A rapid transition from pelleted to dispersed/clumped morphologies at

Tween-40 concentrations above 0.4 ml L-1 was observed, although a small number of

pellets were still present at this concentration. It was suggested that high Tween-40

concentrations may have resulted in the incorporation of Tween molecules into the

cell wall, influencing spore aggregation.

Other studies have explored the influence of polymers on culture conditions. Ilić

and colleagues described the effect of carboxymethylcellulose (CMC) supplementa-

tion on cultures of S. hygroscopicus, with concentrations of up to 3.0% resulting in

a decrease in pellet size, a significant increase in biomass levels and a reduction in

wall growth [101]. In the absence of CMC, large pellets (∼ 4.1 mm in diameter)

developed and ‘extra heavy ’ wall growth was observed. With the addition of CMC,

pellet diameter decreased to a minimum of approximately 0.7 mm at a concentration

of 3.0% (w/v) and wall growth was reduced to low levels. An increase in metabolite

production in the presence of CMC was also noted, with the maximum concentra-

tion of hexaene H-85 obtained at 3.0% CMC (146.7 mg dm-3 versus 94.58 mg dm-3

in control culture) and the maximum concentration of azalomycine was obtained
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at 1.0% CMC (188.6 mg dm-3 versus 115.7 mg dm-3 in control culture). It was

therefore concluded that smaller pellets favoured elevated antibiotic production.

However, pellet diameters were determined in a crude manner, with measurements

obtained from microscope images using a ruler; only ten pellets were analysed for

each sample. CMC supplementation was also reported to induce filamentous growth

in A. niger, but the morphological variation was not assessed quantitatively [99].

O’Cleirigh and colleagues regulated the apparent viscosity of S. hygroscopicus

broths with the addition of xanthan gum, increased concentrations of which (up to

3 g/L) resulted in a decrease in pellet size [103]. The pellet count increased to a

maximum (by a factor of 4 relative to the control) at a concentration of 3 g L-1

xanthan gum and then decreased in excess of that point, whereas the mean pellet

volume decreased (by a factor of 3.5) with respect to increasing xanthan gum con-

centration. An increase in biomass production of up to 2.5-fold was also recorded.

This data suggested that, by inhibiting particle aggregation, the development of in-

dividual spores into smaller pellets was achieved. It was also found that the addition

of xanthan gum resulted in an increase in gas-liquid mass transfer (KLa), increasing

the oxygen transfer to pellets. Increased broth viscosity was also determined to

inhibit pellet growth in A. niger, but reduced dissolved oxygen concentration was

assumed to be responsible [81].

The addition of kaolin11 to cultures of A. niger was reported by Ali to promote

the formation of small, compact pellets [98]. When a 15 ppm aqueous suspension of

kaolin was added to the fermentation, citric acid yield peaked at 74.62 g L-1 96 hours

post-inoculation, compared to a peak of 40.94 g L-1 168 hours post-inoculation in

the control culture, with morphology shifting from ‘mixed mycelia’ (1.10 - 1.75 mm

in size) to ‘small pellets’ (1.12 mm). Process performance was further enhanced

by delaying the addition of kaolin (15 ppm) until 24 hours post-inoculation, which

11A common mineral (also known as kaolinite) widely referred to as ‘China clay’.
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resulted in a citric acid yield of 96.88 g L-1, which resulted in a ‘mixed pellet’

(1.08 - 1.28 mm) growth form. However, the methodology employed in determining

‘mycelial size’ was not specified.

1.4.7 Significance of branching

In investigating the role of different environmental variables in microbial devel-

opment, many researchers have demonstrated reproducible relationships between

macro-morphology and product yield for a particular process (Table 1.9). Often,

however, micro-morphological variation has been overlooked. Fundamental to fur-

thering the understanding of morphological influence on product yield is the eliciting

of a link between hyphal branching and metabolite production, as there is consid-

erable evidence in the literature that protein secretion occurs almost exclusively at

the hyphal apex (Table 1.10).

Wösten and colleagues developed a technique for the localisation of glucoamylase

around the hyphal tips of A. niger [105]. A polycarbonate membrane was centrally

placed on the surface of solidified medium and topped with an agarose layer (approx.

0.3 mm thick), which was inoculated with a small piece of mycelium. The surface

was then topped with a second polycarbonate membrane, causing colonies to grow

approximately two-dimensionally. When 4-day-old colonies were transferred from

xylose to starch and incubated overnight, starch-degrading activity (detected with

Lugol’s iodine) was localized at the colony periphery; prolonging growth for another

8 hours resulted in virtually all starch under the colony being degraded. It was also

found (using immunodetection) that enzymes were mainly secreted at the periphery

of the colony; glucoamylase was observed around the tips of leading hyphae, but

little was seen surrounding subapical regions. When colonies were transferred to

a cold environment (4◦C) for 10 minutes before being re-transferred to the origi-

nal plate at 25◦C, labelling with N-acetylglucosamine showed that all hyphae had
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Table 1.9: Recent reports in the literature indicating a relationship between macro-

morphology and productivity

Organism Report Reference

A. niger Small pellets optimal for minimising proteases and

maximising green fluorescent protein yield

[74]

A. niger Small pellets preferable for polygalacturonase synthesis [96]

A. niger Reduced pellet size provided increase in glucose oxidase

production

[46]

A. niger Large pellets associated with maximal glucosamine

production

[72]

A. oryzae Filamentous growth optimal for α-amylase production [45]

C. militaris Compact pellets favourable for exo-biopolymer

production

[50]

P. chrysogenum Filamentous growth favourable for penicillin production [104]

R. chinensis Mycelium-bound lipase production increased from 101.2

to 691 U g-1 with a change in morphology from

dispersed mycelia to large agglomerates

[76]

S. hygroscopicus Dispersed growth synthesised geldanamycin at an

optimal rate

[97]

stopped growing and immunosignals of glucoamylase could no longer be detected.

No interference with growth and secretion occurred when colonies were transferred

to a fresh agar medium at 25◦C and after 10 minutes re-transferred to the original

plate. It was therefore concluded that glucoamylase was secreted exclusively by

actively growing tips of A. niger.

However, Müller and colleagues contended that during growth on solid medium,

secreted proteins will always be found surrounding the hyphae and, therefore, stud-

ies localising metabolite excretion in mycelia grown on agar are inconclusive [107].

Their work focussed on submerged culturing of A. oryzae and FITC labelling of
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Table 1.10: Reports in the literature indicating a link between branch formation

and productivity

Organism Report Reference

A. niger Localisation of glucoamylase secretion at hyphal tips [105]

A. niger High citric acid productivity characterised by swollen

hyphal tips

[48]

A. niger (B1-D) Correlation between ‘percentage active length’ of

hyphae and total soluble protein concentration

[87]

A. oryzae Correlation between amyloglucosidase production and

number of active tips

[84]

A. oryzae Densely branched strain favourable for α-amylase

production

[106]

A. oryzae Localisation of α-amylase in apical cell walls [107]

A. oryzae Strains with lower Lhgu values produced higher yields of

α-amylase, glucoamylase and proteases

[108]

A. oryzae Lipase production coincided with swelling of hyphal tips [109]

P. cinnabarinus Correlation between branching and phenol-oxidase

secretion

[110]

antibodies suggested that α-amylase resided in the cell walls of hyphae. Fluores-

cence was greatest in new tips or extending hyphae, while older hyphae (more than

100 µm from the tip) did not fluoresce as strongly, supporting the hypothesis that α-

amylase is secreted from the hyphal apex. However, a comparison of three different

strains of A. oryzae showed similar levels of amylase productivity, despite differing

branching patterns; the Lhgu of a mutant strain was 52% lower than a wild-type.

However, it was also determined that the estimated maximum tip extension rate

and average tip extension rate were reduced by 20 – 80% in the mutant strains,

which may explain the lack of an increase in amylase yield for increased branching.

A similar conclusion was reached by Johansen and colleagues in their study of A.
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awamori [73]. A higher inoculum concentration resulted in lower values of Lhgu

and lower tip extension rate; if enzyme secretion is coupled to growth (as reported

by Carlsen and colleagues in the case of α-amylase production by A. oryzae [111]),

this would result in less metabolite production per tip, offsetting the increase in the

number of tips per mycelium.

Further evidence of metabolite secretion at hyphal tips was reported by Haack

and colleagues, who observed changes in apical volume in A. oryzae in response

to elevated production of lipase [109]. During the fed-batch phase of fermentation,

during which high lipase production was evident, the ratio between the diameter

of the hyphal tip and the diameter of the hypha (measured 20 µm from the apex)

increased from less than 1.0 during the exponential phase to 2.5 at the end of the

fed-batch phase. A cessation of cell growth and lipase production were coincident

with a return to a normal diameter of hyphal tip. Changes in apical volume have

also been described in A. niger in response to elevated production of citric acid [48].

More significantly, other studies have documented associations between the ex-

tent of mycelial branching and productivity. Jones and Lonergan proposed a link

between the branching complexity (quantified as the fractal dimension) of Pycno-

porus cinnabarinus and phenol oxidase expression [110]. Solid media was supple-

mented with different concentrations of Remazol Brilliant Blue R (RBBR) to induce

variation in branching patterns and it was reported that higher D values correlated

with increasing tip and sub-apical branching. A trend was observed in D values

for differing RBBR concentrations, although the associated errors in the mean D

values were relatively large (and often overlapped), possibly due to the small num-

ber of colonies analysed at each RBBR concentration (≥ 10). However, variation

in oxidase activity in submerged culture, in response to differing RBBR concentra-

tions, followed similar trends to fractal dimension in solid culturing, demonstrating

a positive correlation between branching complexity and oxidase enzyme expression.
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A proxy indicator of branching complexity was also employed by Papagianni

and colleagues, who demonstrated a dependency between citric acid titre and the

length of filaments at the periphery of A. niger mycelial clumps, independent of the

reactor used for cultivation (stirred-tank or tubular loop reactor) [112]. Decreasing

the circulation time in either a tubular loop reactor (TLR) or a stirred tank reactor

(STR) resulted in an increase in citric acid titre, while clump perimeter (P1) and

the length of filaments arising from the clump core (l) both decreased. A correla-

tion between hyphal diameter (d) and citric acid titre was also evident in the TLR,

although no clear relationship was identified in the STR. Since l had a direct influ-

ence on P1, it was therefore concluded that a single parameter, l, could be directly

coupled to citric acid production.

A more direct link between metabolite production and hyphal tips was demon-

strated by Wongwicharn and colleagues in deriving a correlation between the ‘active

length’ of hyphae (determined by calcofluor white staining [113]) and total soluble

protein concentration in chemostat cultures of A. niger [87]. A close relationship

between the mean number of tips versus total extracellular protein was observed,

while a linear dependency of total extracellular protein on mean total concentration

of tips (biomass concentration × mean number of tips per organism) was found;

a link between % active length and protein secretion was also derived. A similar

result was derived by Amanullah and colleagues between the number of active tips

of A. oryzae and amyloglucosidase production [84].

Other studies have suggested that morphological mutants are preferable for high

levels of protein secretion. For example, Spohr and colleagues observed increased

productivity in a densely-branched mutant strain of A. oryzae compared to a wild-

type [106]. Comparison of two recombinant strains showed that the morphologi-

cal mutant exhibited substantially higher α-amylase production, possibly indicat-

ing that changes in branching behaviour influenced enzyme production; a dense
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mycelium with many tips may be able to secrete protein at a higher rate than a

less branched mycelium. It is possible that physiological changes may have been

responsible for this increase in production, although it was concluded that based

on the combination of physiological and morphological characterization presented,

there did not seem to be a significant difference in the physiology of the two strains.

Increased productivity in densely-branched mutant strains of A. oryzae (compared

to a wild-type) was also recognised by te Biesebeke and colleagues [108]. The dif-

ferent strains were cultivated for up to 24 hours in a 1 – 2 mm layer of wheat-based

solid medium (WSM) and the mutant strains exhibited an average Lhgu 50 – 74%

that of the wild type. When subsequently grown on wheat kernels (WK), the α-

amylase activities measured in the media extracts were at least 50% higher in the

mutant strains compared to that of a wild-type, glucoamylase activities more than

100% higher and protease activities more than 90% higher. Increased biomass did

not seem likely to be responsible for the increase in protein production, as biomass

yields on WSM were similar for all strains. However, the manner in which the

morphology was quantified on WSM was not made clear, the authors stating that

analysis was conducted using ImageJ [114] ‘according to the manufacturer’s proto-

col ’.

However, there are other reports of a disconnect between branching complexity

and metabolite production in certain processes. For example, Jayus and colleagues

contended that hyphal branching frequencies had no discernible effect on productiv-

ity in fermentations of Acremonium sp. IMI 383068 [115]. Lhgu fell from 93±13 µm

to 64±16 µm as the agitation speed was increased from 100 to 200 rpm respectively,

but remained approximately constant (55±14 µm) as agitation was increased up to

600 rpm. For the same increases in agitation speed, (1→ 3)-β-glucanase yields fell

substantially. However, the manner in which the morphology was quantified was

not presented. Furthermore, the authors described difficulty in differentiating be-
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tween mycelial branches representing ‘true vegetative hyphae’ and those that would

eventually form conidiophores, which represents a potential source of error in the

estimations of Lhgu.

Other authors have hypothesised that, in certain filamentous microbes, metabo-

lite excretion does not occur at hyphal tips. Martin and Bushell proposed that

antibiotic secretion from Saccharopolyspora erythraea occurred at sites a fixed dis-

tance behind the advancing hyphal tip, rather than from the tip itself [116]. By

comparing the specific erythromycin yield from two different mycelial populations

with different size distributions, it was concluded that a minimum particle diame-

ter of 88 µm (determined by circumscribing circles around images of mycelia) was

required for antibiotic production - ‘particles below the critical size would grow but

not produce antibiotic until they had increased in size sufficiently to include the hy-

pothetical antibiotic secretion site’. It was also found that particle size distributions

were significantly influenced by agitation speed, with the mean diameter increasing

from 70 to 124 µm when agitation was reduced from 1,500 to 750 rpm, causing an

increase in specific antibiotic production rates from 0.867 to 0.913 mg g-1 h-1.

1.5 Morphological quantification of filamentous microbes

Many attempts have been made to express the product yield from an organism

in a given process in terms of the morphological form adopted [8]. Of fundamen-

tal importance to the elucidation of such relationships is the ability to accurately

and unambiguously quantify structural variation in microbial conformations. Early

investigations involved the manual measurement of morphological features either

directly using a microscope (and a graticule, for example) or indirectly by photog-

raphy. Trinci studied the growth kinetics of various filamentous moulds by imaging

cellophane-immobilised cultures (to restrict growth to two dimensions) in inverted

59



1.5.1 DEVELOPMENT OF IMAGE PROCESSING SYSTEMS FOR
MYCELIAL ANALYSIS

Petri dishes with a 35 mm camera and then taking manual measurements from en-

larged prints [1]. Although extensive data (total hyphal length and number of tips

versus time, specific growth rate, specific branching rate and mean tip extension

rate) was presented on the development of G. candidum, A. nidulans, M. hiemulis,

P. chrysogenum and N. crassa, such a procedure would be extremely laborious and

time-consuming, even with modern digital cameras, meaning only a small number

of mycelia could be studied (3 – 5 per organism in the case of Trinci).

1.5.1 Development of image processing systems for mycelial analysis

The application of image processing, defined as ‘the conception, design, development

and enhancement of digital imaging programmes ’ [117], to the study of filamentous

microbes was, until recently, limited by the available computer hardware - many

‘personal computers’ of the late 1980’s were not equipped with the necessary ca-

pability to load into memory a single image from a modern digital camera. Image

processing has clear advantages in terms of speed and lower labour intensity and

imaging systems also have the potential to be automated, reducing the workload

still further and permitting online analysis of samples. Digital images may also be

transferred electronically to a location remote from the laboratory for analysis if

required.

A typical imaging system utilised for the quantification of fungal morphology

might consist of a standard bright-field microscope onto which a digital camera is

mounted. Studies employing image analysis techniques often mounted video cam-

eras on microscopes and then captured images on a PC by way of a frame-grabber

[118, 119]. However, the proliferation of universal serial bus-enabled devices largely

negates the need for such a set-up in the modern laboratory. Once the image has

been transferred to the PC, some form of image processing application is required

to extract the relevant data. There are commercially available image processing
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packages that may be used for this task, but many are expensive and are not

application-specific. Alternatively, open-source applications such as ImageJ [114]

may be extended by way of plug-ins, permitting the user to adapt the pre-existing

functionality of the application to their needs, or incorporate wholly original algo-

rithms as is necessary. Considerations of computer specifications, such as processor

speed and memory capacity, are also now largely unnecessary, as a typical desktop

or laptop PC will almost certainly be equipped with the necessary functionality to

run most image processing tasks.

The first attempts to represent filamentous microbes digitally were described by

Metz and colleagues, who projected magnified images of mycelia onto a digitising

table (graphics tablet) [3]. Touching a point on the digitiser with stylus caused the

(x, y) coordinates of that point to be output to an attached computer (IBM 1130),

which estimated the length of a hypha by calculating the distance between this series

of points (Fig. 1.6). The particle dimensions were subsequently output (punched on

paper tape) by the computer and fed into an IBM mainframe (370-158) for statistical

analysis. Extensive data was presented on morphological parameters such as main

hyphal length (Lmh), total hyphal length (Lth) and the hyphal growth unit (Lhgu).

However, the method was very time-consuming and labour-intensive, permitting the

examination of a relatively small population (10 – 20 mycelial elements per sample),

resulting in large errors in the estimation of parameter means in an assessment of the

development of P. chrysogenum. Furthermore, mycelial clumps were not considered

due to their complexity and measures of hyphal diameter were unreliable, due to

the poor resolution of the digitiser. Nevertheless, this represented an important

step toward the digital quantification of filamentous microbes.

Martin and Bushell proposed an alternative method for the quantification of

hyphal fragments of S. erythraea, which involved circumscribing a circle around

each object in an image [116]. The diameter of the circle was then interpreted as
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Figure 1.6: Calculation of hyphal length by means of a digitising table according

to Metz and colleagues [3]. Reproduced with permission from John Wiley and Sons.

the ‘maximum diameter’ of a hyphal fragment. Stained slides were imaged with

a phase-contrast microscope and the resulting photographs were examined using

a stencil containing circles of various diameters; the maximum mycelial diameter

was determined as the diameter of the smallest circle that completely enclosed the

object. It may be possible to automate such a procedure, but fitting circles around

irregular objects such as mycelia would be computationally expensive and the net

benefit of the maximal diameter parameter over conventional measures such as

projected area is questionable.

The first significant advance on the digitising table method was proposed by

Adams and Thomas, who described a semi-automatic image processing system to

derive similar measurements of hyphal filaments [120]. The performance of their

image analysis system was compared to that of a digitising method, similar to that

described by Metz and colleagues [3]. Manual editing of the binary images pro-

duced by the imaging system was necessary (elimination of artifacts, separation of

branches from main hypha) and although the total time required to quantify a single

hyphal element was substantial by modern standards (approximately 1 minute), the
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digitising method was estimated to be up to five times slower. Furthermore, image

processing was shown to be more accurate for the determination of hyphal lengths,

as ‘arcs’ in the hyphae were more accurately represented and the subjectivity sur-

rounding the location of branch-points was removed. Image processing was also far

more convenient, as it obviated the requirement for photographic film development.

Packer and Thomas later described a fully-automated system that produced

similar metrics, but also considered ‘clumped’ biomass for the first time [9]. The

program (implemented on a Magiscan 2A image analyser) required the manual

setting of certain application-specific parameters: a grey-level threshold for image

segmentation, a circularity threshold, the specification of a ‘measuring frame’ to ex-

clude truncated structures at the image boundary and a maximum length threshold

for the identification of artifactual branches (caused by debris). Once these param-

eters were established, the system proceeded automatically to segment the input

image (to produce a binary image), eliminate artifact using a circularity test and

skeletonise the remaining objects. The dimensions of each hyphal element were sub-

sequently evaluated (Lmh, Lth, N and Lhgu) and the percentage of clumped material

was also calculated (clumps were identified as relatively circular objects containing

‘holes’). The results produced by the automated system, on the development of

Streptomyces clavuligerus in submerged culture, were in close agreement with those

produced using a manual image processing method, which involved manual edit-

ing of binarised images (filling ‘false’ holes, eliminating hyphal crossovers, removing

debris) and manual selection of mycelia. However, the automated method was

only marginally faster than the manual method. This was attributed to the time-

consuming nature of the skeletonisation algorithm, but employing modern hardware

should alleviate this problem. Furthermore, it was demonstrated that the percent-

age of biomass present in the form of clumps in a given sample was dependent on

sample dilution, which tended to disperse entangled mycelia. Given this sensitivity,
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it was concluded that proportion of material present in the form of clumps may not

be a reliable morphological indicator, unless excessive dilution was employed and

long processing times were acceptable. However, subsequent studies have utilised

analysis systems that extracted similar metrics to those described above [104].

Tucker and colleagues expanded upon the work of Packer and Thomas by in-

cluding measures of clump ‘roughness’ (circularity) and ‘fullness’ (ratio of projected

area to convex area) [5]. The set-up (on a Leica Quantimet 570) used was simi-

lar to that described by Packer and Thomas. Following image segmentation and

the production of a binary image, artifacts were removed using a combination of

morphological (‘opening’) and size/circularity thresholds. Clumps were identified

by ‘ultimate skeletonisation’; successive removal of pixels until either a single point

or a ‘loop’ (resulting from a background region enclosed within an object, charac-

teristic of clumps) remained. In addition to projected area and perimeter (both

determined by pixel counts), clumps were characterised in terms of circularity and

compactness, which was measured in two ways: the ratio of pixel area to total area

enclosed by the perimeter and the ratio of area to convex area (Ac; area enclosed

by convex perimeter). Following the removal of small, ‘artificial’ branches, free hy-

phal elements were subjected to a ‘shrink-back’ algorithm, involving the iterative

‘pruning’ of mycelia to identify branch-points, to classify branches as zero-order,

first-order, and so on. This permitted a more detailed examination of mycelial

structures beyond the conventional hyphal growth unit. However, this additional

processing resulted in a substantial increase in execution time from approximately

41 seconds per field of view (Packer and Thomas) to 67 seconds. However, subse-

quent studies have employed the same methodology to extract similar features to

those described above [119, 121, 122].

The method of Tucker and colleagues was further improved upon by Paul and

Thomas [35]. The production of a skeletonised image was performed as described
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by Tucker and colleagues, with remaining artifacts removed based on an evaluation

of the ‘fullness’ ratio ([projected area prior to skeletonisation]/[convex area]), which

was typically lower for mycelia. Mycelial trees were then quantified according to

Lth, N , A, branch order and length and inter-nodal distances; similar measures

were applied to ‘simple’ clumps or loose entanglements (clumps containing only 1

– 3 ‘holes’, resulting from hyphal crossovers). Clumps were analysed on the basis

of maximum dimension, roughness, fullness ratio and area. The system was used

to monitor the development of P. chrysogenum in submerged fermentation and it

was found that a significant reduction in clump size occurred from 24 hours post-

inoculation, in tandem with a reduction in the total length of and number of tips

per free mycelial element. It was postulated that this may have been partly a result

of hyphae being sheared off the periphery of clumps.

A more complete description of clumped morphology was proposed by Papa-

gianni and colleagues [112]. The perimeter of mycelial clumps (P1) was measured

by joining the tips of the filaments that arose from the core of the clump. The

perimeter of the clump core (P2) was estimated by drawing lines around the core

and measuring their length. The total length of filaments and their branches that

arose from the core (l) were also measured, although how this was achieved was

not specified. Furthermore, the high degree of entanglement at the core periphery

made it impossible to distinguish between main filaments and their branches and it

was therefore suggested that l indicated the degree of branching. However, precisely

what dimension l corresponded to was not made clear. The hyphal diameter (d) was

also determined, by joining two opposite points on the hyphal wall and estimating

the distance. The image analysis method was described as automatic, although

based on the description, it would appear that significant manual intervention was

required.

One of the limitations associated with the systems described above is the inabil-
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ity to analyse the ultra-structure of mycelial trees while simultaneously extracting

information on hyphal width from the same image. This difficulty stems from the

considerable difference in scale between the width of a hypha and the width of a

mycelium (2 – 3 orders of magnitude). A possible solution to this problem may

be the use of a motorised stage to construct a matrix of high-resolution images,

such as that which was employed by Müller and colleagues to extract information

on septum and nuclei positions in A. niger and A. oryzae, while also quantifying

large hyphal arrangements using the same set of images [90]. Samples were stained

with calcofluor white and 4’,6-diamidino-2-phenylindole12 then imaged with a ×100

objective. By forming a 9×9 array with the resultant images, a sufficient resolution

was obtained to simultaneously visualise sub-cellular details and ultra-structural

variation, although significant user intervention was required, with distances be-

tween the apical tip, nuclei and septae all measured manually.

Online monitoring of mycelial development

One of the principal advantages of image processing systems is their potential use in

conducting online assessment of hyphal extension, whereby images may be routinely

captured and analysed automatically in tandem with development. Spohr and col-

leagues described such an online system [4] based on a small ‘flow-through cell’,

consisting of a microscope slide above a Perspex base, separated by a ParafilmTM

spacer, mounted on a microscope stage (Fig. 1.7). Liquid media was pumped

through an inlet valve on one side of the cell and removed through another. By

fixing fungal spores to the inside of the slide (using Poly-d-lysine) and circulating

nutrient media through the cell, the growth of the organism could be monitored

using phase-contrast optics.

12DAPI: a nucleic acid stain, which binds strongly to DNA, used in multicolour fluorescent

techniques.
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Figure 1.7: Schematic of the online imaging system employed by Spohr and col-

leagues [4]. A. The system consisted of an image analyser, a CCD-camera, a phase-

contrast microscope and a flow-through cell mounted on the microscope, all of which

were enclosed in a thermostated cupboard to ensure a constant temperature. The

temperature sensor was located in the proximity of the chamber. B. Construction

of the flow-through cell. Reproduced with permission from John Wiley and Sons.

The data produced by Spohr and colleagues on the development of A. oryzae

mycelia was similar to that produced earlier by Trinci [1] (albeit with a greater

number of data-points), permitting the calculation of the specific growth rate and

branching rates. In general agreement with the work of Trinci, it was found that

the extension rates of different branches within a single mycelium varied, with the

extension rate postulated to be proportional to the position of the branch relative to

the primary tip. Evidence was also presented for the secretion of growth-stimulating

compounds by A. oryzae; high flow rates resulted in poor growth, which was not

evident when ‘recycled’ media was used. In addition, Spohr and colleagues presented

data on the swelling of spores; circularity remained approximately constant during

the swelling process, while measures of projected area over time suggested that

spore volume increased exponentially prior to germination.

The advantage of such a system is the ability to monitor the growth of individual

elements, and even individual hyphae, from a single spore, up to a mycelium several
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millimetres in length. However, the methodology employed by Spohr and colleagues

was perhaps slightly inefficient; analysis of images was conducted post-cultivation

rather than simultaneously, requiring the use of a storage device for the large number

of images captured. Quantification of morphological parameters post-cultivation

was necessary as user intervention was required to identify the formation of a new

branch in the image sequence for each mycelium, resulting in increased processing

time. Similar systems have since been used to assess the development of Mucor

circinelloides [13, 123] and various Mortierella species [124, 125].

Sub-cellular analysis

A limited number of studies have focussed on the analysis of sub-cellular hyphal

features. Paul and Thomas developed one such system, designed to quantify vacuo-

lation and ‘active’ growing regions in neutral red-stained P. chrysogenum mycelia

[35]. Their elegant routines comprised a series of grey-scale and binary morpho-

logical operations to extract vacuoles and active hyphae from an image, although

some manual editing was required. The objects of interest (hyphae, vacuoles, active

tips) all exhibited different grey levels and each could be segmented from the input

image using different grey-level thresholds. Artifacts in the resulting binary images

could generally be identified based on size and circularity. Their results showed

that the percentage of vacuolated hyphae increased (and vacuoles became larger

and less circular) during the course of a fed-batch fermentation. It was also shown

that hyphal width increased rapidly up to approximately 30 hours post-inoculation,

after which time the width of active regions declined rapidly, whereas the width

of inactive regions remained relatively constant. However, the total execution time

was long: 25 – 35 minutes per sample, depending on the type of sample and the

level of manual editing required.

A semi-automatic method for the characterisation of vacuoles in A. niger hy-
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1.5.1 DEVELOPMENT OF IMAGE PROCESSING SYSTEMS FOR
MYCELIAL ANALYSIS

phae was developed by Papagianni and colleagues [79]. Samples were imaged with a

phase-contrast microscope at a magnification of ×400 and vacuoles were segmented

from the image by grey-level thresholding. Artifacts could generally be removed

from the resulting binary image using pre-set size and circularity filters. However,

some vacuole-like artifacts could remain, but these objects could be removed by log-

ically adding the image with a mask of the mycelium - only those objects coincident

with hyphae could be considered vacuoles. It is implied that the detection of vac-

uoles involves some form of manual intervention, but what level of user involvement

was required is not clearly specified. The vacuoles were subsequently quantified

automatically in terms of perimeter, diameter, circularity and area, from which the

volume of the vacuoles was estimated (assuming the hyphae to be cylindrical) and

the percentage of vacuolated volume of filaments calculated.

Use of fluorescence microscopy techniques

Fluorescence microscopy has also proved useful for identifying ‘active tips’ on in-

dividual mycelia. Amanullah and colleagues used calcofluor white staining [113] to

distinguish between active and non-active tips in A. oryzae [84]. Actively growing

tips appeared intensely bright when stained (the brightness extending to 6 – 8 µm

from the hyphal apex), while ‘inactive’ tips did not fluoresce, nor did ‘artificial’

tips resulting from hyphal fragmentation. However, a significant amount of manual

image processing was required to quantify the active tips within a sample, with tips

manually ‘cut’ from an image by the user. The calculation of a user-defined grey-

level threshold was also required to distinguish between active and non-active tips.

In addition to an increase in processing time, this introduces a degree of human error

into the analysis as, for example, in the case of fluorescing tips, the point at which

fluorescence was deemed to have ‘terminated’ may have varied. Furthermore, tips

within mycelial clumps could not be observed and taken into consideration. Cal-
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1.5.2 ANALYSIS OF MACROSCOPIC PELLETS

cofluor white staining was also employed by Wongwicharn and colleagues to identify

the ‘active length’ of A. niger hyphae [87]. However, manual measurements were

also required, made using a mouse to determine the main hyphal length, total branch

length and number of tips. The percentage ‘active length’ was defined as the sum

of the mean of the length between the hyphal apex and the start of the vacuolated

zone divided by mean total hyphal length, which may have been a source of error.

Agger and colleagues used a double-staining method involving fluorescence mi-

croscopy to estimate the percentage of active cells in a culture of A. oryzae [126].

The hyphae were stained with both calcofluor white and DiOC6, which stained or-

ganelles within the cells. The fraction of active cells within a hyphal element could

then be determined by using separate filter blocks to view fluorescence from each

stain.

1.5.2 Analysis of macroscopic pellets

In the analysis of macroscopic aggregates such as pellets, compromise is often re-

quired between microscopic assessment of hyphae at the pellet periphery and macro-

scopic examination of the pellet ultra-structure, as the pellet diameter is typically

2 – 3 orders of magnitude greater than that of hyphae. Consequently, the simul-

taneous observation of both micro- and macroscopic pellet morphology is often not

possible; different means of image capture are often required. For example, in their

study of A. niger, Paul and Thomas suspended pellets in a cavity slide (depth 1 mm)

suitable for mounting on a microscope stage [35]. However, for larger pellets (greater

than approximately 0.6 mm in diameter), a macro-viewer attached to a camera was

required. Following the removal of small artifacts from binary images by opening,

pellets were identified by the presence of a solid ‘core’, the existence of which was

ascertained by ultimate erosion of the pellet to a single point (opening operations

were used to remove peripheral hyphal ‘loops’ if necessary). Further opening oper-
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ations were used to separate the core from the annular region; objects for which no

core could be identified were classified as clumps. Similar means of evaluating the

‘filamentous fraction’ of pellets was employed by Park and colleagues, who removed

the pellet annular region in binary images by repeated opening cycles until only the

pellet core remained [92]. The filamentous mycelial area, Af , was then calculated

by subtracting the pellet core area (Apc) from the total mycelial area (Am) and the

filamentous fraction expressed as Af/Am.

An alternative method for pellet analysis, proposed by O’Cleirigh and colleagues,

aimed for a high-speed, high-throughput quantification of pellets of S. hygroscopicus

[77]. Safranin-stained pellets were suspended in distilled water in a Petri dish and

an image acquired using a flatbed scanner. Following noise removal and conversion

to a monochrome image, a binary mask was produced using a pre-defined thresh-

old and objects were measured according to area equivalent diameter, number of

particles per ml and volume of particles per ml. Testing of the method using size

calibration particles showed a high level of accuracy. However, a relatively high res-

olution (21 µm per pixel) was used, producing extremely large 58 Mb images (when

stored in TIFF format), resulting in relatively long processing times (approximately

2.5 minutes, plus 2.6 minutes for image capture). Although this could have been

reduced by converting to a monochrome image prior to processing, it is also ques-

tionable whether such a high resolution is necessary for macroscopic objects such

as pellets, depending on pellet size. A similar method was employed by Bizukojc

and Ledakowicz in their assessment of A. terreus pellets, although the dish was

photographed rather than scanned and manual editing of images was required for

separation of touching objects and selection of a region of interest [47].

Similar methods have been employed by other authors. For example, in their

study of Coprinopsis cinerea, Rühl and Kües suspended shake-flask cultures in

water on a large glass plate bordered by a silicon frame to contain the liquid [127].
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The plate was subsequently illuminated from below and imaged with a camera

and the images subjected to automated image analysis. However, the resultant

data (mean grey value, area, convexity, shape factor, sphericity) was filtered to

remove measurements relating to any objects, including mycelial clumps, that did

not conform to a pre-determined description of a pellet. This lead to as much as

20% of objects being excluded from the results.

Visualisation of pellet interior

Fluorescent stains have been widely employed in the study of filamentous microbes,

but their use in conjunction with image processing has been limited. Hamanaka and

colleagues utilised fluorescence microscopy and image analysis to determine that

lipid synthesis occurred at the edge of M. alpina pellets [128]. Microtomed sections

of fluorescein isothiocyanate-labelled (FITC13) and Nile red-stained14 pellets were

imaged using fluorescence microscopy and a ‘cavity ratio’ estimated based on the

average FITC staining intensity (I) across the section diameter (D):

Iavg =
1

D

∫ D

0

f(I) dl (1.14)

Their results showed that FITC staining was typically low at the pellet centre,

particularly in the later stages of fermentation, indicative of a hollow core, the size

of which correlated with total pellet volume. Nile red staining was also restricted to

the pellet periphery, evidence that intracellular lipids were not present in the pellet

core.

A similar technique was employed by Bizukojc and Ledakowicz to estimate the

‘active’ region in A. terreus pellets [47]. Methyl blue-stained15 pellets were solidified

in paraffin before cross-sectioning with a microtome. When viewed with fluorescence

13Binds non-specifically to cell surface proteins (fluoresces when binding occurs).
14Nile red stains intracellular lipid droplets
15Also known as ‘cotton blue’, stains fungal cell walls.
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microscopy, the active region at the pellet periphery appeared reddish-violet, while

the interior exhibited a greyish-white colour. These two regions were subsequently

segmented and the volume (V ) of active biomass in each pellet was estimated based

on the radius of the whole pellet (R) and the radius of the inactive region (L):

V =
4

3
π[R3 − (R− L)3] (1.15)

While these studies provide valuable information on the influence of pelleted growth

on fungal physiology, the preparation of samples for microtome cross-sectioning was

laborious and time-consuming and does not lend itself to high-throughput process-

ing.

Fluorescence microscopy was also employed by El-Enshasy and colleagues to

estimate the ‘productive’ fraction of biomass in pellets of A. niger [46]. Samples

were heat-fixed on microscope slides before staining with acridine orange (fluoresces

orange-red when bound to ribonucleic acid (RNA), indicative of active protein syn-

thesis). When subsequently viewed under fluorescence microscopy, the ‘unproduc-

tive’, central region of pellets fluoresced green, whereas the productive outer region

exhibited a strong red-orange colour. Images were subsequently analysed manu-

ally by drawing diameters and estimating the depth of the productive fraction and

the volume of productive biomass was calculated using an expression similar to

Equation (1.15). The method could be improved by using a multi-spectral segmen-

tation routine to discriminate between the two regions and subsequent measures of

projected area would provide a more accurate determination of active/non-active

biomass.

1.5.3 Analysis of spores and germination rates

The application of image processing to the analysis of spores has received surpris-

ingly little attention given the influence of inocula on fermentation outcomes. Many
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measures of germinative potential, for example, are still performed by way of manual

counts [26, 27]. However, Paul and colleagues developed a system to automatically

distinguish between germinated and non-germinated spores, allowing an accurate

quantification of the number of spores that had germinated within a population

[129]. Image pre-processing was similar to that described above [44], the resulting

binary image containing non-germinated spores, germinated spores and unwanted

artifacts.

Initially, artifacts were eliminated based on size and a circularity threshold was

then used to extract non-germinated spores. Germ tubes were removed from ger-

minated spores by iterative opening - subsequent subtraction of the resultant ‘germ

tube spores’ from the binary image produced an image consisting exclusively of

germ tubes. The germ tube image was then segmented to separate any objects that

may have been in contact with the germ tubes. Some of these separated objects

may have been spores, which could be identified based on size and circularity - all

others were removed. ‘Germ-tube-like’ artifacts could also be removed based on

their position relative to ‘germ-tube spores’.

The system did have some difficulty in separating ‘chains’ of spores, resulting

in an underestimation in spore concentration of approximately 7%. In addition,

the presence of solid particles in media resulted in a significantly reduced system

performance (evaluated by comparison to manual-editing method). Perhaps an

initial watershed operation to separate all ‘touching’ objects (including germ tubes

and their parent spores), which could be subsequently classified according to size

and circularity, would have been a more efficient approach.

Oh and colleagues developed a system with a similar function, although it was

successfully applied to a variety of spore species with different morphological char-

acteristics [130]. A micro-well chamber containing fungal spores in liquid medium

was mounted on a microscope stage and imaged at regular intervals. The resulting
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images were automatically analysed to determine whether spores had germinated or

not. Following manual image capture, images were subjected to edge enhancement

(Laplacian operator) followed by noise suppression (median filtering) and artifact

removal (using an area threshold). From a binary image, the object boundary was

sampled and low-pass filtered in Fourier space16 to produce a smooth representation

of the shape contours. The contour C was parameterised by the arc length t and

expressed in terms of x(t) and y(t). The curvature (K) of a function y(x) was then

calculated as follows:

K =
d2y

dx2

(
1 +

dy

dx

)− 3
2

(1.16)

The contour could thus be reduced to a set of shape ‘primitives’ based on local

values of K; rapidly changing convex curves (characteristic of hyphal tips), slowly

changing convex curves (characteristic of spores), concave curves (where a spore

‘meets’ a germ tube) and straight lines. Such a methodology is highly flexible and

can be adapted to spores of different morphological characteristics. Counts of ger-

minated spores compared well with those obtained manually except for high spore

concentrations, when system performance deteriorated due to the overlapping of

germ tubes. However, the minimum inhibitory concentrations of amphotericin B

necessary for complete inhibition of germ tube formation were determined for As-

pergillus fumigatus, Curvularia lunata and Fusarium solani. While the processing

time of approximately one minute per well could undoubtedly be improved upon

with modern hardware, the high level of accuracy obtained in this study suggests

that the system represents a potentially powerful laboratory diagnostic tool, par-

ticularly if used in conjunction with automated image capture.

16A frequency-domain representation of a function f(x) can be obtained using the Fourier Trans-

form (F (ω))
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1.5.4 Other applications of image processing to the study of

filamentous microbes

Colorimetric assay quantification

Other studies have aimed to quantify metabolic activity directly using image pro-

cessing. Jones and colleagues used image analysis to evaluate dye bio-transformation

by white rot fungi [131]. Agar was supplemented with Remazol Brilliant Blue R

(RBBR) and inoculated centrally with either P. cinnabarinus or Phanerochaete

chrysosporium, then imaged every 24 hours for 7 days. By calculating the area (A)

of dye remaining in a given image captured at time t, the specific enzyme diffusion

or activity coefficient (ν) was calculated as:

ν =
lnA− lnAT

t
(1.17)

were AT was the total dye area at t = 0. An alternative method analysed dye

biotransformation by identifying the shift in the mean peak of the image histogram

(with respect to an uninoculated control plate). Results showed that P. cinnabari-

nus converted the chromophores of RBBR more rapidly than P. chrysosporium.

Olsson described a colorimetric method for measuring concentrations of glucose

and phosphorus in agar medium supporting growth of F. oxysporum colonies [40].

Colonies were cultivated on cellophane-covered agar for seven days before removal

and development of the agar with Sandell’s solution or molybdate to show the pres-

ence of glucose or phosphate respectively. Subsequent imaging (by illumination with

a light-box) and analysis revealed steep phosphate and glucose gradients at colony

edges, while the concentration of both nutrients was virtually zero at the colony

centre; the profiles were virtually identical regardless of the carbon to phosphate

ratio present in the media. Correlations between mean pixel intensity (I) in images

of colonies and dry cell weight (X) were also derived using transmitted (I = eaX)
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and reflected (I = aX) light measurements and it was demonstrated that biomass

distribution within the colony was affected by glucose concentration.

Use of in situ probes

In situ probes have proved successful for the monitoring of certain processes. Wei

and colleagues developed an in situ dark-field microscopy probe (IDMP) for the

monitoring of cell cultures [132]. The probe consisted of an illumination unit at the

bottom and a CCD camera at the top of a single, partially-submerged tube. Just

above the illumination unit (which consisted of a light-emitting diode, a collimating

lens and a condenser), separated by a window, was an opening in the tube allowing

the culture to enter a sampling region, just above which was positioned a ×10 ob-

jective lens behind a second window. In the analysis of cultures of Saccharomyces

cerevisiae, results provided by the IDMP and imaging system, based on training set

data, were in close agreement with manual counts for both total cell density and cell

viability. However, it is unlikely that such a system could be easily adapted for the

study of filamentous microbes. Unicellular organisms are approximately ellipsoidal

and are presented as simple, regular shapes in a single focal plane; subsequent de-

tection may be achieved using techniques such as the Hough Transform [133], ellipse

detection [134], or some variant thereof. However, the morphology of filamentous

microbes in a submerged suspension is significantly more complex, the capture of

which within a single focal plane would be challenging.

1.6 Conclusions

Filamentous microbes are industrially important organisms used to produce a wide

range of compounds for a variety of applications. While solid-state fermentations

involving such micro-organisms have been conducted by humans for perhaps thou-
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sands of years, submerged culturing became the dominant industrial format over the

course of the 20th century, primarily due to reduced space requirements, but also the

greater ease with which such processes may be controlled. However, productivity

may be significantly influenced, both directly and indirectly, by the complex, three-

dimensional phenotypes that are manifest in submerged culture, the specific form

of which is a result of a variety of factors. The advent of the digital era provided

the necessary tools for researchers to develop image processing systems to quantify

these elaborate conformations, but fully-automated systems are still rare and many

studies still rely on qualitative morphological descriptions.

1.7 Aims of this study

• The principal aim of this study was the design of an automated image analysis

system for the rapid and accurate characterisation of fungal morphology.

• In parallel with this, it was required that a means of sampling fungal cul-

tures be developed that would present the organism in an essentially two-

dimensional format for imaging purposes, whilst preserving the fragile fungal

architecture.

• Finally, this system was to be applied to the study of a model organism, A.

oryzae, and relationships between micro-morphology, macro-morphology and

metabolite production investigated.

1.7.1 Thesis overview

Chapter 2 provides details on the most commonly used protocols and techniques

used throughout the study.

Chapter 3 describes the development of an integrated application, based on

the ImageJ platform, that may be used as a means of automatically analysing a
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two-dimensional representation of filamentous fungal micro- or macro-morphology,

generating data on populations of spores, mycelia or pellets. In the design of this

system, speed-of-execution was prioritised to provide a system capable of near-real-

time analysis.

Chapter 4 describes the investigation of a two-dimensional growth assay by

immobilising fungal spores on cellulose nitrate membranes, using A. oryzae as the

model organism. The suitability of the assay for producing samples appropriate for

the image analysis system developed in Chapter 3 was examined. Efforts to optimise

the assay were undertaken, concentrating specifically on minimising processing time.

In Chapter 5 the kinetic development of A. oryzae on a solid substrate was

analysed using the systems described in chapters 3 and 4 to establish the basic

kinetic parameters for this system and investigate whether a change in media com-

position results in a change in any of these kinetic parameters.

In Chapter 6, morphology and α-amylase production in shake-flask cultures

of A. oryzae was characterised. Attempts were then made to perturb the system,

through variation in inoculum concentration, carbon source type and concentra-

tion and surfactant supplementation. Resultant changes in macro-morphology were

quantified and related to concomitant changes in amylase production. Attempts

were made to derive simple correlations between pellet size and α-amylase yield.

Chapter 7 describes an alternative means of quantifying the branching be-

haviour of filamentous microorganisms using fractal geometry. The fractal dimen-

sion of different populations of mycelia was related to the conventional hyphal

growth unit and the potential for future use of fractal geometry in the analysis

of fungi is discussed.

Chapter 8 outlines the overall conclusions derived from this study and dis-

cusses the relevance of the results with regard to the literature. Potential future

investigations are also considered.
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Chapter 2

General Materials & Methods

2.1 Preparation of spore inoculum

Conidial suspensions were prepared in one of two ways. In the first method, stan-

dardised Aspergillus oryzae (ATTC 12891) conidial suspensions were prepared from

malt agar (Lab M LAB037) slant cultures (after incubation for 7 days at 25◦C) by

the addition of 5 ml phosphate-buffered saline (PBS) containing Tween 80 (0.1%

v/v; PBS-Tween-80). The cultures were briefly vortexed and the suspensions recov-

ered by aspiration with a Pasteur pipette. Conidium concentration and the absence

of hyphal elements were assessed using a Neubauer chamber, and the conidia were

subsequently pelleted by centrifugation at 3,000 rpm for 30 min at 4◦C. The pellet

was then re-suspended in PBS-Tween-80 and glycerol (20% v/v, final concentration)

to yield 1× 106 spores ml-1 and stored at −20◦C.

The second method is similar to that described by O’Cleirigh and colleagues [77].

A. oryzae was grown on malt agar in 250 ml Erlenmeyer flasks for 7 days at 25◦C.

A spore suspension was prepared by washing the surface of the culture with 25 ml

(PBS-Tween-80) containing approximately 3 g glass beads (BDH) and agitating at

120 rpm, 25◦C for 30 minutes. The suspension was filtered through sterile glass wool

to remove hyphae and the conidia were subsequently pelleted by centrifugation at
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3,000 rpm for 20 minutes at 4◦C. Conidium concentration was standardized using

a Neubauer chamber to yield a stock concentration of 1.8 × 108 spores ml-1 and

aliquots were stored in glycerol (20% v/v) at −20◦C.

2.1.1 Assessment of spore viability

The viability of spores after freezing was determined using the pour plate method

[135]. Vials containing spore suspension were thawed from frozen at 37◦C and seri-

ally diluted with sterile PBS-Tween-80 to yield suspensions of approximately 5×103,

1× 103 and 1× 102 spores ml-1. An aliquot (1 ml) of each spore concentration was

transferred to the centre of a separate sterile Petri dish and immersed in approxi-

mately 25 ml of molten malt agar (40◦C). Each spore concentration was plated in

triplicate. The dish was gently swirled to disperse the spores and allowed to cool at

room temperature for 1 hour. Once the agar had set, the dishes were incubated at

25◦C for approximately 36 hours and any visible colonies were manually counted.

The percentage mean spore viability (v) was calculated according to:

v =
100

C

∑ ci
3di

(2.1)

where C is the nominal spore concentration in the frozen stock, ci is the mean colony

count for each plated spore concentration and di is the corresponding dilution factor

for that concentration (1/10, 1/100, etc.). The resultant values are referred to in

individual experiments.

2.2 Preparation of buffers

Phosphate-buffered saline was routinely prepared by dissolving one tablet (Oxoid

Dulbecco ‘A’ BR0014) in 100 ml of distilled water. Where specified, Tween-80

was added at a concentration of 0.1% (v/v). All conidium dilutions used in the
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experiments described were performed in sterile PBS-Tween-80.

2.3 Basal medium for microorganism cultivation

The basal medium used for both submerged and solid state fermentation of A.

oryzae was a modification of that described by Amanullah and colleagues [122]:

Citric Acid, 2.0 g L-1; MgSO4.7H2O, 2.0 g L-1; KH2PO4, 2.0 g L-1; (NH4)2SO4,

3.0 g L-1; CaCl2.2H2O, 1.1 g L-1; K2SO4, 2.0 g L-1. A trace metal solution was

added (0.5 ml/L), consisting of: Citric acid, 3.0 g L-1; ZnSO4.7H2O, 0.5 g L-1;

FeSO4.7H2O, 0.5 g L-1; CuSO4, 0.25 g L-1; MnSO4.H2O, 0.28 g L-1; NiCl2.6H2O,

0.09 g L-1. Media pH was adjusted using either 2 M HCl or NaOH as required

using an electronic pH metre (Hanna Instruments 8519 or pH210) calibrated against

standard buffer solutions (AVB Titrinorm 32044.268 & 32045.262). All media were

sterilised by autoclaving at 121◦C and 1 atm for 15 minutes.

2.4 Optimised protocol for membrane immobilisation of

culture and subsequent visualisation

2.4.1 Cell immobilisation and solid-state cultivation

The basic conidiospore immobilisation procedure consisted of filtering a suspension

(25 mL of approximately 400 spores ml-1) through a cellulose nitrate membrane

(Sartorius Stedim 11306-47-ACN, Millipore HAWG 047 SO or Pall 66278) using

a membrane filtration device (Millipore) connected to a vacuum pump. A spore

concentration of this magnitude was found by trial-and-error to be optimum in

preventing over-crowding of mycelium on the membrane upon germination, while

suspension volumes in excess of 20 ml were adequate to ensure a uniform spore

coverage of the membrane. After washing with PBS-Tween-80 (for removal of any
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wall-adherent cells) and sterile water (removal of excess PBS-Tween-80), the mem-

brane was overlaid evenly on to the surface of malt agar and incubated at 25◦C.

2.4.2 Processing of culture for image analysis

In the optimised procedure derived from the experiments described in subsequent

chapters, the membrane was removed from the agar after a suitable period of time

and replaced in a filtration device where it was exposed to fixative solution (phenol

20% w/v, glycerol 40% v/v, lactic acid 20% v/v in distilled water) for 5 minutes.

Following washing with PBS-Tween-80 and then water, the membrane was placed

in a Petri dish and dried at 65◦C (75 min). After staining with lacto-phenol cotton

blue, the membrane was rinsed with PBS-Tween-80 (5 min) and distilled water,

followed by cutting and mounting on a microscope slide and drying at 65◦C (75 min).

The membrane was rendered transparent and suitable for imaging by treatment with

microscopy immersion oil (Olympus AX 9602).

2.4.3 Microscopic visualisation of submerged culture

Samples (1 ml) were taken from shake-flasks and added to approximately 25 ml PBS-

Tween-80 before filtering through a cellulose nitrate membrane using a filtration

device. The membrane was then fixed, stained and dried as described above.

For fluorescence microscopy, samples were diluted approximately as necessary

with PBS-Tween-80. The diluted sample (1 ml) was added to 4 ml of calcofluor

white (0.01% w/v; Sigma F3543) and incubated at room temperature for 10 min-

utes, before filtration through a cellulose nitrate membrane and drying at 65◦C

(75 minutes).
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2.5 Microscopy and image capture

Light microscopy was performed with a Leica DMLS2 microscope, with the con-

denser and aperture fully opened and maximum illumination. The microscope is

fitted with a ×10 eyepiece lens, four standard objective lenses (×4, ×10, ×20 and

×40) and a single oil-immersion objective (×100). All lenses, filters and light-sources

were cleaned thoroughly with lens tissue prior to use. Standard glass microscope

slides were used in all experiments.

All images were captured using a Canon Powershot S50 camera attached directly

to the microscope. The camera could be controlled remotely from a PC using

Canon’s RemoteCapture utility. The camera lens was cleaned with lens tissue prior

to use. Images were stored in JPEG format with minimal image compression. The

image resolution used is referred to in individual experiments.

Inter-pixel distances were calibrated by imaging a stage graticule, from which a

standard scale factor (0.138 µm pixel-1 for 2592 × 1944 image captured at ×400)

was calculated that was subsequently used in all experiments.

Images of fluorescent samples were captured with a Canon PowerShot S50 dig-

ital camera attached to a fluorescence microscope (Leitz Laborlux S) fitted with

an epifluorescence illuminator (307-148.002 514687, Leitz Wetzlar). Images were

captured at ×100 magnification.

2.5.1 Visualisation of fungal macro-morphology

Fungal macro-morphology was visualised using a method similar to that described

by O’Cleirigh and colleagues [77]. Samples (approximately 10 ml) were decanted

from shake flasks and centrifuged at 1,000 rpm, 4◦C for 35 minutes. Supernatant

was removed and the biomass was immersed in lactophenol cotton blue with gentle

agitation to ensure stain uptake. Distilled water was added to a volume of 30 ml and
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the contents gently agitated before being subjected to centrifugation (1,000 rpm,

4◦C for 20 minutes). The supernatant was replaced with distilled water before

further centrifugation. This process was repeated until excess stain was removed

and the supernatant became clear. The stained biomass was then transferred to

a Petri dish and diluted to yield a coverage of approximately 1 cm2 biomass per

20 cm2. The contents of the Petri dish were then scanned with a Hewlett Packard

Scanjet G4010 flatbed scanner, with the images stored as 24-bit bitmaps (300 dpi).
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Chapter 3

Development of an Automated Image Analysis

System for the Morphological Quantification of

Filamentous Microbes

3.1 Introduction

The need to precisely quantify morphological variation in mycelial structures as a

means of control in industrial fermentations has led to the deployment of computer-

aided image processing as a tool for the study of microbial culture systems [136].

The detailed assessment of limited numbers of hyphal elements in both submerged

[4] and solid state systems [118, 137] has contributed much to the understanding of

apical growth mechanisms, while the derivation of average data from the monitoring

of large cell populations [45, 106] is aimed at process optimization within bioreactor

systems. Early progress in the development of automated routines [5] led Thomas

and Paul to declare in 1996 that ‘it is probable that fully automated image analysis

will soon be used to gather the large amounts of data needed for both model extension

and verification’ [138]. However, many studies of morphology still rely on significant

manual intervention [10, 87, 123, 139, 140], which increases execution time and

reduces throughput. There is therefore a pressing need for further development of
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automated image analysis systems for application in this field.

3.1.1 Basic concepts of digital image processing

The application of image analysis permits the translation of readily recognisable

qualitative traits into actionable, quantitative data (Fig. 3.1). The derivation of ac-

curate data is dependent on the capture of representative images, as the integrity of

the results will be compromised by low-quality input. The input process commences

when the projection of a three-dimensional object is captured on a charge-coupled

device (CCD) array, such as that contained within a digital camera or a flat-bed

scanner, and is subsequently digitised. This digitisation causes the original two-

dimensional, continuous, analogue representation of the image to be quantised at

each point on the array, resulting in a digital representation of the field of view. The

resolution (the number of pixels) of the resultant image is dependent on the size of

the array on which the image was captured. Quantisation is generally performed

uniformly, whereby the intensity at some point (x, y) within the image is linearly

translated to some integer value between 0 and 2M , where M is referred to as the bit

depth of the resulting digital image. In most applications (and in most images used

in this thesis) M = 8, so each pixel is represented by an intensity value between 0

and 255 (Fig. 3.2). Colour images generally have a bit-depth of 24, 8 bits for each

colour component, red, green and blue.

Object
Image

Capture

Processing

of Image
Output Data

Control

System

Human

Observer

Data Storage

Figure 3.1: Schematic representation of a typical image analysis system.
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0

x

y

255

Figure 3.2: Quantisation of intensity levels. Each (x, y) coordinate in the image

has an associated integer value between 0 and 255.

Following image capture and digitisation, there are various forms of low- and

high-level processing that may be performed. Roerdink categorised these as image

pre-processing, segmentation, object description and finally, interpretation [141].

Pre-processing is based on the premise that the image contains both an object of

interest and an added unwanted noise component, which may, for example, result

from electrical disturbances in the CCD on which the image was captured. Other un-

wanted features that may require correction include non-uniform image background,

poor image contrast or blurring. Once the image has been optimised, attempts are

made to group together regions within the image based on some property, such as

the intensity of the pixels. Image segmentation typically aims to separate objects of

interest from the image background, but more generally, it is a means of identifying

different regions. Common forms of segmentation are grey-level thresholding and

edge detection and the result of segmentation is often the output of a binary image

(Fig. 3.3). Description then seeks to characterise the different regions identified by

the segmentation stage using various properties: projected area, perimeter length,

centre of mass, bounding rectangle, Feret’s diameter, and radius of gyration, among
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3.1.2 MORPHOLOGICAL CLASSIFICATION OF FILAMENTOUS MICROBES

Figure 3.3: Binary image of Figure 3.2, in which only two grey levels are present.

others. Finally, it may be required that the various region descriptions be inter-

preted in some way, so as to, for example, eliminate a particular region from further

analysis, or, to assign a particular classification to a region.

3.1.2 Morphological classification of filamentous microbes

A wide variety of parameters have been utilised in the study of microbial spores, hy-

phal elements, aggregates and pellets [142], although many are derived from simple

measures such as projected area (Ap) or perimeter length (P ). Means of identifi-

cation of different structures have also received considerable attention and some of

the different techniques utilised are outlined here.

Analysis of spores

Typical measures utilised in the analysis of spores include projected area and cir-

cularity (C), particularly in cases where the spores in question are approximately

spherical [4]. Teliospores and pycniospores of certain Puccinia species are approx-

imately ellipsoidal and have been quantified in terms of their major and minor

axes [12]. Other studies have utilised Fourier descriptors for more complex spore
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3.1.2 MORPHOLOGICAL CLASSIFICATION OF FILAMENTOUS MICROBES

morphologies that cannot easily be described in terms of ellipsoids or spheres [143].

Investigations into the influences on rates of spore germination have often re-

lied on manual observation and counting to determine the percentage of germi-

nated spores within a population [26, 27]. However, the use of a simple parame-

ter such as circularity can prove useful in differentiating between germinated and

non-germinated spores, as was demonstrated by Paul and colleagues [129]. The ger-

minated spores were subsequently subjected to morphological filtering to separate

the germ tube from the parent spore for analysis of each structure. An automated

method was also developed by Jones and colleagues, although the intended use was

enumeration of spores in a haemocytometer for inoculum standardisation, rather

than morphological quantification [144].

Enumeration and analysis of hyphae

While the study of hyphal development has taken on several different forms, the

challenges associated with the quantification of these structures may be resolved

into three general approaches: high-magnification assessment of individual hyphae,

quantification of mycelial ‘trees’ or free mycelial elements and the identification and

subsequent analysis of mycelial aggregates. Determination of measures such as the

hyphal growth unit (Lhgu; ratio of total hyphal length to number of hyphal tips) and

hyphal width is generally not possible from the same image given the differences in

scale1 and capture of images at different magnifications is typically required for this

purpose [109, 145].

At the high-magnification level, Bartnicki-Garćıa and colleagues used computer

enhanced video-microscopy to map the trajectory of cell surface markers in growing

hyphae of Rhizoctonia solani to determine the pattern of cell wall expansion during

apical growth [118]. McIntyre and colleagues estimated lengths of apical compart-

1Generally 2 – 3 orders of magnitude between hyphal width and mycelial width
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ments in hyphae by determining the distance between the apex and first septum

(apical compartment) and between subsequent septa of each hyphal element [146].

Other studies have yielded information on sub-cellular hyphal details. For example,

Pollack and colleagues measured the percentage of vacuolated area as the total vac-

uole size per total mycelium size [147]. Vacuolation was also used to differentiate

between active and non-active hyphal regions of A. niger, permitting estimations of

the percentage of active biomass [87, 148].

Numerous studies of mycelial architectures have been reported, but one of the

earlier systems was developed by Packer and Thomas, which permitted the de-

termination of total hyphal length, main hyphal length (by determination of the

longest connected path), hyphal branch length and hyphal growth unit in mycelial

‘trees’ [9]. An estimation of the percentage of biomass occurring in clumped form

was also included. This system was later enhanced to include a novel means of

first identifying, then characterising, clump morphology in terms of projected area,

circularity and convex perimeter (Pc; Fig. 3.4) [5]. Similar approaches to the quan-

tification of mycelial trees and clumps have been employed in several other studies

[104, 119, 121, 122]. Lecault and colleagues proposed an intermediate classification

between free elements and clumps, termed an entangled mycelium, identified based

on the number of ‘holes’ in the structure [10]. They also produced more exten-

sive data on dispersed growth forms, including the mean, minimum and maximum

branch lengths, as well as the mean, minimum, and maximum inter-nodal distances

and the number of inter-nodal units. The branching order was determined by calcu-

lating the number of iterations required to subtract all of the end points, similar to

the method described by Tucker and colleagues [5]. Other studies have adopted a

more general approach, measuring all biomass present in terms of projected area, as

constant hyphal width implies area is proportional to biomass, so specific biomass

fractions can be derived [91, 119, 149, 150].
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Figure 3.4: A mycelial clump, as illustrated by Tucker and colleagues, with the

convex perimeter (Pc) indicated by the dotted line [5]. Reproduced with permission

from John Wiley and Sons.

Classification of dense aggregates and pellets

Conventional measures of dense, pellet-like aggregates (Table 3.1) include projected

area, equivalent diameter (Dp), circularity, perimeter, projected convex area (area

including holes; Ac) and convex perimeter [136]. Various other metrics have been

employed, which generally involve some combination of the above, such as ‘rough-

ness’ [151], ‘compactness’ [50, 107, 152] and ‘convexity’ [48, 49]. Lucatero and

colleagues used a combination of shape factors to distinguish between free hyphae,

clumps and pellets [102]. Objects exhibiting a mean diameter of less than 0.3 mm

were considered dispersed mycelia. Clumps were considered to be particles larger

than 0.3 mm and of compactness (estimation of density) lower than 0.99, while pel-

lets were defined as particles having a compactness between 0.99 – 1 and roundness

(deviation from a circle) less than 6. Similarly, a clump was defined by Müller and

colleagues as a structure with Dp > 40 µm and Ap/Ac > 0.55 [107].

The mean grey-level intensity of regions has been utilised as an effective means

of discriminating between dense aggregates, such as pellets, and less compact struc-

tures, such as mycelial aggregates or clumps [49, 76]. Similarly, a difference in grey
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3.1.2 MORPHOLOGICAL CLASSIFICATION OF FILAMENTOUS MICROBES

Table 3.1: Some commonly used parameters in the morphological description of

mycelial aggregates and pellets.

Parameter Definition Description

Projected Area Ap Number of pixels representing an object.

Equivalent Diameter Dp = 2
√
Ap/π Diameter of a circle with area equivalent to

Ap.

Perimeter P The pixel length of an object boundary.

Circularity C = (4πAp)/P 2 A measure of deviation from a circle.

Roughness R = P 2/Ap

Projected Convex Area Ac Number of pixels representing an object,

including any enclosed ‘holes’.

Convex Perimeter Pc Perimeter of an object with all concavities

filled (Fig. 3.4).

Compactness M = Ap/Ac

Convexity E = P/Pc

levels between pellet core and periphery has been employed to distinguish between

the two regions and derive separate measures of each [153, 154]. Subsequent quan-

tification of the pellet cores is thus possible, based on, for example, the ratio of the

minimum Feret’s diameter to the maximum [50, 52]. Others have operated on bi-

nary images with morphological filters to ‘erode’ the annular region in both pellets

[92, 93] and clumps [155], producing binary representations of aggregate cores. For

example, Rodŕıguez-Porcel and colleagues expressed pellet morphology as a ratio

between the filamentous area and the total pellet area [51], while Papagianni and

Moo-Young included measures of the average length of the filaments that protruded

from the core of clumps in their characterisation of A. niger [49].
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Other macroscopic analyses

Macroscopic and low-magnification microscopic analysis of mycelial growth on solid

substrates has generally been restricted to measures of hyphal coverage or projected

area of biomass [156, 157]. However, a significantly more detailed system was devel-

oped by Dörge and colleagues for the identification of different species of Penicillium,

based on colony colour distribution, colony dimensions and texture measurements

[158]. Image processing was also utilised in the evaluation of dye biotransformation

by the white rot fungi Pycnoporus cinnabarinus and Phanerochaete chrysosporium

[131].

3.1.3 Development platform

ImageJ is a public domain, Java image processing program designed with an open ar-

chitecture that provides extensibility via Java plug-ins [114]. It comes pre-equipped

with many standard image processing capabilities, such as image segmentation

(thresholding, edge detection), various linear and non-linear filter implementations,

frequency-domain operations and limited object classification and measurement.

The ImageJ platform has previously been utilised in the study of filamentous micro-

organisms [108, 140, 159].

3.1.4 Aims of the work in this chapter

Extensive work on the classification of filamentous microbial morphology using dig-

ital image processing is evident in the literature, but fully automated systems are

still rare. A wide range of approaches have been adopted during the course of these

studies, but many studies have been specific to the analysis of one particular growth

form or used a limited number of morphological parameters.

The aim of this chapter was to develop an integrated application, based on
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the ImageJ platform, that may be used as a means of quantifying any form of

filamentous fungal morphology. The programme would proceed automatically and

generate data on the population of spores, mycelia or pellets analysed and output

this data to the user. In the design of this system, speed-of-execution was prioritised

to provide a system capable of near-real-time analysis.

The design drew on many established methods in digital image analysis, for im-

age pre-processing in particular, which were deemed suitable for this application.

A survey of some popular pre-processing techniques was conducted and the most

appropriate for this application selected. The morphological parameters incorpo-

rated into the design were based largely on the review of the literature. However,

a more extensive quantification of hyphal elements in particular was targeted, so

as to permit the compilation of data beyond the conventional hyphal growth unit

and provide more detailed information on the branching strategies of filamentous

micro-organisms.

3.2 Materials & methods

Mycelial samples were produced by culturing membrane-immobilised A. oryzae on

malt agar and processing as described in Section 2.4. Microscopic images were sub-

sequently acquired as described in Section 2.5. Pellet samples were obtained by sub-

merged culturing of A. oryzae in basal medium (BM; see Section 2.3) supplemented

with 1.0% (w/v) soluble starch (Sigma S-9765, Lot 93H0243 or Difco 0178-17-7, Lot

FJ0041XA) and adjusted to pH 6.0. Erlenmeyer flasks (250 mL), with a working

volume of 20%, were incubated in a Lh Fermentation Mk X Incubator Shaker at

30◦C and 200 rpm. Inoculum consisted of 500 µL of 1 × 107 spores ml-1. Images

of pellet macro-morphology were acquired according to the method described in

Section 2.5.1.
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3.3 System development I: Image pre-processing

Described in this section are the approaches considered for noise removal, image

segmentation and binary image pre-processing, most of which were pre-existing

within ImageJ. As one of the initial aims in designing the system was minimisation

of execution time, speed of execution was prioritised when selecting a method for

each pre-processing stage.

3.3.1 Low-frequency noise removal

The first stage in any image processing algorithm generally involves an attempt to

minimise any unwanted noise or distortion present in a given image. Low-frequency

noise is typically characterised by a gradient across the image plane, resulting from,

for example, non-uniform illumination. Removing this gradient results in a more

homogeneous background, which is preferable for image segmentation (see below),

and may be accomplished in a variety of ways.

Mean filtering and background subtraction

A mean filter is a form of smoothing filter that can be used to suppress high-

frequencies in an image. A simple example of a mean filter kernel is as follows:

Gn,n =
1

n2


1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1


(3.1)

where Gn,n is a square matrix and (n − 1)/2 is the filter radius. If G is convolved

with an image (I), each pixel in the output image (J) is therefore defined as:
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J(x, y) =
1

n2

m∑
j=−m

m∑
i=−m

I(x+ i, y + j) (3.2)

where 2m = n−1. By forming a duplicate of the image to be filtered and smoothing

over a sufficiently large radius, all details (high frequencies) in the image are sup-

pressed and an approximation of the image background results. This ‘background

image’ may then be subtracted from the original, leaving the object(s) of interest

intact against a uniform background. However, convolution with a smoothing filter

with a large kernel is computationally expensive, with the processing time being

proportional to n2 × image area.

Frequency-domain filtering

Noise removal may also be effected by filtering in the frequency domain rather

than using spatial filtering. The Fourier transform of an image is computed, the

result convolved with the desired filter and the inverse-Fourier transform calculated,

resulting in the original image with noise removed. However, this approach is also

very time-consuming, particularly for large images.

Rolling ball background subtraction

This approach to background removal may be conceptualised as follows. If the image

to be filtered is considered to be three-dimensional, the third dimension being the

luminous intensity at each pixel, the image will resemble a surface with depressions

(Fig. 3.5). If the filter kernel is considered to be a ball of radius r that traverses

this surface, the background is defined as any part of the surface that contacts

the ball. The objects within the image, represented by ‘holes’ in the surface plot,

will be unaffected if r is sufficiently large. The ImageJ implementation is based on

Sternberg’s rolling ball algorithm [160] and, as it is far less time-consuming than
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Figure 3.5: Surface plots of an image, before (left) and after (right) background

subtraction, showing objects as depressions in the surface.

smoothing or frequency-domain filtering, was selected as the preferred means of

background removal.

3.3.2 High-frequency noise removal

High-frequency ‘speckle’ noise can result from, for example, electrical noise in the

CCD array on which the image was captured and is characterised by individual

pixels within an image that are noticeably different in intensity from their immediate

neighbours, resulting in a ‘granular’ appearance (Fig. 3.6a). A common approach

to alleviating this problem is median filtering, a form of ‘rank filtering’, so called
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(a) (b)

(c) (d)

Figure 3.6: (a) Image in Figure 3.2 with added ‘salt and pepper’ noise (b) Result

of mean filtering (c) Result of Gaussian filtering (d) Result of median filtering. In

all cases, the filter radius was 1 pixel.

because the pixel values within a specified radius are ‘ranked’ according to their

intensity values and the median selected as the filter output. This is a more effective

form of high-frequency noise removal than smoothing, as fine details such as edges

and region boundaries are preserved (Fig. 3.6). Median filtering was therefore chosen

as the means of high-frequency noise removal for this study.
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3.3.3 Image segmentation

Image segmentation, in the simplest sense, refers to the separation of objects of

interest from the background. This is achieved by specifying regions within the im-

age, based on a particular property, with each region being relatively homogeneous

with respect to the chosen property and differing from the other regions of the im-

age. One of the simplest means of implementing image segmentation is grey-level

thresholding, which defines different regions within an image based on the grey level

of individual pixels. A binary image, g(x, y), may be generated from a grey-level

image, f(x, y), as follows:

g(x, y) =

 1 for f(x, y) ≥ T

0 for f(x, y) < T
(3.3)

where T is some pre-determined ‘threshold’ that results in optimal separation be-

tween object and background. A value of T may be calculated for the entire image (a

global threshold) or T may vary between different areas of the image, being depen-

dent on image properties within a specified window (local or ‘adaptive’ thresholding

[161]). The calculation of a value for T based on the image histogram (i.e., the grey-

level distribution of the image) is a common approach [161]. If both the object of

interest and the image background have relatively homogeneous grey levels (and

no other regions are present in the image), then the image histogram should be

approximately bi-modal (Fig. 3.7). In this scenario, the calculation of a threshold

is intuitive and will lie approximately at the location of the local minimum between

the two modes.

Real images rarely exhibit such ideal characteristics and as a result, the calcula-

tion of a threshold is non-trivial in many cases. Often there may be no discernible

peaks or valleys in the image histogram or there may be considerable overlap be-

tween modes representing object and background. The choice of algorithm for
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Figure 3.7: A bi-modal image histogram, representing two distinct regions within

the image with differing grey-level distributions.

threshold computation therefore depends very much on the nature of the image and

the shape of the histogram. For example, the ‘triangle’ thresholding technique [162]

is quite effective for histograms in which the background mode is significantly larger

than that of the object, characteristic of a large image containing small, low-contrast

objects. However, this approach requires ‘smoothing’ of the image histogram for

accurate segmentation, necessitating the estimation of further variables (the width

of the smoothing kernel and the number of smoothing iterations), and is biased

toward computing relatively high threshold values (Fig. 3.8b).

Another useful technique is that proposed by Otsu, which seeks to maximise the

inter-regional variance (σ2) in the segmented image [161]:

σ2(T ) =
[I tP (T )− I(T )]2

P (T )[1− P (T )]
(3.4)

where I t is the mean grey value of the entire image, P (T ) is the probability of

a pixel having a grey level ≤ T and I(T ) is the mean grey level of those pixels.
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(a) (b) (c) (d)

Figure 3.8: (a) Original image of stained mycelium (Bar 30 µm) with binary

images resulting from application of (b) triangle-thresholding (c) Otsu thresholding

and (d) iso-data thresholding.

The optimum threshold is determined as that which maximises σ2(T ). While this

approach yielded acceptable results in the case of mycelial images (Fig. 3.8c), the

computational overhead is relatively large.

The iso-data algorithm [163], the default thresholding method in ImageJ, deter-

mines a threshold by selecting an initial value (such as the minimum grey level in

an image) and then calculating the mean values of all pixels above this value (the

‘background’ pixels) and all pixels below (the ‘object’ pixels). The value of T is

increased until the following condition is met:

T ≥ object mean + background mean

2
(3.5)

This method of thresholding proved effective provided that the hyphae were con-

tiguously stained a uniform colour and they were presented against a homogeneous

background (Fig. 3.8d).
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3.3.4 Pre-processing of binary images

Morphological filtering

Once thresholding is complete and a binary image has been generated, a degree

of enhancement is required using morphological filters prior to object classification

and subsequent measurement. For example, such processing may be necessary to

remove small, unwanted objects (artifacts) or fill small holes or gaps within objects

of interest. Small artifacts may be removed from an image by one or more erosion

operations, while the quasi-inverse is termed dilation, both of which are illustrated

in Figure 3.9. In simple terms, erosion may be considered to ‘shrink’ objects,

while dilation causes them to ‘grow’. More specifically, erosion may be explained as

follows. Let H be a structural element consisting of some arrangement of foreground

pixels. An image (I) is traversed by H and each pixel (i, j) in the output image (J)

is defined as follows for every (i, j) ∈ I:

J(i, j) =


0 if Hi,j ⊆ O

1 otherwise

(3.6)

where O is a foreground object and Hi,j represents H centred on (i, j). Put simply,

if H is entirely contained within O when centred at a position (i, j), then (i, j) is

defined as foreground in the output image. Otherwise it is denoted as background.

Dilation is somewhat the reversal of erosion:

J(i, j) =


0 if (i, j) ∈ Hm,n for any (m,n) ∈ O

1 otherwise

(3.7)

H is centred on each foreground pixel in O and any background pixels in I over-

lapped by H are designated as foreground pixels in J .
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Figure 3.9: Effect of (a) erosion (denoted by 	) and (b) subsequent dilation

(denoted by ⊕) on a binary object. This combined sequence is commonly termed

an open operation.

Watershed segmentation

It is often the case that objects within binary images are in contact with one an-

other (Fig. 3.10a). In the case of binary images of relatively spherical structures

(such as fungal spores or pellets), some form of watershed segmentation may be em-

ployed to separate touching objects, which is based on the concept of constructing

boundaries (‘watersheds’) between adjacent objects or regions. The ImageJ imple-

mentation is based on the generation of a Euclidean Distance Map (EDM) [164], a

visual representation of the distance between each foreground pixel and the nearest

background pixel (Fig. 3.10b). Each foreground pixel is assigned an integer value

(represented by different grey levels in the visual representation) corresponding to

the number of pixels separating it from the nearest background pixel. Alternatively,

this value could be considered the number of erosion operations that would be re-
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(a) (b)

(c) (d)

Figure 3.10: (a) Original image containing conjoined objects (b) Euclidean Dis-

tance Map (c) Ultimate Points (d) Segmentation of objects following conditional

dilation.

quired to remove this pixel from the image. From the EDM image, a further image

is generated, displaying the ‘ultimate points’, or the local maximum values for each

EDM (Fig. 3.10c). These ‘ultimate points’ can be thought of as approximations to

the centre of each object. It remains to reconstruct the original image by way of

conditional dilation; that is, a number of dilations are performed on each object,

sufficient to restore the object to its original size, on condition that dilation causes

no two objects to come into contact with each other (Fig. 3.10d). Watershed seg-

mentation has been utilised in other studies of fungal morphology [47, 77] and was

deployed in this study to separate touching objects in images of spores and pellets.
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Object classification

Prior to measurement, it is necessary to identify different objects within the image,

such as spores, hyphae and any remaining unwanted artifacts. This may be achieved

by assigning certain descriptors to each object, such as the projected area, perime-

ter length, equivalent diameter or some measure of boundary curvature, the most

common form of which in the study of microbes is circularity. Other parameters,

such as Fourier descriptors [143] and chain codes [165], may also be of value.

To maximise the accuracy of object classification, a training set can be utilised,

the establishment of which requires each object in an image to be quantified in terms

of Ap and P , for example, which subsequently form the elements of a feature vector

for that object [166]. The object is then classified as a spore, hypha, mycelium

or artifact by a human observer and this process continues until a sufficiently large

knowledge base has been established. When a test object is subsequently presented,

a feature vector is formed and, for example, the Euclidean Distance calculated

between the vector of the test object and those in the knowledge base. The test

object is classified according to the ‘winning’ vector in the knowledge base, that is,

the vector within the knowledge base containing the features that best describe the

test object. However, such an approach involves a large number of calculations and

requires time devoted to the establishment and maintenance of the knowledge base.

A similar approach involves the implementation of some form of Artificial Neural

Net (ANN), such as that adopted by Papagianni and Mattey for the classification

of fungal structures [72].

However, the most common (and least time-consuming) means of discriminating

between objects of differing classes in the quantification of fungal morphology is

the use of threshold values [12, 167]. In this study, minimum and/or maximum

values were set for projected area (Ap,min) and circularity (Cs,min, Ch,max) and these

106



3.4 SYSTEM DEVELOPMENT II: QUANTIFICATION OF MICROBIAL
STRUCTURES

values were refined by analysing the distribution of Ap and C within a population

(see Section 5.3.1). Establishment of values for these variables will be discussed

in Section 5.3.1 and the effect of small variations in these values is investigated in

Sections 5.3.1 and 5.3.2.

Pre-processing of hyphal structures

Prior to the measurement of hyphal architecture, it is common for the associated

binary images to be subjected to some form of thinning algorithm to produce a

skeletal structure [4, 5, 168]. This facilitates the rapid determination of parameters

such as the total length of the mycelium, the total number of tips and the location

of branch-points. For relatively low-resolution images of mycelia, in which the

hyphae are typically just a few pixels in diameter, skeletonisation may be achieved

quickly and accurately. However, such an approach may not be suitable for higher

resolution images, resulting in large hyphal ‘objects’ or regions, small changes in the

shape of which can result in significantly different skeletal structures [169]. ImageJ’s

implementation of a thinning algorithm is based on that of Zhang and Suen [170],

in which pixels are iteratively removed, by way of a look-up table, until a skeleton

remains. Some of the limitations of this approach will be addressed in the next

section.

3.4 System development II: Quantification of microbial

structures

ImageJ, like most image processing software packages, is well-equipped to conduct

the image pre-processing described in the previous section. However, for the quan-

tification of binary representations of filamentous microbes, additional functionality

was required. This section provides a description of the plug-ins that were devel-
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oped to this end, together with a summary of the complete analysis procedure for

fungal spores and hyphal elements at the microscopic level and, on the macroscopic

scale, fungal pellets. All routines described in this study were written in Java,

incorporating ImageJ classes and methods where appropriate.

3.4.1 Microscopic analysis

While image pre-processing is similar regardless of the object of interest, the analysis

of hyphal elements is more extensive than that of spores. The steps involved in each

case are presented (Fig. 3.11). It is assumed that a colour (RGB colour-space) image

is provided as input, but this is not strictly necessary.

The image is divided into three, 8-bit grey-scale images, representing the three

primary colour components (red, green and blue). The red component exhibits the

greatest contrast for images of lactophenol cotton blue-stained samples (a common

mycological preparation) and is retained for image processing; the green and blue

components are discarded. Image pre-processing begins with filtering of the image to

compensate for low-frequency, uneven illumination using an implementation of the

Rolling Ball algorithm [160]. The radius of the filter was set to the pixel equivalent

of 40 µm (40 pixels for images of hyphae, 200 pixels for spores), which is large

relative to the width of a typical hypha (approximately 2 – 4 µm). Any high-

frequency speckle noise was subsequently removed by median filtering. A grey-level

threshold, calculated using the iso-data algorithm was then applied, resulting in a

binary image.

The next stage of the routine is dependent on whether spores or hyphae are the

primary object of study. It is unlikely that viable spores and hyphae will be present

in the same image: results from this study indicated that the majority of spores

had germinated by approximately 8 hours after inoculation (data not shown). Any

spores present in a sample taken after this time were considered to be non-viable
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Figure 3.11: Algorithm used for characterization of fungal micro-morphology
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and were treated by the system as artifacts.

Analysis of spores

In the case of spores, a watershed operation was used to separate any touching ob-

jects. Objects were then classified based on projected area and circularity2. Spores

of many industrially relevant fungi, such as Aspergillus, are relatively spherical [4].

Therefore, objects with a projected area above a specified minimum (Ap,min) and

with a circularity greater than a threshold value (Cs,min) were considered to be

spores; remaining objects were considered to be artifacts and were excluded from

the analysis.

Analysis of mycelia

When hyphae are the objects of interest, a single binary close operation (a single

dilation operation followed by a single erosion) is performed to remove any small

breaks (or holes) in the objects. All objects with a projected area below Ap,min

or a circularity greater than a second threshold value (Ch,max) are excluded from

the analysis. The binary image of the hyphal elements is then skeletonised, which

reduces the objects in the image to a series of lines one pixel in width.

The skeletonisation of an object during image analysis can occasionally result

in artifactual points or branches [4, 9, 171]. Artifactual points (sites where the

skeleton is greater than one pixel in width) can lead to the incorrect classification of

branch-points, while artifactual branches can lead to an over-estimation of hyphal

length and the number of hyphal tips. These may be removed by way of pruning

(Fig. 3.12), which also has the effect of removing any remaining small artifacts from

the image.

2In the case of a circle, Ap = πr2 and P = 2πr, and so C = 1. The larger P becomes with

respect to Ap, the less circular the object becomes and so the value of C decreases
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The pruning routine begins by scanning the image in a raster fashion until a

black pixel is located. If this pixel is deemed artifactual (by way of a look-up

table), then it is removed. This process continues until the end of the image has

been reached. The second stage begins by scanning the image in a raster fashion

until a hyphal tip is located. A tip is defined as a black pixel with just one other

black pixel in the immediate neighbourhood (Fig. 3.13). The location of the tip

is recorded and the skeleton is then traced from this tip along the hyphal length

until either another tip or branch-point is reached. A branch-point is defined as a

black pixel with three or more black pixels in the immediate neighbourhood, with

no two of these neighbours joined. The length of the branch is then calculated

based on the number of pixels traversed. If the length of the branch is less than

the specified minimum (Lb,min) it is removed. The scan of the image then resumes

from the point where the initial tip was located and the process continues until the

end of the image has been reached. All pre-processing of mycelia is illustrated in

Figure 3.14.

Once pruned, the skeletonised hyphae are suitable for analysis (Fig. 3.15). The

routine begins by scanning the image in a raster fashion until a hyphal tip is located.

The location of the tip is noted and the skeleton is then traced from this tip along

the hyphal length until either another tip or branch-point (collectively termed end-

points) is reached. At this point, the length of the branch is recorded, along with the

position and classification of the end-points. This combined information describes

a hyphal segment. For example, unbranched hyphae will consist of a single segment

with two tips as end-points.

If a branch-point is located, tracing continues along the first segment found

branching away from this point; any additional segments branching from this point

are pushed onto a stack, containing segments yet to be traced. If a hyphal tip is

reached, the current segment is recorded and the most recently encountered, non-
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(a) (b)

(c) (d)

Figure 3.13: Classification of points on a skeletal hyphal structure. (a) A pixel

is defined as a hyphal tip if all but one of the neighbouring pixels is white. (b) If

two of the neighbouring pixels are black, the current pixel is deemed an internal

component of a hyphal segment. (c) A branch-point is defined if at least three

neighbouring pixels that do not share a common edge are black. (d) Conjoined

neighbouring black pixels indicate the current pixel is adjacent to a branch-point

traced segment is popped from the top of the stack, and the routine continues tracing

from there.

If a tip is reached and all segments in the current hyphal element have been

traced, the measured data (total hyphal length, number of tips, and hyphal growth

unit) is outputted to the results table. The algorithm then returns to the point in

the image where the last hyphal element was first located and continues to scan

until either another element is detected or the end of the image is reached.
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(a) (b) (c) (d)

Figure 3.14: (a) Original image of stained mycelium produced using the protocols

described in Sections 2.4 & 2.5 (Bar 30 µm) (b) Background subtracted and median

filtered (c) Resultant binary image (d) Pruned, skeletonised mycelium.

Generation of Mycelium Graph

The compiled information on the individual segments of a mycelial structure may be

thought of as a mycelium graph or network (Fig. 3.16). Each tip and branch-point

represent the vertices of the graph, connected by edges whose length is that of the

hyphal segment from which it was derived. Such a representation of a mycelium

is of use in calculating, for example, the length of the ‘main’ hypha [72], or the

distribution of tips or branch-points with respect to other branch-points. By fixing

such a graph to a co-ordinate plane, it may also be used to geometrically map

foraging strategies of the microbe.

Analysis of a population

Typically, the morphological characterisation of a single hyphal structure is of lim-

ited value and with this in mind, the plug-ins described here have been adapted

to process a series of images and derive population statistics. The programme be-

gins by requesting a set of parameters from the user, along with the directory in

which the bank of images to be analysed is contained. The routine then proceeds
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Figure 3.15: Algorithm used for the analysis of skeletal hyphal elements
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226.4
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Figure 3.16: Graph of the mycelium in Figure 3.14 with small branches omitted

for clarity.

automatically until all images in the specified directory have been processed. An

example of data output following the analysis of a population of mycelia is shown

in Figure 3.17.

3.4.2 Macroscopic analysis

Analysis of pellet images commences in a similar manner to that described above.

The red channel of the RGB image is isolated and subject to the same filtering

procedures as those used for microscopic images, albeit with a larger filter radius

for background subtraction (8 mm). Prior to thresholding, it is necessary to locate

the Petri dish in the image, so that a region-of-interest (ROI) may be specified
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Figure 3.17: Distribution and statistics on hyphal growth unit values produced in

a typical analysis of a population of mycelial elements.

within the Petri dish. This was achieved using a method similar to that described

by Dörge and colleagues [158]. To begin, a Sobel filter is applied to the image (I):

Gx =


1 2 1

0 0 0

-1 -2 -1

 ∗ I and Gy =


1 0 -1

2 0 -2

1 0 -1

 ∗ I (3.8)

The resultant ‘edge image’ is then Gaussian filtered to smooth and remove noise.

The Petri dish may then be found by locating the nearest local maximum to a chosen

image corner. This assumes that the Petri dish is approximately centrally located

in the image. By repeating this operation for two more corners, three different

points on the Petri dish circumference may be located, representing three points on

a circle (a, b and c). The centre of the circle (o) is then located by forming two

chords (ab and ac), bisecting them and calculating the point of intersection of the
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two perpendicular bisectors (mo and no). A ROI, representing the Petri dish, may

then be specified with o as centre and |oa| as the radius (r). However, considering

the digital representation of the Petri dish is not perfectly circular (due to, for

example, optical aberration), more accurate elimination is achieved if r is specified

as:

r = (1− T )|oa| (3.9)

where T is some specified tolerance (typically 0.1). Once the ROI is specified,

the region outside is cleared and the image may be thresholded as above. The

entire process is illustrated in Figure 3.18. Quantification of objects in the resultant

binary image is identical to that described above for spores. The morphological

data corresponding to the image in Figure 3.18 is shown in Figure 3.19.

3.5 Discussion

The accurate characterisation of fungal morphology remains a key target for in-

dustrial biotechnologists and the deployment of image processing systems is central

to achieving this goal. While extensive progress has been reported in the use of

computer-aided analysis of mycelial structures [8, 136], many implementations of im-

age analysis systems described in the literature depend on significant manual inter-

vention for accurate quantification to be achieved [10–13, 87, 121, 123, 139, 140, 148].

Hence there still exists a need for further development of automated systems for the

classification and analysis of filamentous microbial conformations.

In this study a new system has been presented for quantitative analysis of both

micro- and macro-morphology. The method obviates the need for purchase of rel-

atively expensive commercial software by adding utility to the publicly available

ImageJ platform [114], a system of proven usefulness in this field [140, 159]. The
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(a) (b) (c)

a
b

c

m

n

o

(d) (e)

Figure 3.18: (a) Original image of stained pellets produced using the protocol

described in Section 2.5.1 (Bar 10 mm) (b) Background subtracted and median

filtered (c) Gaussian filtered edge image (d) Points a, b and c are located on Petri

dish circumference, midpoints m and n are found and o is located as the intersection

of the perpendicular bisectors of ab and ac (e) Resultant mask image.

prioritisation of speed of execution has yielded a system capable of both rapid and

accurate analysis of a large bank of images, permitting near-‘real time’ assessment of

fungal development through the compilation of population data. While the on-line

examination of individual hyphal elements has yielded valuable data on apical exten-

sion [4], population statistics are essential for the characterisation of bioprocesses,

due to the inherent variations in growth kinetics throughout a given population

[4, 129].
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Figure 3.19: Result of the analysis of the pellets in Figure 3.18.

In common with all image-analysis systems, the routines described here depend

on high-quality input images and are sensitive to elevated levels of artifact, low-level

or uneven sample illumination and out-of-focus fields of view. Uniform staining

of hyphal elements is also essential to ensure against the incorrect classification

of mycelial structures. Contiguous, high-contrast staining also permits automatic

image segmentation via the application of grey-level thresholding, obviating the

requirement for manual segmentation [146] or the specification of a fixed threshold

value to be used for all images [172]. While the image pre-processing described

alleviates these concerns to some degree, high-quality sample preparation will ensure

optimal system performance and the generation of accurate morphological data.

The dilution of biomass prior to image capture may also be necessary so as to

minimise hyphal overlapping and contact between spores or pellets.

The system described here has much in common with those previously described

in the literature. The use of simple morphological thresholds to exclude artifacts is

a commonly adopted approach [10, 155]. This simple technique is generally effective
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as artifacts tend to be small relative to hyphae and also exhibit a higher circularity

index (C). The use of morphological filters to remove small breaks in objects has

previously been utilised, although caution was advised by Lucumi and colleagues

against multiple iterations, which may result in the removal of ‘gaps’ in mycelial

networks [155]. Such an approach was refined by Daniel and colleagues to join small

gaps in skeletal structures [173].

Skeletonisation has also been widely utilised in the study of hyphal elements

[4, 5, 10, 140, 168, 174, 175], as it facilitates rapid enumeration of hyphal lengths

and tip numbers. However, such an approach is not without short-comings and, as

was the case in this study, the specification of pruning algorithms is often necessary

[4, 10, 155, 168, 171], although in some cases this is due to the presence of solid

particles in the media and a need to ensure such artifacts are not interpreted as

small branches. Another dimension was added to the analysis of skeletal structures

by Drouin and colleagues, as the use of the binary skeleton as a mask allowed the

precise quantification of ‘full’ and ‘empty’ hyphal zones, together with septation, in

filaments of Streptomyces ambofaciens [171]. Such an approach could potentially

be utilised to delineate ‘active’ and ‘non-active’ regions in calcofluor white-stained

preparations [84]. Other authors have avoided using skeletonisation algorithms as

small changes in hyphal boundaries can have a significant impact in the performance

of the algorithm [169]. This is particularly true when swollen hyphal tips are the

object of study, but the omission of such a thinning step has generally resulted

in the necessity for manual tip counts [152], resulting in a considerable increase in

processing time. In the absence of skeletonisation, the automatic detection of hyphal

tips may be implemented using either the application of morphological filters to the

binary mask of the mycelium, or an interpretation of the mycelium boundary, in

which tips would manifest themselves as sharp turning points.

The production of a mycelial graph could be potentially applied to the study
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of a microbe’s foraging strategy on a solid substrate or the response to changes

in environmental conditions. A similar ‘segmental’ approach to mycelial charac-

terisation was previously described in the analysis of Trichoderma viride colonies

[172]. Such an approach permits an estimation of the order in which branches were

formed on ‘free’ elements, previously determined by iterative erosion [4, 5, 10]. The

inclusion of hyphal width in such a graph would add further utility and permit the

modelling of the mycelium as a ‘fungal network’ [176]. However, the estimation of

hyphal width from images in which the hyphae are perhaps 2 – 3 pixels in width

(which is sensitive to the grey-level threshold) is difficult, considering the width

can only be measured to within one pixel. The average width could be estimated

by dividing the projected area by the total length of the structure, but this is of

little value in the context of a network. An alternative means of estimating hyphal

width was proposed by Hitchcock and colleagues, which involved convolution with a

Gaussian point-spread function and subsequently summing over the resultant grey

levels based on the location of the hyphae in the binary mask [172].

More extensive characterisation of pellets has been described in other reports.

Müller and colleagues estimated the ‘compactness’ of pellet structures by calculat-

ing the ratio of projected area to projected convex area, which was defined as the

projected area after filling any internal voids and any concavities in the external

perimeter [152]. Papagianni and Mattey quantified pellets in terms of their eccen-

tricity, a measure of the degree to which a shape deviates from a circle [72]. Other

generally-applicable measures include the dimensions of the object’s bounding box

and the convex perimeter [10]. A more thorough assessment of pelleted morpholo-

gies is possible with the system described here. However, it has been assumed here

that images of pellets to be analysed are captured macroscopically, using either a

camera or, preferably, a flatbed scanner. For more extensive examinations and the

derivation of data beyond the projected area, it is recommended that microscopic
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imaging be utilised, permitting the isolation of individual hyphae and the accurate

localisation of the pellet perimeter.

As with pellets, an analysis of mycelial aggregates is also possible with the

system described here, using parameters such as projected area and circularity.

Other parameters, such as those mentioned above, could easily be incorporated if

necessary. Lucumi and colleagues described a useful algorithm for the extensive

quantification of such aggregates, which involved the object’s separation into core

and filamentous fractions and a subsequent estimate of hyphal growth unit based

on the number of tips found [155]. A common measure that has been applied to

the dispersed growth form is the ‘main’ hyphal length [5], which Wongwicharn and

colleagues described simply as the tip-to-tip length of the longest hyphal length

in a mycelium [148]. While the identification of the main hypha is trivial for free

elements (no hyphal ‘crossovers’), the utility of such a measure in the assessment

of mycelial aggregates is limited. The use of more universally applicable measures,

such as projected area, is more appropriate; projected area was described by Li

and colleagues as being particularly useful for the determination of fragmentation

in a bioreactor [177]. Projected area has also been demonstrated to correlate well

with measures of dry-cell weight in submerged culture, due to the relative constant

width of hyphae in these processes [45, 106]. Measures such as projected area

have the added advantage of obviating the need to discriminate between different

morphological forms, a capability that has been described in detail in some studies

[5, 72]. However, the information that may be garnered from such simple measures

is obviously extremely limited and, given the evidence for metabolite excretion

occurring primarily at hyphal tips [84, 105, 107], an accurate evaluation of branching

is vital in studies of filamentous microbial development.

The image-processing system does have some difficulty in distinguishing between

‘young’ hyphae (recently germinated spores) and spore clusters, because of their
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morphological similarity in terms of projected area and circularity (in the approxi-

mate range 0.4 – 0.8). As such, these young hyphae and spore clusters are typically

excluded from the results. In order to fully characterise this transition from spore

to hypha (as would be necessary in studies of germinative potential, for example),

a means of distinguishing between these different objects is required. Boundary

shape descriptors [143, 165] could be utilised in conjunction with the morphological

thresholds used in the current study to this end. A means of breaking up clumps of

spores in the inoculum, such as sonication, may also help to alleviate the problem.

However, restrictions posed by such limitations should be minimal, as the devel-

opment of spores and the development of hyphae are typically subject to separate

analyses, due to the different nature of their respective growth mechanisms (swelling

versus polarised tip extension). It should however be noted that in the analysis of

spore morphology, the use of watershed techniques to separate touching objects is

not recommended for images containing germinated spores, as it is likely that the

germ tubes will be segmented from the parent spore and both objects interpreted

as separate objects.

3.6 Conclusions

Image analysis systems represent essential enabling tools for the accurate quantifi-

cation of filamentous microbial morphology. Despite the significant progress that

has been achieved in producing such systems, a requirement for manual intervention

is still commonplace and, as such, further development, with an emphasis on pro-

cess automation, is necessary. The system described here is capable of rapidly and

accurately producing population statistics derived from a large bank of images of

either fungal spores or mycelia at the microscopic level, or pellets at the macroscopic

level. Such data can then be utilised to derive information on the growth kinetics,
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by presenting multiple image banks representing different stages in the organism’s

development.

The parameters used in quantifying morphology in this study (projected area,

circularity, total hyphal length and number of hyphal tips) are similar to those

utilised in other studies of filamentous microbes. However, other measures (eccen-

tricity, convex area, bounding rectangle) can be easily incorporated if necessary. The

analysis of mycelia is more extensive than that typically reported in other studies

and allows a more complete characterisation of the microbe beyond the conven-

tional hyphal growth unit. The basic utility of the system has been demonstrated,

but more extensive application will be detailed in the subsequent chapters of this

thesis, as image processing is employed in the derivation of growth kinetics on solid

substrates and development in submerged systems.
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Chapter 4

Nitrocellulose as a Tool for Microscopic

Examination of Filamentous Microbes

4.1 Introduction

A large number of products of commercial significance are produced using filamen-

tous microbes, such as enzymes, antibiotics and organic acids [8]. The majority of

these compounds are produced in the submerged culture format (SmF), due to the

greater ease with which such fermentations may be controlled and the metabolite of

interest separated from biomass. However, recent reports suggest elevated metabo-

lite expression by filamentous microbes when cultured in solid-state culture (SSF)

compared to submerged [65, 68]. Furthermore, SSF is not without merits, such as

low energy requirements and cheap raw materials, which has led to the utilisation

of this fermentation format in the production of a range of bioactive compounds,

organic acids and industrial enzymes [64].

Key to fostering an understanding of metabolite expression in SSF is an ability

to accurately and rapidly assess the spatial distribution of the organism. Rela-

tionships between productivity and gross morphology are well-established in many

processes [8], with some studies also suggesting links between metabolite expression

and micro-morphological indicators, such as branch formation [84, 107]. However,
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the vast majority of these studies have been restricted to the SmF format and there is

therefore a need to develop methods suitable for use in examining hyphal growth on

solid culture. Conventional techniques for microscopically studying moulds, such as

those employed in clinical mycology laboratories, include ‘tease-mounts’, whereby a

small amount of biomass is torn from a solid culture with needles and ‘wet-mounted’

in a suitable stain (such as lactophenol cotton blue), or a variety of ‘tape-touch’

methods [178, 179]. These techniques require a considerable level of skill, often in-

cur significant disruption to the fungal conformations and are typically suited to the

isolation of characteristic reproductive structures for specific strain identification,

rather than the examination of early hyphal differentiation.

4.1.1 Assessment of two-dimensional microbial development

One of the chief difficulties associated with studying the morphology of filamentous

microorganisms is their significant three-dimensional character, even in solid culture,

where the microbe may produce both aerial hyphae and penetrative structures that

bore down into the substrate. Such three-dimensional arrangements complicate

the visualisation of fungal conformations, as capturing morphological features in a

single focal plane is often impossible, particularly at high magnification. One of the

more successful means of managing this particular problem has been to cultivate the

microbe of interest in a ‘flow-through cell’, a small chamber designed specifically to

restrict the growth of the organism to two dimensions in a controlled environment.

Such devices have been successfully applied to the study of Mucor circinelloides

[13, 123], Aspergillus oryzae [4, 107, 147] and various Mortierella species [124, 125].

While such studies have provided invaluable data on the development of individual

hyphal elements, they only permit the simultaneous study of a very small population

and, as such, derivation of global, species-specific statistics is difficult. Furthermore,

such an apparatus is only suitable for the study of submerged growth.
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In designing a means of visualising fungal hyphae, of principal concern is the

provision of a field of view that is predominantly free of artifact, provides a high-

magnification, high-resolution representation of the microbe and provides good con-

trast between the hyphae and background, particularly if the intention is for the

resultant images to be analysed automatically. While the cultivation of filamentous

microbes in SSF has received considerable attention in the literature, many of the

methods utilised for the visualisation of hyphal development do not meet the above

criteria. Many studies of SSF have been of a relatively low-magnification capability,

with assessment of mycelia often limited to the macroscopic scale and morphological

measures have typically been limited to ‘global’ parameters, such as projected area

of biomass [156, 180], colony fractal dimension [180, 181] or colony expansion rate,

derived from manual measures of colony diameter [140, 180, 182, 183]. Other stud-

ies have focussed directly on quantification of metabolite production rather than on

hyphal growth. Olsson reported a means of mapping the glucose and phosphorus

uptake by Fusarium oxysporum on agar [40], while Jones and colleagues focussed on

evaluating dye biotransformation by Pycnoporus cinnabarinus and Phanerochaete

chrysosporium [131].

Where microscopic assessments have been made, efforts to restrict growth to two

dimensions often involve the inoculation of cover-slips, microscope slides or Petri

dishes with minimal volumes of media, which are subsequently viewed with bright-

field optics [26, 108, 140, 184, 185]. Some methods involve the fixing and staining of

the cultured cover-slip prior to observation [186]. Many require the application of a

cover-slip on top of the culture to be scrutinised [118, 186, 187], ‘compressing’ the

biomass, which inevitably results in disruption of the hyphae present. Nevertheless,

this form of approach has yielded good quality, high-magnification images in some

cases [118, 187], providing detailed information on hyphal extension. However, the

population studied is typically very small and substantial manual intervention was
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required in the analysis of the images. In other cases, samples of agar are excised

from an existing culture and observed using bright-field or fluorescence microscopy

[27, 28, 188]. Microscopic examination on substrates such as leaves often resulted in

significant levels of artifact, requiring the development of imaging routines specif-

ically for the purpose of recognising certain artifactual features, such as stomata

[173]. More specialised techniques, such as confocal microscopy, have also been

employed to visualise the penetration of hyphae into a solid substrate [189].

4.1.2 Membrane-immobilisation of filamentous microbes

An alternative approach involves the cultivation of filamentous microbes immo-

bilised on an inert membrane, placed on top of a solid nutrient medium. Such an

arrangement permits an ease of separation of biomass from the medium following

a suitable period of incubation, which can then be processed as required prior to

microscopic analysis. An additional advantage of such a system is the planar nature

of the resultant fungal growth, as the presence of the membrane presents a physical

barrier to hyphal extension into the substrate. Restricting growth to two-dimensions

in such a manner facilitates ease of microscopic examination and subsequent imag-

ing, as all biomass is predominantly presented in a single focal plane.

There are a limited number of studies in the literature involving the use of

membranes in the culturing of filamentous microbes (Table 4.1). In some cases, the

cultured membranes were subjected to image processing [157, 172], but the resul-

tant images were typically of a low resolution and often contained significant levels

of artifact. In the case of the method described by Reichl and colleagues, the skilful

transfer of S. tendae mycelia from cellophane membranes to a microscope slide (by

bringing the slide into contact with the membrane) was required prior to analysis

with fluorescence microscopy, which may have incurred disruption to the hyphae

[190]. However, the ability of the membrane to restrict growth to two dimensions

129



4.1.3 AIM OF THE WORK IN THIS CHAPTER

has been documented [110, 157, 172], although in some cases, this involved ‘sand-

wiching’ the culture between two membranes [157, 191], which may have incurred

damage to the hyphae upon the destructive sampling of the microcosm. However,

further potential application of such a system has been demonstrated in the produc-

tion of high-magnification images of laccase localisation in Pycnoporus cinnabarinus

hyphae by treating the membrane with microscopy-immersion oil, permitting the use

of oil-immersion objective lenses [192]. The advantages of membrane-immobilisation

outlined in these studies suggest that such a system warrants further investigation.

The potential clearly exists for the production of planar, two-dimensional hyphal

structures that may be routinely examined using high-magnification oil-immersion

microscope lenses.

4.1.3 Aim of the work in this chapter

The principal aim of the work described in this chapter was to develop a two-

dimensional growth assay by immobilising fungal spores on cellulose nitrate mem-

branes, using A. oryzae as the model organism. The suitability of the assay for

producing samples appropriate for the image analysis system described in Chap-

ter 3 was investigated. Such a sample should consist of a low level of background

and artifact while yielding contiguous high-contrast staining of fungal hyphae. As

nitrocellulose membranes are rendered transparent with microscopic immersion oil,

the use of high-magnification oil objective lenses is possible. Such examinations

were pursued with a view to identifying fine details in hyphal structure, such as

septation.

Means of optimising the assay were investigated, concentrating specifically on

minimising processing time, maximising the contrast between stained hyphae and

sample background, while minimising any disruption to the hyphal architecture.

Finally, the use of membrane-immobilisation as a means of analysing samples of
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Table 4.1: Reports in the literature of membrane-immobilisation of filamentous

microbes

Organism Material Report Reference

Various Cellophane Growth kinetics of filamentous

microbes determined by continuous

monitoring of immobilised cultures

[1]

S. tendae Cellophane Cultivated on membranes prior to

transfer to microscopic slides for

fluorescent examination

[190]

A. niger Polycarbonate Membranes utilised to restrict growth

to a layer of agarose

[105]

T. viride Cellophane Measures of local fractal dimension

and branching complexity derived

[172]

P. cinnabarinus Polycarbonate Fractal dimension of

membrane-immobilised cultures

related to phenol-oxidase yield in

SmF

[110]

P. cinnabarinus Cellophane &

polycarbonate

Laccase detected histochemically in

hyphae by growing on membranes

overlaid on agar

[192]

N. crassa Cellophane Cultivated between two sheets of

cellophane in analysis of hyphal

branching

[191]

T. virens Cellulose

acetate

Investigated effects of temperature on

growth

[157]
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biomass taken from submerged culture was investigated, using both the conventional

lactophenol cotton blue stain and calcofluor white, with a view to identifying sub-

cellular details and active regions in the hyphae.

4.2 Materials & methods

For the initial ‘proof-of-principle’ experimentation, nitrocellulose squares (approx-

imately 4 × 4 mm) were aseptically cut from a proprietary membrane (Millipore

HAWG 047 SO; 0.45 µm) by use of a sterile scissors. Each nitrocellulose square was

overlaid evenly onto the surface of a malt agar plate and then inoculated with 5 µL

of a standardized conidial suspension (1×106 spores ml-1; Fig. 4.1). The plates were

incubated at 25◦C and test squares removed after various time intervals for drying,

staining, and microscopic visualization. Membranes were dried in sterile Petri dishes

(3 h, 25◦C air incubator) and stained with lactophenol cotton blue (BBL Diagnostic

Systems PL7054). The membranes were rinsed in PBS-Tween 80, re-dried at 25◦C

(3 h), and placed on microscope slides; a minimum volume of immersion oil was

added (Olympus AX 9602), and images were captured at various magnifications

(stated in figure legends). The optimised assay is described in Section 2.4.

4.2.1 Assessment of image background

Ten regions of background (320 × 240 pixels), defined as an area within an image

devoid of any biomass, were manually selected in ten randomly selected images

of membrane-immobilised hyphae. The green and blue bands of the RGB images

were discarded and a 256-bin luminance histogram computed for the resultant 8-bit

greyscale images. Each distribution was then aligned and plotted.
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Agar

Spore Suspension
Membrane

Figure 4.1: Schematic representation of inoculation of membrane on agar with

spore suspension.

4.3 Results

4.3.1 Proof of concept

The oil-treated nitrocellulose membrane was found to provide a uniform background

relatively free of artifact for the purposes of imaging. The grey-level distributions

of ten samples of ‘background’ were plotted (Fig. 4.2) and found to approximate a

scaled Gaussian distribution:

a√
2πσ2

exp

(
−(x− x̄)2

2σ2

)
(4.1)

where a is a scaling factor, x̄ = 164 and σ = 4. This narrow distribution represents

a relatively uniform image background, which is essential for accurate grey-level

thresholding, whereby the object and background are partitioned based on an anal-

ysis of a bi-modal histogram (see Fig. 3.6).

The rudimentary assay was used to identify key developments in the growth of

A. oryzae on a solid substrate. Spore germination was first noted at 8 hours but

was not widespread until 9 hours post-inoculation (Fig. 4.3a); germ tubes emerging
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Figure 4.2: Distribution of grey-level luminance values (in grey) for 10 background

samples (320 × 240 pixels). The histograms approximate a Gaussian distribution

(black dashes) with x̄ = 164 and σ = 4.

from a cluster of spores appear to radiate away from the cluster’s centre of mass

(Fig. 4.3b). The beginnings of hyphal branching were first noted at 16 hours when

small nodules began to form on the primary hyphae (Fig. 4.3c). The emergence of

a second germ tube from the spore was often observed at this time (Fig. 4.3d).

The application of immersion oil permitted the use of oil immersion lenses di-

rectly on the sample, thereby allowing high-power magnification and the imaging of

fine details (Fig. 4.4). While useful for the identification of septae, the imaging of

hyphae at high magnification may also be of interest as a means of tracking hyphal

morphogenesis [137], thus potentially providing kinetic data on the evolution of api-

cal and sub-apical regions over time. Such analyses may be of value in studying

the response of hyphae to changes in environmental conditions and/or metabolic

activity. It has previously been demonstrated, for example, that the shape of the

apical compartment of certain Aspergilli varies with the specific growth rate [90],

while Haack and colleagues reported an increase in hyphal tip size during the feeding
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(a) (b)

(c) (d)

Figure 4.3: (a) Germ tube emergence from individual spores at 9 h (b) Germ tube

emergence from spore cluster; the germ tubes appear to radiate outward away from

the centre of mass (c) Emergence of branching hypha at 16 h (d) Emergence of 2nd

germ tube at 16 h. All images captured at ×400 magnification (Bars: 15 µm).

phase of fed-batch culturing of A. oryzae [109]. Further studies have found that the

hyphal diameter of A. oryzae is significantly reduced when the organism is starved

of glucose [147]. However, such investigations were beyond the scope of this study.

4.3.2 Assay optimisation

Further development of the assay was undertaken in an attempt to maximise both

the resultant image quality and the speed of assay execution, without compromising

cell integrity or disrupting morphological conformations. Investigations focussed on

minimising sample drying time and evaluating the effects of this accelerated drying

on cell structure.
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(a) (b)

Figure 4.4: (a) Germ tube emergence and (b) septation in A. oryzae visualized on

nitrocellulose; the undulating nature of the hyphal surface is also apparent. Images

were captured at ×1, 000 (Bars: 5 µm).

Contiguous staining of hyphal elements is essential to avoid misinterpretation of

the field of view by the image-analysis routines. Staining of membranes while still

wet was found to result in non-uniform, patchy staining of hyphae (Fig.4.5). While

this did not pose significant problems for manual, qualitative examinations, it did

result in an over-estimation of the number of discrete hyphal elements within a given

sample and, consequently, an underestimation of hyphal length and number of tips

when subjected to automated analysis. Within a typical experiment, it was found

that up to 80% (n = 50) of the hyphal elements were misinterpreted as multiple

objects within samples that were stained while wet. Drying of membranes before

staining reduced the incidence of this artifact to less than 2% of cases.

Within certain limits of time and temperature, the drying of membranes was not

found to adversely affect cell morphology. Drying at 25◦C for 24 hours was without

appreciable effect on spore size, but prolonged exposure (up to 72 h) resulted in a

reduction of the mean projected area of the spore population (approximately 8%;

Table 4.2). The drying of samples at temperatures up to 105◦C had no discernible
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(a) (b)

(c) (d)

Figure 4.5: Staining wet membranes resulted in non-uniform stain uptake. (a)

Samples of A. oryzae on cellulose nitrate membranes were stained while wet imme-

diately upon removal from agar surface; (b) Samples were fixed and then dried at

65◦C for 75 minutes prior to staining; (c) Binary image resulting from grey-level

thresholding of ‘a’ (six distinct structures are produced); (d) Binary image of ‘b’ (a

single hyphal structure produced). Bar: 30 µm.

impact on spore projected area or circularity if performed for a short time (10 min),

but caused the cellulose nitrate membrane to wilt. No significant change in spore

circularity was observed with any treatment.

An analysis of the size distributions of each population of spores subjected to

these treatments provides an additional insight into the impact of accelerated dry-

ing (Fig. 4.6). Maintaining the spores at 25◦C for 24 hours does not result in an

appreciable change in the overall shape of the distribution, but extended exposure

(72 hours) causes the histogram to narrow significantly, with a considerable reduc-
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Table 4.2: Mean projected area (Ap) and mean circularity (C) of A. oryzae spores

subjected to various drying treatments prior to staining, where n is the size of each

population. Errors represent 95% confidence intervals

Drying temperature (◦C) Drying time (h) Ap (µm2) C n

N/A 0 7.7 ± 0.3 0.895 ± 0.003 726

251 24 8.2 ± 0.3 0.888 ± 0.003 2,915

25 72 7.1 ± 0.2 0.882 ± 0.003 768

65 1.25 8.1 ± 0.1 0.887 ± 0.002 2,505

105 0.17 8.4 ± 0.1 0.886 ± 0.002 2,315

1 Average of two independent experiments.

tion in the number of spores recorded at larger projected areas. Drying spores at

higher temperatures seems to result in a slight increase in projected area for the

population overall. This may be a result of an increase in internal pressure within

the spores arising from the increase in temperature, which produces a subsequent

increase in volume. However, there is little change in the height or position of the

mode of each distribution. A drying treatment of 65◦C for 1.25 hours was selected

for routine use; this enabled acceptable speed of processing without compromising

cell morphology or the integrity of the membrane.

An important caveat to the use of drying procedures was found to be that a

fixative be employed to maintain cell structure. Apparent rupturing of hyphal tips

was observed in non-fixed samples that were dried prior to staining, with the effect

being most pronounced when samples were dried at 65◦C (Fig. 4.7). This rendered

hyphal elements unsuitable for analysis, because the affected tips were incorrectly

classified by the image-analysis system. Typically it was found that approximately

60% (n = 70) of hyphal elements exhibited at least one ruptured tip when dried

at 65◦C, but when samples were fixed before drying, this figure was reduced to
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Figure 4.6: Comparisons of size distributions of populations of A. oryzae spores

subjected to (a) 25◦C for 0 (�), 24 (�) and 72 hours (�) (n ≈ 700) and (b) 25◦C for

24 hours (�), 65◦C for 75 minutes (�) and 105◦C for 10 minutes (�) (n ≈ 2, 000).
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(a) (b)

Figure 4.7: Appearance of hyphal tips of Aspergillus oryzae when samples are

dried without fixative prior to staining. (a) ×100; bar 100 µm. (b) ×1, 000; bar

10 µm.

approximately 5% (based on manual observation). Exposure to lacto-phenol cotton

blue or fixative caused the membrane to wilt slightly on contact, but extended

exposure (up to 30 min) was not found to have any additional impact.

The influence of membrane composition on morphology was investigated and

found to be significant (Fig. 4.8). While cellulose acetate membranes successfully

confined the growth to two dimensions, the membranes were not sufficiently durable

and were found to deform easily during processing. Cellulose nitrate membranes

with pore sizes greater than 0.45 µm were also found to be unsuitable, as consid-

erable three-dimensional growth resulted, which is difficult to image and quantify

(Fig. 4.9). This may suggest that the fungus is capable of penetrating certain mem-

branes, although the mechanism involved is not clear.

A modification of the assay for the examination of samples taken from submerged

culture was also evaluated and found to be suitable for preparations stained with

lactophenol cotton blue or calcofluor white (Fig. 4.10 & 4.11), a fluorescent stain

that has previously been utilised to visualise septation and discriminate between
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(a) (b)

(c) (d)

Figure 4.8: Variation in morphological form of A. oryzae when grown on different

membranes: (a) 0.2 µm cellulose acetate (Sartorius 11107) (b) 0.45 µm cellulose

acetate (Sartorius 11106) (c) 0.8 µm cellulose nitrate (Sartorius 11404) (d) 3.0 µm

cellulose nitrate (Sartorius 11302). Bars 100 µm.

active and non-active hyphal tips in A. oryzae [84]. The filtration of material and

subsequent immobilisation on a membrane reduced the complexity of the confor-

mations from three dimensions to a single focal plane, permitting analysis of the

structures present using the routines described in the previous chapter.
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(a) (b)

Figure 4.9: High-magnification images (×1, 000) of A. oryzae show extensive

three-dimensional growth when cultivated on (a) cellulose nitrate (3.0 µm pore

size) and (b) mixed cellulose ester membranes (0.45 µm pore size). Bars 10 µm.

(a) (b)

Figure 4.10: Samples of A. oryzae grown in submerged culture stained with (a)

lactophenol cotton blue (bar 50 µm) and (b) calcofluor white (bar 25 µm) and

immobilised on cellulose nitrate membranes.
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(a) (b)

Figure 4.11: Samples of membrane-immobilised A. oryzae, cultivated in sub-

merged medium and stained with calcofluor white, showing (a) ‘active’ hyphal region

(Bar 20 µm) and (b) septation (Bar 5 µm).

4.4 Discussion

There is currently a dearth of techniques available for the study of filamentous

microbial development on solid substrates, particularly for analysis of early-stage

differentiation (< 24 hours post-inoculation). While reports of microscopic exami-

nation of fungi have been common in the literature [136], the majority have focussed

on the submerged culture format. Conventional techniques for the examination of

filamentous microbes on solid culture, such as those involving ‘tape-lifts’ [178, 179],

require considerable skill and experience to master and often incur significant dis-

ruption to the fungal conformations. Given the potential for differential gene and

protein expression in solid culture compared to the submerged format [65, 68, 193],

the ability to study the growth of filamentous microbes in detail in such a sys-

tem would be highly advantageous and may lead to a greater understanding of the

relationship between morphology and productivity.

In presenting complex fungal conformations in an essentially two-dimensional

format, membrane immobilization confines cultures to a single focal plane, while
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maintaining the natural spatial arrangement of vegetative mycelia encountered in

solid state culture. The membrane also presents a very low level of background

or artifact (Fig. 4.2), which is highly advantageous for images that are to be anal-

ysed automatically, assuming the biomass present is uniformly stained. In such a

scenario, the image histogram will be characterised by two well-separated peaks (bi-

modal; Fig. 3.6) and object segmentation is easily achieved by calculating a single

grey-level threshold. While eliminating artifact completely is obviously impossible,

minimising the occurrence of small particles is desirable. The system developed in

Chapter 3 is capable of identifying objects that conform to a certain morphological

description, but a small level of artifact will inevitably be incorrectly classified as

hyphae and/or spores and included in the results. As such, measures to minimise

the occurrence of artifact within the sample preparation should always be exploited.

Due to the use of filtration in sample preparation, the possibility exists that sediment

may accumulate on the membrane surface during processing and/or inoculation. It

is therefore important to ensure that all solutions used are completely clarified so

as to minimise the levels of artifact present in the resultant sample.

Perhaps the most significant advantage of this method of fungal examination

is the ability to use high-power oil-immersion objective lenses, which permit the

identification of fine details in the hyphae (Fig. 4.9 & 4.11). The versatility of

the assay is further emphasised by the demonstrated compatibility with fluorescent

staining (Fig. 4.10b & 4.11). Studies of filamentous microorganisms in solid culture

using fluorescent stains have been quite rare, so such a system is of considerable

potential benefit in, for example, quantifying active regions of hyphae in solid culture

using calcofluor white staining. Furthermore, combining fluorescence microscopy

with high-power magnification provides potential new perspectives on solid-state

development.

Additional advantages of this system include the ability to modify the nutri-
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ent environment by simple membrane transfer. Such was employed by Ishida and

colleagues in their investigation of gene expression by A. oryzae [193]. It is also

well suited to investigating diffusion-mediated processes, such as antimicrobial sus-

ceptibility testing, or trophic responses to substrate gradients, for example. Other

potential applications include investigations of germinative potential of populations

of spores in response to various stimuli [26].

Membrane-immobilisation also permits the simultaneous examination of a rel-

atively large number of hyphal elements, the size of the population being limited

only by the area of the membrane. All elements on a single membrane are sub-

jected to the same treatments during sample preparation, thus ensuring consistency

within the population. Archiving of membrane-bound material is also possible, as

the culture is fixed, stained, and killed during specimen preparation. It was found

that samples stored for up to three years after preparation were still suitable for

imaging.

The assay is, however, highly sensitive to the choice of membrane used as sup-

port (Fig. 4.8). This is an important consideration as it has been demonstrated

that membranes with similar product descriptions produced by different manufac-

turers can result in different growth patterns (not shown). In some cases, it has

been found that even the orientation of the membrane can influence the morphology

of the organism. Indeed, Jones and colleagues claimed that membrane orientation

can affect both cellular attachment and stain uptake [194], while a difference in

membrane pore size was found to alter gene expression in recombinant A. oryzae

[193]. Membrane-immobilisation also involves a considerable amount of time de-

voted to sample processing (approximately 3 hours). However, this compares very

favourably with other reports of processing times for membrane-bound cultures of

up to 24 hours, which also involved a much greater degree of subtle sample manip-

ulation and sophisticated equipment [194].
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It has been reported that the use of membranes in SSF is not representative

of growth in the absence of a support, with oxygen diffusion in particular being

restricted and, as a result, growth and metabolite production being limited [195].

However, the study in question examined growth from approximately 20 hours post-

inoculation onwards, and significant deviation between the membrane-bound culture

and the control were not observed until approximately 40 hours post-inoculation.

While these findings should obviously be considered when membrane-immobilised

cultures are a target of study, the aim in the development of the assay reported here

was to provide, in particular, a means of analysing early-stage hyphal differentia-

tion (0 - 24 hours). As such, concerns regarding oxygen limitations are somewhat

unwarranted in this context.

Of further consideration is the use of lactophenol cotton blue (LPCB) as a means

of enhancing contrast for the visualisation of fungal preparations. It has been noted

that only young, recently developed hyphae tend to stain intensely when exposed to

LPCB, such as those at the periphery of a colony, for example. Those hyphae that

are more distal to the colony perimeter tend to remain completely unstained, or else

take on a very pale blue appearance. This may be explained by a transformation

in the composition of the cell wall as hyphae mature [7]. As such, LPCB may only

be suitable for staining actively-growing hyphae. Such an observation has been

made in cultures of A. oryzae stained with calcofluor white [84]. Considering the

mechanisms of stain uptake to be similar for both compounds, this may infer that

LPCB is also not suitable for staining older, ‘non-active’ regions. However, such a

phenomenon could prove useful in SSF, whereby the actively growing region at the

colony periphery could be easily identified. The prevalence of ‘patchy’ uptake of

LPCB noted in this study on hyphae that are not dried prior to staining (Fig. 4.5)

calls into question the use of LPCB-stained wet-mounts and their suitability for

image analysis [109, 119, 122, 175].
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The system has also been demonstrated as an effective means of examining fun-

gal growth in submerged culture. By filtering samples through a membrane, rather

than, for example, drying directly onto a microscope slide, any solutes present in

the broth are removed, reducing the level of artifact in the subsequent field of

view. This also results in the fungal conformations being presented in essentially

two dimensions, facilitating an ease of analysis. While fungal biomass cultivated in

submerged medium often has a significant 3-dimensional character, it is common

for the sample to be ‘compressed’ into two dimensions, generally by ‘wet-mounting’

between a microscope slide and cover-slip [49, 119, 122, 149]. Compared to pipet-

ting samples onto a slide, decanting a sample into a filtration device also obviates

any concern about selectively sampling objects below a certain size and also aids

in the uniform distribution of biomass across the membrane surface. Membrane

immobilisation also obviates the need for multiple slide preparations (depending on

membrane area), thus ensuring further consistency. This may be particularly rele-

vant in the event that calculations of biomass per unit volume are being derived.

Examination of the development of filamentous microbes on solid substrates has

typically been of low resolution capability and the subsequent analysis may involve

considerable human intervention [145]. However, membranes have previously been

used in the assessment of fungal growth on solid substrates and have been combined

with image processing and light microscopy, but generally with low magnification,

low resolution capability. Cellulose acetate membranes have been used to study the

growth of Trichoderma virens [157] in conjunction with a dissecting microscope. Im-

age analysis has been used in the enumeration of the fractal dimension of Pycnoporus

cinnabarinus [110] and Trichoderma viride [172] colonies immobilized on polycar-

bonate and cellophane membranes, respectively. The quantification of septation in

Streptomyces tendae was achieved using cellophane membranes in conjunction with

image analysis [190], but this method involved the highly skilful transfer of mycelial
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matter from the membrane to a microscope slide. Polycarbonate membranes were

also used in the immobilisation of Pycnoporus cinnabarinus prior to histochemical

laccase detection [192] and to limit growth to two dimensions in the localisation of

protein secretion by A. niger in solid culture [105].

4.5 Conclusions

There is renewed interest in the solid culture format, due in part to recent find-

ings suggesting differential metabolite expression compared to submerged culture.

While a variety of organisms have been studied in the literature in order to re-

late morphology to metabolite excretion, the vast majority of these studies have

focussed on the submerged culture format. Those that have investigated the solid

culture format have generally been of a low-resolution, low-magnification capability,

or else are suited to the study of just a small population. There is thus a need to

develop systems suitable for the study of filamentous microbes on solid substrates,

particularly with a view to generating samples suitable for presentation to an image

analysis system.

The use of inert membranes to restrict growth of filamentous microbes to two di-

mensions has been reported in the literature and their use was investigated here. The

oil-treated membrane-immobilised culture presented a high-contrast, low-artifact

field of view, suitable for imaging and automatic analysis. A low level of background

artifact was encountered and, when dried prior to staining, hyphae exhibited high-

contrast elements, easily segmentable from the background. The effect of drying of

samples prior to staining was not significant.

Of particular significance is the provision of an ability to observe solid-cultured

samples with high-power, oil-immersion objective lenses, permitting the capture of

fine details. Such a capability may be of particular use in the study of hyphal mor-
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phogenesis. The utility of the method in the examination of samples taken from sub-

merged culture was also demonstrated, reducing the complex conformations found

in a typical fermentation from three down to two dimensions, facilitating an ease

of imaging and subsequent analysis. A compatibility with fluorescent staining was

also shown, with fine details such as active hyphal regions and septation illustrated.

The utility of the membrane-immobilisation system demonstrated here suggests

that, in conjunction with image processing, such a culture format would prove use-

ful for quantitative assessment of early filamentous microbial development. The

examination of a large population of mycelia is facilitated, each of which is simul-

taneously subjected to the same treatment (ensuring sample consistency), resulting

in high-contrast samples with low levels of artifact, suitable for accurate automated

analysis. There currently exists a pressing need for such studies, given the lack of

computational methods for solid-state fermentations.
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Chapter 5

Examination of the Growth Kinetics of

Aspergillus oryzae in Solid-State Fermentation

5.1 Introduction

An understanding of the kinetics of fungal development is fundamental to the rigor-

ous design of fermentation processes, as the time-course of production is intrinsically

linked to the rate and mode of growth. Perturbations to the rate at which biomass is

produced, or alterations to the morphological form that this biomass takes, will have

implications for productivity. Furthermore, there is emerging evidence suggesting

a fundamental link between kinetic parameters of growth at the microscopic level

and resultant macroscopic conformations [107, 125, 152]. Hence, there is significant

potential utility in the quantification of structural variation at the microscopic level.

5.1.1 The temporal analysis of micro-morphological development

The life-cycle of filamentous microbes generally commences as a single spore, which

is typically a few microns in diameter. Upon activation, the spore begins to grow in

size, with the increase in diameter generally being linear with respect to time [4, 7].

When a critical size is attained, a germ tube emerges, the tip of which accelerates

away from the spore until a constant linear rate of elongation has been reached [4].
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When the germ tube reaches a certain length, a lateral branch is formed behind the

advancing apex, which accelerates to the same constant rate of elongation [7]. This

process continues as long as conditions to support this linear rate of tip extension

are met. Exponential growth is attained as a result of each branch producing further

branches at a constant specific rate, all of which attain the same constant linear rate

of growth, and a composite structure termed a ‘mycelium’ develops. The increase

in biomass (x) may thus be described as:

dx

dt
= µx (5.1)

where µ is described as the specific growth rate (h-1). The critical branch length

that results in a new branch being spawned is referred to as the hyphal growth unit

(Lhgu), which is approximately equal to the total hyphal length (Lth) divided by

the total number of tips (N) of any given mycelium [38]:

Lhgu =
Lth
N

(5.2)

This value will tend to be approximately constant across all mycelia within a given

population.

Considering that mycelial growth involves the duplication of a constant hyphal

growth unit, then Lth and N must increase exponentially at approximately the

same specific growth rate. This was first demonstrated experimentally by Trinci

[1], who cultivated colonies on cellophane-covered solid media and obtained mor-

phological measures from enlarged photographic prints. After an initial period of

discontinuous branch production, exponential growth was observed, with measured

specific growth rates varying from approximately 0.25 h-1 for A. nidulans up to

0.60 h-1 for Mucor hiemalis. Spohr and colleagues produced similar metrics in their

study of A. oryzae mycelia, cultivated submerged in a small ‘flow-through cell’ [4].

The principle advantage of such a system is the ability to monitor the develop-
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ment of individual elements, and even individual hyphae, from a single spore, up to

a mycelium several millimetres in length. Similar systems have since been used to

analyse the early growth stages of M. circinelloides [13, 123] and various Mortierella

species [124, 125]. However, the continuous monitoring of individual mycelia, while

providing valuable physiological data, does not permit the examination of large

populations, which is essential for the statistical characterisation of fermentation

processes.

Evidence exists for a link between micro-morphological development of filamen-

tous microbes and macro-morphological form. For example, Park and colleagues

concluded that species of Mortierella exhibiting a high branch formation rate formed

‘pellet-like’ aggregates with a distinct core, while species attributed with a low

branch formation rate formed hyphal aggregates without cores [125]. In addition,

Müller and colleagues found that a mutant strain of A. oryzae that exhibited a

greater degree of hyphal branching (with respect to a wild-type strain) was less

likely to form large, inseparable clumps in submerged culture [107]. It was also

suggested that the positioning of branches (apically or sub-apically) may affect the

formation and dimension of macroscopic structures. It has also been demonstrated

that biomass aggregation is directly related to the specific growth rate in the early

stages of Aspergillus niger submerged cultivation [196, 197].

Recently, digital image processing has been utilised as a means of elucidating

kinetic data [4, 45, 106, 107, 123, 125, 126, 140, 147, 156, 157, 175, 198]. Conven-

tionally, parameters such as the specific growth rate were calculated based on, for

example, physical measurements of biomass content per unit volume of fermenta-

tion broth. However, it is possible to derive the same rate measurements from an

analysis of digital images, whereby the projected area or length of these elements is

considered to be proportional to the biomass present in the system. This obviously

assumes that the density of all elements in the population is constant and that the
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diameter of all hyphae in the population is approximately equal. While there is

evidence that individual hyphae approximate ellipsoids rather than cylinders [137]

and that hyphal diameter appears to be proportional to the specific growth rate

[126, 147], studies have demonstrated a close relationship between growth rates

derived from image analysis and those derived from measures of dry cell weight

[45, 106].

By employing image processing techniques, which permit the rapid quantifica-

tion of fungal morphology, the growth kinetics of a large population of mycelia (such

as that present within a bioreactor) may be accurately determined. Carlsen and

colleagues successfully characterised the development of A. oryzae in batch culture

using such an approach, producing data such as the specific growth rate, the specific

branching rate and the mean tip extension rate [45]. Similar data was produced

by Spohr and colleagues in their comparative assessment of different strains of A.

oryzae and it was suggested that a more densely branched strain may have been

favourable for protein production [106]. While particular kinetic parameters can

vary from one individual hyphal element to the next [4, 187, 198], simple equa-

tions can be derived to describe the average kinetic properties of a large population

of hyphal elements, thus permitting the kinetic analysis of fermentation processes

involving filamentous microbes.

5.1.2 Influences on growth kinetics

There is evidence in the literature suggesting that the specific rates of development

may be influenced by a variety of factors. These include, but are not limited to, pH

[45], temperature [45, 157], available oxygen concentration [140] and agitation speed

in submerged culture [79, 81]. The morphological form adopted by an organism in

submerged culture can also affect the specific growth rate, due to substrate limi-

tations in pellets [45]. Variations in temperature, pH and water activity have also
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been reported as significant in determining rates of spore swelling and germination

in Penicillium chrysogenum [26] and Rhizopus oligosporus [28].

Variations in substrate concentration are one of the more common means of

effecting a change in the growth kinetics of microbes. Available evidence suggests

that in many organisms, the response of the growth rate to changes in carbon

source concentration may be described using Monod kinetics, where a saturation

constant, typically denoted Ks, is the rate controlling factor [4]. A relationship

between dilution rate and the specific growth rate of A. niger in chemostat culture

has been demonstrated [199], while Pollack and colleagues noted that the growth

of a glucoamylase producing strain of A. oryzae ceased when starved of glucose,

before growth recommenced at a significantly reduced specific growth rate, fuelled

by endogenous carbon [147]. Müller and colleagues noted a small decrease in the

specific growth rate of both a wild-type strain of A. oryzae and a mutant strain at

a low glucose concentration [107].

Variations in media composition have also been demonstrated as a successful

means of inducing a change in the dynamics of hyphal development. The specific

growth rate of A. niger was higher in the presence of sucrose compared to glucose

and fructose [175], while it has also been reported that the addition of kaolin had

a positive effect [98]. McIntyre and colleagues described an influence of media

composition on the maximum specific growth rate of Mucor circinelloides (syn.

racemosus) [200], but the specific growth rate of M. circinelloides was later reported

to be relatively independent of both carbon source type and concentration [123].

Meanwhile, the concentration of both carbon and nitrogen sources was found to

have a significant impact on the growth kinetics of Mortierella alpine [124].
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5.1.3 Aims of the work in this chapter

Despite this significant progress in elucidating relationships between kinetic param-

eters of growth in filamentous microbes, the majority of the aforementioned studies

have focussed on the submerged culture format. As such, there is currently a dearth

of ‘micro-analyses’ of filamentous microorganisms on solid substrates. The aims of

the work presented in this chapter were to (a) examine the kinetic development of

A. oryzae on a solid substrate, using the system described in Chapters 3 and 4 (b)

establish the basic kinetic parameters for this system and (c) investigate whether a

change in media composition results in a change in kinetic parameters.

5.2 Materials & methods

Solid state fermentation of A. oryzae was carried out on either malt agar or the

basal medium (BM) described in Section 2.3 supplemented with 17.0 g L-1 Agar

No. 1 (Lab M, Lot Q28626/207), 5 g L-1 yeast extract (Oxoid, Lot 876584) and

2.0% (w/v) soluble starch (BMS) or glucose (BMG). The media were adjusted to

pH 7.0 (unless otherwise stated) prior to sterilisation. Immobilisation of fungal

spores for solid culturing and the processing of solid-state-cultured membranes for

image analysis was as described in Section 2.4.

Fungal micro-morphology was quantified using automated image analysis, as

described in Section 3.4.1. Semi-automatic image analysis was also performed to

validate the automatic system. Noise removal was performed according to the au-

tomatic method. Grey-level thresholding and selection of hyphal elements from

the image were both performed manually, as was artifact removal and the filling of

any breaks or holes in the hyphal elements. The elements were then skeletonised

and quantified according to the automatic method; the pruning of the skeleton was

omitted from the semi-automatic method as artifact removal was performed prior
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to skeletonisation.

5.3 Results

5.3.1 Kinetics of spore swelling

In an effort to establish appropriate values for the threshold variables, Ap,min and

Cs,min, a series of analyses was performed with Ap,min = 0.0 and Cs,min = 1.0,

which resulted in all objects present within a given image being included in the

output data (Fig. 5.1). All of the area (Ap) distributions have a small mode in the

approximate range 2 – 4 µm2 (Fig. 5.1a). It is likely that the objects that fall in

this range are predominantly artifacts, as the shape of all sixteen distributions is

very similar over this interval. A value of 3.0 µm was therefore considered suitable

for Ap,min to exclude artifacts.

Distributions compiled to compare circularity values presented a more complex

picture. Four of the distributions are comparatively flat in the approximate range

0.2 < C < 0.8, before rising to a sharp peak at C ≈ 0.95. These represent samples

containing germinated spores, the analysis of which did not involve the application

of the ‘watershed’ algorithm to separate touching objects (see Section 3.3.4), hence

the wide range of C values, resulting from hyphae, clumps of spores and other

artifacts. However, most of the other distributions appear to display a similar peak

at C ≈ 0.95. Most artifacts tend to be rather small and approximately circular,

so discriminating between spore and artifact in terms of circularity is virtually

impossible. However, evidence in the literature suggests a relatively high value of

C (∼ 0.94) for spores [4]. Given this fact and the data presented in Figure 5.1b, an

initial value of 0.8 was chosen for Cs,min and the effect of varying this between 0.70

and 0.85 is discussed later in this section.

With these thresholds in place, the system was used to study the development of
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Figure 5.1: Distribution of (a) the projected area (Ap) and (b) circularity (C)

of A. oryzae spores, based on an analysis of sixteen different samples 0 – 8 hours

post-inoculation.
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A. oryzae spores on malt agar from 0 to 8 h (Fig. 5.2). Similar to the value of 4 µm

reported by Agger and colleagues [126], the initial mean spore projected area of 8.5±

0.1 µm2 at inoculation corresponds to an equivalent spore diameter of 3.3±0.4 µm.

An increase in mean spore projected area of approximately 30% was observed from

0 to 6 h, corresponding to an increase in mean equivalent spore diameter of 0.45 µm

(and a linear swelling rate of 0.08 µm h-1). Germ tube emergence from a large

number of spores had occurred by 8 h, resulting in a circularity value of less than

0.8 and their subsequent exclusion from the analysis. Removal of such large objects

resulted in a decrease in the measured mean projected area at this time point. The

circularity of the spores was found to remain relatively constant as projected area

increased from 0 to 6 h, as previously reported for individual A. oryzae spores in

submerged culture in a flow-through cell [4].

The mean projected area of spores may not give an accurate representation of

the swelling process, as each sample was found to contain a wide range of spore

sizes, particularly at later time points (Fig. 5.3). The projected area of most spores

in the inoculum (0 h) was in the range 5 – 13 µm2. Additionally, it was known

from the routine preparation of spore stock suspensions that approximately 60% of

spores were non-viable when thawed from frozen (as judged by a failure to germinate

over 48 h during the total viable count procedure on malt agar, compared with an

original total count performed using a Neubauer chamber). After incubation for

8 h, the projected area of such non-viable spores should not have increased, and it

is reasonable to assume that most non-viable spores still occupied the size range of

5 – 13 µm2. However, the possibility of viable spores exhibiting a small projected

area in the same range, even after 8 h, cannot be eliminated, as it is apparent

from the size distributions that swelling rates can vary to a large extent among

different spores. Consequently, excluding non-viable spores from the analysis is

difficult to achieve, because they cannot be distinguished on the basis of size alone.
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Figure 5.2: Mean projected area (Ap; �) and mean circularity (C; �) of A.

oryzae spores incubated on cellulose nitrate membranes on malt agar at 25◦C.

Ap,min = 3 µm2, Cs,min = 0.8. The increase in mean equivalent spore diameter

(Ds) was approximately linear at a rate of 0.08 µm h-1 (dotted line). An average of

approximately 1,500 spores were analysed per time-point from 0 to 6 h and 350 at

8 h. Error bars represent 95% confidence intervals.

Specifying a minimum projected area threshold to exclude these non-viable spores

would most likely also exclude an unknown number of viable spores. Such a wide

variation in spore sizes and swelling rates has previously been reported in the study

of Penicillium chrysogenum in submerged culture [129].

Influence of media composition on kinetic parameters

The use of different substrates was found to have little influence on the swelling rate

of A. oryzae spores (Fig. 5.4a). There were no statistically significant differences in

mean spore projected area (Ap) at 2, 4 or 6 hours post-inoculation. The average rate

of increase was found to be approximately 0.4 µm2 h-1, corresponding to an increase

in spore diameter of approximately 0.07 µm h-1. There was however, a considerable
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Figure 5.3: Comparisons of size distributions of populations of A. oryzae spores.

Spores were incubated on mixed cellulose ester membranes on malt agar at 25◦C

and analysed at the time intervals shown (Ap,min = 3 µm2, Cs,min = 0.8).
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difference apparent at 8 hours, where those spores that had not germinated were

substantially larger on BMG compared to both BM and BMS. This may suggest

that spores on BMG have taken longer to germinate and a comparison of the size

distributions of those spores incubated on malt agar for 6 hours and those incubated

on BMG for 8 hours indicates that the two populations are at a similar stage of

development (Fig. 5.5). However, it must be remembered that the analysis of these

two populations was not identical, with no watershed applied in the case of the

8-hour-old BMG sample. The circularity profiles for all three media were similar to

that on malt agar, with the slight increase in circularity observed at 8 hours likely

owing to the omission of the watershed algorithm in the analysis of these samples

(Fig. 5.4b).

Validation of results

It was found that small variations in the value of Cs,min did not have a significant

impact on the measured average spore projected area or mean spore circularity

(Fig. 5.6). In the analysis of samples taken at 6 h, a decrease of 0.05 in the value

of Cs,min resulted in an increase of approximately 0.75 µm2 in the measured mean

spore projected area (for Cs,min > 0.7). This is possibly a result of a greater number

of clumped spores (relatively large artifacts) being included in the analysis as the

circularity threshold is lowered. This variation may be reduced by placing an upper

limit on the projected area of objects included in the analysis.

Reducing the value of Cs,min also had the effect of reducing the mean spore

circularity at each time-point, as objects of a lower circularity are included in the

measurement. In the analysis of samples taken at 6 h, a decrease of 0.05 in the

value of Cs,min resulted in a decrease of approximately 0.02 in the measured mean

spore circularity.
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Figure 5.4: (a) Average projected area (Ap) and (b) average circularity (C) of A.

oryzae spores incubated on mixed cellulose ester membranes on BM supplemented

with 2% (w/v) glucose (BMG; N), BM supplemented with 2% (w/v) starch (BMS; �)

and BM without sugar supplementation (�) at 25◦C. Ap,min = 3 µm2, Cs,min = 0.8.

The increase in mean equivalent spore diameter (Ds) was approximately linear at a

rate of 0.07 µm h-1 (dotted line). Error bars represent 95% confidence intervals. An

average of approximately 800 spores were analysed per time-point for each media

type.
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Figure 5.5: Comparison of size distributions of populations of A. oryzae spores.

Spores were incubated on mixed cellulose ester membranes on malt agar for 6 hours

(�) and BMG for 8 hours (�) at 25◦C (Ap,min = 3 µm2, Cs,min = 0.8).

5.3.2 Kinetics of hyphal development

The development of A. oryzae hyphal elements was characterised over a 10-hour

period from 14 to 24 h after inoculation (Fig. 5.7). Assuming hyphae to be cylinders

of approximately constant radius (r) and density (ρ), then biomass (X) is directly

proportional to the total hyphal length (Lth):

X = πr2ρLth (5.3)

The specific growth rate (µ) can then be estimated according to:

µ =
2.3(logLth − logLth0)

t
(5.4)

where Lth is the total hyphal length at time t and Lth0 is the total hyphal length

at time t = 0. A value of approximately 0.27 h-1 was calculated for µ on the basis

of data acquired using semi-automatic image analysis and 0.24 h-1 for the fully
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Figure 5.6: Variations in (a) mean spore projected area (Ap) and (b) mean spore

circularity (C) at different time intervals. Automatic image analysis was performed

for different values of Cs,min. The times used were 0 (•), 2 (N), 4 (�) and 6 h (�).

Error bars represent 95% confidence intervals.
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automatic method (Fig. 5.7a). Specific growth rates were calculated on the basis

of total hyphal length in a previous study of A. oryzae using a flow-through cell

[4], where the immersion of the fungus in a glucose-rich medium resulted in values

of µ of up to 0.37 h-1. However, a specific growth rate of 0.258 h-1, derived from

measures of Lth, was reported by Carlsen and colleagues for batch cultivations of

A. oryzae (grown as freely dispersed elements), which corresponded well with an

estimation of µ from dry weight measurements (0.266 h-1). The hyphal growth unit

in this work can be seen to be tending towards a constant value of approximately

72± 8 µm (Fig. 5.7b).

Using this data, an expression for the mean number of tips as a function of time

(nt) may be derived. Spohr and colleagues described this process as follows [106]:

dnt
dt

=

 0 Lth < 150µm

kbLt = kb.Lth0e
µt Lth ≥ 150µm

(5.5)

where Lt is Lth expressed as a function of time (Lt = Lth(t)) and kb is the specific

branching frequency. In other words, significant branching does not commence until

a minimum mean total hyphal length of 150 µm has been attained [45]. Integration

of Equation 5.5 gives (for Lth ≥ 150 µm):

nt =
kb
µ
.Lth0e

µt + n0 (5.6)

A value of kb may be estimated as the product of µ and the rate of change of N

with respect to Lth (Fig. 5.8):

kb = µ.
dN

dLth
(5.7)

which yields kb = 2.3× 10−3 tips µm-1 h-1, identical to the value reported by Spohr

and colleagues for a wild type strain of A. oryzae [106].
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Figure 5.7: (a) Mean total hyphal length (Lth; �,�), mean number of tips (N ;

�,♦) and (b) mean hyphal growth unit (Lhgu) of A. oryzae on malt agar as deter-

mined by automatic (�,�; Lb,min = 2.5 µm and Ch,max = 0.35) and semi-automatic

(�,♦) image analysis. The solid line represents exponential growth with a spe-

cific growth rate of 0.24 h-1 as determined by linear regression (R2 = 0.96). The

dotted line is a simulation of Equation 5.6 with kb = 2.3 × 10−3 tips µm-1 h-1,

Lth0 = 3.35 µm and n0 = 0.96. Approximately 100 elements were analysed for each

time-point. Error bars represent 95% confidence intervals.
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Figure 5.8: Mean number of tips (N) versus mean total hyphal length (Lth) of

various A. oryzae mycelial populations cultivated on malt agar for different periods

of time. A specific branching constant (kb) of 2.3×10−3 tips µm-1 h-1 was estimated

by multiplying the slope of this plot (0.0086 tips µm-1; R2 = 0.996) by µ.

The acquired data on N and Lth can be used to determine other kinetic param-

eters of use when comparing the growth of fungi in different environmental condi-

tions. The average tip extension rate at a given point in time (qtip; µm tip-1 h-1),

for example, may be calculated according to [106]:

qtip = µ.
Lth
N

(5.8)

which is plotted as a function of Lth (Fig. 5.9), but may also be correlated with the

total hyphal length by saturation kinetics [106]:

qtip = ktip.
Lth

Lth +Kt

(5.9)

where ktip (µm tip-1 h-1) is the maximum tip extension rate and Kt (µm) is a

saturation constant.
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Figure 5.9: Mean tip extension rate (qtip) as function of the mean total hyphal

length (Lth) of A. oryzae as determined by Equation 5.8. The dotted line represents

Equation 5.9 with ktip = 27 µm tip-1 h-1 and Kt = 148 µm.

A large distribution in the size of individual hyphal elements was discernible

at each time-point, with the distribution being greatest in the later stages of the

analysis (Fig. 5.10). This may be a result of variations in the specific growth rate of

different hyphal elements within a given sample. Differences in spore swelling rate

and germination time would also make a contribution to the observed variation in

the sizes. Considering the increase in total hyphal length as an exponential function,

a difference of as little as 10% in the specific growth rate of two hyphal elements

would be expected to result in a significant variation in total hyphal length after

24 h of growth. Variations in the specific growth rate well in excess of this figure

have been reported in an online study of A. oryzae in submerged culture [4].

Influence of media composition on kinetic parameters

The influence of different carbon substrates on growth kinetics was investigated and

the growth rates on each of three different media compared (Fig. 5.11). Glucose
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Figure 5.10: A 21-hour old sample of A. oryzae cultivated on cellulose nitrate

membranes on malt agar shows a wide variation in total hyphal length (Lth).

Lb,min = 2.5 µm, Ch,max = 0.35.

was found to yield a marginally higher growth rate of 0.29 h-1 compared to 0.24 and

0.25 h-1 on starch and the basal medium respectively. However, it is clear from the

figure that at any given point in time, there is no statistically significant difference

between the three measured values of Lth. It may therefore be concluded that there

was no appreciable difference in growth rates on the three different media, with all

three being similar to that observed on malt agar.

Validation of results

The effect of varying Ch,max by ±0.10 was tested and was found to have little

influence on the results (Fig. 5.12). Reducing the value of Ch,max will have the

effect of excluding a greater number of artifacts from the analysis. However, it

will also result in the exclusion of small unbranched hyphae, which typically have a

circularity of 0.3 – 0.4, depending on their size. By excluding these small hyphae,

the mean total hyphal length and the mean number of tips per hyphal element will
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Figure 5.11: Average total hyphal length (Lth) of A. oryzae elements growing

on mixed cellulose ester membranes on BM supplemented with 2% (w/v) glucose

(BMG; N), starch (BMS; �) and without sugar supplementation (�) at 25◦C. The

specific growth rate (µ) was estimated as approximately 0.29 h-1 on BMG (R2 =

0.95), 0.24 h-1 on BMS (R2 = 0.99) and 0.25 h-1 on BM (R2 = 0.97). The dotted line

represents exponential growth with a specific growth rate of 0.26 h-1 (R2 = 0.96).

Error bars represent 95% confidence intervals. An average of approximately 100

elements were analysed per time-point for each media type.

be slightly over-estimated, particularly for earlier time-points.

The effect of varying Lb,min by ±2.0 µm was also tested and was found to

have little influence on the measured mean number of tips (Fig. 5.13) and virtually

no impact on the mean total hyphal length (not shown). Increasing the value

of Lb,min will result in smaller branches being excluded from the analysis and an

underestimation in the number of tips. A large increase in the value of Lb,min

would be necessary to cause a significant decrease in the mean total hyphal length.

Removing branches 2 – 4 µm long is unlikely to have an appreciable effect on the

final result when quantifying structures that are hundreds, or even thousands, of
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Figure 5.12: Variations in (a) mean total hyphal length (Lth) and (b) mean number

of tips (N) at different time intervals. Automatic image analysis was performed for

different values of Ch,max. The times used were 14 (•), 16.9 (N), 19.7 (�), and 22.6 h

(�). Error bars represent 95% confidence intervals.
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Figure 5.13: Variations in mean number of tips (N) as determined by automatic

image analysis for different values of Lb,min. The times used were 14 (•), 16.9 (N),

19.7 (�), and 22.6 h (�). Error bars represent 95% confidence intervals.

microns in length.

5.4 Discussion

The ability to derive kinetic parameters to describe industrial fermentations is a

powerful tool in facilitating process optimisation. A link between microscopic and

macroscopic kinetics has long been established [41, 42], but more recently, detailed

examinations of growth kinetics have been linked to specific macro-morphological

forms [107, 125, 152]. Relationships between micro-kinetics and metabolic activity

have also been identified, suggesting that knowledge of microscopic parameters is

crucial to furthering an understanding of metabolite production [45, 79, 81, 126].

Indeed, many of these dependencies have been expressed in mathematical form

and combined to yield model simulations, which have proved extremely useful in

describing the time-course of development [119, 126, 157, 198, 201].
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5.4.1 KINETICS OF SPORE SWELLING

While there have been numerous detailed studies of the growth kinetics of fil-

amentous organisms reported in the literature, the majority have focused on the

development of microbes in submerged culture [4, 45, 106, 107, 123, 125, 126, 147,

175, 198]. Examinations of growth on solid culture have tended to be restricted to

low-resolution assessments of the rate of change of colony projected area [156, 157],

for example. More detailed investigations of individual hyphae in solid culture have

been limited to a very small number of hyphae or hyphal elements [1, 140, 187].

The same is also true of many ‘on-line’ studies of microbial development in

submerged culture using some form of a flow-through cell [4, 107, 123, 125, 147, 198].

While these chambers offer the advantage of a homogeneous environment that can

be easily modified and controlled, deriving population statistics from such a small

number of examinations is difficult. Indeed, many of these studies have illustrated

that growth parameters can vary from one hypha or hyphal element to the next.

In the on-line study of a single element of A. oryzae, for example, Christiansen

and colleagues found that values for Kt can vary significantly between individual

hyphae, even within a single mycelium; when apical branching occurred, it was

observed that the tip extension rate decreased temporarily [4, 198]. These variations

in the growth rate of individual tips invariably lead to inter-mycelial variations in

the specific growth rate [4], further evidence for which is presented here (Fig. 5.10).

However, by averaging over a large population, an accurate estimate of growth rate

may be derived, as demonstrated both here (Fig. 5.7a) and in studies of A. oryzae

in submerged culture [45, 106].

5.4.1 Kinetics of spore swelling

The approximately linear increase in A. oryzae spore diameter described here, to-

gether with an invariant spore circularity (Fig. 5.2), is in general agreement with

other reports [4]. The increase in spore diameter is relatively modest compared
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to increases of 2.0 µm in 6 hours for spores of A. niger [175] and approximately

7.0 µm in Rhizopus oligosporus sporangiospores [28]. Spohr and colleagues reported

an equivalent diameter of approximately 8.6 µm for spores of A. oryzae just prior

to germination [4]. However, in all of these cases, the examination was conducted

in submerged culture. Little difference in spore swelling rates was observed between

A. oryzae spores on different substrates (Fig. 5.4a). It has previously been found

that virtually no uptake of nutrients occurs during the swelling of A. niger spores

[175], which may explain the absence of any detectable influence in this study. How-

ever, a carbon source was deemed necessary for the commencement of swelling of

R. oligosporus sporangiospores while both carbon and nitrogen were required for

germination - the spores did not contain sufficient endogenous carbon to support

either process [28].

The germination of spores of A. oryzae took place 6 – 8 hours post inoculation in

this study, which is in approximate agreement with the germination time of 6 hours

reported by Carlsen and colleagues [45]. A germination time of just 4 hours has also

been found for A. oryzae [4], while spores of other Aspergilli can take up to 10 hours

to produce germ tubes [175]. In this study, glucose was found to prolong the spore

swelling process compared to other substrates (Fig. 5.4a). Media composition has

also been suggested to have a significant influence on the germination of Penicillium

chrysogenum, as did inoculum age [129], while water activity and temperature were

also demonstrated to have a considerable effect [26]. Both pH and temperature were

reported to have a substantial impact on the germination of R. oligosporus [28].

5.4.2 Kinetics of hyphal development

The description of growth kinetics presented here utilised the same basic principles

previously described in other population studies involving filamentous microbes [45,

106]. While the derived values of ktip, kb and Kt have no mechanistic basis, they
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are useful for comparing the behaviour of organisms under different environmental

conditions. To the best of the author’s knowledge, this is the first such analysis

involving a large population of hyphal elements cultivated on a solid substrate.

However, the artificial environment in which the organism was grown must be taken

into consideration when comparing with kinetic parameters derived in other systems.

Rahardjo and colleagues contended that the presence of membrane filters reduces

the maximum respiration rate and, consequently, the growth rate of A. oryzae

[195]. However, differences in activity were not observed until well in excess of

24 hours post-inoculation, indicating that oxygen limitations were unlikely to have

been significant in this work. Furthermore, the similarity of kinetic parameters

derived here to those reported in other studies involving A. oryzae suggest that,

while an influence of the membrane cannot be ruled out, it does not appear to have

been significant.

The use of digital image processing to derive information on growth rates has

been found to be accurate with respect to the conventional means of deriving kinetics

from dry cell weight measures in submerged cultures of A. oryzae [45, 106]. However,

the morphological form adopted by the fungus can influence the growth rate derived

from biomass measurements; pelleted biomass may result in a lower specific growth

rate due to substrate limitation compared to filamentous growth [45]. A caveat

to the use of measures of hyphal length as a means of deriving kinetic data is that

hyphal diameter is relatively constant throughout the population being analysed, as

has been demonstrated in submerged batch fermentations of A. oryzae [45, 106, 119].

However, it appears that this only holds true for a constant specific growth rate.

Hyphal diameter has been shown to be directly proportional to the specific growth

rate [126], while it was also noted that the growth of a glucoamylase producing

strain of A. oryzae starved of glucose was characterised by significant reduction in

hyphal diameter and a reduced growth rate [147].
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A variety of factors have been reported as significant in influencing the growth

rate of filamentous microbes, but the most commonly employed regulator is sub-

strate concentration. Jørgensen and colleagues demonstrated a relationship between

dilution rate and the specific growth rate of A. niger in chemostat culture [199].

Pollack and colleagues noted that the growth of A. oryzae ceased when starved

of glucose, before growth recommenced, fuelled by endogenous carbon, following a

defined lag-time [147]. Specific growth rate, specific branching rate and final tip ex-

tension rate of A. oryzae have all been modelled using Monod kinetics with respect

to glucose concentration [4], while Müller and colleagues also noted increases in the

specific growth and branching rates in the presence of increased glucose concentra-

tion [107].

While no discernible influence of media composition on specific growth rate was

noted in this study, reports in the literature have demonstrated otherwise. Ali

described a significant increase in specific growth rate resulting from the addition of

kaolin in the submerged culturing of A. niger [98]. The concentration of both carbon

and nitrogen sources had a substantial impact on the growth kinetics of Mortierella

alpine and it was suggested that growth is inhibited at high nutrient concentrations

[124]. However, the specific growth rate of Mucor circinelloides was found to be

relatively independent of both carbon source type and concentration [123], although

McIntyre and colleagues had earlier documented the effect of media composition on

the maximum specific growth rate of Mucor circinelloides (syn. racemosus) [200].

5.5 Conclusions

Detailed analysis of the kinetics of filamentous microbial growth is essential for the

understanding of a process time-course. Metabolite production is dependent on the

specific rates of biomass and branch formation - understanding precisely how fungal
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biomass develops over time is therefore crucial for the purposes of optimisation and

reproducibility. While a number of studies of the growth kinetics of filamentous

microbes have been reported, the vast majority have focussed on the submerged

culture format.

The analysis of A. oryzae spores conducted here, the results of which were found

to be reliable within a certain tolerance of the pre-selected circularity threshold,

confirms earlier findings suggesting that the rate of increase in spore diameter during

the swelling process is linear with respect to time. However, the possible distribution

of swelling rates within a population, coupled with the prevalence of non-viable

spores within the population, presents a considerable complication. Differences

in germination times may also have some bearing on the result. Cultivating the

spores on different media does not seem to have a significant influence on spore

development, although spores did seem to take slightly longer to germinate on

glucose.

Detailed information on the hyphal development of A. oryzae on a solid sub-

strate was derived, which approximated previously reported data for this organism.

While these kinetic parameters and associated empirical expressions have no phys-

iological basis, they are useful for comparing different environmental conditions, or

for comparing with other organisms. The specific growth rate on a glucose-rich

medium was slightly higher when compared to starch or malt agar, but the differ-

ence was not deemed to be statistically significant. The results produced by the

image analysis system were tested and found to be stable over a range of input

parameters.
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Chapter 6

Investigation into the Morphological Development

of Aspergillus oryzae in Submerged Fermentation

6.1 Introduction

The optimisation of submerged fermentations involving filamentous microbes, which

are employed in the production of a wide variety of compounds of economic impor-

tance [6–8], relies heavily on a knowledge of the morphology of the process micro-

organism, as specific phenotypes are often associated with maximum productivity.

A degree of progress has been made in elucidating correlations between fungal mor-

phology and metabolite production in fungal fermentations and the topic has been

extensively reviewed [8, 23, 202]. Despite such progress, significant obstacles re-

main in developing reproducible relationships in many cases, due to the complex

architectures manifested in submerged culture.

6.1.1 Morphological variation in submerged culture

While the previous chapters of this thesis detailed work on the characterisation of

mycelial growth restricted to two dimensions using membrane immobilisation, the

configuration adopted by filamentous microbes often exhibits a significant three-

dimensional character (Fig. 6.1). For example, in submerged culture, a microbe may
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manifest itself in the form of approximately spherical pellet structures, which may be

several millimetres in diameter. Morphologically quantifying such a convoluted ar-

chitecture represents a considerable challenge, particularly at the microscopic level.

As a result, ‘free’ hyphal elements are often targeted for microscopic analysis, as

their architecture is easily confined to two dimensions (between a microscope slide

and cover-slip, for example), facilitating ease of imaging.

The morphological form that results in a particular fermentation depends on

environmental parameters (such as agitation speed, medium composition and pH

[8]) and also on the physiology of the process microbe. For example, pellet for-

mation can result from the aggregation of spores prior to germination, aggregation

of spores and germ tubes or the aggregation of mycelia. There is evidence that

conidiospores of A. oryzae are of the agglomerative variety and tend to form aggre-

gates as they swell, prior to germination [45], while the development of pellets of

A. terreus from agglomerates of spores was graphically illustrated by Bizukojc and

Ledakowicz [47]. Other organisms, such as Rhizopus nigricans, do not agglomerate

during swelling and form mycelial aggregates post-germination [203]. Carlsen and

colleagues suggested that spore agglomeration is the principle driver of pellet for-

mation in A. oryzae as pellets did not result when cultures were inoculated with

dispersed mycelia [45], but other studies have since demonstrated that mycelia of

A. oryzae can agglomerate to form clumps and/or pellets [88, 152].

In investigating the influence of environmental variables on microbial develop-

ment, many researchers have demonstrated reproducible relationships between prod-

uct yield and macro-morphology for a particular process [45, 46, 50, 72, 74, 96, 97,

104]. However, some reports have indicated that under certain conditions, product

yield is seemingly independent of morphological form [73, 83, 84, 107, 112, 115].

There also exist conflicting results, such as for the production of citric acid from

A. niger. A filamentous growth form had been considered to favour maximal pro-
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(a) Free element (b) Clump (c) Pellet

Figure 6.1: Different morphological forms adopted by filamentous microbes in

submerged culture. These range from simple, branched, ‘free’ hyphal structures

(hyphal diameter is typically of the order of 10−6 m) to complex, composite archi-

tectures frequently termed ‘clumps’. The agglomeration of biomass can also result

in the formation of dense, approximately spherical, macroscopic aggregates termed

‘pellets’, which may be up to several millimetres in diameter.

duction [44] and a correlation between clump perimeter and citric acid titre derived

[80], but more recently, pelleted biomass has been suggested as optimal [98]. Ei-

ther dispersed, filamentous growth [45, 97, 104] or comparatively small, compact

pellets [46, 50, 74, 96] are the most common growth forms associated with process

optimisation, but occasionally, large pellets have been proposed as the preferred

phenotype [72].

Fundamental to furthering the understanding of morphological influence on

product yield is the elucidation of a relationship between hyphal branching and

metabolite production, as evidence in the literature points to protein secretion oc-

curring almost exclusively at the hyphal apex [105, 107]. Facilitating an increase in

branch formation may therefore be favourable for many processes; branching com-

plexity has been correlated with metabolite production in A. oryzae [106, 108] and

Pycnoporus cinnabarinus [110], while a swelling of hyphal tips was found to coin-

cide with increased metabolite excretion in A. oryzae [109] and A. niger [48]. Some
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studies have also indicated dependencies of macro-morphological form on micro-

morphological parameters and there is emerging evidence suggesting a fundamental

link between kinetic parameters of growth at the microscopic level and the resul-

tant macroscopic conformations [107, 125, 152]. For example, Müller and colleagues

found that a mutant strain of A. oryzae that exhibited a greater degree of hyphal

branching (lower hyphal growth unit with respect to a wild-type strain) was less

likely to form large, inseparable clumps in submerged culture [107]. It was also

suggested that the positioning of branches (apically or sub-apically) may affect the

formation and dimension of macroscopic structures. Detailed microscopic analysis

is also essential to understanding development during exponential growth, an im-

portant growth phase for the production of industrial products such as biomass and

growth-associated metabolites (amylases, cellulases and proteases, for example).

6.1.2 Challenges associated with the morphological quantification of

submerged cultures

The complex nature of aggregates such as clumps and pellets often presents diffi-

culties in isolating individual hyphae for the accurate quantification of branching

behaviour. Furthermore, microscopic examination of composite structures such as

pellets can only be performed if the size of the pellet is sufficiently small to fit within

the field of view of a microscope objective lens, which is often not the case. For

example, Carlsen and colleagues found that pellets of A. oryzae grew up to 1.6 mm

in diameter [45], while pellets of A. terreus up to 4 mm in diameter were measured

by Bizukojc and Ledakowicz [47]. This clearly presents difficulties for conducting si-

multaneous assessment at the micro- and macroscopic levels when a microbe adopts

such a morphology. Papagianni and Mattey used a macro-viewer connected to a

CCD camera to image large pellets [48], as did Paul and colleagues, who suspended

pellets in a Petri dish filled with water, to preserve the three-dimensional archi-
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tecture [44]. O’Cleirigh and colleagues focused exclusively on macroscopic analysis

by suspending pellets of S. hygroscopicus var. geldanus in a Petri dish containing

water and imaging with a flatbed scanner [77].

Given the relatively large size of the agglomerates that can result in the sub-

merged culturing of filamentous microbes, apparently trivial tasks such as obtaining

a representative sample of biomass can prove problematic. In the case of unicellular

organisms such as Saccharomyces cerevisiae, probes have been successfully devel-

oped for in situ culture analysis [132], but such devices are not suited to the study

of filamentous growth, which is not easily captured within a single focal plane. How-

ever, an automated sampling mechanism was described by Treskatis and colleagues

for use in the quantification of Streptomyces tendae Tü 901/8c fermenter cultures

[204]. The system performed automatic dilution and subsequent imaging (using a

microscope stage-mounted chamber, similar in construction to a flow-through cell),

but the analysis was restricted to macroscopic criteria (×1.25 objective), with the

results consisting of classifications (rough pellets, smooth pellets, mycelial flocks,

other components) assigned to biomass fractions; no morphological data beyond

this was presented.

The difficulties associated with the analysis of macroscopic structures has led

many researchers to focus exclusively on the dispersed growth form, using exper-

imental arrangements such as the immobilisation of spores within a flow-through

cell to study micro-morphological development in detail [4, 13, 125]. While the ob-

servations made using these simple experimental environments may be extrapolated

to the more complex fermenter setting, such approaches are limited to the physio-

logical study of a relatively small number of elements. Nonetheless, there may be

potential for the utilisation of spore-immobilisation in submerged culture to provide

a two-dimensional surface to support microbial growth for subsequent microscopic

examination of individual elements. While such a cultivation format represents a
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significant deviation from conventional submerged cultivation conditions, the use

of solid supports in submerged fermentations has recently been demonstrated to

result in elevated metabolite production. Papagianni and Mattey found that the

use of nylon supports in the cultivation of A. niger resulted in higher citric acid

production compared to a control submerged culture [48]. A beneficial effect was

also reported by Bigelis and colleagues, who found that the use of polymeric mem-

branes in liquid culture resulted in elevated metabolite production in cultures of

Penicillium sp. LL-WF159 [54].

6.1.3 Influences on morphology

A wide range of parameters have been utilised as a means of modifying the morpho-

logical form of filamentous microbes, including variations in medium pH [52, 94],

agitation intensity [46, 50, 51, 80, 83, 84, 88] and temperature [205]. Further efforts

at phenotypic manipulation have involved experimentation with media composi-

tion, such as varying the nitrogen source [154, 205, 206], phosphate source [205],

the addition of metal ions [95–97] or the modification of broth viscosity [81, 103].

A more invasive approach involved forcing the fermentation broth through a screen

to remove pellets above a desired size [207].

One of the more common means of influencing morphological variation involves

modifying the type or concentration of the inoculum. A very large concentration

of spores provides a large number of growth centres and a very limited amount of

growth from each can result in nutrient exhaustion. Conversely, if the initial spore

concentration is low, substantial growth may be required before nutrient exhaustion

occurs. The distribution of biomass may thus be varied between a large number of

small elements and a small number of large elements. Various reports have indicated

the macroscopic impact of inoculum concentration, which is typically characterised

by a decrease in mean pellet diameter for increasing initial spore concentration [74].
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Larger increases in inoculum concentration have been demonstrated to induce com-

pletely dispersed growth in some cases [72]. More abrupt transitions from pelleted

to dispersed growth [72, 75, 76, 208] have also been documented, in which inoculum

effects are characterised by a sudden state change in morphology, rather than a

gradual variation in one particular parameter such as projected area or pellet di-

ameter. A microscopic response has also been described, with increasing inoculum

concentration found to cause an increase in the hyphal growth unit in cultures of

A. awamori [73] and A. niger [159].

There is also evidence in the literature of morphological variation induced by

altering the carbon source concentration in a defined medium. For example, it

has been found that glucose concentration is an effective regulator of pellet size in

A. niger [48]. At the microscopic level, it has been demonstrated that apical volume

of Aspergilli may be regulated by the surrounding glucose concentration [90] and

further reports indicate the size and shape of mycelial clumps of A. niger may be

influenced by glucose levels [209]. Sub-cellular effects have also been reported, such

as increased vacuolation at low substrate concentrations [79, 210], which can result

in increased hyphal fragmentation.

6.1.4 Chapter overview

Having successfully applied the newly-developed image processing system (Chap-

ter 3) to membrane-immobilised cultures on solid substrates (Chapter 5), a transi-

tion to the industry standard of submerged fermentation was now required, with a

view to characterising the morphology of A. oryzae at the microscopic level and re-

lating microscopic form to macro-morphology and α-amylase production (Fig. 6.2).

The isolation of ‘free’ mycelial elements was a prerequisite for the application of the

imaging system, necessitating the identification of a submerged culture format in

which the growth form could be reproducibly controlled.
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Aim: Relate micro-morphology

with macro-morphology,

α-amylase production

Establish basic cultivation

conditions

Explore perturbations to basal

submerged system

Morphological influence of

carbon source variation

Investigate membrane-

immobilised culture

Morphological influence of

inoculum concentration

Examine effects of detergent

supplementation

Figure 6.2: Overview of the results presented in this chapter.
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6.2 MATERIALS & METHODS

Initial qualitative investigations of the effect of inoculum concentration were

necessary in order to determine a spore level that reproducibly resulted in the for-

mation of a morphology suitable for image processing (such as distinct pellets),

with other culture parameters (media composition, temperature) based on previ-

ously published reports. Once these basic parameters were established, the devel-

opment of A. oryzae over time in shake-flask culture could be assessed in order to

establish reference points for biomass growth and α-amylase production. Subse-

quently, the effect of perturbations to the basal submerged system was examined by

quantifying responses to changes in the carbon source, variations in inoculum con-

centration and supplementation with non-ionic detergents; relationships between

micro-morphology, macro-morphology and α-amylase production were explored. In

parallel with this, a novel ‘mixed-phase’ culture format, consisting of immobilised

biomass in submerged culture, was investigated, with a view to establishing a sub-

merged culture format in which microscopic structures (early-stage hyphal develop-

ment, in particular) could be routinely visualised.

6.2 Materials & methods

6.2.1 Micro-organism cultivation

The basal medium (BM; see Section 2.3) used for all fermentations was that de-

scribed for batch cultivation of A. oryzae by Amanullah and colleagues [122], with

soluble starch (Sigma S-9765, Lot 93H0243 or Difco 0178-17-7, Lot FJ0041XA; con-

centration specified in individual experiments) used in place of maltodextrin and

Pluronic P6100 omitted. Cultivations were conducted at pH 6 (reported by Carlsen

and colleagues as optimal for maximal specific α-amylase production [45]) unless

otherwise stated and a temperature of 25 – 30◦C. For investigations of non-ionic

detergents and polymers, Nonidet P-40, Triton X-100, Tween-80, carboxymethyl-
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cellulose (CMC), Ficoll, diethylaminoethyl cellulose (DEAE), Sephadex G-75 and

Sephadex G-200 were added to a final concentration of 0.05 – 1.0% (w/v). In all

shake-flask fermentations, 250 ml Erlenmeyer flasks, with a working volume of 20%,

were incubated in a Lh Fermentation Mk X Incubator Shaker at 200 rpm. Inoculum

consisted of 500 µL of 1× 107 spores ml-1 unless otherwise stated.

Investigations into particle agglomeration were conducted using malt extract

broth: malt extract (Difco 0186-17, Lot 138225XD), 17.0 g L-1; bacteriological pep-

tone (Oxoid LP0037, Lot 239324), 3.0 g L-1. Solid state cultivation was conducted

on BM supplemented with Agar No. 1 (17.0 g L-1) and immobilisation of fungal

spores was performed as described in Section 2.4.

Mixed-phase cultivation

Cellulose nitrate membranes were overlaid onto the surface of Sabouraud dex-

trose agar (SDA): Sabouraud liquid medium (Lab M LAB033), 30.0 g L-1; Agar

No. 1 (Lab M), 17.0 g L-1. The membranes were inoculated with 500 µL of

1 × 107 spores ml-1 and incubated at 30◦C for 16 hours. The membranes were

then aseptically removed from the surface of the agar and transferred into Erlen-

meyer flasks containing 50 ml of pre-autoclaved medium. The cultivation conditions

for the shake-flask phase are referred to in individual experiments.

6.2.2 Visualisation of fungal morphology

Fungal macro-morphology was imaged by either photographing unstained biomass

against a black background, or by using the method described in Section 2.5.1. The

analysis of these images was performed as described in Section 3.4.2. Visualisation

of fungal micro-morphology and the processing of solid-state-cultured membranes

for image analysis was as described in Section 2.4. Fungal micro-morphology was

quantified as described in Section 3.4.1. The effect of detergents on particle dispersal
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in submerged media was evaluated using a variation of the approach adopted by

Grimm and colleagues [196]; samples taken from shake-flasks were processed and

imaged as above, then, using the routines developed for the quantification of spore

morphology described in Chapter 3, the number of particles (any object detected

within field of view) per unit volume of media was calculated.

6.2.3 Processing of shake-flask cultures

Estimation of dry-cell weight

The dry-cell weight of biomass per unit volume was estimated in one of two ways. In

the first method, flask contents were transferred to a clean, dry, pre-weighed plastic

universal and centrifuged at 3,000 rpm for 35 minutes at 4◦C. Any wall-adherent

biomass from the original flask was removed by washing with PBS containing Tween-

80 (0.1% v/v). The universal containing biomass was dried in an oven for 24 hours

at 105◦C, then allowed to cool in a desiccator for 30 – 60 minutes before being

re-weighed.

In the second method, flask contents were vacuum-filtered through a glass mi-

crofibre filter (Whatman GFC 1822-110). Any wall-adherent biomass from the flask

was removed by washing with PBS-T80 (0.1% w/v). The filter and biomass were

transferred to a pre-weighed universal and dried for 24 hours at 105◦C, then allowed

to cool in a desiccator for 30 – 60 minutes before being re-weighed. The weight of

the filter (determined by drying three filters at 105◦C for 24 h, then weighing) was

subtracted from the final result.

Estimation of α-amylase activity and extra-cellular protein concentration

Thimerosal (Sigma T8784) and protease inhibitor cocktail (Sigma P8340) were

added to culture supernatants at final concentrations of 0.01% w/v and 0.001%

v/v (of stock concentration) respectively. The samples were then stored at −20◦C
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prior to analysis.

α-amylase activity was estimated with the use of a ceralpha assay kit (Megazyme

K-CERA). The ceralpha procedure employs as substrate the defined oligosaccharide

‘non-reducing-end blocked p-nitrophenyl maltoheptaoside’ in the presence of excess

levels of α-glucosidase. On hydrolysis of the oligosaccharide by α-amylase, the excess

quantities of α-glucosidase results in hydrolysis of the p-nitrophenyl maltosaccharide

fragment to glucose and free p-nitrophenol, which may be quantified by measuring

absorbance at 400 nm. The assay procedure (including preparation of assay ‘blank’)

was conducted according to the manufacturer’s manual [211]. Absorbance values

were measured in plastic cuvettes (Sarstedt 67.742) using a Pharmacia LKB Ultra-

spec III spectrophotometer blanked against distilled water. Activity was expressed

in international units (IU), derived from ceralpha units (CU) according to the man-

ufacturer’s manual:

IU = 0.94× CU (6.1)

Extra-cellular protein concentration was determined using the Bradford colouri-

metric protein assay (Bio-Rad 500-0006) with bovine serum albumin (Sigma A7906,

Lot 115K0714) as standard [212]. The assay was conducted in plastic micro-titre

plates (Sarstedt 82.1582) and absorbance values measured using a Labsystems Mul-

tiskan Plus plate reader.

6.3 Results

6.3.1 Qualitative investigation of the relationship between inoculum

concentration and macro-morphology

An initial ‘range-finding’ investigation into the effect of inoculum concentration

on the macroscopic form of A. oryzae was performed to study the effect of spore
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INOCULUM CONCENTRATION AND MACRO-MORPHOLOGY

(a) (b) (c)

Figure 6.3: Variation in macroscopic morphological forms of A. oryzae for inocu-

lum concentrations of (a) 1×104, (b) 1×106 and (c) 1×107 spores ml-1 (34.1±5.8%

viability). Bars: 5 mm.

concentration on pellet formation. The initial selection of spore concentrations was

based on a review of studies involving shake-flask culturing of Aspergilli [45, 49, 72,

74]. Inoculum concentrations of less than 1× 107 spores ml-1 frequently resulted in

the formation of large agglomerates of biomass (Fig. 6.3). Based on Pirt’s theory of

pellet growth, which states that actively-growing hyphae are restricted to a narrow

region (estimated as <∼ 350 µm deep in A. oryzae [45]) at a pellet’s surface [43],

such large agglomerates would be expected to contain a very high proportion of

diffusion-limited biomass. Furthermore, such agglomerates do not lend themselves

to meaningful morphological analysis. While pellets were sometimes produced with

an inoculum of 1×106 spores ml-1, the inherent variability of the submerged culture

format resulted in frequent biomass aggregation at this inoculum level (Fig. 6.3b).

A minimum inoculum concentration of 1 × 107 spores ml-1 was therefore chosen

for subsequent study of A. oryzae in submerged culture to maximise morphological

reproducibility between flasks.
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6.3.2 Characterisation of morphological development and product

formation in submerged culture over time

The variation in the macro-morphology of A. oryzae was evaluated over the course of

a 7-day shake-flask fermentation (Fig. 6.4a), the development of which is illustrated

in Figure 6.4b to 6.4f. The pellets attained their maximum diameter 45 – 72 hours

post-inoculation and appeared to degrade from this point on. This may have been

a result of nutrient exhaustion (depletion of starch was confirmed by observing the

reaction between samples of fermentation broth and Lugol’s iodine - not shown)

and a subsequent weakening of cell structure, resulting in hyphal fragmentation at

the pellet periphery; low levels of substrate have previously been demonstrated to

lead to increased vacuolation and subsequent hyphal fragmentation in A. niger [79].

This fragmentation resulted in a large increase in mycelial ‘clumps’ in the media,

depicted by the ‘cloudy’ nature of Figure 6.4e and 6.4f. These clumps were observed

using light microscopy, but analysis and quantification was not possible as staining

with lactophenol cotton blue proved problematic (Fig. 6.5).

The assessment of pellet sizes is complicated somewhat in this scenario as ac-

curate image segmentation (separation of pellets from background) is more difficult

and an evaluation of pellet size alone does not provide complete morphological

quantification of the organism. Up to 72 hours post-inoculation, biomass exists in

almost exclusively pelleted form and, as such, a measure of the size of these pellets

provides an accurate representation of the organism’s phenotype. However, beyond

this point, a variety of structures are present, the smallest of which may be excluded

from the analysis by virtue of the limited resolution of the scanner (and limited stain

uptake), and therefore the mean size of biomass elements (expressed as mean pellet

diameter) is possibly over-estimated beyond 72 hours.

The fragmentation of pellets is further illustrated in Figure 6.6. Overall pellet
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Figure 6.4: (a) Variation in mean pellet diameter (Dp; •) and dry-cell weight

(DCW; �) during a ‘standard’ submerged fermentation of A. oryzae. Error bars

represent 95% confidence intervals. Images of macro-morphology were captured at

(b) 24, (c) 45, (d) 72, (e) 96 and (f) 168 hours (Bars: 2 mm). Organism cultivated

in BM (pH 7.0) supplemented with yeast extract (0.5 % w/v) and starch (0.8 %

w/v). Each data point represents a single flask terminated at the indicated time.

All flasks incubated at 25◦C, spore viability = 34.1± 5.8%.
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(a) (b)

Figure 6.5: Conventional lactophenol cotton blue ‘wet-mounts’ of 72-hour-old

samples showed limited stain uptake (a), or in some cases, none at all (b). Bars:

25 µm.

diameter of a sample population increased from 24 – 45 hours and remained rela-

tively constant until 72 hours. Thereafter, a large increase in the number of objects

with an equivalent diameter below ∼ 2 mm coincided with a reduction in the num-

ber of objects with diameters above ∼ 3 mm. This suggests that larger pellets had

begun to fragment, forming smaller pellet-like structures and clumps.

In their study of A. oryzae in the form of pellets, Carlsen and colleagues es-

timated that oxygen limitation set in 23 hours post-inoculation, when the pellets

were approximately 600 – 800 µm in diameter [45]. The pellets continued to in-

crease in size until approximately 35 hours, when mean pellet diameter began to

decline, the number of pellets per unit volume increased rapidly and an increase

in ethanol concentration was noted. No ethanol was detected in cultures grown as

freely dispersed hyphal elements, indicating ethanol production was limited to the

dense pellet core, where anaerobic conditions predominated. This may suggest that

autolysis contributed to the decline in pellet diameter and biomass concentration

illustrated in Figure 6.4, given that the measured diameters were well in excess of
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Figure 6.6: Variation in distributions of pellet diameter (Dp) over time in shake-

flask cultures of A. oryzae (44 ≤ n ≤ 357). Cultivation conditions were as described

in Figure 6.4.
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those reported by Carlsen and colleagues.

The rate of α-amylase production slowed considerably once maximum pellet di-

ameter and maximum biomass levels had been attained (Fig. 6.7a), suggesting that

production of this enzyme is primarily growth-associated. Carlsen and colleagues

demonstrated a similar concurrent increase in biomass and α-amylase production

in batch cultivations of A. oryzae (specific α-amylase production was constant) [45]

and it was later reported that α-amylase synthesis was closely coupled to the growth

of the fungus [111]. However, Spohr and colleagues found that the specific α-amylase

secretion rate seemed to decrease with time during batch cultivation, although no

explanation was offered for this observation [106]. Exhaustion of starch (an inducer

of α-amylase production in A. oryzae [213]) may have been responsible for the de-

cline in α-amylase production observed here. It is also possible that the presence

of glucose, resulting from total starch degradation, had repressed α-amylase pro-

duction, as has been previously documented [111]. Peak specific α-amylase activity

(IU mg-1 extra-cellular protein) occurred at 45 hours (Fig. 6.7b), coinciding with

peaks in pellet diameter and biomass levels and indicating a reduction in α-amylase

production beyond this point in the fermentation.

The results of these preliminary experiments provided a baseline understanding

of the development of A. oryzae in shake-flask culture and permitted the design of

further experiments examining the relationship between morphology and α-amylase

production. This result suggested that a sampling time of 45 – 72 hours was opti-

mal for comparing different shake-flask conditions, given that growth and primary

metabolite production of the organism had peaked by this time.
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Figure 6.7: Typical submerged fermentation of A. oryzae showing (a) α-amylase

activity (N), extra-cellular protein concentration (�) and (b) specific α-amylase

activity (IU mg-1 protein). Cultivation conditions were as described in Figure 6.4.
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6.3.3 Investigation into the use of solid supports in submerged

fermentation

In an attempt to garner an insight into the early stages of hyphal development in

liquid media, initial work on the characterisation of submerged fermentations was

combined with the assay described in Chapter 4 to provide a novel ‘mixed-phase’

cell-immobilisation culture format. In addition to possible facilitation of micro-

morphological observation, the use of solid supports in submerged culture has shown

potential for both increased metabolite yield [48] and differential protein expression

[54]. A series of shake-flask fermentations were conducted to determine the effect of

starch concentration on both the mixed-phase and conventional submerged systems.

When cultivated in the mixed phase format, virtually all biomass remained

adhered to the membrane (Fig. 6.8a to 6.8d) - the absence of mycelial elements

or pellets in the broth was confirmed by both visual and microscopic inspection.

However, acquiring any morphological data from such agglomerates, other than

projected area (a proxy indicator of biomass levels), was not possible. Other authors

have availed of scanning electron microscopy to visualise immobilised biomass, but

the resultant morphological descriptions were qualitative in nature [48]. However, it

is interesting to note the lack of a filamentous or annular region around the periphery

of the agglomerates, as would often be visible on pellets, which may suggest that

peripheral hyphae were compacted by fluid eddies, as described by Rodŕıguez Porcel

and colleagues [51].

Increasing substrate concentration was found to have a significant impact on the

gross, macroscopic form of the organism in the submerged format (Fig. 6.8e to 6.8h),

with dispersed growth becoming more common as the substrate concentration was

increased, complicating the quantification of the resulting macro-morphologies. It

is possible that this dispersed growth may be explained by the presence of a greater
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(a) 0.0% (b) 0.8% (c) 1.6% (d) 3.2%

(e) 0.0% (f) 0.8% (g) 1.6% (h) 3.2%

Figure 6.8: Morphological form of A. oryzae 120 hours post-inoculation in mixed-

phase (‘a’ - ‘d’, bars: 10 mm) and submerged fermentations (‘e’ - ‘h’, bars: 3 mm)

supplemented with the indicated starch concentrations (w/v). Following incuba-

tion of membrane culture on SDA for the mixed-phase system, the organism was

cultivated in BM (pH 7.0) supplemented with yeast extract (0.5% w/v) and starch

(at the indicated concentrations). All flasks and membranes were inoculated with

1× 107 spores ml-1 (34.1± 5.8% viability).

number of ‘growth centres’, provided for by the increased substrate concentration.

Starch is not completely soluble at room temperature and, as its concentration in

the media was increased, it is possible that a greater number of starch ‘particles’

were present in the media. These may have provided sites onto which germinating

spores adhered themselves, resulting in a more dispersed growth at higher starch

concentrations. Such a mechanism has previously been documented in the cultur-

ing of A. oryzae [154] and A. awamori [214] in complex media containing solid

particles. Alternatively, the increase in viscosity that resulted from increasing sub-
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strate concentration may have been responsible for this observed change in biomass

distribution. Indeed it has been reported that regulating apparent broth viscos-

ity (through the addition of xanthan gum) resulted in a decrease in the volume of

Streptomyces hygroscopicus var. geldanus pellets [103]. In this study, a microscopic

examination was complicated by the presence of starch particles, particularly at

higher concentrations, which obscured the field of view and made the isolation of

individual hyphae for analysis difficult to achieve.

A direct relationship was found between substrate concentration and biomass

yield (Fig. 6.9), with the dry-cell weight increasing linearly with increasing substrate

concentration in both the mixed-phase (R2 = 0.96) and submerged systems (R2 =

0.98). However, the same did not appear to be true of α-amylase yield. While

biomass levels increased by 85% when starch concentration was increased from 0.8

to 1.6% in the submerged system, α-amylase yield increased by just 47%, equating to

a drop in α-amylase activity per unit dry cell weight (DCW) of approximately 20%

(Fig. 6.10). Other reports in the literature have indicated that increasing substrate

concentration above 1% (w/v) had no discernible effect on α-amylase production

by A. oryzae [215] or A. ochraceus [206]. The levels of α-amylase produced in

the mixed phase system were similar to those produced in the submerged, which is

surprising given the sub-optimal morphological form adopted by the organism when

immobilised; it would be expected that such large agglomerates would consist of a

relatively low proportion of ‘active’ biomass. However, a higher biomass yield at a

starch concentration of 0.8% (w/v) resulted in a significant reduction in yield per

DCW at this substrate concentration in the mixed-phase system.

The difficulties associated with morphological analysis of biomass in the mixed-

phase system and the limited influence on α-amylase production led to the conclu-

sion that further study of this culture format, in the context of relating morphology

to metabolite yield, was not feasible. Furthermore, given the difficulties associated
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Figure 6.9: Dry-cell weight (DCW; �), α-amylase activity (N) and extra-cellular

protein concentration (�) for varying starch concentrations in the (a) submerged and

(b) mixed-phase fermentation of A. oryzae 120 hours post-inoculation. Cultivation

conditions were as described in Figure 6.8. Error bars represent standard deviation

of two independent results.
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Figure 6.10: α-amylase activity per unit dry-cell weight for varying starch con-

centrations in the submerged (�) and mixed-phase fermentation (�) of A. oryzae

120 hours post-inoculation. Cultivation conditions were as described in Figure 6.8.

Error bars represent standard deviation of two independent results.

with microscopic examination and the apparent lower α-amylase yield per DCW

at higher substrate levels in the submerged system, there was deemed to be lit-

tle benefit in increasing starch concentration above approximately 1% (w/v). All

subsequent fermentations were conducted with a carbon source concentration at or

below this level.

6.3.4 Investigation into the effect of carbon source variation on

morphology in submerged culture

As a means of perturbing the submerged system to induce micro-morphological

change (which may translate into macro-morphological variation) without indirectly

impacting other process parameters (such as the increased heterogeneity of the

medium resulting from the presence of solid particles described in the previous
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section), the effect of utilising different carbon sources in a defined medium was

investigated. The early-stage hyphal development of the organism was assessed by

imaging submerged culture samples immobilised on membranes (see Section 2.4) and

a relationship between micro-morphology and macro-morphology was examined.

The substrates chosen were based on reports in the literature suggesting that α-

amylase yield may be increased by employing lactose and maltose rather than starch

[215].

While the development of the fungus on glucose seemed to result in a larger

hyphal growth unit compared to other substrates (Table 6.1), the elements were

relatively small and unbranched and, as such, the difference is possibly owing to

the more limited growth on maltose and starch (reflected in the lower value of Lth).

Virtually no hyphal elements were detectable in basal medium and, as such, a micro-

morphological analysis was not possible. Little macro-morphological influence was

noted as a result of carbon source variation, with slightly smaller pellets resulting

from cultivation on starch compared to maltose and glucose (Fig. 6.11). Starch

was found to be the most suitable substrate for α-amylase production, while also

producing slightly less biomass. The growth of A. oryzae on lactose was limited (not

shown), the resulting biomass and α-amylase yields being similar to those produced

in the basal medium (without carbon source supplementation).

Studying the micro-morphological development of A. oryzae in submerged cul-

ture had associated practical difficulties. The organism’s spores tended to agglomer-

ate prior to germination (Fig. 6.12) and this resulted in the presence of free mycelia

in the media being rare, particularly so when starch was used as substrate. A large

sample of the media was therefore required (approximately 10% of the total volume)

in order to provide a sufficient number of elements to yield a statistically significant

result; such a large reduction in culture volume may well have affected the outcome

of the fermentation.
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AND ALPHA-AMYLASE PRODUCTION

Table 6.1: Mean total hyphal length (Lth), mean number of tips (N) and mean

hyphal growth unit (Lhgu) of A. oryzae mycelia 16 hours post-inoculation when

cultivated in BM (pH 7.0) supplemented with 1% (w/v) of the indicated carbon

source. Errors represent 95% confidence intervals.

Substrate Lth (µm) N Lhgu (µm) n

Glucose 344.1 ± 57.7 4.9 ± 0.7 67.8 ± 5.6 71

Maltose 171.5 ± 33.0 3.1 ± 0.4 50.8 ± 6.3 80

Starch 208.7 ± 40.1 3.9 ± 0.5 50.3 ± 5.1 73

Given the limited growth of the mycelia presented here (Table 6.1), the experi-

ment was repeated in an attempt to analyse the microscopic form of the organism at

a later point in time (24 hours post-inoculation). However, obtaining a large enough

population of mycelia from which to derive a statistically relevant result, without

sampling more than 10% of the culture, was not feasible (data not shown). It is

possible that as the mycelia increased in size, a degree of agglomeration occurred,

further reducing the concentration of free mycelia in the media; agglomeration of

A. oryzae mycelia has previously been described by Amanullah and colleagues [88].

It was therefore concluded that microscopic examination of such cultures was not

achievable and subsequent experimentation focussed on attempts to induce a greater

degree of filamentous growth to enable quantification of micro-morphology.

6.3.5 Influence of inoculum concentration on morphology and

alpha-amylase production

Increasing inoculum concentration has previously been demonstrated as an effec-

tive means of inducing filamentous growth in both A. niger [72] and Rhizopus

chinensis [76]. As a dispersed growth form would permit a more extensive micro-

scopic analysis, the effects of increasing the initial inoculum concentration above
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Figure 6.11: Dry-cell weight (DCW; �), α-amylase activity (�) and mean pellet

diameter (Dp; �) for different carbon sources in the submerged fermentation of

A. oryzae 60 hours post-inoculation. Organism cultivated in BM (pH 7.0) supple-

mented with 1% (w/v) of the indicated carbon source. All flasks inoculated with

1× 107 spores ml-1 (33.6± 5.9% viability). Error bars represent standard deviation

of two independent results.

1 × 107 spores ml-1 on morphology and α-amylase production in the submerged

fermentation of A. oryzae were investigated.

While pelleted biomass was found to predominate at all inoculum concentra-

tions (and as a result, micro-morphological examination of ‘free’ elements was not

feasible), relationships between inoculum concentration (Ci), pellet diameter (Dp)

and α-amylase yield were observed. α-amylase activity per unit dry-cell weight

(IU mg-1 DCW) appeared to be directly proportional to inoculum concentration

(R2 = 0.95; Fig. 6.13a), while mean pellet diameter was found to be inversely

proportional to inoculum concentration (R2 = 0.96).

In an attempt to establish a preliminary link between metabolite yield and mor-

phology, α-amylase activity per DCW was expressed as a function of Dp (Fig. 6.13b),
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Figure 6.12: An aggregate of A. oryzae spores sampled from a shake flask approx-

imately 7 hours post-inoculation. Bar: 25 µm.

which is derived from the measured projected area (Ap; mm2) of each pellet by cal-

culating the equivalent radius (r =
√
Apπ−1). Given the evidence in the literature

for metabolite excretion occurring primarily at hyphal tips [107, 216] and produc-

tive biomass being limited to the outer layer of pellets [43, 46], it seems reasonable

that α-amylase activity per DCW would be directly proportional to the mean pellet

surface area times the number of pellets present in the media (n):

α-amylase activity per DCW ∝ n4πr2 (6.2)

This is based on the assumption that the product of the number of hyphal tips (N)

per unit area of pellet surface and the amount of α-amylase produced by each tip

is relatively independent of inoculum concentration:

α-amylase activity

N
× N

4πr2
= c (6.3)

where c is a constant. For a given level of biomass, n is inversely proportional to

pellet size (or pellet volume):

n ∝ 1
4
3
πr3

(6.4)
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Figure 6.13: (a) α-amylase activity per DCW (�) and mean pellet diameter

(Dp; �) versus inoculum concentration (Ci) in the submerged fermentation of A.

oryzae 65 hours post-inoculation. (b) α-amylase activity per DCW is inversely

proportional to mean pellet diameter (Dp). The dotted line represents Equation

(6.5) with aD/X = 2.07 IU mm mg-1 (R2 = 0.88). Error bars represent standard

deviation of two flasks. Spore viability = 35.7± 7.1%.
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6.3.6 INFLUENCE OF SURFACTANT COMPOUNDS ON MORPHOLOGY
AND METABOLITE YIELD

Combining equations 6.2 and 6.4 and substituting for r:

α-amylase activity per DCW =
aD/X
Dp

(6.5)

where aD/X (IU mm mg-1) is a proportionality constant. This relationship is illus-

trated graphically in Figure 6.13b.

These results are in general agreement with reports in the literature that suggest

a low inoculum concentration results in larger pellets [49, 72, 100] and that smaller

pellets result in higher metabolite yields in Aspergilli [46, 74, 96, 98]. While a

correlation between pellet size and α-amylase production appeared to exist in this

study, the microscopic examination of pellets using light microscopy was not feasible,

due to their three-dimensional structure and relatively large size (Dp ≤ 7 mm). The

potential for obtaining micro-morphological insights into enzyme production using

inoculum concentration as a process variable was therefore deemed to be limited.

6.3.6 Influence of surfactant compounds on morphology and

metabolite yield

During the course of this work, studying A. oryzae at the microscopic level was

often complicated by the lack of ‘free’ mycelia present in submerged culture due to

the agglomerative nature of the organism’s conidiospores. However, several studies

have reported successful attempts to regulate morphology by supplementing media

with various polymers and surfactant (surface active agent) compounds [14, 15, 100–

102]. The effect of some of these substances on cultures of A. oryzae was therefore

investigated.

Influence of Tween-80 on morphology and α-amylase production

In an attempt to counteract the agglomeration of spores, without adversely af-

fecting growth or metabolite production, Tween-80, a surfactant routinely used in
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Figure 6.14: Impact of supplementing Aspergillus oryzae fermentation broth with

Tween-80 on α-amylase activity (�, ♦) and dry cell weight (�, �) for inoculum

concentrations of 1 × 107 (�, �) and 1 × 108 spores ml-1 (♦, �) 65 hours post-

inoculation. Error bars represent standard deviation of two flasks. Spore viability =

52.8± 11.7%.

fungal conidial preparations to aid spore dispersal, was incorporated into submerged

culture and its impact on morphology and α-amylase yield was quantified. The ad-

dition of 0.05% (w/v) Tween-80 resulted in an increase in α-amylase activity of

approximately 59% in flasks inoculated with 1× 108 spores ml-1 (Fig. 6.14); further

increasing the concentration of Tween-80 up to 0.56% (w/v) had little additional

effect. In flasks inoculated with 1× 107 spores ml-1, α-amylase activity was slightly

reduced in the presence of 0.05% (w/v) Tween-80, but increasing the concentration

to 0.25% (w/v) resulted in an increase in activity of approximately 47%. Biomass

levels appeared to be relatively independent of Tween-80 concentration.

The addition of 0.05% (w/v) Tween-80 resulted in a significant increase in pel-

let size at the lower inoculum concentration (Fig. 6.15a), which may explain the

observed reduction in α-amylase activity at this concentration. However, despite
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6.3.6 INFLUENCE OF SURFACTANT COMPOUNDS ON MORPHOLOGY
AND METABOLITE YIELD

Table 6.2: Mean projected area (Ap) and mean circularity (C) of A. oryzae pellets

24 hours post-inoculation when cultivated in media supplemented with Tween-80

as indicated. Flasks were inoculated with 1 × 107 spores ml-1 (viability = 35.5%)

and incubated at 30◦C. Errors represent 95% confidence intervals.

Tween-80 (% w/v) Ap (×106 µm2) C n

0.0 1.50± 0.28 0.032± 0.007 12

0.5 1.28± 0.28 0.028± 0.005 12

1.0 1.51± 0.25 0.027± 0.004 10

producing slightly larger pellets, flasks inoculated with 1×108 spores ml-1 produced

higher yields of α-amylase per DCW in the presence of Tween-80. This complex re-

lationship is emphasised in Figure (6.15b), where no clear correlation between pellet

size and α-amylase activity per DCW is apparent (R2 = 0.52 for linear regression).

The higher yield of α-amylase obtained in the presence of Tween-80 may be

evidence of an influence at the micro-morphological level, such as an increase in

hyphal branching. A microscopic analysis of pellets (Fig. 6.16) suggests that this is

not the case, as similar values of circularity (C = 4πApP
−2) were obtained for pellets

cultivated with or without Tween-80 supplementation (Table 6.2). However, a more

extensive microscopic examination was required to generate a more conclusive result.

Influence of Tween-80 on micro-morphological development in solid culture

The effect of Tween-80 on the early-stage, microscopic development of A. oryzae

was investigated on solid substrate using membrane-immobilisation in order to iso-

late individual mycelia for subsequent image analysis. The inclusion of Tween-80 in

the media resulted in a small decrease in the hyphal growth unit compared to the

control, although this decrease was not statistically significant (Fig. 6.17a). Further-

more, given the reasonable correlation between Lhgu and Lth evident in Figure 6.17,
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Figure 6.15: Impact of supplementing Aspergillus oryzae fermentation broth with

Tween-80 on (a) mean pellet diameter (Dp) after 65 hours’ incubation for inoculum

concentrations of 1×107 (�) and 1×108 spores ml-1 (�). (b) No direct relationship

between α-amylase activity per DCW and Dp was found. Error bars represent

standard deviation of two flasks. Spore viability = 52.8± 11.7%.
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6.3.6 INFLUENCE OF SURFACTANT COMPOUNDS ON MORPHOLOGY
AND METABOLITE YIELD

(a) Ap = 1.68 × 106 µm2,

C = 0.027

(b) Ap = 1.64 × 106 µm2,

C = 0.025

Figure 6.16: Morphology of A. oryzae pellets cultivated in the presence of (a) 0%

and (b) 1.0% (w/v) Tween-80. Cultivation conditions were as described in Table 6.2.

Bars: 0.4 mm.

it is probable that this lower value of Lhgu was related to a decrease in the extent

of growth, rather than any change in the morphology of the organism (Fig. 6.17b).

It was therefore concluded that no appreciable influence of Tween-80 on hyphal ex-

tension was evident, but the increase in pellet size observed at some concentrations

in submerged culture was still without explanation.

Effect of Tween-80 on spore agglomeration

The observed influence of Tween-80 on pellet diameter (Fig. 6.15a) was investigated

at the microscopic level by assessing the effect of the surfactant on particle agglom-

eration. Approximately 2 hours post-inoculation, the number of particles present in

the media was up to 45% higher in the presence of the Tween-80, the difference be-

ing even more pronounced at 4 hours post-inoculation (Fig. 6.18). The lower of the

two Tween-80 concentrations (0.05% w/v) resulted in a greater degree of dispersal,

but from 6 hours onwards, there was no significant difference in particle dispersal
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Figure 6.17: Variation in (a) the mean hyphal growth unit (Lhgu) and (b) the

mean total hyphal length (Lth; �) and mean number of tips (N ; �) of populations

of Aspergillus oryzae mycelia cultivated on malt agar supplemented with varying

concentrations of Tween-80 (30◦C, 20 h). Error bars represent 95% confidence

intervals.
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Figure 6.18: Time-course of aggregation in the submerged fermentation of As-

pergillus oryzae in the presence of 0 (�), 0.05 (�) and 0.1 (N) % Tween-80 (w/v).

All flasks inoculated with 2× 107 spores ml-1. Error bars represent standard devi-

ation of two flasks, with approximately 27 fields of view examined for each flask.

between the three different media, suggesting that any impact was short-lived.

There is evidence that suggests the surface properties of fungal spores are altered

during the swelling and germination process. Investigations using atomic force mi-

croscopy have shown that the hydrophobicity of A. oryzae and A. fumigatus conidia

decreases as they swell and germinate [217, 218]. This may offer an explanation as to

why the influence of Tween-80 does not seem to be visible 6 hours post-inoculation.

Does Tween-80 influence the morphology of Aspergillus oryzae?

Based on the series of investigations conducted here, it was concluded that Tween-

80 had a limited influence on pellet formation in submerged cultures of A. oryzae.

Although Tween-80 has been found to inhibit pellet formation in T. reesei [14], it

has also been found to cause an increase in pellet size in cultures of R. nigricans [15],
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although in the case of the latter, a degree of filamentous growth was also induced at

higher concentrations. However, no inducement of filamentous growth was observed

here and, as such, a thorough microscopic examination of submerged culture was

not possible, and no relationship between the increase in α-amylase production

and micro-morphological parameters (such as Lhgu) was obtainable. Subsequent

experimentation focussed on investigations of other surfactants and polymers that

had been previously reported to inhibit pellet formation.

Further qualitative assessment of the morphological influence of polymers and

surfactants

The potential of a number of other polymers and surfactant compounds to disrupt

pellet formation in cultures of A. oryzae was investigated. The majority of com-

pounds tested resulted in the formation of pellets of either smaller (Ficoll) or larger

diameter (diethylaminoethyl cellulose, Sephadex G-75) than the control (data not

shown). However, other compounds seemed to inhibit pellet formation to some ex-

tent, producing filamentous structures (together with pellets) that were potentially

suited to routine microscopic analysis (Fig. 6.19). However, polymers such as car-

boxymethylcellulose (CMC) and Sephadex caused the media to exhibit a paste-like

consistency, which complicated dry-cell weight determination and for this reason

they were deemed unsuitable for further study. Subsequent experiments examined

the effect of the non-ionic detergents, Triton X-100 and Nonidet P-40.

Influence of Triton X-100 and Nonidet P-40 on macro-morphology and metabolite

yield

The addition of 0.1% (w/v) Triton X-100 resulted in an increase of approximately

149% in α-amylase activity; higher concentrations had no further effect (Fig. 6.20a).

The addition of Triton X-100 also caused a reduction in biomass levels of up to 51%,
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(a) (b) (c)

Figure 6.19: Variation in morphology of A. oryzae after 72 hours resulting from

supplementation with 0.6% w/v (a) Triton X-100, (b) carboxymethylcellulose and

(c) Sephadex G-200. Bars: 5 mm.

resulting in increases in α-amylase per DCW of up to 184%. Lower biomass yields

may suggest a negative physiological impact of the detergent and an inhibition of

growth. The addition of Nonidet P-40 caused similar reductions in biomass levels,

but the resultant increases in α-amylase activity were significantly less.

In the case of both Nonidet P-40 and Triton X-100, no correlation was found

between α-amylase per DCW and pellet size (Fig. 6.20b). Evidence in the literature

suggests that smaller pellets should result in a higher metabolite yield [46, 74, 96,

98, 100], but α-amylase activity was lower in flasks supplemented with Nonidet P-

40 compared to those supplemented with Triton X-100 (but still higher than the

control), even though the latter produced larger pellets. This may be explained by

the lower dry-cell weights observed in the presence of detergents; the smaller pellet

sizes may be partly caused by inhibition of growth rather than dispersal of biomass.

Evidently, a macro-morphological analysis alone is not sufficient to explain the effect

of non-ionic detergents on A. oryzae.

The detergents may have had a micro-morphological effect; an increase in hyphal

branching may have been responsible for the observed increase in α-amylase yield.
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Figure 6.20: (a) Impact of supplementing Aspergillus oryzae fermentation broth

with different concentrations of Nonidet P-40 (�, �) and Triton X-100 (�, ♦) on

α-amylase activity (�, ♦) and dry cell weight (DCW; �, �). Average of two inde-

pendent results is shown. Error bars represent standard deviation. (b) Mean pellet

diameter (Dp) versus α-amylase activity per unit dry cell weight in the presence of

Nonidet P-40 (�), Triton X-100 (�) and without supplementation (•). All flasks

inoculated with 9× 106 spores ml-1 (viability = 45.3± 2.9%).
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6.4 DISCUSSION

However, microscopic examination of the fungus in the presence of either Triton

X-100 or Nonidet P-40 was not possible, as samples taken from these fermentations

exhibited poor stain uptake (lactophenol cotton blue; not shown). Whether this was

a result of an inhibition of staining by the detergents, or a physiological influence

of the detergents on the cells, resulting in variations in cell wall composition, is not

clear. Alternatively, it is possible that the presence of non-ionic detergents in the

media caused an increase in cell permeability, leading to greater mass diffusion into

the pellets [14, 15]. This may have resulted in a wider ‘active’ region in the pellet,

causing an increase in metabolite production. The increase in α-amylase activity

observed in the presence of non-ionic detergents may also have been a result of

enhanced activation of the enzyme by the surfactants, rather than an increase in

enzyme production by A. oryzae. Supplementing a solution containing porcine

pancreatic α-amylase with 0.02% w/v Triton X-100 has been shown to result in an

increase in activity of approximately 40% [219].

6.4 Discussion

The yield from fermentation processes involving filamentous micro-organisms are

heavily influenced, both directly and indirectly, by the phenotype adopted by the

microbe [8, 220]. While many reports have indicated success in elucidating repro-

ducible relationships between morphology and metabolite production [45, 46, 50,

72, 74, 80, 96, 97, 100, 154], conflicting reports do exist [44, 95, 98], while others

have failed to demonstrate any significant dependence [73, 83, 84, 107, 112]. The

optimisation of submerged fermentations through the computation of morpholog-

ical parameters therefore remains a considerable challenge for fungal biotechnolo-

gists. While growth on solid culture may be essentially restricted to two dimensions

(using membrane-immobilisation), filamentous micro-organisms cultivated in liquid
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medium typically exhibit significant three-dimensional character, resulting in com-

plex conformations that are not easily quantified. Consequently, ‘free’ filaments

are generally targeted for detailed microscopic analysis, as individual hyphae and

branches may be isolated and an accurate description of morphological parameters

produced. However, the presence of such free elements may be rare, depending on

the culture conditions. Nevertheless, given the evidence for metabolite excretion oc-

curring primarily at hyphal tips [105, 107], microscopic characterisation is essential

for a thorough description of microbial growth.

Furthermore, there is evidence that the microscopic development of an organism

can have a significant influence on the macroscopic form. For example, a ‘hyper-

branched’ mutant of A. oryzae, which exhibited a lower projected area per hyphal

tip, resulted in more compact clumps and pellets compared to a wild-type strain,

resulting in lower broth viscosity [107, 152]. Park and colleagues also demonstrated

relationships between micro-morphological parameters and macroscopic form in

different species of Mortierella, although the resultant macro-morphologies were

not quantitatively assessed [125]. Species exhibiting a high branch formation rate

formed ‘pellet-like’ structures with a distinct core, while species attributed with

a low branch formation rate formed hyphal aggregates without cores. Microscopic

analysis of early hyphal development is therefore essential if the formation of diverse

phenotypes is to be understood.

6.4.1 Growth and fragmentation of pellets in shake-flask culture

The characterisation of shake-flask culture conducted here indicated that the dis-

tribution of pellet sizes at any given point in time is dependent on both growth

and fragmentation. The depth of the ‘active’ region of A. oryzae pellets has been

estimated to be of the order of 100 – 300 µm [45], meaning that by 24 hours post-

inoculation, when pellets had attained a mean diameter of approximately 1.5 mm
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(Fig. 6.4), oxygen limitation had almost certainly set in at the pellet core. Fur-

thermore, considering that Carlsen and colleagues demonstrated a sharp increase

in ethanol concentration (indicating anaerobic metabolism) at the onset of pellet

fragmentation in A. oryzae just 35 hours post-inoculation [45], it seems likely that

in the shake-flask culturing conducted here, anaerobic conditions existed at the pel-

let core by the time fragmentation was observed (when t ≥ 72 h). Autolysis and

subsequent ‘hollowing’ of pellets may also offer an explanation for the reduction in

biomass, which was concurrent with pellet fragmentation.

However, if autolysis was solely responsible for pellet fragmentation, then it

might be expected that the fragmented pellets would continue to grow and biomass

would continue to increase. This was clearly not the case (Fig. 6.4a), suggesting that

the culture was nutrient-limited. Under these conditions, vacuolation of hyphae at

the pellet periphery may have weakened the structure of these cells [79], resulting in

shearing of the pellet boundary and a subsequent reduction in pellet size, while also

causing an increase in the number of relatively small mycelial objects in the media

(Fig. 6.6). It is possible that pellet fragmentation resulted from a combination of

mass-transfer limitations (perhaps leading to autolysis) and nutrient exhaustion.

As discussed in Chapters 3 and 4, contiguous, high-contrast staining of hyphae is

essential for accurate quantification of hyphal architectures using automated image

analysis. As such, quantification of pellet/hyphal fragments at the microscopic

level was not possible due to limited stain uptake by hyphae (Fig. 6.5). Indeed,

comprehensive assessment of micro-morphology in batch culture over a period of

days (rather than hours) are rare in the literature. One such study was conducted by

Müller and colleagues, who characterised the microscopic development of A. oryzae

up to 60 hours post-inoculation [152]. However, a relatively low resolution was

employed (×4 objective) and manual counts of hyphal tips were required. A higher

resolution examination was conducted by Carlsen and colleagues, but was restricted

219



6.4.2 LIMITATIONS OF MIXED-PHASE CULTURE FORMAT

to the first 18 hours of growth [45]. However, examination of microscopic structures

that result from pellet/hyphal fragmentation may be of limited value as such objects

will exhibit artificial ‘tips’ resulting from hyphal fragmentation. While it may be of

interest to identify points on hyphae at which breakage has occurred, discriminating

between ‘true’ tips and artificial tips using bright-field microscopy would be difficult

to achieve. However, an analysis of such fragments at the microscopic level could

be used to provide more complete data on the projected area of biomass elements

than that which was presented here.

More extensive morphological data could also be gathered through the micro-

scopic examination of pellets (such as that presented in Table 6.2). Pellet diameter

and circularity were quantified by Paul and colleagues by suspending pellets of A.

niger in water (to preserve the three-dimensional structure) in a Petri dish and

imaging with a macro-viewer [44]. However, given the problems associated with

hyphal staining encountered here, it is likely that stain uptake around the pellet

periphery would be poor in the latter stages of the fermentation. Furthermore, the

pellets encountered in this work were often far too large to microscopically image

in a single field of view, with pellet diameters of up to ∼ 7 mm measured at low

inoculum concentrations.

6.4.2 Limitations of mixed-phase culture format

Investigations into the feasibility of a mixed-phase culture format were limited by a

lack of morphological data; there was little potential for analysis of the macroscopic

form adopted by the organism (Fig. 6.8a to 6.8d). While microscopic examination

of membrane-immobilised cultures is possible (Chapters 3 & 4), the situation is

complicated somewhat when a liquid medium is employed, as the fungus must be

allowed to establish itself on the membrane (for the purpose of adherence). This

establishment prior to submerged incubation limits the ‘window’ during which mi-
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croscopic visualisation may be conducted, although a ‘snapshot’ at a particular

point in time is still possible. This difficulty may potentially be overcome by em-

ploying some form of ‘adhesive’ to fix spores to the membrane, such as poly-d-lysine

[4], obviating the requirement for pre-establishment. This may permit a detailed

assessment of early hyphal development in the mixed-phase system, although based

on the results presented here, it seems likely that the resultant growth would exhibit

a significant three-dimensional character.

There are reports in the literature of successful attempts to incorporate solid sup-

ports into liquid fermentation systems. While no significant influence on metabolite

production was found in this investigation, the use of polymeric membranes in liq-

uid culture has recently been discovered to result in elevated production in cultures

of Penicillium sp. LL-WF159 [54]. In addition, nylon supports were found to

substantially increase citric acid yield when employed in submerged cultures of A.

niger [48]. The increased production was attributed to the considerably lower dif-

fusion path in the immobilised mycelium compared to pelleted cultures. However,

morphological characterisation of immobilised biomass was limited to qualitative

assessment of images produced using scanning electron microscopy.

6.4.3 Macro-morphological influence of starch concentration

A significant macroscopic response was observed when the concentration of starch

in the media was increased (Fig. 6.8e to 6.8h). While it was not possible to inves-

tigate this influence at the microscopic level (due to high levels of artifact resulting

from suspended starch), evidence in the literature suggests that increasing sub-

strate concentration serves only to increase growth rate, without affecting micro-

morphological parameters. For example, Park and colleagues reported that the

branch formation rate of Mortierella alpine was independent of carbon concentra-

tion [124]. A similar conclusion was reached by Spohr and colleagues in the study
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of A. oryzae, where Monod kinetics were used to illustrate the effect of substrate

concentration on growth parameters [4]. However, Müller and colleagues reported

that, in A. niger and A. oryzae, the length of the apical compartment, the num-

ber of nuclei in the apical compartment and the hyphal diameter were regulated

in response to the surrounding glucose concentration [90]; variations in length of

approximately 100 µm were recorded for different growth rates. However, the con-

centrations of starch used in this study were likely to be high enough to ensure

that µ approximated µmax. Hence, variations in apical volume caused by changes

in specific growth rate seem unlikely.

The provision of additional substrate resulted in an approximately linear increase

in biomass levels (Fig. 6.9a); a similar linear increase in biomass for increasing

starch concentration was reported by Nahas and Waldemarin in the culturing of

A. ochraceus [206]. However, it is clear that not only did an increase in starch

concentration result in additional biomass, but a significant influence on morphology

was also observed, which may offer an explanation for the lower yields of α-amylase

per DCW. The growth form that resulted at high starch concentrations (Fig. 6.8h)

produced a much more turbid medium compared to that which prevailed at lower

substrate concentrations (Fig. 6.8e). The predominance of this ‘pulpy’ growth may

have caused mixing problems in the broth, resulting in mass transfer limitations

and a subsequent reduction in metabolite production.

A macro-morphological influence of substrate concentration has been reported

in other studies. For example, an increase in the pellet size of Mortierella alpina

was described for increasing carbon to nitrogen ratios (for C/N > 20), but when the

medium was enriched at a fixed C/N ratio of 20, the whole pellet size and the width

of the pellet annular region decreased with increasing nutrient concentration [93].

Papagianni and Mattey found that mean equivalent pellet diameter was inversely

related to glucose concentration in shake-flask fermentations of A. niger [48].
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6.4.4 Impact of carbon source variation

A limited macro-morphological influence of carbon source variation was observed

(Fig. 6.11), with the mean equivalent diameter of pellets cultivated in the presence of

starch being slightly less than that in the presence of maltose (approximately 10%)

and glucose (15%). It was also noted that biomass yield was 15 – 20% lower on starch

compared to maltose and glucose, which may suggest that the differences in pellet

size were linked to variations in the extent of mycelial growth. Although differences

in both pellet size and α-amylase production were discernible, relating both of

these parameters is not feasible in this case given the physiological implications of

varying carbon sources. A significant micro-morphological effect of carbon source

variation was not evident, although the mycelia analysed were relatively small and

unbranched (Table 6.1).

The high yield of α-amylase on starch compared to the low yield obtained on

glucose (Fig. 6.11) is consistent with other investigations into the effects of different

substrates. Agger and colleagues found that starch was the best inducer of α-

amylase production in both batch and continuous cultivation of different strains of

A. nidulans, compared with glucose, maltose and various mixtures of carbon sources

[213], while glucose has been shown to significantly repress α-amylase production in

A. oryzae [111]. Repression of α-amylase production by glucose was also reported

by Nahas and Waldemarin, who suggested lactose, maltose, xylose and starch as

suitable substrates for inducing α-amylase production in stationary culturing of

A. ochraceus [206].
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6.4.5 Influence of inoculum concentration on morphology and

metabolite production

The influence of inoculum concentration on both macro-morphology and α-amylase

production was significant (Fig. 6.13); a high inoculum concentration was preferable

for the formation of small pellets and, consequently, higher α-amylase activity. It

may be the case that a further increase in inoculum concentration beyond 1 ×

108 spores ml-1 leads to further reductions in pellet size and concomitant increases

in α-amylase yield, but whether filamentous growth (which has been found to be

preferable for α-amylase production from A. oryzae [45]) may be induced in such a

manner is unclear. Bizukojc and Ledakowicz proposed a linear relationship between

inoculum concentration (Ci) and the number of pellets per unit volume (npellets) that

resulted in cultures of A. terreus [47]:

npellets = a.Ci (6.6)

It was proposed that a constant number of spores (a ≈ 10, 400) formed the core

of each pellet. This indicated that while an increase in inoculum concentration

would result in a decrease in pellet size, this decrease was owing to a reduction in

available nutrients per pellet (and consequently, a reduction in the extent of growth)

rather than increased spore dispersal. This suggests that increasing the inoculum

concentration in cultures of A. terreus is unlikely to induce filamentous growth

and the same may also be true of A. oryzae, given that pellets are formed by this

organism through a similar agglomerative process [45]. Furthermore, if the number

of spores forming each pellet is constant, then the mean amount of biomass (X)

produced by each pellet is equal to the available nutrient concentration (S) divided

equally among all pellets:
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X = SYX/S .
1

npellets
(6.7)

where YX/S is the yield of biomass per unit volume of media. Taking the projected

area of pellets (Ap) to be proportional to biomass (Ap = b.X, b is a constant) and

substituting for npellets:

Ap =
bSYX/S

a
.

1

Ci
(6.8)

This is similar in form to the relationship between Dp and Ci shown in Figure 6.13a.

What is striking is the sensitivity of the system to relatively small changes in the

initial spore concentration, emphasising the need for strict maintenance of inocu-

lum suspensions and the accurate evaluation of spore viability. A large reduction

in the diameter of A. oryzae pellets for an increase in inoculum concentration of

approximately one order of magnitude was also reported by Truong and colleagues,

without having an appreciable effect on the ‘hairiness’ of the pellets (ratio of area

of outer filamentous zone to that of the core) [154]. However, the cultivations were

conducted in cassava starch processing waste-water, containing suspended solids,

which were shown to influence pellet formation. A similar range of variation in

inoculum concentration was also investigated by Xu and colleagues in the fermen-

tation of A. niger and while the observed differences in pellet size were significant,

the variation was approximately linear [74].

It should also be noted that a micro-morphological influence of variation in

inoculum concentration cannot be discounted, as it has been demonstrated that

increasing spore concentration causes an increase in the hyphal growth unit of A.

niger [159] and A. awamori [73], which may have implications for the relation-

ship proposed in Equation 6.3. However, the specific rate of α-amylase production

(IU mg-1 DCW h-1) has been reported as being closely coupled to the growth of

A. oryzae [111]. Furthermore, it was suggested by Carlsen and colleagues that the
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product of the specific hyphal branching rate (kb) and the maximal hyphal tip ex-

tension rate (ktip) may be related to the square of the specific growth rate of freely

dispersed cultures [45]:

µ2 = ktip.kb (6.9)

The branching kinetics of an organism can be reasonably described using ktip and

kb and, therefore, if specific α-amylase production is proportional to µ and µ is

independent of the inoculum concentration, then Equation 6.5 should hold true, in-

dependent of variations in branching rates. However, in the case of pelleted growth,

specific amylase production would be expected to decrease as the fermentation pro-

ceeds and more biomass becomes diffusion limited, which would also result in a

reduction in the specific growth rate. It must therefore be assumed that both µ and

the specific amylase production rate are dependent on Ci and microscopic analysis

is required to confirm the relationship between morphology and metabolite produc-

tion.

6.4.6 Supplementation of cultures with surfactant compounds

The lack of a reduction in pellet size in fermentations supplemented with Tween-

80 (Fig. 6.15a) is in disagreement with evidence in the literature suggesting that

the inclusion of surfactant compounds leads to smaller pellets and/or dispersed

growth. The presence of Tween-80 was found to have a dispersive effect in the

fermentation of T. reesei, with a ‘pulpy’ growth form resulting from its inclusion

[14]. However, a slight increase in the size of R. nigricans pellets was observed by

Žnidaršič and colleagues when cultures were supplemented with Tween-80, although

higher concentrations also resulted in some dispersed growth [15].

The increase in the number of suspended particles in the presence of Tween-80

may indicate that the dispersal of the hydrophobic spores is aided by the inclusion of
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surfactant compounds (Fig. 6.18). However, the resultant increase in pellet size for

some concentrations of Tween-80 (Fig. 6.15a) may suggest that hydrophobicity is

not the primary driver of pellet formation under these conditions. The hydrophobic

nature of dormant spores has been confirmed in investigations using atomic force

microscopy, but it has also been demonstrated that the surface properties of spores is

altered during the swelling process [217]. Indeed, Dague and colleagues have offered

evidence that spores of A. fumigatus become hydrophilic as they swell [218]; cell

surface hydrophobicity can have a significant influence on morphology in submerged

cultures [97]. However, Dynesen and Nielsen concluded that both electrical charge

and hydrophobicity affects pellet formation of A. nidulans, but spore agglomeration

cannot be attributed to these factors alone [94].

In cultures supplemented with Nonidet-P40 and Triton X-100, a reduction in

pellet size was observed (Fig. 6.20b), although, given the low levels of biomass, this

reduction may be owing to inhibited growth of the pellets, rather than a dispersive

effect (although some flasks did contain a considerable amount of free mycelia; not

shown); Triton X-100 was also reported to inhibit the growth of S. hygroscopicus

[100]. However, all three surfactants yielded increases in α-amylase yield, which

did not appear to be directly related to pellet size (Fig. 6.15b and 6.20b), as was

the case in modifying morphology via variations in inoculum concentration. It is

possible that the surfactants affected the microscopic development of the organism,

but examination of hyphal elements isolated from cultures supplemented with Non-

idet P-40 or Triton X-100 was not possible, as the detergents apparently inhibited

the staining of the hyphae (not shown). However, quantification of the growth of

A. oryzae on solid substrate in the presence of Tween-80 would seem to suggest

that the surfactants did not have a significant microscopic influence (Fig. 6.17).

However, given the different chemical structures and the inhibitory effects of Triton

X-100 and Nonidet-P40, coupled with the inherent environmental differences be-
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tween the submerged and solid-state systems, an influence at the microscopic level

(and possibly a physiological influence) cannot be ruled out.

There also exists the possibility that the presence of non-ionic detergents caused

an increase in cell permeability, resulting in greater diffusion into pellets and sub-

sequently raising the proportion of ‘active’ biomass. Such a conclusion was reached

in studies involving R. nigricans [15] and T. reesei [14], in which cultures were

supplemented with surfactants and an increase in metabolite production or biomass

yield (or both) was recognised. Correlations between the level of active biomass in

a culture and metabolite production have been demonstrated for A. niger [46] and

S. fradiae [221]. Alternatively, the increase in α-amylase activity observed in the

presence of non-ionic detergents may have been a result of enhanced activation of

the enzyme by the surfactants, rather than an increase in enzyme production by A.

oryzae. Yoon and Robyt found that supplementing a solution containing porcine

pancreatic α-amylase with 0.02% w/v Triton X-100 resulted in an increase in activ-

ity of approximately 40% [219]. Furthermore, the activity of Triton-supplemented

solutions remained stable over time, while the activity of a control solution (without

surfactant supplementation) declined rapidly.

6.5 Conclusions

Fungal morphology is a critically important fermentation parameter, impacting

metabolite production and environmental conditions both directly and indirectly.

While the relationship between growth form and metabolite yield is sometimes am-

biguous, there is a substantial body of evidence suggesting that many processes

may be optimised through the selection of environmental variables that favour one

particular growth form over others. The original aim of the experimentation de-

scribed in this chapter was to translate the successful quantification of microscopic
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development on solid substrates (Chapter 5) into the submerged culture format;

characterising the morphology of A. oryzae in a basal system, then by effecting

perturbations, influencing variation at the microscopic level that may provide an

insight into macroscopic structure formation and α-amylase production. While vari-

ations in pellet formation were observed in response to changes in certain param-

eters (varying substrate concentration, inoculum concentration, supplementation

with surfactants), microscopic characterisation of branching behaviour was compli-

cated by a variety of factors (presence of solid particles, spore agglomeration, poor

stain uptake). However, while the original aim of relating microscopic architecture

to macroscopic form was ultimately unattained, several significant findings were

reported.

Cultivation of A. oryzae in a basal submerged format resulted in a relatively

homogeneous population of pellets, the sizes of which were approximately normally

distributed prior to the onset of fragmentation. An exhaustion of nutrients seems to

be the likely cause of pellet break-up, although oxygen limitations within the pellets

and the onset of autolysis may also have been responsible. Investigations involving

different carbon sources support the consensus that starch is the preferred substrate

for inducement of α-amylase activity in A. oryzae, while the presence of glucose is

associated with low levels of expression. However, increasing starch concentration

above approximately 1.0% (w/v) seemed to have a negative impact on α-amylase

activity per unit dry-cell weight, possibly due to limited mixing at higher substrate

concentrations. The influence of inoculum concentration demonstrated here is in

general agreement with other reports in the literature; higher spore concentrations

result in smaller pellets, which are favourable for metabolite production. The sup-

plementation of fermentation media with surfactant compounds was favourable for

increased α-amylase activity per unit dry cell weight, although lower biomass levels

were recorded in the presence of Triton X-100 and Nonidet P-40. The reason for
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this increase in α-amylase expression is not fully understood, although an effect

on micro-morphological development cannot be ruled out; a physiological influence

is also possible. No significant variations in microscopic parameters were observed

when cultivations were conducted on a solid substrate in the presence of Tween-80,

although the possibility that surfactant compounds effected micro-morphological

variation cannot be completely discounted.

Accurate morphological quantification often depends on the presence of free

mycelial elements for characterisation of the branching behaviour of the organism.

However, many organisms, such as Aspergillus oryzae, typically grow in the pelleted

form, as the spores of this fungus agglomerate as they swell when cultivated in

submerged medium; some means of disrupting this mechanism is therefore required

in order to analyse microscopic architectures. A lowering of the culture pH has been

utilised in other studies as a means of achieving this, but an acidic medium has also

been shown to adversely affect both growth and product formation. Furthermore,

the pelleted growth form has been demonstrated as optimal for many processes and

is therefore an industrially-relevant phenotype, demanding of attention in itself.

Some form of universal measure that may be applied to all growth forms would

obviate the requirement for the presence of ‘free’ mycelia in the culture and allow

direct comparison of different phenotypes, without the need for classification of

these structures.
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Chapter 7

Characterisation of the Relationship Between

Fractal Dimension and Branching Behaviour in

Filamentous Microbes

7.1 Introduction

The optimisation of fermentation processes involving filamentous microorganisms

requires an in-depth knowledge of the relationship between biomass and metabo-

lite production. The specific morphological form adopted by an organism, which

is dependent on a variety of factors [220], is of critical importance to the clarifi-

cation of this dependency, as particular phenotypes are associated with maximum

productivity. In particular, the extent to which an organism forms branches is often

of interest, as evidence in the literature suggests that metabolite excretion occurs

primarily at hyphal tips [107, 216]. With the advent of image analysis systems, sig-

nificant progress has been made in furthering the understanding of the link between

morphology and productivity [48]. However, the accurate quantification of complex

morphologies still represents a major challenge in process optimisation.

At the macroscopic level, the dispersed mycelial morphological form may dom-

inate, or an aggregation of ‘free’ hyphal elements may result in mycelial ‘clumps’
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being predominant. Alternatively, dense pellet structures, which may be up to

several millimetres in diameter, may result from the aggregation of spores prior

to germination, the aggregation of spores and germ tubes or the aggregation of

mycelia. In fermentations of certain microorganisms, such as Aspergillus oryzae

and Aspergillus terreus, there is evidence that pellet-formation is driven by spore

agglomeration [45, 47] and, as such, the occurrence of ‘free’ mycelia may be rare.

The characterisation of these complex macro-morphologies represents a far greater

challenge to the fungal biotechnologist, as individual hyphae cannot be isolated and

enumerated. As such, the accurate determination of the extent of branching of the

organism is often impossible. These large aggregates of biomass are convention-

ally characterised in terms of projected area (Ap), perimeter length (P ), circularity

(C = 4πApP
−2), or various other interpretations thereof [5, 72, 177]. As different

morphological parameters are often utilised depending on the growth form present,

a considerable amount of effort has been expended in designing imaging systems

capable of discriminating between these different phenotypes [5, 72]. An alternative

approach to morphological quantification employs the use of fractal geometry to

characterise the spatial distribution of an organism.

7.1.1 What are fractals?

The term ‘fractal’ geometry, derived from the Latin fractus meaning ‘broken’ or

‘fractured’, was first used by Mandelbrot [222] to describe objects that are ‘self-

similar’ (similar at different scales). More specifically, Mandelbrot described a frac-

tal as ‘a rough or fragmented geometric shape that can be split into parts, each of

which is (at least approximately) a reduced-size copy of the whole.’ There are many

examples of such objects in nature, such as clouds, mountain ranges, coastlines and

snow-flakes. One of the more commonly cited examples of a naturally-occurring

fractal is perhaps the fern (Fig. 7.1), which displays a similar morphology at differ-
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Figure 7.1: A fern is an example of a naturally-occurring fractal, exhibiting a

similar form at different scales.

ent scales: a central ‘stem’ from which pointed ‘leaves’ emerge. Fractal geometry

has also been made use of in art (Fig. 7.2), long before the concept was formalised

mathematically.

Several studies have also demonstrated that certain filamentous microorganisms

can be considered self-similar structures [110, 159, 172, 183, 205, 223, 224], as do sev-

eral bacterial strains of Gram-negative rods, under certain conditions [225]. Effects

of different grazing densities of collembolans on colonies of the fungus Hypholoma

fasciculare [180] and trophic responses of Phanerochaete velutina mycelial systems

to nutrient stimuli [181] were also quantified in the same manner. Fractal geome-

try has also been used as a means of standardising mycelial inocula for submerged

fermentations [226].

The concept of fractal or fractional dimension may be considered as follows [227].

Consider a straight line of dimension one and of length X. For any positive integer

N , the segment may be exactly decomposed into N non-overlapping segments of

length X/N . Each sub-segment may then be considered a scaled version of the

original, where r(N) = 1/N is the scaling ratio. This concept may be extended to
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Figure 7.2: Many examples of Islamic art exhibit fractal properties (left), while

self-similarity is clearly visible in Hokusai’s The Great Wave off Kanagawa (right).

two dimensions, whereby a rectangle of length X and breadth Y may be sub-divided

into N smaller rectangles, each of length X/
√
N and breadth Y/

√
N , in which case

the scaling ratio is r(N) = 1/
√
N . This relationship may be generalised as follows:

r(N) =
1

N1/D
(7.1)

The fractal dimension (D) is therefore given by:

D = − logN

log r(N)
(7.2)

This principle is illustrated by the construction of the von Koch curves (Fig. 7.3).

Beginning with a straight line of length X, the line is divided into three segments,

each of length X/3. A fourth segment of length X/3 is added and the four segments

are arranged as shown, producing the triadic von Koch curve. In this case, r(N) =

1/3, as each of the individual segments is one third the length of the original, and

N = 4. Therefore:

D = − log 4

log 1/3
=

log 4

log 3
≈ 1.262

Alternatively, if r(N) = 1/4 and N = 8, the result is the quadratic von Koch
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curve, for which D = 1.5. Iteratively repeating this ‘divide and construct’ procedure

results in curves of increasing visual complexity, which are not easily described using

Euclidean measures. However, the basis for their construction is relatively simple,

as is their subsequent decomposition into elementary, geometrically identical sub-

structures, and a single dimension (D) may be used to describe the curves.

7.1.2 Quantifying the fractal dimension

One of the earlier approaches to fractal dimension evaluation, termed the ‘Richard-

son walk’ [228], originally described the effect of scale when measuring a coastal

perimeter on a map using dividers. As the step size (s) is reduced, the measured

perimeter (P ) increases, with more of the coastal irregularities included in the mea-

sure. A plot of logP (s) versus log n will result in a straight line, the slope of which

is related to the fractal dimension (D) by:

P (s) = as1−D (7.3)

where a is a constant. The range of scales over which the expression holds true is

obviously limited at the lower end by the resolution of the map and at the upper

end by the size of the coastline being measured.

A more accurate implementation of such a method for the analysis of objects in

digital images is based on the calculation of a Euclidean distance map (EDM) [229].

The grey-level histogram (h(x)) provides the luminance value at each distance (d)

from the ‘ultimate point’, the centre of the EDM. The perimeter, P , at a distance

d from the object’s centre may be calculated according to:

P (d) =
1

d

d∑
x=0

h(x) (7.4)

In this instance, d may be thought of as the scale or step size, as a lower value will

effectively result in a lower ‘resolution’ measure of the object perimeter and vice-
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i = 0

i = 1

i = 2

i = 3

i = 4

Figure 7.3: The triadic (left) and quadratic (right) von Koch curves, where i

denotes the number of iterations.
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versa. A plot of logP (d) versus log d produces a straight line (Fig. 7.4). However,

such an approach is not suitable for the analysis of hyphae, as the EDM of such

images typically contains a very small number of grey levels due to the elongated

nature of hyphae.

The ‘box-counting’ method has been by far the most common in the analysis

of filamentous microbes [184]. This approach entails covering the mycelium with a

grid of side length ε and counting the number of boxes, N(ε), that are intersected by

the mycelium. If the mycelium is a true fractal, then a relationship of the following

form should be found:

N(ε) = cε−D (7.5)

where c is a proportionality constant. The fractal nature of mycelia has been stud-

ied at two distinct levels using the measures of the surface fractal dimension (DBS),

effectively allowing discrimination between systems which are fractal only at their

boundaries, and the mass fractal dimension (DBM) [159, 184]. However, it has been

suggested that the fractal dimension is often not sufficient for morphological char-

acterisation, as microorganisms can sometimes appear to have different branching

patterns, despite having similar values for fractal dimension [230].

7.1.3 Aim of the work in this chapter

While numerous studies have been conducted in which fractal analysis is utilised

to quantify morphology, few have attempted to link fractal dimension with conven-

tional morphological parameters. Fractal analysis is of significant potential value

in the study of filamentous microorganisms, particularly as it lends itself to the as-

sessment of all gross morphological forms that may be encountered. However, there

is a need to develop further the relationship between the fractal dimension within

a population of mycelia and the branching behaviour within that population. The
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(a) (b)

(c)

lo
g
P
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)

log d

Figure 7.4: Enumeration of the fractal dimension based on the Euclidean distance

map (EDM). (a) Binary representation of object to be analysed. (b) EDM of object

in ‘a’, in which grey values are inversely proportional to the distance from the nearest

background (white) pixel. (c) The fractal dimension may be taken as the slope of a

logP (d)− log d plot (from Equation 7.4).
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aim of this chapter was to investigate an alternative approach to fractal analysis,

based on a survey of the mycelial boundary, and attempt to correlate directly the

hyphal growth unit (Lhgu) to the fractal dimension. In order to provide a greater

range of Lhgu values, Penicillium chrysogenum was included in this investigation,

as it has been reported to exhibit a more densely branched mycelium with respect

to the strain of A. oryzae characterised in Chapter 5 [104, 121].

7.2 Materials & methods

7.2.1 Inoculum preparation

Penicillium chrysogenum (IMI 321325) spores were harvested from malt agar (Lab

M) slant cultures by addition of 5 ml phosphate-buffered saline (PBS; pH 7.2, Ox-

oid Dulbecco ‘A’; 0.85% w/v) containing Tween 80 (0.1% v/v). Conidiospores

were dislodged using a sterile swab, briefly mixed, and the suspension was filtered

through sterile glass wool to remove hyphae. The inoculum was standardized using

a Neubauer chamber to yield a stock concentration of 2 × 106 spores ml-1, glyc-

erol added to a final concentration of 20% (v/v) and aliquots stored at −20◦C.

The viability of spores after freezing was found to be approximately 47% of stock

concentration (pour plate method, malt agar, 36 h incubation).

7.2.2 Microorganism cultivation

The basal medium used for solid state fermentation of A. oryzae was as described

in Section 2.3 with 10.0 g L-1 soluble starch and 17.0 g L-1 Agar No. 1. Nonidet

P-40 or Triton X-100 were added to yield a final concentration of either 0.1% or

5.0% w/v. The media was adjusted to pH 6.0 before autoclaving. Solid state

fermentation of P. chrysogenum was carried out using the following: malt agar,

malt agar supplemented with CaCl2.2H2O (0.08% w/v) or FeCl2.4H2O (0.11% w/v),
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rice, orange and a mixture of rice and bulgar wheat (1:1 w/w). Rice and rice-bulgar

wheat were prepared by steeping in water and autoclaving (121◦C for 15 minutes)

before transfer to sterile Petri dishes. Orange was prepared for use by surface

swabbing with alcohol and dissection with a sterile knife. Cell immobilisation,

cultivation conditions and processing of culture for image analysis were as described

in Section 2.4.

Submerged fermentation of A. oryzae was carried out in a 2 L Benchtop Fer-

menter (BioFlo 110, New Brunswick Scientific). The approximate internal diameter

of the vessel was 0.13 m and it had a working volume of 1.5 L. Agitation was pro-

vided by two Rushton turbines with a Di/T ratio1 of 0.4 operated at 200 rpm.

A pipe sparger was used to aerate the culture at an initial rate of 1.0 vvm. The

fermenter was run without dissolved oxygen or pH control and the broth temper-

ature was maintained at 30◦C. Inoculum work-up consisted of three shake flask

cultures (250 ml, 20% working volume) inoculated with 5 × 107 spores ml-1 and

incubated at 30◦C (200 rpm for 48 hours). The medium used for fermentation and

inoculum work-up was as described above (Agar No. 1 and detergents omitted).

Sample preparation for fluorescent microscopy and image capture were as described

in Section 2.4.

7.2.3 Enumerating the fractal dimension

In all cases, only ‘free’ mycelial elements, exhibiting minimal overlapping of hyphae,

were considered for image analysis, so that comparisons could be drawn between the

fractal dimension and the hyphal growth unit. The generation of binary images and

the enumeration of the hyphal growth unit were as described in Chapter 3. In the

case of calcofluor white-stained samples, a pre-set grey-level threshold was used, as

the non-uniform nature of the stain uptake complicated automated segmentation.

1Di is the impeller diameter and T represents the vessel’s internal diameter.
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The fractal dimension, D, of an object, O, was determined by first locating the

object boundary in a binary image (all foreground pixels bordering background),

which can be thought of as a curve consisting of a set of N coordinates, (xn, yn).

From this series of points, a signal, f(n), can be constructed as follows:

f(n) =
√

(xn − xc)2 + (yn − yc)2 for all 0 < n < N (7.6)

where (xc, yc) is the average location of all (x, y) ∈ O (Fig. 7.5). If f(n) is a ‘fractal

signal’, then the following relationship holds true [231]:

P (ω) =
c

ωβ
(7.7)

where P (ω) = |F (ω)|2, F (ω) is the Fourier transform of f(n), β = 2q, q is the

Fourier Dimension and c is a constant. Taking the log of this equation yields:

logP (ω) = −β logω + c (7.8)

D is related to β by [231]:

D =
5− β

2
(7.9)

A value for β can therefore be determined by linear regression of a plot of logP (ω)

against logω, excluding the DC component (Fig. 7.6). All algorithms were imple-

mented in Java using ImageJ [114].

7.3 Results & discussion

An analysis of the development of A. oryzae on malt agar showed that both D

and Lhgu increased over time and both tended towards approximately constant

values (Fig. 7.7). This suggests that the value of Lhgu specific to A. oryzae under

these growth conditions is reflected in the fractal dimension of the mycelia. The
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Figure 7.5: Illustration of algorithm for determination of fractal dimension (D)

of mycelial structures. Distance, d, between the centroid, c, and the boundary is

plotted for each position on the boundary, p.
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Figure 7.6: Illustration of algorithm for determination of fractal dimension (D)

of mycelial structures. The fractal dimension is derived from a log-log plot of the

Fourier domain representation of the signal.

fractal dimension of Ashbya gossypii and Streptomyces griseus were also found to

increase with time during the colonisation of solid substrates [184]. A. oryzae and

P. chrysogenum were grown under a variety of different conditions (Table 7.1),

producing mycelia of varying size and dimension that were quantified in the same

manner. The resultant mean values of D obtained for each population were plotted

against the mean values of Lhgu to yield an approximately logarithmic relationship

(Fig. 7.8):

D = a logLhgu + b (7.10)

where a and b are constants. This result demonstrates a strong correlation between

the branching behaviour of mycelia and their space-filling properties. However, it

has been shown in other studies that fractal dimension tends to increase as projected

area of mycelial structures increases [159]. This may also be the case in this study, as
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Figure 7.7: Temporal variation in mean hyphal growth unit (Lhgu; �) and the

mean fractal dimension (D; �) of populations of A. oryzae cultivated on malt agar.

Error bars represent 95% confidence intervals. Produced using images generated in

Chapter 5.

higher values of D tended to be biased toward high values of Ap (Fig. 7.9), but this

result is inconclusive, as the sizes of mycelia analysed fell within a comparatively

small range.

This result depicts a clear relationship between the branching behaviour of fila-

mentous organisms and the fractal dimension of the resultant mycelial architectures,

further emphasising the potential use of fractal analysis in morphological quantifica-

tion. An ability to extract information on the branching behaviour of an organism

by surveying the shape of the mycelial boundary would be highly advantageous

in the study of more complex conformations where measures such as the hyphal

growth unit are not readily obtainable. Furthermore, as has been demonstrated

in other studies [159, 205, 223, 226], fractal analysis can be applied regardless of

the gross morphological form that results in a particular process, allowing a more
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Table 7.1: Populations of filamentous fungi analysed, where n is the number of

mycelia in each population and the total hyphal length (Lth) is presented as mean

±95% confidence interval

Organism t (h) Substrate n Lth (µm)

A. oryzae 14.0 Malt Agar1 86 85± 16

... 15.4
... 87 117± 21

... 16.9
... 82 169± 41

... 18.3
... 78 341± 71

... 19.7
... 83 305± 66

... 21.1
... 67 428± 98

... 22.6
... 59 336± 101

... 24.0
... 76 397± 91

... 18.0 Solid medium, Nonidet P-40 5.0% (w/v) 30 190± 44

... 24.0 Solid medium, Nonidet P-40 5.0% (w/v) 26 654± 177

... 15.0 Solid medium, Triton X-100 0.1% (w/v) 44 177± 39

... 18.0 Solid medium, Triton X-100 0.1% (w/v) 35 269± 95

... 46.0 Liquid Medium 38 874± 198

... 72.5
... 56 671± 116

... 94.0
... 44 527± 126

P. chrysogenum 20.0 Malt Agar 69 116± 18

... 27.0 Malt Agar 46 378± 73

... 20.0 Malt Agar, CaCl2.2H2O 0.08% (w/v) 68 131± 20

... 27.0 Malt Agar, CaCl2.2H2O 0.08% (w/v) 32 296± 52

... 27.0 Malt Agar, FeCl2.4H2O 0.11% (w/v) 58 140± 26

... 20.0 Orange 39 180± 36

... 19.0 Rice 114 255± 31

... 20.0 Rice & Bulgar Wheat 42 400± 121

1 Results for A. oryzae on malt agar were produced using the images generated in Chap-

ter 5.
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Figure 7.8: Relationship between the mean hyphal growth unit (Lhgu) and the

mean fractal dimension (D) of populations of Aspergillus oryzae (�) and Penicil-

lium chrysogenum (�) mycelia, grown under a variety of different conditions. A

logarithmic relationship of the form D = a logLhgu + b exists between the two pa-

rameters, where a = 0.14 and b = 0.65 (—; R2 = 0.95). Error bars represent 95%

confidence intervals.

thorough compilation of data. However, a more complete examination, including

more complex structures, is necessary to validate the universal application of fractal

analysis.

It has been previously suggested that the box-counting method of fractal dimen-

sion enumeration may not be suitable for the analysis of small, relatively unbranched

hyphal structures [159, 184]. The accuracy of the box-counting method relies on an

object being sufficiently great in size so as to allow a reasonably large variation in

ε (approximately one order of magnitude has been proposed [184]). Given a value

of approximately 4 µm for εmin (hyphal width is approximately 2 – 4 µm), this

indicates a minimum value of approximately 40 µm for εmax in this study, equating
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Figure 7.9: Relationship between mean fractal dimension (D) of populations of

Aspergillus oryzae (�) and Penicillium chrysogenum (�) mycelia and mean pro-

jected area (Ap).

to a minimum object ‘diameter’ (L) of 160 µm (assuming εmax ≤ L/4 [184]). How-

ever, mycelia smaller than this dimension were often encountered, particularly in

the case of P. chrysogenum. Further, the number of evaluations of N(ε) is restricted

by the image resolution (approximately 1 µm per pixel in this study). This can ob-

viously be overcome by increasing the image resolution, but this in turn results in

a significant increase in memory usage and processing time.

By enumerating the fractal dimension based on the object boundary, considera-

tions of resolution are obviated to some degree, as the boundary can be represented

geometrically as a series of equations, or indeed as a single spline, to be sampled as

often as is necessary to provide sufficient signal resolution. However, image resolu-

tion is still an important consideration, as low-resolution images may not contain an

accurate representation of the object boundary. Consideration must also be given

to the means used to locate the boundary. In this study, hyphae were uniformly
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stained and object segmentation from background was accurately performed by

grey-scale thresholding. In cases where staining is non-uniform, thresholding may

not be suitable and some form of edge-detection algorithm may be required.

A similar examination of spectral periodicity was employed by Jones and col-

leagues in their study of the positional relationship between acid phosphatase intra-

cellular concentration and hyphal cellular differentiation in Pycnoporus cinnabari-

nus. Acid phosphatase was detected histochemically on membrane-bound colonies,

which were imaged using a camera fitted with a macro-lens. In the resulting image,

a series of one-dimensional ‘walks’ were made along random colony radii and the

fractal dimension calculated according to the power spectrum of the resultant lu-

minance profile along each ‘walk’. Different concentrations of an organic dye were

used to effect substrate induction of the enzyme response, which was shown to be

statistically correlated according to a fractal power law [232].

While numerous studies have been conducted in which fractal analysis is utilised

to quantify mycelial morphology, few have attempted to link fractal dimension with

conventional morphological parameters. However, links have been established be-

tween fractal dimension and productivity in some processes. For example, in the

optimisation of Funalia trogii fermentations, both fractal dimension and mean pel-

let area were monitored; while no link was established between the two parameters,

it was suggested that a relationship may exist between fractal dimension and de-

colourisation of reactive black 5 [205]. A positive correlation was also found between

fractal dimension and phenol-oxidase expression by Pycnoporus cinnabarinus, with

both parameters being regulated by media composition [110].

Where links between fractal dimension and conventional Euclidean measures of

morphology have been made, the dependency is often either ambiguous or qualita-

tive in nature. An approximate correlation (R2 = 0.614) was found between the

convexity (defined as the ratio between convex perimeter and respective perime-
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ter) of Cupriavidus necator DSM 545 flocs and DBS [233]. Fractal dimension was

shown to be related to broth rheology in the submerged fermentation of Cephalospo-

rium acremonium M25 and a link with other morphological measures, such as the

number of arthrospores in the media, was also suggested, but not explicitly demon-

strated [223]. A relationship between hyphal growth unit and fractal dimension

of mycelia was previously noted in submerged fermentations of Aspergillus niger,

but the differences in the recorded values of Lhgu were ambiguous [224]. Further

studies of A. niger revealed that medium composition had a significant impact on

the fractal dimension, the changes in morphology reflected in variations in the size

and compactness of mycelial aggregates [159]. The local fractal dimension (deter-

mined by the concentric circles method) within a colony of Trichoderma viride was

found to increase with branching frequency (occurrence of ‘loops’ in the mycelium),

although the result was rather qualitative in nature [172]. However, successful at-

tempts have been made in associating fractal dimension with growth kinetics. While

colony expansion rates were found to differ between different strains of Cryphonec-

tria parasitica, fractal dimension was found to correlate with the expansion rate,

independent of strain [183].

7.4 Conclusion

The optimisation of fermentation processes involving filamentous microbes requires

extensive knowledge of morphological development, as productivity is heavily in-

fluenced by the specific phenotypic form adopted. The accurate quantification of

morphological variation in vegetative mycelia is therefore of the utmost importance,

but the characterisation of complex morphologies represents a significant challenge.

The utility of conventional measures employed in the analysis of these microbes

(such as projected area, perimeter length and circularity) is limited, as they reveal
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little about the extent of branching of the organism, which is known to be related

to metabolite production.

An alternative approach to morphological quantification employs the use of frac-

tal geometry to characterise the spatial distribution of an organism. The self-similar

nature of mycelial structures has been demonstrated in numerous studies and there

is clearly significant potential benefit in the application of fractal analysis to filamen-

tous microorganisms. What has been lacking in these studies is a firm link between

fractal dimension and conventional morphological parameters, such as the hyphal

growth unit. This study indicates a strong correlation between these two parame-

ters in the assessment of ‘free’ mycelial elements and further investigation involving

a wide range of complex conformations is necessary. Future work will focus on eluci-

dating a universal relationship between fractal dimension, branching behaviour and

productivity, independent of the gross morphological form encountered. It is hoped

that this work will lead to a rapid and efficient means of morphological quantifica-

tion for use in industrial processes.
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Chapter 8

General Discussion

The principal aim of this study was the design of a system capable of high-speed,

high-throughput assessment of the morphology of filamentous microorganisms at

both the microscopic and macroscopic levels. The open-source application, Im-

ageJ [114], was selected as the platform for software development and the result-

ing programme is capable of the rapid analysis of a bank of images, permitting

near-‘real time’ quantification of fungal morphology and the compilation of popu-

lation data. In parallel with software development, a means of presenting fungal

conformations in two-dimensional format using membrane-immobilisation was in-

vestigated, facilitating the production of samples amenable to rapid analysis [234].

The newly-created imaging routines were combined with the immobilisation assay

to examine the growth kinetics of Aspergillus oryzae on a solid substrate [235] and

a direct correlation between hyphal growth unit (Lhgu) and fractal dimension (D)

was successfully derived for A. oryzae and Penicillium chrysogenum [236]. Further

experimentation focussed on investigating the link between the micro-morphology,

macro-morphology and α-amylase production of A. oryzae in submerged culture;

a correlation between pellet size and α-amylase production was obtained for var-

ious inoculum concentrations (Fig. 6.13). Attempts were subsequently made to

induce dispersed mycelial growth in A. oryzae by supplementing cultures with var-
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ious surfactant compounds. While a significant influence of non-ionic detergents

on α-amylase production was found (Figs. 6.14 & 6.20b), no direct dependency on

morphological variation was determined.

The outcome of fermentation processes involving filamentous microbes depends

heavily on the morphological form adopted by the organism, as this can have a

significant influence on process productivity, both directly and indirectly [8, 220].

Despite the increase in sophistication of process monitoring equipment since the

inception of the biotechnology industry in the early-mid twentieth century, the ac-

curate evaluation of morphological variation only became possible with the increased

availability of affordable computer hardware over the last two decades, permitting

the use of digital image analysis to fulfil this task. Although the compilation of

quantitative data was possible prior to this, the methods involved were typically

laborious and time-consuming [1, 3] and, as such, were often overlooked.

However, despite early progress in the development of automated imaging sys-

tems for the purpose of morphological quantification [5, 9], many authors still in-

dicate a dependence on manual intervention for the production of accurate results

[10–13, 121, 140, 148], prolonging processing time. Furthermore, many recent publi-

cations also rely on qualitative morphological descriptors, such as ‘smooth’, ‘fluffy’,

‘pulpy’, ‘pelleted’ and ‘filamentous’ [14, 15, 99]. Such descriptions introduce a de-

gree of ambiguity and subjectivity into published results and comparisons between

different qualitative reports can result in apparent disagreement. For example, con-

tradictory reports exist in the case of the production of citric acid from A. niger

[44, 95], but this disagreement may result from the ambiguous classification of fun-

gal conformations in earlier studies, resulting from a lack of image-analysis methods

to quantify morphology. As such, a precise relationship between morphology and

metabolite production is difficult to ascertain.

The imaging routines described in this study have much in common with those
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previously described elsewhere. At the microscopic level, spores were analysed in

terms of projected area (Ap) and circularity (C = 4πApP
−2 or C = P 2(4πAp)

−1),

while hyphal elements were analysed in terms of simple metrics such as their total

length (Lth) and the total number of tips per element (N), from which the hyphal

growth unit (Lhgu = Lth/N) may be calculated. This simple measure is still often

used as a means of comparing the branching behaviour of various organisms under

different conditions [72, 104, 159, 175, 185]. At the macroscopic level, pellets were

analysed simply in terms of projected area, which may subsequently be expressed

as equivalent diameter (D = 2
√
Ap/π) if the pellets are considered to be approxi-

mately spherical. While this may seem to be of limited value, projected area and/or

diameter are common measures of fungal biomass and many studies have derived

relationships between one or other of these parameters and metabolite production

[46, 50, 72, 74, 96].

For more extensive data on pellet morphology, microscopic analysis is required,

given that the pellet perimeter is delineated by hyphae 2 – 3 µm in diameter. An

accurate representation of the pellet at the microscopic level would permit the quan-

tification of parameters such as the perimeter (P ), the convex perimeter (Pc) and the

projected convex area (area including ‘holes’; Ac). These could then in turn be used

to calculate other morphological descriptors, such as circularity, roughness (P 2/Ap)

[151], compactness value (Ap/Ac) [50, 107, 152] and convexity (P/Pc) [48, 49], pro-

viding a more thorough characterisation of the pelleted morphology. However, the

pellets of A. oryzae observed in this work were typically far too large (up to 6 mm

in diameter) to image microscopically and, as such, more detailed measurement is

difficult to achieve.

Routines for the microscopic analysis of hyphal elements, however, were designed

in such a manner as to allow a more in-depth characterisation of mycelia, should it

be required. This was achieved by modelling the mycelium as a ‘graph’ consisting of
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‘nodes’ or ‘vertices’ (hyphal tips and branch-points) and ‘edges’ (inter-nodal hyphal

segments). Such a capability would be useful in characterising the foraging strategies

of filamentous microbes on solid substrates. While the hyphal growth unit is a use-

ful indicator of the ‘average’ branching behaviour of a mycelium, it reveals nothing

about the spatial arrangement of the individual hyphae (Fig. 8.1), or how this ar-

rangement may be affected by a change in environmental conditions (such as a step-

change in nutrient concentration). Hyphal ‘spiralling’, which can result from a high

coefficient of friction between the hyphae and the substrate [32], can also have a sig-

nificant impact on the morphology of a mycelium cultivated on solid substrate. By

recording the specific location of each tip or branch-point (as co-ordinates in a Carte-

sian plane, for example), an evaluation of tip-to-tip, branchpoint-to-branchpoint or

tip-to-branchpoint distances is possible. Although nutrient concentration, for ex-

ample, is known to influence the directionality of mycelial growth [32], studies of

this behaviour are rare. Hitchcock and colleagues demonstrated increased hyphal

density in regions of increased nutrient concentration, but the analysis was con-

ducted at a relatively low resolution: fungal colonies were projected onto lith film,

which was subsequently imaged using a flat-bed scanner.

While the image processing routines have much in common with those described

in other studies, the principle advantage of those described here over others is full

automation, which was demonstrated to produce results in close agreement with

those produced through semi-automated analysis (Fig. 5.7). Furthermore, the out-

put is stable when input parameters are varied over a small range (Figs. 5.6, 5.12

& 5.13). Image processing applications reported in the literature are sometimes

described as ‘semi-automatic’, but the term can be used rather liberally, as it may

refer to manual image segmentation and object detection followed by automated

object measurement [79], which is essentially manual analysis.

In parallel with software development, a means of presenting fungal conforma-
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Lhgu

Figure 8.1: Two mycelia with the same hyphal growth unit, but with different

directionality of growth, and a third exhibiting signs of hyphal ‘spiralling’. Although

the length of the hyphal growth unit is similar in each case, the spatial distribution

of the hyphae is quite different.

tions in an essentially two-dimensional format was investigated [234]. Nitrocellulose-

immobilised elements of A. oryzae were successfully cultivated on malt agar and key

developmental states, such as spore germination and the onset of hyphal branching,

were clearly observable (Fig. 4.3). Furthermore, the application of microscope im-

mersion oil permitted the use of high-magnification oil-objectives for routine capture

of fine details such as septation (Fig. 4.4). A modification of this immobilisation

technique was also found to be useful for examining samples taken from submerged

culture, using both conventional light or fluorescence microscopy (Figs. 4.10 & 4.11).

The newly-developed imaging routines were combined with the immobilisation

assay to examine the growth kinetics of Aspergillus oryzae on a solid substrate
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[235]. Detailed analysis was made of a population of spores from inoculation to

germination and hyphal elements from 14 to 24 hours post-inoculation, with data

calculated for spore swelling rate, biomass specific growth rate and mean hyphal

tip extension rate (Figs. 5.2, 5.7 & 5.9). The growth data was consistent with

previously-published empirical expressions (Equations 5.4 – 5.9) and the parameters

derived, such as the specific growth rate (µ = 0.24 h-1) and the specific branching

rate (kb = 0.0023 tips µm-1 h-1), were in close agreement with previously published

figures for A. oryzae [45, 106]. To the best of the author’s knowledge, this is

the first detailed, microscopic study of the growth kinetics of a large population

of mycelia in a solid state system and there is potential to extend this work to

the examination of other microbes growing under similar conditions. Immobilised

cultures have previously been utilised for the study of filamentous moulds, but this

involved the continuous monitoring of a small number of colonies to derive kinetic

data [1]. While such physiological studies provide invaluable data on the extension

rates of individual hyphae, for example, a more extensive population-based analysis

is desirable for the characterisation of industrial processes.

Further experimentation focussed on investigating the relationship between the

micro-morphology, macro-morphology and α-amylase production of A. oryzae in

submerged culture. A simple measure of pellet projected area was used as a means

of quantifying and comparing different morphological forms in the frequent ab-

sence of ‘free’ mycelial elements, the presence of which would have permitted the

characterisation of branching behaviour of the organism. However, a correlation be-

tween pellet size and α-amylase production was derived when increases in inoculum

concentration triggered morphological variation (Fig. 6.13). These findings were

consistent with other reports in the literature which suggest that smaller pellets

typically favour increased metabolite production [46, 50, 74, 96].

The various investigations into the behaviour of A. oryzae in submerged culture
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were often complicated by the agglomerative nature of the fungus’ spores, which

typically resulted in low levels of ‘free’ mycelial elements. Other morphological stud-

ies of A. oryzae have used a low medium pH during the early stages of incubation to

ensure that agglomeration does not occur [45, 107]. However, highly acidic condi-

tions have also been demonstrated to adversely affect growth and product formation

[45], and, as a result, such a means of inducing morphological variation was avoided

in this study. However, attempts were made to induce dispersed mycelial growth in

A. oryzae by supplementing cultures with surfactant compounds, which have previ-

ously been reported to inhibit pellet formation in filamentous microbes [14, 102]. A

significant influence on α-amylase production was found when fermentations were

supplemented with the non-ionic detergents, Tween-80, Nonidet P-40 and Triton

X-100. Tween-80 had little effect on biomass yield and a limited morphological

impact (slight increase in mean pellet diameter), but α-amylase yields were sub-

stantially higher in its presence (Fig. 6.14). Both Nonidet P-40 and Triton X-100

caused a reduction in biomass yield, possibly indicating an inhibition of growth, but

levels of α-amylase produced per unit dry cell weight were higher than the control

(Fig. 6.20b). These increases did not appear to be directly related to the observed

morphological variation, although a quantitative analysis of micro-morphology was

not possible due to the limited stain uptake of cultures incubated in the presence

of detergents.

The positive influence on metabolite production resulting from detergent supple-

mentation has been noted in previous studies, the consensus being that an increase

in cell permeability leads to an increase in the diffusion path into pellets [14, 15].

This subsequently causes an increase in the percentage of active biomass in a cul-

ture, resulting in increased metabolite yield. However, Reese and Maguire found

that supplementation with Tween-80 resulted in an increase in the yield of various

enzymes in some organisms, but a reduction in yield for others [237]. For example,
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the yield of gluconases and glucosidases obtained from A. luchuensis and A. terreus

increased in the presence of Tween-80, but the yield of gluconases obtained from

P. funiculosum decreased in the presence of Tween, while the yield of glucosidases

increased. Alternatively, the increase in α-amylase activity observed in the presence

of non-ionic detergents in this study may have been a result of enhanced activation

of the enzyme by the surfactants, rather than an increase in enzyme production

by A. oryzae. Yoon and Robyt found that supplementing a solution containing

porcine pancreatic α-amylase with 0.02% w/v Triton X-100 resulted in an increase

in activity of approximately 40% [219]. Such reports suggest that surfactant sup-

plementation may result in complex physio-chemical effects.

While beyond the scope of this study, one possible approach to investigating the

physiological influence of surfactants on filamentous microbes would be the quan-

tification of the ‘active’ region of pellets (Fig. 8.2). The fluorescent stain acridine

orange has been previously utilised for this purpose [46]. Alternatively, a direct eval-

uation of cell permeability may be possible with the use of SYTOX Green, which

permeates non-viable cells and fluoresces green, while viable cells remain unaffected

[238, 239]. Staining of inactive pellet cores could permit their measurement and a

percentage of ‘active’ biomass could thus be calculated, allowing comparisons be-

tween different culture conditions. However, the success of such an approach would

be dependant on fungal pellets being small enough to be examined microscopically,

which was typically not the case in this study, in order to obtain sufficiently high

resolution images to accurately delineate the intra-pellet regions. Alternatively, the

work conducted here investigating the impact of Tween-80 in solid culture (Fig. 6.17)

could be expanded upon to determine if the detergent has any effect on cell mem-

brane permeability, which may be visualised using SYTOX Green. However, the

processing of membrane-immobilised cultures results in the death of cells and a

viable stain such as SYTOX Green may not be compatible with such a procedure.
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Figure 8.2: Calculation of the ‘active’ pellet volume (Va), by measuring the total

pellet diameter (Dp) and the ‘inactive’ pellet diameter (Di).

It must be concluded from these investigations that inducing tightly-controlled

morphological variation is not easily achieved. As such, image processing systems

must be designed in such a manner as to permit detailed evaluation of any mor-

phological form that may result in a particular process, rather than relying on the

existence of one particular phenotype, such as the freely dispersed form. Some

studies have described systems capable of discriminating between different morpho-

logical forms and assigning a specific classification to a particular object exhibiting

certain features [72, 204]. However, such systems are based on a degree of subjec-

tivity in that the system is typically trained by a human observer who assigns a

label (pellet, clump, free mycelia, artifact) to a particular object in an image and

this label is subsequently assigned by the automated system to other objects that

exhibit similar morphological features. While a description of a culture as predomi-

nantly ‘pelleted’ or ‘dispersed’, for example, provides little quantitative information

on the morphology, it may be possible to subject each of these classes to subsequent

image analysis. However, this typically results in different metrics being applied

to different ‘classes’ and a comparison of the morphology of different morphologi-
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cal classes is thus not possible. The use of alternative parameters for morphological

quantification may be necessary, rather than depending on the existence of a certain

morphological form as a prerequisite for the application of an imaging system.

One such parameter investigated here is the fractal dimension (D). Fractal

geometry has previously been used in a number of studies of the morphology of

filamentous microbes [110, 159, 172, 183, 184, 230], but many have been confined

to analysis of clumped or pelleted morphologies (or colonies on solid substrates).

While it has been proposed that D may be viewed as a measure of branching

complexity [110], to the best of the author’s knowledge, no direct relationships

between D and conventional morphological parameters, such as the hyphal growth

unit, have previously been established. The result presented here, indicating a

strong correlation between D and Lhgu (Fig. 7.8), suggests that D, which can be

calculated regardless of the morphological form that predominates in a particular

process, may be suitable for use as a ‘universal measure’ of fungal morphology,

directly associated with branching behaviour.

In order to verify this association for macroscopic aggregates such as mycelial

clumps and pellets, or colonies on solid substrates, a knowledge of the branching

behaviour of an organism within such structures is necessary. According to Cox

and colleagues, ‘it is just possible that in some circumstances the mycelial mor-

phology within clumps might be inferred from the more easily characterized freely

dispersed form’ [136], but such requires the presence of ‘free’ elements in a culture.

Should it be possible to relate the hyphal growth unit to the fractal dimension of

macroscopic structures (it seems intuitive that a dependency exists; Fig. 8.3), this

would obviate the need to induce filamentous growth for accurate assessment of

branching behaviour, or the development of systems for the discrimination of differ-

ent morphological forms. There is some evidence in the literature that microscopic

parameters can influence macroscopic form. Park and colleagues found that dif-
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ferent Mortierella species, which exhibited different morphological features at the

microscopic level, produced macroscopic colonies of various shapes and sizes, but

no quantitative result was elucidated [125].

While it may be possible to relate the hyphal growth unit of ‘young’ mycelia

cultivated on solid substrates with the fractal dimension of the macroscopic colonies

that result, such an investigation must also consider any differing spatial distribution

of the different organisms investigated; it is possible that two mycelia can have the

same hyphal growth unit while exhibiting different morphological features (Fig. 8.1).

As the directionality of hyphal growth is thought to be determined by concentration

gradients in the solid substrate [7, 32], cultivation on a membrane placed atop a

liquid medium should minimise the impact of this variable and the effect of different

medium compositions on hyphal growth unit and, subsequently, colony morphology

(fractal dimension) could be examined. However, any differences in foraging strategy

(branching angle, for example) would still need to be determined by microscopic

assessment. Such an investigation therefore requires the consideration of a large

number of variables.

The production of a ‘boundary signal’, as used here to evaluate D, could also

prove useful in cases where the application of a skeletonisation routine to mycelial

elements is undesirable; such investigations using image analysis systems may rely

on manual tip-counts [152]. However, consider the example presented in Figure 7.5;

it may be possible to identify the hyphal tips as local maxima in the boundary

signal. The enumeration of these local turning points could be used as an indicator

of tip location in applications where skeletonisation is unsuitable. There also ex-

ists the possibility that an examination of object boundaries could prove useful in

discriminating between spore clusters and ‘young’ hyphae, which can be otherwise

morphologically similar (Section 3.5), although it is likely that high-magnification

images would be required for such an application to provide sufficiently high reso-
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scale: 1:1 scale: 1:2.6 scale: 1:4
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Lhgu = 60 units
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Time

Figure 8.3: Simulated effect of increasing hyphal growth unit (Lhgu) on colony

macro-morphology.
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lution, resulting in a significant increase in the time necessary for image capture.

Image processing systems represent essential tools for the accurate quantification

of fungal morphology, but fully automated systems, designed for this application,

are still rare. The system developed in this study has been used in conjunction with

a newly-developed immobilisation assay to characterise the growth kinetics of A.

oryzae on a solid substrate. In addition, published findings on the application of

fractal analyses have been expanded upon by relating this parameter to the branch-

ing behaviour of the organism using a novel means of fractal dimension evaluation.

The growth of A. oryzae in shake flask cultures, reports of which are rare in the

literature, has also been extensively studied, with data presented on the micro- and

macro-morphological form in various different media compositions. The potential

exists to combine these research avenues and utilise fractal geometry to further

characterise morphological conformations in submerged culture and, subsequently,

arrive at a more definitive correlation between phenotypic variation and metabolite

production.
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toxicity of zinc and lead ions to the heavy metals accumulating fungus Pae-

cilomyces marquandii.” Bioprocess Biosyst Eng, vol. 28, no. 3: pp. 185–97,

2005. Doi: 10.1007/s00449-005-0026-z.

288

http://dx.doi.org/10.1007/s00449-003-0349-6
http://dx.doi.org/10.1590/S1517-83822002000100003
http://dx.doi.org/10.1145/357994.358023
http://dx.doi.org/10.1023/A:1018429425800
http://dx.doi.org/10.1007/BF00158947
http://dx.doi.org/10.1007/s00449-005-0026-z


REFERENCES

[175] M. Bizukojc and S. Ledakowicz. “A kinetic model to predict biomass

content for Aspergillus niger germinating spores in the submerged cul-

ture.” Process Biochem, vol. 41, no. 5: pp. 1063–71, 2006. Doi:

10.1016/j.procbio.2005.11.016.

[176] M. D. Fricker, J. A. Lee, L. Boddy and D. P. Bebber. “The interplay between

structure and function in fungal networks.” Topologica, vol. 1, no. 1: p. 004,

2008. Doi: 10.3731/topologica.1.004.

[177] Z. J. Li, V. Shukla, K. S. Wenger, A. P. Fordyce, A. G. Pedersen and M. R.

Marten. “Effects of increased impeller power in a production-scale Aspergillus

oryzae fermentation.” Biotechnol Prog, vol. 18, no. 3: pp. 437–44, 2002. Doi:

10.1021/bp020023c.

[178] J. L. Harris. “Safe, low-distortion tape touch method for fungal slide mounts.”

J Clin Microbiol, vol. 38, no. 12: pp. 4683–84, 2000.

[179] J. L. Rodriguez-Tudela and P. Aviles. “Improved adhesive method for micro-

scopic examination of fungi in culture.” J Clin Microbiol, vol. 29, no. 11: pp.

2604–05, 1991.

[180] C. Kampichler, J. Rolschewski, D. P. Donnelly and L. Boddy. “Collembolan

grazing affects the growth strategy of the cord-forming fungus Hypholoma

fasciculare.” Soil Biol Biochem, vol. 36, no. 4: pp. 591–99, 2004. Doi:

10.1016/j.soilbio.2003.12.004.

[181] J. M. Wells, M. J. Harris and L. Boddy. “Encounter with new resources

causes polarized growth of the cord-forming basidiomycete Phanerochaete

velutina on soil.” Microb Ecol, vol. 36, no. 3: pp. 372–82, 1998. Doi:

10.1007/s002489900123.

289

http://dx.doi.org/10.1016/j.procbio.2005.11.016
http://dx.doi.org/10.3731/topologica.1.004
http://dx.doi.org/10.1021/bp020023c
http://dx.doi.org/10.1016/j.soilbio.2003.12.004
http://dx.doi.org/10.1007/s002489900123


REFERENCES
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