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Abstract

Basketball teams at all levels of the game invest a considerable amount of time and ef-

fort into collecting, segmenting, and analysing footage from their upcoming opponents

previous games. This analysis helps teams identify and exploit the potential weak-

nesses of their opponents and is commonly cited as one of the key elements required

to achieve success in the modern game.

The growing importance of this type of analysis has prompted research into the

application of computer vision and audio classification techniques to help teams classify

scoring sequences and key events using game footage. However, this research tends to

focus on classifying scenes based on information from a single sensory source (visual

or audio), and fails to analyse the wealth of multi-sensory information available within

the footage.

This dissertation aims to demonstrate that by analysing the full range of audio

and visual features contained in broadcast game footage through a multi-sensory deep

learning architecture one can create a more effective key scene classification system

when compared to a single sense model.

Additionally, this dissertation explores the performance impact of training the

audio component of a multi-sensory architecture using different representations of the

audio features.

Keywords: Deep learning, Artificial intelligence, Image recognition, Video classi-

fication, Audio processing, Basketball
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Chapter 1

Introduction

1.1 Background

Analysing footage from an upcoming opponents previous games in order to identify

the teams shooting tendencies (see table 1.1) and defensive vulnerabilities has been an

integral part game planning in the sport of basketball (and indeed many other sports)

since the advent of televised sports. This form of analysis is employed by basketball

teams from middle school to NBA level across the United States, and often times the

most successful teams attribute their success to the work performed in the ”film room”

preparing for their opponents.

Team <5 Ft 5-9 Ft 10-14 Ft 15-19 Ft 20-24 Ft 25-29 Ft

Atlanta 35.4 7.4 6.7 3.9 15.3 21.7

Houston 28.6 6.8 3.9 2.0 16.9 28.2

New Orleans 35.4 7.4 6.7 3.9 15.3 21.7

Philadelphia 31.1 8.7 7.9 7.5 11.5 21.0

Table 1.1: Sample of average number of shots taken from each range for 4 NBA teams

in the 2018/2019 season to illustrate shooting tenancies (source: stats.nba.com)

Despite it’s importance in the modern game, collecting and annotating footage is

still very much a manual process for teams which involves a human with sufficient do-

1
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CHAPTER 1. INTRODUCTION

main knowledge watching each game, identifying when an event occurs, before noting

the start and end time for the event. This is a very time consuming task for teams

and eats into valuable time which could be spent drawing insights from the footage.

This would appear to be an ideal use case for a computer vision model to analyse

and classify scenes from game footage. While this is certainly a valid and exciting

application, this type of model is only capable of analysing the visual component of

the videos and throws away the abundance of important information contained within

the audio such as commentator and crowd reactions.

This idea is easy for us to relate to as more than likely we can all recall a time

in which we were watching a sporting event, and perhaps due to occlusion1, or a bad

camera angle we were not able to see clearly if a team has scored, or an event has

occurred. Instead, our brain relied on the audio information from the broadcast to

form a more coherent perception of what was taking place on screen.

As a result of examples such as this, we propose that modern sports video segmen-

tation systems should not rely on information from a single sensory source. Rather

these systems should behave similarly to our brains and combine information from

multiple sensory sources in order to identify scenes of interest more effectively.

1.2 Research problem

In recent years there has been a considerable amount of research into the application

of machine learning/artificial intelligence for key event classification in sports such as

soccer, tennis, and basketball. While this research is valid, and has employed many

creative and interesting techniques to tackle this problem, for the most part these

studies focused on models which analyse information from a single sensory source

(video or audio).

The primary research problem associated with this dissertation is to determine if a

multi-sensory (video & audio) architecture can yield a more effective key event 2 clas-
1When the view of a person or object of interest becomes obstructed or obscured by other objects.
2This research problem will focus solely on the area of slam dunk classification within basketball

broadcast footage.
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CHAPTER 1. INTRODUCTION

sification system when compared to a similar single sense (video) model. A secondary

research problem within this dissertation aims to asses the impact of different audio

feature representations on the overall model performance.

1.3 Challenges & nuances

Sports video segmentation and key event classification is an interesting implementation

of computer vision and audio classification. While in many ways it can be considered

an extension of traditional AI driven surveillance systems (D’Orazio & Leo, 2010),

there are a number of nuances associated with the data contained within broadcast

sports footage which make this an intriguing, and challenging application.

Perhaps the most common challenge posed by this application is the relatively low

quality audio/visual footage presented by sports broadcasts (Niu, Gao, & Tian, 2012)

when compared to that which could be collected within a more controlled environment.

In addition to this, the high rates of occlusion which occur between players wearing

the same clothing is a phenomena common to sports video which is not prevalent in

traditional surveillance systems. Finally, dataset imbalance is a challenge within key

event classification as typically scenes of interest occur much less often than they do

not.

Despite these challenges, there are some characteristics of sports broadcast footage

which enable the use of computer vision and audio classification in sports. One enabler

is the wealth of information available from how crowds react to certain sequences

within a basketball, or soccer match. However, what often gets overlooked is the fact

that sports can be considered a semi-controlled environment whereby the boundaries

and rules of the sport limit the movements/actions which players can perform and

significantly reduces the set of actions our models need to understand (Kristan, Perš,

Perše, & Kovačič, 2009).

The challenges and nuances described above suggest that the application of com-

puter vision and audio analysis in sports scene classification is an incredibly exciting,

if challenging research problem.

3
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1.4 Research objectives

The primary objective of this dissertation is to demonstrate that by analysing the

wealth of audio and visual features available within sports broadcast footage simulta-

neously through a multi-sensory deep learning architecture, one can yield more effective

key scene classification results when compared to a single sense model.

Secondary to this, the architectures developed as part of this study will aim to

provide a building block for future research into the application of multi-sensory deep

neural networks for more advanced scene classification within the sport of basketball,

and indeed across different sports.

These objectives will be achieved through completion of the milestones laid out

below:

• Performing a comprehensive review of existing literature relating to the sport of

basketball, the human sensory system, and the fields of image, audio and video

classification.

• Identifying, acquiring, and preparing an appropriate dataset for this study.

• Developing a baseline computer vision model.

• Extending the baseline model to a multi-sensory (audio-visual) model.

• Performing a statistical comparison of the models performance on a testing

dataset.

• Evaluating the proposed multi-sensory solution and discussing potential improve-

ments to the architecture for future use.

1.5 Research hypothesis

Of course, in order to test our proposed solution formally in accordance with the

scientific method, we must define our research hypothesis in a clear, predictive, and

testable statement. The research hypothesis for this dissertation is defined as follows:
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H0: A multi-sensory hybrid network model comprising of CNN and LSTM compo-

nents which analyses both visual and audio features extracted from broadcast bas-

ketball footage simultaneously will not classify the occurance of slam dunks with

significantly greater mean class precision, mean class recall, true positive rate, and

true negative rate than a single sense hybrid network model comprised of CNN and

LSTM components which analyses only the visual features extracted from broadcast

basketball footage.

Ha: A multi-sensory hybrid network model comprising of CNN and LSTM compo-

nents which analyses both visual and audio features extracted from broadcast basket-

ball footage simultaneously will classify the occurance of slam dunks with significantly

greater mean class precision, mean class recall, true positive rate, and true negative

rate than a single sense hybrid network model comprised of CNN and LSTM com-

ponents which analyses only the visual features extracted from broadcast basketball

footage.

1.6 Research methodologies

This study will follow a deductive approach, beginning with the research hypothesis

defined above in section 1.5. From here, we will use quantitative methods to analyse

the audio and visual features contained within our data before finally gathering em-

pirical evidence (mean class precision/recall, true positive rate and true negative rate

metrics) to test the feasibility of our proposed solution.

1.7 Resources

In order to achieve the milestones and objectives discussed in section 1.4, we utilised

the following technical resources:

• Desktop PC: Intel Core i5-7500 CPU @ 3.4GHz, 8GB RAM, NVIDIA GeForce

5
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GTX 1050 Ti graphics card, running Windows 10

• Python 3.6

• TensorFlow-GPU v1.10

• LaTeX/MiKTeX 2.9 & TeXstudio 2.12.6

• Cloud backup storage

1.8 Scope & limitations

The scope of this dissertation will be restricted to the classification of slam dunk scenes

from broadcast basketball game footage. These scenes will be classified using a multi-

sensory deep learning architecture trained using audio and visual features extracted

from the footage of 10 basketball games played between the years 1992 and 2009. The

models developed as part of this study will not attempt to identify or classify any

other events which occur during these games other than a slam dunk.

Perhaps the biggest limitation for this study is the quality of the footage contained

within our dataset. As mentioned above, some of the footage for the 10 games analysed

in this dissertation was recorded as far back as 27 years ago. This is obviously a

limitation as we understand that the recording quality at that time was far inferior

to what is capable with modern recording equipment. It is fair to assume that the

relatively poor recording quality could hinder any models trained on this data, however

this is something we will attempt to overcome by sub-sampling an appropriate number

of frames from our video footage and fine tuning our model parameters.

Another limitation of this study, which is alluded to in section 1.3 is the heavy

amount of class imbalance contained within the dataset. Since this study is focused

on the classification of slam dunk scenes, which is the least common type of shot in the

game of basketball, we are expecting to experience a considerable amount of imbalance

within the dataset. However, we will look to employ techniques such as oversampling

and SMOTE to overcome this imbalance.
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It is also a fair to question whether or not footage from just 10 games is enough

data to train a deep learning architecture on. Our reason for choosing these games in

particular revolve around the class imbalance discussed above, as well as the timeline

available to conduct this study. These reasons are discussed in more detail in chapter

4.1

Finally, given that the analysis will be performed on the desktop machine described

above (section 1.7) we will be limited with regard to how long we can train our models

for. Unlike a server environment, it will not be feasible to train a model over a number

of days, or weeks. We will look to overcome this limitation by utilising pre-trained

CNN architectures where possible.

1.9 Dissertation outline

Chapter two of this dissertation will provide a brief introduction to the game of bas-

ketball. This chapter will provide a history of the game and it’s organisations before

explaining the basic rules and terminology of the sport to provide readers with the

baseline domain knowledge required to follow this study.

Chapter three will review some of the existing literature related to this study. This

review will touch on areas such as image, audio and video classification, as well as

methods for dealing with class imbalance. We will discuss the various methods and

techniques proposed in the literature and how they pertain to our problem.

In chapter four we will discuss the dataset and the various pre-processing required

to get the data into a format we could use for developing our models. From here, in

chapter five we will discuss our proposed architectures and how they are evaluated.

In chapter six we will discuss the results of our experimentation before formally

testing our research hypothesis. Finally, in chapter seven we will conclude on the

findings and learnings of this study in addition to advising on areas for further research

going forward.
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Chapter 2

An introduction to the game of

basketball

This chapter provides a brief introduction to the game of basketball. In this chapter

we discuss the origins of the sport, its organisations, and it’s cultural impact before

talking through the basic rules of the game.

This information will provide the reader with a baseline understanding of the sport

which will in turn aid them in their understanding of the terms and ideas discussed

in this dissertation.

2.1 History of the sport and it’s organisations

The sport of basketball was created in 1891 by James Naismith in Springfield, Mas-

sachusetts. The game was originally created to provide students of the local college

with a sport could play to keep fit during the winter months while popular field sports

such as football and lacrosse were in their off seasons. While the sport created in 1891

is quite different to what we see on our TV’s today, the basic premise of the game still

remains the same, for teams to throw a ball (originally a soccer ball) into a (peach)

basket in an effort to accumulate points and win the game.

By the end of the 19th century basketball had spread to a handful of colleges across

the United States of America (USA). In 1909 the game had become so popular that

8
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Figure 2.1: Image of James Naismith holding an early version of a basketball

and a peach basket (source:https://springfield.edu/where-basketball-was-invented-the

-birthplace-of-basketball)

it became an officially regulated sport by the National Collegiate Athletic Association

(NCAA), the governing body for amateur collegiate sports in the USA. Thirty years

later, in 1939 the inaugural NCAA Men’s Basketball Tournament took place. This

competition was an 8 team single game elimination style 1 tournament and was won

by the University of Oregon Ducks who defeated the Ohio State University Buckeyes

in the tournament final by a scoreline of 46 to 33.

The NCAA Men’s Basketball Tournament has grown in size and popularity over the

years and is viewed by millions of people across North America every year. The most

recent NCAA Men’s Basketball Tournament Championship Game drew an attendance

of over 72,000 spectators who witnessed the Virginia Cavaliers defeat the Texas Tech

Red Raiders by a scoreline of 85 to 77 2.

The increasing popularity of the game through the 1940’s paved the way for the

establishment of a large scale professional basketball league. The Basketball Associ-

ation of America (BAA) was established in 1946, however it wasn’t until the BAA

changed it’s name to the National Basketball Association (NBA) in 1949 that the

league began to take off. The 1949 NBA season was contested by 17 teams in a tra-

1The winner of each game advances to the next round
2A review of the game courtesy of the New York Times is available at https://www.nytimes.com/

2019/04/08/sports/ncaa-tournament-virginia-texas-tech.html
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ditional league followed by playoff format with the championship being won by the

Minneapolis Lakers (now known as the Los Angles Lakers).

As the popularity of the sport continued to trend upwards through the 1950’s

and 1960’s it gave rise to other professional leagues such as the American Basketball

Association (ABA). The ABA was established in 1967 and consisted of 11 teams. The

ABA’s ability to attract rising stars and future NBA Hall of Fame players 3 such as

Julius Erving and Moses Malone paired with its innovative rules and competitions

(such as the introduction of the 3 point line and annual slam dunk competition) made

the ABA a legitimate competitor to the long established NBA. After 9 season the

ABA was able to successfully force a merger with the NBA to create a larger, and

more talent-rich professional league in North America.

The emergence of stars such as Michael Jordan, Shaquille O’Neal, Kobe Bryant and

Allen Iverson from the late 1980’s all the way through to the early 2000’s helped propel

the sports popularity to unprecedented levels and solidify it’s place in American pop

culture. Today, the NBA is viewed by millions of people across North America every

week. The sport’s popularity globally has led to the establishment of a world governing

body for basketball known as FIBA (Fédération Internationale de Basketball) and the

sports inclusion in the Summer Olympic Games.

2.2 Rules of basketball

At it’s most basic level, basketball is a team sport in which 2 teams of 5 players

compete against each other to accumulate points by putting the ball through their

opponents basket. The team who manages to accumulate the most points at the end

of the game (4x12 minute quarters in the NBA, or 2x20 minute periods in the NCAA)

is deemed to be the winner.

While in possession, a player can advance the ball by passing it to another player

with their hands, or by bouncing the ball off the ground while moving in an act known

3A list of NBA Hall of Fame Inductees can be found at https://www.nba.com/history/hall-of

-fame-inductees
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as a dribble. Once a player has stopped dribbling the ball they are allowed take a

maximum of 2 steps without dribbling before being called for a travelling foul. In

addition to this, once a player has stopped dribbling the ball, they are not permitted

to dribble again until they release the ball by taking a shot or passing it to another

player (referred to as a double dribble). While a player cannot take more than 2 steps

after completing their dribble, they may retain control of the ball without moving for

as long as the shot clock 4 permits.

For each standard score (commonly referred to as a bucket) inside the ”arc” (illus-

trated in figure 2.2), the scoring team receives 2 points. However, if the team manages

to score from beyond the arc, the shooting team will receive 3 points. If it is deemed

that the a member of the defending team fouled the attacking player (through illegal

personal contact) while in the act of shooting the attacking player will be sent to ”the

line”, a position on the court 15 feet away from the basket for 2 5 free throw attempts.

In this scenario the fouled player gets a chance to shoot 2 uncontested shots from the

line in which each successful shot is worth 1 point.

While many variations exist, basketball shots can be grouped into 3 distinct cate-

gories (see figure 2.3 for an example of each shot type):

• Jump shot: This is the most common type of shot in a game of basketball and can

be performed anywhere on the court. This shot involves the player in possession

jumping into the air and releasing the ball above their head with a high arc

towards the basket. NBA Miner 6 calculated that jump shots were successful

38.56% of the time during the 2018/19 NBA season.

• Layup: This shot involves the player in possession leaping towards the basket

and laying/bouncing the ball off the backboard before letting it fall into the

basket for a score. Due to the nature of this shot it may only be performed at

4A 24 second countdown timer indicating how long the team in possession has before they must

take a shot.
5A player may receive 3 free throws if the shot attempt was taken from beyond the arc, or 1 free

throw attempt if they score despite being fouled.
6A collection of detailed NBA stats from every game as far back as 1996.
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Figure 2.2: Image of basketball half court which illustrates the position of the arc and

the line.

a close proximity to the basket. As a result of this the shot success rate on a

layup is greater than that of the jump shot, with layups being successful 55.5%

of the time throughout the 2018/19 season.

• Slam dunk: This involves the player in possession leaping into the air towards

the basket and placing the ball into the basket. While this is a high percentage

shot with a success rate of 89.82%, the shot requires significantly more space to

execute than the jump shot or layup and as a result is much rarer occurrence

in game situations. NBA Miner’s data suggests that slam dunks made up just

5.44% of total shots in the NBA in 2018/19. As a result of its rarity, and the

emphatic nature of the shot, the slam dunk is the most popular shot type from a

fans perspective. The occurrence of a slam dunk typically draws a loud response

from the crowd and is the subject of many highlight packages on YouTube.

Finally, although basketball is (incorrectly) considered by many to be a non-contact

sport, players are permitted to engage in a certain amount of physical contact with
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members of the opposing team. An example of this is the act of setting a screen.

A screen is where a member of the attacking team attempts to use their body to

block the path of a player from the opposing team. In this case the player setting the

screen may physically block the opponents path providing they are not moving, and

do not lean towards the opposing player when doing so. This technique is commonly

employed at the highest level of the game to clear space for a player is possession to

perform one of the shot types mentioned above.

Figure 2.3: An example of a jump shot (left), layup (middle), and dunk (right).

13



Chapter 3

Review of existing literature

This chapter summarises and compares previous studies into areas related to the re-

search objectives of this dissertation. It will discuss the methods used in these studies

and how useful they could be in the context of this dissertation.

3.1 Human perception based on multi-sensory in-

formation

As humans, we process information from multiple sensory sources to form a robust

perception of the world around us and in turn, make decisions on how to act based on

this information. In the past, perception had been thought of as a modular function in

which each of our different sensory systems acted independently to each other (Shimojo

& Shams, 2001). However, intuitively this idea seems flawed when we consider the

simple real world example of sitting on a stationary train looking out the window at

a neighbouring train. In this example, if one of the trains starts to move our visual

system often struggles to identify which train is in motion. However, once our brain

combines the visual information with information from the vestibular system 1, it can

quickly identify which train is in motion (Ernst & Bulthoff, 2004). Examples such

as this have not only inspired this study, but have also inspired an enormous amount

1A biological system which provides our brains with information about motion

14



CHAPTER 3. REVIEW OF EXISTING LITERATURE

of research into the relationships between different sensory systems and how these

systems work together to enable our brains to understand the world around us.

Studies such as Newell, Bulthoff, and Ernst (2003) designed a simple set experi-

ments to analyse the relationship between visual and haptic (touch) sensory systems to

demonstrate empirically that humans perform better at object recognition tasks when

combining information from both sensory systems when compared to performance us-

ing a single sensory system (either visual or haptic). Similarly Campos, Butler, and

Bulthoff (2012) demonstrated that humans perform better at judging the distance

travelled when combining both visual and vestibular (walking down a corridor while

wearing a VR headset) information when compared to visual information alone.

Conversely Shams et al. (2000) illustrated how the human brain combines audio

and visual information together when forming a perception of the world by cleverly

demonstrating how audio information can alter the perception of an unambiguous

visual stimulus. To illustrate this, each subject was asked to count the number of

flashes produced from a single light source (a white disk) while also being fed audio

information in the form of beeps from an audio source. The results (illustrated in

figure 3.1) showed that the subjects perception of the number of flashes outputted

from the light source was correlated to the number of beeps coming from the audio

source.

3.2 Image classification

Convolutional neural networks (CNNs) are commonly employed in computer vision

tasks such as image recognition due to their aptitude for efficiently reducing a com-

plex image input to a compressed feature map (Krizhevsky, Sutskever, & Hinton,

2017). CNNs were originally based on the mathematical idea of convolution which is

defined as an integral that expresses the overlap as one function passes over another

(Weisstein, 2003). However, in the field of computer science and deep learning this

idea of convolution can be thought of as iteratively analysing small portions of an input

space (e.g. 3x3 pixels across an input image) through what is known as a convolution
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Figure 3.1: Illustration of the perceived number of visual flashes plotted against the

number of beeps emitted from the audio source (Shams et al., 2000)

window to extract local features (edges, colours, etc.) within the image. These local

features are further contextualised within the image (globally) by merging adjacent

feature maps in the space through a process called pooling (Piczak, 2015).

Elements of the CNN such as the size of the convolution window (3x3, 5x5, etc.)

and the stride (the step size of the convolution window across the input) can be

adjusted to manage the size and complexity of the feature map. Figure 3.2 illustrates

a simple example of convolution applied to a 7x7 input space.

Figure 3.2: A simple example of a 3x3 convolution window passed over an input

space with a stride of length 2 (source: https://adeshpande3.github.io/A-Beginner%

27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/)
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In practice, CNN layers are integrated with a number of different layer types to

form a deep CNN architecture. These architectures typically consist of an input layer

(an image for example), a number of convolutional and pooling layers, a dense fully

connected layer, and an output layer (Piczak, 2015). Different versions and configura-

tions of these architectures have been shown to demonstrate best in class performance

at a variety of image recognition tasks such as facial attribute recognition (Zhong,

Sullivan, & Li, 2016) or breast cancer classification from histopathological 2 images

(Spanhol et al., 2016). Figure 3.3 illustrates a typical CNN deep learning architecture.

Figure 3.3: Illustration of a sample CNN architecture (Spanhol et al., 2016)

As a result of the increased processing power of modern computers (Simonyan

& Zisserman, 2015), and the availability of large labelled image datasets, there have

been significant advances in the classification power of CNN architectures across re-

search domains by leveraging complex CNN models which have been pre-trained large

datasets of labelled images (Krizhevsky et al., 2017) in what is commonly referred to

as transfer learning. Due to the complexity of the networks and the volumes of diverse

image data on which they are trained, these networks display best in class performance

when it comes to identifying and extracting local features from input images. These

models are widely used in image classification activities as they can reduce the amount

of time required to develop and train a computer vision model while still achieving

state of the art performance.

The InceptionV3 model is a popular CNN architecture used for transfer learning.

This architecture is based on the GoogLeNet model (Szegedy et al., 2015) and is
2More information on the field of histopathology can be found at: https://www.rcpath.org/

discover-pathology/news/fact-sheets/histopathology.html
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known for its ability to map input images to a 2,048 dimensional feature space. The

Inceptionv3 architecture, illustrated in figure 3.4 is a complex network consisting of 48

layers. Despite this complexity however, the network is more computationally efficient

than other state of the art pre-trained networks. The model achieves this compu-

tational efficiency by avoiding extreme compression early in the network, increasing

activations per layer and by balancing the width and depth of the network (Szegedy

et al., 2016). The model has shown state of the art performance on the ImageNet

Large Scale Visual Recognition Challenge (ISVLRC) with a top 1 error rate of 17.2%

and has set a new state of the art benchmark when it comes to the ISVLRC dataset

(Szegedy et al., 2016).

Figure 3.4: Visual representation of the InceptionV3 architecture developed by

(Szegedy et al., 2016)

While the InceptionV3 architecture is a popular choice when it comes to transfer

learning, there are a variety of other pre-trained architectures which are capable of

state of the art performance such as the VGG19 model. This model is recognised

for it architectural simplicity, containing only 19 layers as well as it’s computational

cost (Szegedy et al., 2016) when compared to other models such as the InceptionV3.

Despite this architectural simplicity, the model has shown state of the art results

on the ISVLRC dataset (24.7% top 1 error), this is achieved though the use of small

convolution windows (3x3) and rectified linear unit (RELU) activation functions across

all layers of the network (Simonyan & Zisserman, 2015).

As a result of their success on the ISVLRC dataset, both the InceptionV3 and
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Figure 3.5: Visual representation of VGG19 architecture (Zheng et al., 2018)

VGG19 architectures are commonly employed on a range of image and audio (see sec-

tion 3.4) classification tasks. For example, Esteva et al. (2017) demonstrated the power

of the InceptionV3 architecture when retraining the network to diagnose conditions

such as Melanoma and Carcinoma from with similar accuracy to that of a dermatol-

ogist. Similarly Carvalho, De Rezende, Alves, Balieiro, and Sovat (2017) used the

VGG19 architecture to classify computer generated images of humans based on local

features extracted from the eyes within the image.

Despite both models demonstrating state of the art performance when it comes

to image recognition tasks, the increased computational cost required by the VGG19

model compared to the InceptionV3 architecture in addition to the superior perfor-

mance of the InceptionV3 model on both ISVLRC and ImageNet datasets forces us

to consider favouring the InceptionV3 architecture for this particular task, especially

given the hardware limitations and complexity of the input.
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3.3 Video classification

3.3.1 Handling the temporal component of video

Unlike images, videos are much more difficult to collect and annotate (Karpathy et al.,

2014). As a result of this, there is a scarcity of large scale labelled video datasets on

which we can develop pre-trained architectures. However, video classification can be

considered an extension of traditional image classification, whereby a series of static

images (frames) are tied together by a temporal component. While one can still use

CNNs to analyse the static images, traditional CNNs have a major limitation in that

they can only analyse spatial information and not temporal (Fan et al., 2016).

In order to analyse the temporal component of video recordings one can utilise a

form of recurrent neural network (RNN) known as a long short term memory network

(LSTM). The LSTM (illustrated in figure 3.6) was originally developed to overcome

the back propagation through time problem which occurred in traditional RNN ar-

chitectures whereby the error signals passed back through the temporal component

of the network either blew up or vanished completely (Hochreiter & Schmidhuber,

1997). This problem was overcome with an novel (Hochreiter & Schmidhuber, 1997),

and subsequently refined (Gers, Schmidhuber, & Cummins, 1999) gradient descent

approach to enforce constant error flow through the network.

This constant error flow is achieved through hidden state which stores, modifies,

and passes information within the network for an arbitrary amount of time (Fan et

al., 2016), allowing the network to understand long-term temporal relationships within

the data (Yue-Hei Ng et al., 2015). At each time step an input gate controls what

new information enters the hidden state while a forget gate determines what existing

information should be released from the hidden state.

As a result of their ability to store and understand long term temporal relationships,

LSTMs and other variations such as gated recurrent units (Cho et al., 2014) have

become a popular choice for modelling data which evolves over time 3.

3An excellent blog post regarding RNNs/LSTMs can be found at: https://colah.github.io/posts/

2015-08-Understanding-LSTMs/
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Figure 3.6: An illustration of a simple LSTM cell (Fan et al., 2016). In this example xt

represents the input at time step t, ct represents the information stored in the hidden

state, it represents input gate, ot controls the output of the cells hidden state, ht which

is the activation function applied to ct, and ft represents the forget gate (Yue-Hei Ng

et al., 2015)

3.3.2 Frame sub-sampling

Analysing and classifying video sequences can be very computationally demanding

due to the large number of frames included in each video (Yue-Hei Ng et al., 2015).

For example, a 4 second clip shot at 40 frames per second will create 160 individual

frames. It is easy to see how this form of data can quickly inflate a dataset and the

computational power required to analyse it. In order to overcome this problem, many

state of the art approaches to video classification involve uniformly sub-sampling a

pre-defined number of frames per second from the raw video input. Thoughts on the

number of frames per second to sub-sample from input video varies across the research.

For example Ramanathan et al. (2016) sub-sampled 6 frames per second from their 4

second long input clips. Conversely, Yue-Hei Ng et al. (2015) chose to sub-sample 1

frame per second from each of their 5 minute long input videos.

Given the fact that this study is focused on identifying scenes in which slam dunks

occur, we will be focusing on short time frames. With this in mind, we fee; that

the 1 frame per second approach proposed by Yue-Hei Ng et al. (2015) although

computationally efficient, would not capture enough information about each scene to
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build an effective classifier for this study.

3.3.3 Hybrid networks

Once the frame sub-sampling process has been complete, the typical state of the art

approaches involve analysing the extracted frames in a hybrid network model (illus-

trated in figure 3.7). These models are typically comprised of a number of CNN layers

which create a feature map from each of the sub-sampled frames. These ”bottleneck”

feature maps are then passed in sequential order through an LSTM architecture which

analyses the evolution of the features over time before producing a final classification

for the original video clip. Hybrid network architectures have demonstrated best in

class performance for tasks such as human emotion recognition (Fan et al., 2016), sport

classification (Karpathy et al., 2014) and tennis action recognition (Chow & Dibua,

2018).

This hybrid network approach makes sense intuitively as it combines strengths of

CNNs and their ability to map an image input to a feature map as well as LSTMs,

and their ability to analyse long term temporal relationships into a single model ar-

chitecture rather than trying to force an LSTM to analyse raw image data over time,

which is simply not feasible.

Figure 3.7: A simple overview of a hybrid network model to classify soccer scenes as

illustrated by Baccouche et al. (2010).
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3.4 Audio classification

Prior to analysing any audio signals using deep learning (or any other methods), it is

important to understand that there are a number of preprocessing steps which can be

applied to the raw audio frequencies in order to increase the classification power of any

models built on top of the data. The first of these preprocessing steps typically applied

is a technique known as downsampling. This involves reducing the sample rate of the

raw audio frequency in an attempt to reduce the computational power required to

analyse the audio. Typically raw audio files come with a sample frequency of 44.1kHz,

these frequencies are commonly downsampled to 32kHz, 22.05kHz or 16kHz prior to

analysing (Boddapati, Petef, Rasmusson, & Lundberg, 2017).

The second preprocessing step that is often performed to audio input data is to

transform the raw audio input into filter banks or mel-frequency cepstrum coefficients

(MFCCs). The filter banks transformation uses a set of triangular filters to decompose

the audio signal into uniform frequency sub-bands with a bandwidth much lower than

the original signal (Afonso, Tompkins, Nguyen, & Luo, 1999). Once the filter bank

representation of the audio has been calculated, we can easily calculate the MFCC

representation by simply applying a discrete cosine transform to the logarithim of the

filter bank representation (Davis & Mermelstein, 1980).

It is worth noting that while there are a lot of studies which utilise either filter

banks or MFCC’s when analysing audio data, to the best of our knowledge there is

a lack of research which explicitly compares the performance of these two methods

when applied to real world data. This comparison is something that has peaked our

curiosity while performing this literature review, and is something we explore in this

study. Figure 3.8 illustrates the filter bank and MFCC extraction process from a raw

audio input file.

With regard to application of deep neural networks for audio classification, the

literature suggests that there are two common approaches. The first approach is

to analyse the audio in it’s raw/preprocessed waveform (typically extracted from a

.wav file) using either a CNN, RNN/LSTM, or a deep belief network (DBN). Aytar,
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Figure 3.8: Visual flow diagram of MFCC and filter bank extraction process from .wav

file input (Ballan et al., 2009)

Vondrick, and Torralba (2016) employed this approach to analyse and classify raw

audio waves from over 2 million unlabelled video clips using CNNs. They citied using

CNNs to reduce the feature space that the model is required to analyse, in addition

their ability to handle variable length inputs. Conversely, Ballan et al. (2009) ustilised

DBNs (a generative probabilistic model) and MFCCs to detect events which occur in

soccer videos based on the audio features alone.

The second approach involves converting the audio signals into an image (known as

a spectrogram). From here, one can leverage pre-trained CNN architectures to classify

the visual representation of the audio. This approach is popular due to the classifica-

tion power of pre-trained CNN models. This approach has been utilised effectively in

tasks such as snore sound classification using bottleneck features 4 extracted from both

GoogleNet and VGG19 (Amiriparian et al., 2017), environmental sound classification

(Boddapati et al., 2017), and music genre classification (Costa, Oliveira, Koericb, &

4A pooled feature map of the input generated using deep neural networks, can be thought of as

a method for dimension reduction (Yu & Seltzer, 2011)
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Gouyon, 2011).

Intriguingly, it has also been suggested that the colour map used when converting

filter bank or MFCC features into an audio spectrogram can impact the classification

power of a model built on the data. Amiriparian et al. (2017) demonstrated this when

they observed that models trained on viridis colour map spectrograms (see figure 3.9)

performed significantly better than those trained on colour maps such as grey and jet.

While overall analysing the raw waveform may prove to be more computationally

efficient, the amount of time required to develop and refine a network to classify

this data may be significant. Given the reasonably short amount of time available to

conduct this study, converting the audio features to spectrograms and leveraging one of

the tried and tested CNN architectures discussed in section 3.3 may be a more feasible

approach. Converting the audio to spectograms would also allow us to compare the

performance of the viridis colour map against another colour and potentially further

validate the results observed by Amiriparian et al. (2017).

Figure 3.9: Viridis spectrograms representing an example of 4 different types of snore

sounds (Amiriparian et al., 2017): velum (left), oropharyngeal lateral walls (centre

left), tongue base (centre right), & epiglottis (right)

3.5 Multi-sensory deep learning networks

Although deep learning architectures have demonstrated state of the art performance

when it comes to scene classification based on audio or visual features, there has

been an increasing amount of research into further pushing the boundaries of this

performance through the use of multi-sensory (sometimes referred to as multi-modal)

networks.
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Multi-sensory deep learning networks (illustrated in figure 3.10) analyse features

from multiple modalities which describe the same event (audio and visual informa-

tion extracted from a video for example). These networks process features from each

modality through separate networks before merging features from these together in a

process know as fusion. It has been suggested that the inclusion of audio information

can increase the accuracy of video classification systems by ∼3% (Fan et al., 2016).

The stage of the model in which the fusion process takes place varies across the

research performed in this area. Studies such as Simonyan and Zisserman (2014) into

human activity recognition using static and temporally connect images as well as Fan et

al. (2016) into video based emotion recognition using audio and video features perform

a class score fusion at the end of their architectures. This type of fusion merges the

outputs from final layer of each modal network and produces a final prediction based

on an aggregation (maximum/mean class score) of the outputs from each model.

Conversely Tzirakis et al. (2017) propose fusing the models once feature extraction

has taken place (prior to any class scores being calculated), from here the merged

feature maps can be passed into a separate network (LSTM in this case) and output

a final class score based on the LSTM output (see figure 3.10).

Figure 3.10: Illustration of a sample multi-sensory (audio-visual) network (Tzirakis et

al., 2017)
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Without having access to results which compare the performance of these two

methods, it is difficult identify which of these methods is more effective, and which

could demonstrate superior performance in this study. On the one hand, the class

score fusion approach makes sense intuitively as we simply combine the predictions

from each model/sensory system into a fusion architecture which produces the final

classification for the model. However, if like in our case the output from each sensory

system is low dimensional, it could be difficult for the fusion layer to model this data

effectively and could potentially lead to underfitting. On the other hand, the pre-class

score fusion makes less sense intuitively perhaps, but could provide more information

to the fusion component and help avoid underfitting.

Researching both of these methods certainly gave us a lot to think about and forced

us to consider employing both methods when conducting this study in an attempt to

maximise our chances of developing an effective multi-sensory classifier.

3.6 Class imbalance

Class imbalance is a common problem in machine learning, it’s presence in training

data can be detrimental to the classification power of any models built on top of the

dataset (Buda, Maki, & Mazurowski, 2018). While there has been extensive research

into this problem within the context of traditional machine learning (Batista, Prati, &

Monard, 2004), there is still relatively limited research knowledge available relating to

the problem of class imbalance in the domain of deep learning and image classification

(Buda et al., 2018).

This lack of research does not imply that class imbalance is not a problem within

the field of deep learning, image, and audio classification. Many interesting appli-

cations of CNN architectures such as marine image classification in which habitats

can feature high-biodiversity and low species density (Langenkamper, van Kevelaer,

& Nattkemper, 2018), or the diagnosis of rare medical conditions using images (Esteva

et al., 2017) illustrate the need for robust methodologies for handling dataset imbal-

ance within the context of image and audio classification.

27



CHAPTER 3. REVIEW OF EXISTING LITERATURE

Thankfully these methodologies do not have to be developed from scratch and we

as deep learning practitioners can leverage many of the tried and tested methods for

handling class imbalance from traditional machine learning. The simplest examples of

this involve using weighted loss functions when training deep neural networks (Sudre,

Li, Vercauteren, Ourselin, & Cardoso, 2017) and oversampling minority classes. It

should be noted however that in order to reduce the risk of overfitting in deep neural

networks, it is suggested that oversampling should be performed to an extent that

completely eliminates the class imbalance within the dataset (Buda et al., 2018).

Other methods for eradicating class imbalance involve using synthetic minority

oversampling techniques (SMOTE) such as image augmentation. Image augmentation

involves creating new images (or videos) by blurring, rotating, illuminating and flipping

the original training images (illustrated in figure 3.11). This process works under the

assumption that images and videos for the most part are translationally invariant.

For instance an image of a man/woman standing beside a tree which is flipped on its

horizontal axis is still an image of a man/woman standing beside a tree. This approach

has been applied in applications such as marine image (Langenkamper et al., 2018) and

plant classification (Pawara, Okafor, Schomaker, & Wiering, 2017). In both studies

the use of image augmentation was shown to reduce the risk of models overfitting the

training data. This approach appears to be directly applicable to our problem as a

video of a slam dunk flipped on the horizontal axis is still easily recognisable as a slam

dunk to the human eye.

It is also worth noting that there is research being performed into the interesting

and exciting area of generative adversarial networks5 (GANs) and their potential as an

alternative, and superior approach to synthetic oversampling when compared to simple

image augmentation (Douzas & Bacao, 2018). However, currently this technology is

not at the level of sophistication required to be viable option for overcoming class

imbalance in this dissertation.

While not commonly employed in the field of image/video/audio classification,

5A neural network architecture which is capable of generating new data with the same charac-

teristics of the data which it is trained on (Goodfellow et al., 2014)

28



CHAPTER 3. REVIEW OF EXISTING LITERATURE

Figure 3.11: Illustration of a sample multi-sensory (audio-visual) network (Tzirakis et

al., 2017).

studies have explored the use of one class classifiers using neural networks. In short,

one class classification involves developing models which are trained solely on one

class from the training data. A simple example of this would be building a website

recommender system for a web user based on their search history (L. M. Manevitz &

Yousef, 2001), in this case the training data consists solely of sites the user has visited

in the past and not the ones they have not (i.e. no negative samples). One class

support vector machine (SVM) classifiers are commonly used in applications such as

anomaly detection (Pauwels & Ambekar, 2011).

Studies into the application of one class classifiers within the domain of deep learn-

ing have focused primarily on the use of auto-encoders6. These studies have shown that

novel deep learning methods outperform than SVM and Naive-Bayes based approaches

when it comes to tasks such as retrieving documents of interest (L. Manevitz & Yousef,

2007) and handwriting outlier detection from the MNIST dataset (Chalapathy, Menon,

& Chawla, 2019).

Although a one class classifier could be considered a novel approach to solving our

research problem since a slam dunk is a relatively rare event in a game of basketball.

However, treating slam dunk identification as an anomaly detection problem would

mean that the models and methodologies developed as part of this dissertation would

be limited in their ability to scale towards classifying more common events such as

jump shots and layups. Since we would like the models developed in this dissertation

to provide a basis for future, more advanced scene classification going forward, we will

not explore the use of one class classifiers.

6A form of deep learning architecture for which the models output is simply an approiximaton of

its input (i.e. xi ≈ xo)

29



CHAPTER 3. REVIEW OF EXISTING LITERATURE

3.7 Basketball analytics

Advances in global positioning systems (GPS) and player tracking technologies in the

NBA/NCAA in recent years have led to the widespread availability of spatial data

about each player which had previously been unavailable or was too time consuming

to collect. The availability of this data has aided researchers in developing advanced

metrics which more accurately quantify a player’s performance on the court.

Goldsberry (2012) demonstrated that using this data one could develop novel met-

rics such as spread (spatial spread of scoring positions for a player across the court) and

range (effective shooting range of a player across the court) in order to identify which

players exhibit the most potent spatial shooting behaviours. These metrics are derived

from a players success at the different shooting positions across the court (illustrated

in figure 3.12). Conversely Goldsberry and Weiss (2013) utilised player spatial data

to develop a defensive rating system (citing the lack of metrics to effectively measure

a players defensive performance). This rating system involved analysing how players

perform within 5 feet of the basket as well as how much they influence the success of

shots taken in their proximity.

In addition to the development of advanced metrics, there has been a lot worked

performed into testing the validity of phenomena such as the ”hot hand”. The hot hand

is a belief held by many that a player is more likely be successful on a shot attempt

following a series of previously successful shots. Studies such as Gilovich, Vallone,

and Tversky (1985) have analysed successive shot (and free throw) patterns from a

number of NBA teams to determine that there is no empirical evidence to suggest the

hot hand exists despite 91% of subjects (n = 100) who were interviewed as part of

their study believing in the idea. With this result, Burns (2001) uses simulations to

suggest that if the problem is looked at from an adaptive thinking point of view the

idea of the hot hand can be used as an effective method to allocate shots among a

team citing the fact that streaks are predictive of a players shooting percentage.

Other areas of research relating the sport of basketball which interested us while

reviewing the existing literature include:
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Figure 3.12: Shot map created by Goldsberry (2012). In this map the blue grids

represent the 1,284 different scoring areas and the red dots illustrate shooting density

within these areas.

• Using integer programming and enumerative techniques to optimise and auto-

mate the scheduling of games in the NCAA (Nemhauser & Trick, 1998; Henz,

2001).

• Analysing whether the position at which player is selected in the NBA draft 7

has an impact on the amount of playing time that player receives, and the length

of their NBA career regardless of their production (Staw & Hoang, 1995).

• Exploring how some of the computer vision techniques discussed above can be

used to identify key participants in events that occur on the count (Ramanathan

et al., 2016)

• Classifying NBA scenes of interest based on audio recordings (Mi & Xue, 2018).

While much of this research is not related to our study specifically, it was important

and indeed inspiring for us to explore just how useful analytics can be within the sport

of basketball and understand some of the key research areas within the sport.
7An annual event where the top college prospects are selected by NBA teams
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Chapter 4

Data collection & preparation

This chapter begins by discussing the dataset analysed as part of this dissertation.

From here, we walk through the steps required to obtain and prepare both the audio

and visual information for analysis before finally discussing the methods employed to

overcome the class imbalance which existed within the dataset.

4.1 The Dataset

The dataset used to develop the models described in this dissertation is a subset

of the NCAA Basketball dataset 1 created and used by Ramanathan et al. (2016).

This dataset contains manually annotated event labels2 for eleven key events (such

as slam dunk success/failure, layup success/failure, free throw success/failure, steal,

etc) which occur in 257 NCAA Basketball games played between different teams at

different neutral venues.

For each key event identified in the dataset the annotators took note of features

such as the YouTube ID of the source video, the time (in milliseconds) that the event

occurred within the video, and the ball location at the start of the event. The full

list of features captured in the NCAA Basketball dataset are described in Table 4.1.

1The dataset is available for download at: http://basketballattention.appspot.com/bball dataset

april 4.csv
2Events were labelled using Amazon Mechanical Turk: https://www.mturk.com/
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The game videos listed in the original dataset were roughly 90 minutes long and are

available to view in full on YouTube.

Feature Description

YouTubeId The YouTube ID of the full game video. The

video can be accessed by prefixing this ID

with http://youtube.com/watch?v=

VideoWidth and VideoHeight The height and width of the video in pixels

ClipStartTime and ClipEndTime The timestamp (in milliseconds) of the key

event clip which Ramanathan et al. (2016)

used when training their model(s)

EventLabel Slam dunk success/failure, steal success, 3-

pointer success/failure, etc

EventStartTime The timestamp (in milliseconds) in which the

event begins (e.g. when a player begins his

shooting motion)

EventStartBallX and EventStart-

BallY

The X and Y coordinates of the ball position

(as a fraction of the video height and width)

with the origin in the top left corner

EventEndTime The timestamp (in milliseconds) at which the

event ends (e.g. when the ball enters the

hoop on a successful slam dunk)

Table 4.1: Full set of features described in dataset created by Ramanathan et al.

(2016)

The subset of data analysed as part of this study is limited to the 10 games in

which the most slam dunk successes occur. The reasons for limiting the data to

these 10 games are twofold: Firstly, slam dunks are a relativity rare occurrence in a

game of basketball as they typically require a lot of space to execute (as discussed in

section 2.2). As a result of this, we must understand that our dataset (which is only
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interested in the occurrence of a successful slam dunk) is going to be imbalanced and

that this imbalance is going to have a negative impact on any classification models we

look to develop. While focusing on this subset wouldn’t solve the imbalance problem

alone (discussed more in section 4.2), it would prevent us from further adding to the

imbalance by analysing games where little or no slam dunks occur.

Secondly, given the short time frame available to perform this study, it was de-

termined that training a multi-sensory hybrid network model on the full 257 game

dataset would require a significant amount of time and would result in less time being

available to refine, optimise, and compare the model(s). While it was acknowledged

that analysing only a subset of the data would more than likely result in reduced

classification power, the significant time savings allowed us to focus our efforts on

experimenting with different architectures and fine tuning the parameters.

Once the 10 videos containing the most successful slam dunk occurrences had been

identified (using a simple table aggregation in Python), these games were downloaded

from YouTube using the pytube3 Python library and stored in .mkv format. Figure

4.1 illustrates the number of slam dunks which occur in the 10 games chosen for this

study

4.2 Video segmentation

Prior to analysing the game footage it was necessary to segment each of the full length

games into a series of n second long scenes. Based on our review of the existing

literature and our understanding of the data, we decided to segment each game into

a series of 4 second long clips. We felt that 4 seconds was long enough to give some

context as to what is going on within a scene while still being in a localised timeframe

(Ramanathan et al., 2016).

Once this decision was made, we utilised a Python wrapper for FFMPEG 4 to

3Library documentation: https://python-pytube.readthedocs.io/en/latest/
4A command line tool for audio and video processing
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Figure 4.1: Illustration of number of slam dunks per game analysed in this study.

segment each full game video into a series of 4 second long clips 5.

In order to keep track of our clips (and to help us with sub-sampling these into a

series of frames), we created a data frame which contained information on the source

video location, the 4 second clip location, clip start time and end time (in microsec-

onds). From here we were able to join the ’slam dunk success’ labels from the original

dataset (described in section 4.1) on the slam dunks EventEndTime between our clip

start time and clip end time. We then used this to create a binary slam dunk indicator

column. Listing 4.1 demonstrates the join performed in Python/SQL code.

1 import pandas as pd

2 import pandasql as ps

3

4 sq l code = ’ ’ ’

5 s e l e c t seg .∗

6 , case when og data s e t . EventLabel i s n u l l then 0

7 e l s e 1 end as s l am dunk ind i ca to r

5Note that the final scene in each video was less than 4 seconds long, however these were excluded

from our analysis
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8 from segmented v ideo in fo seg

9

10 l e f t j o i n mapping table map

11 on a . game = b . game id

12

13 l e f t j o i n ncaa df og data s e t

14 on map . YoutubeID = og data s e t . YoutubeID

15 and seg . s t a r t t i m e <= og data s e t . EventEndTime

16 and seg . end time >= og data s e t . EventEndTime ’ ’ ’

17

18 s egmented v ideo in fo = ps . s q l d f ( sq lcode , l o c a l s ( ) )

Listing 4.1: Python/SQL code used to join slam dunk success labels from the full

dataset to the subset of data used in this study.

Upon segmenting the full game videos into a collection of 4 second long clips, it was

then necessary to sub-sample these clips into a series of frames which would be analysed

by the CNN component of the computer vision models. After experimenting with a

number of different frames per second to determine which one gives the most context

to the event occurring in each clip while also keeping our data set size manageable,

we settled on extracting 26 frames from each video.

These 26 frames included the first and last frame from each clip which we deemed

were important in the case where a slam dunk occured at the very end of one clip or

the start of another, in addition to 6 frames per second sampled uniformly across each

of the 4 seconds of video footage as proposed by Ramanathan et al. (2016). Using the

Python FFMPEG wrapper, we iteratively extracted these frames and stored them in

.PNG format. An example of frame sub-sampling on a slam dunk scene is illustrated

in figure 4.2.

Number of games Number of video segments Number of frames

10 11,835 307,710

Table 4.2: Summary of the dataset based on number of games analysed, segments

within each game, and frames within each segment.
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Figure 4.2: An example of 26 frames extracted from a slam dunk scene in the dataset.

Once again, to keep track of the sub-sampled frames we created a data frame which

contained information on each frames location, source video, event label, etc. This

data frame would provide the basis for training our computer vision models and the

vision component of our multi-sensory models. The full list of features within this
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data frame are detailed in table 4.3

In order to further combat the class imbalance discussed in section 4.1 we de-

cided that it was necessary to introduce additional positive slam dunk samples into

our dataset. Rather than downloading and parsing through additional data, or syn-

thetically generating additional samples using a generative adversarial network (which

would be an entire research project in itself), we decided to introduce additional sam-

ples by augmenting the current slam dunk frames.

Prior to augmenting the images, it was important to first divide our dataset into

train, test and validation partitions. It was vitally important to ensure that this split

was done prior to introducing any synthetic samples to our dataset as we were only

interested in augmenting the images within the training set. The reason for this is that

if we augmented the images prior to splitting the data into train, test and validation

sets, it is likely that different version of the same clips would end up in both the

training and test sets. If this occurred, it would have meant that our models were

being trained and tested on variations of the same data. Such an occurrence would

yield misleading test results and would invalidate any findings made as part of this

dissertation.

When it came to splitting the dataset into train, test and validation partitions, we

began by obtaining a list of distinct 4 second long video clips and their corresponding

slam dunk indicator. Next, using Python we applied stratified random sampling to

split the clips up into training (60%), validation (10%), and testing (30%) datasets

(see figure 4.3). Once we identified which clips belonged to our training, validation and

testing sets we simply updated our frames information table (see table 4.3) to include

a ”data subset” column that indicated which partition each set of frames belonged to.

Figure 4.3: Illustration of train, test, and validation split on dataset.

Once the dataset was partitioned into training, validation and testing sets, we

were able to begin augmenting the minority class images within the training set. To
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Feature Description

frame location The location on the drive of the extracted

frame (in .PNG format)

frame number A number between 1 and 26 indicating the

order of the frame within the sequence of ex-

tracted frames.

game Which of the 10 games analysed the frame is

part of (game 0,game 1,etc.)

source video location The location on drive of 4 second clip the

frame is extracted from

start time The timestamp (in milliseconds) that the 4

second clip starts within the original game

footage

end time The timestamp (in milliseconds) that the 4

second clip ends within the original game

footage

slam dunk indicator A binary value indicating whether or not the

frame belongs to a 4 second clip which con-

tains the occurrence of a slam dunk (1 imply-

ing a slam dunk has occurred in this clip).

data subset One of train, test or validation.

Table 4.3: Description of features contained in the frames information dataframe cre-

ated for this study.
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do this, we followed a similar process to that suggested by Langenkamper et al. (2018).

We began by flipping each image along the horizontal axis to create a ”backwards”

version of each frame. We were comfortable doing this, as opposed to flipping the

images vertically since an image of a slam dunk flipped on the horizontal axis is still

easily recognisable as a slam dunk whereas the same image flipped vertically is not

recognisable as a slam dunk. Using this simple augmentation we were able to double

the number of positive class samples in our dataset.

From here we performed two additional augmentations to each of our positive class

frames:

• Firstly, we applied a Gaussian blur6 to each image using the Python ImageFilter

module with a blur radius of 2.

• Secondly, we applied a digital unsharp masking to each image. This is a technique

whereby a Gaussian blur version of the image is subtracted from the original

image to create a new image.

Both of these techniques alter each of our slam dunk frames enough that our model

could interpret them as new images, while still preserving many of the key features

which are present in slam dunk scenes (e.g. a player hanging from the hoop).

Following these augmentations we were able to increase the number of positive

samples in our training set from 32 (0.4% of the training dataset) to 192 (2.6% of

the training dataset). While this increase was encouraging, we were still concerned

that the amount of imbalance which remained in the dataset was a problem and was

something we would need to address with oversampling, as suggested by Buda et al.

(2018).

6More infotmation and examples of Gaussian blurs can be found at: https://www.sciencedirect

.com/topics/engineering/gaussian-blur
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Figure 4.4: An example of each of the 5 image augmentations performed to the mi-

nority class data in this study: Original image (top left), flipped (top right), blurred

(middle left), blurred & flipped (middle right), unsharpened (bottom left), blurred &

unsharpened (bottom right).

To implement oversampling we began by using Python to split the training data

into two separate data frames, one containing the majority class information (non-slam

dunks) and one containing the minority class (slam dunks). From here we used the

resample() function within the sklearn 7 library to randomly resample our augmented

and non-augmented minority class data until it contained the same number of samples

as the majority class (n=7,024). Once resampled, we combined the majority and

resampled minority class data frames.

From here, the training dataset contained 14,048 samples with a 50:50 class split
7Library documentation: https://scikit-learn.org/stable/
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and reduced the risk of class bias within our models. As with the image augmentation

process, it is worth highlighting that it was important to hold off on oversampling our

minority class data until after the data had been split into training/validation/testing

sets. Doing this ensured that samples could not appear in both the training and testing

datasets and distort our results.

4.3 Audio Spectrograms

Once the video segmentation process was complete, creating the audio spectrograms

required for the analysis was a reasonably straightforward process. This process began

by iterating through each of the 4 second long clips described in section 4.2 and

extracting the audio from each clip into .wav format. To do this we once again utilised

the Python FFMPEG wrapper (see listing 4.2) to iterate through each video clip and

extract the single band clip audio to a .wav file with a sample rate of 44.1kHz and a bit

rate of 160kbps as suggested by Urbano, Bogdanov, Herrera Boyer, Gomez Gutierrez,

and Serra (2014). An example of the a .wav representation for both a dunk and

non-dunk scene can be seen in figure 4.5.

Figure 4.5: Illustration .wav files for slam dunk (left) and non-slam dunk (right) scenes

Additionally, since our audio information was coming from 10 different basketball

games recorded across a number of years, we felt that it would be necessary to nor-

malise the audio information in some way at a later stage to enable for meaningful

analyses and comparisons across games. To facilitate this, we extracted the audio from

each of the 90 minute full game videos to .wav format and stored these in a separate
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directory. Having access to the full game audio information allowed us to normalise

the audio within each game and compare/analyse audio across games on the same

scale (discussed later in this section).

Similar to the video segmentation process (see section 4.2), we created a pandas

data frame to keep track of the source video locations and location for the correspond-

ing audio files and spectrograms to follow. This table helped us avoid the issue of

temporal mismatching between the visual (frames) and audio features when training

the multi-sensory models, while also ensuring the training, validation, and testing

partitions were consistent across the different sensory sources.

1 import subproces s as sp

2 from moviepy . c o n f i g import g e t s e t t i n g

3 from moviepy . t o o l s import s u b p r o c e s s c a l l

4

5 de f e x t r a c t a u d i o ( s o u r c e v i d e o l o c , aud i o ou tput l o c ) :

6 cmd = [ ’ ffmpeg ’ , ’− i ’ , s o u r c e v i d e o l o c , ’−ab ’ , ’ 160k ’ , ’−ac ’ , ’ 1 ’ ,

’−ar ’ , ’ 44100 ’ , ’−vn ’ , aud i o ou tput l o c ]

7 sp . c a l l (cmd , s h e l l=True )

Listing 4.2: Python function to extract single band audio from video clip at a sample

rate of 44.1kH and bit rate of 160kbps.

Upon extracting the audio from each of the 4 second long video clips, we were

ready to begin converting the raw audio files to a spectrogram representation. To

give us some variety in the types of data we could use in our models, and to allow

us to compare the performance of models built on different visual representations of

the audio, we decided to create 4 different spectrograms for each of our 4 second long

audio clips:

1. A filter banks representation of the audio plotted using a hot colour map.

2. A filter banks representation of the audio plotted using a viridis colour map.

3. An MFCC representation of the audio plotted using a hot colour map.
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4. An MFCC representation of the audio plotted using a viridis colour map.

The inspiration behind these choices came from papers/studies researched as part

of the literature review (see section 3.4) for this study. Studies such as Afonso et al.

(1999) use of filter banks in electrocardiogram 8 (ECG) beat detection and Ballan

et al. (2009) who utilised MFCC features in soccer scene classification inspired us to

compare the effectiveness of filter bank vs. MFCC features when modelling audio

information in a multi-sensory model.

As discussed in the literature review, the genesis for creating both hot and viridis

versions of each image stems from the findings made by Amiriparian et al. (2017) when

they identified that a viridis spectrogram yielded more effective results than a jet or

grey representation. With these results in mind we thought that it would be a good

idea to test and compare the performance of the viridis and hot colour maps when

analysed within our multi sensory networks.

A naive approach towards extracting filter bank and MFCC features from the audio

clips would be to simply take the raw audio extracts and pass them through a librosa
9 or python speech features 10 function. However, in order to increase the effectiveness

of our multi-sensory models we decide to perform two pre-processing steps prior to

extracting filter bank and MFCC features from the audio.

The first of these pre-processing steps was to simply downsample the audio fre-

quency. As discussed in section 3.4, downsampling audio frequencies is a popular

technique used in speech and audio processing which helps reduce the computational

power required to analyse the raw frequencies in addition to reducing the amount of

noise within the data. For this study, the raw audio frequencies were downsampled

from 44.1kHz to 16kHz (similar to Ballan et al. (2009)). To perform the downsampling

we utilised the load() function within the librosa library which allowed us to specify a

sampling rate (via the sr parameter) when reading each of the .wav files.

8More information on ECG can be found at: https://irishheart.ie/your-health/heart-stroke-tests

-procedures/ecg/
9Library documentation: https://librosa.github.io/librosa/

10Library documentation: https://python-speech-features.readthedocs.io/en/latest/
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The second pre-processing step undertaken was to calculate the mean of both the

filter bank and MFCC features from each full length audio file. As mentioned earlier in

this section, we felt it was necessary to normalise our audio data in some way given the

fact that our full game clips are coming from different audio sources recorded across

a number of years. With this in mind, it was decided that we would normalise the

filter bank and MFCC features extracted from each clip by subtracting the mean filter

bank/MFCC feature value for the corresponding full game audio from each feature in

the 4 second long audio clips (see Eq. 4.1 for formula used to normalise our MFCC

features11).

M̃G,i = MG,i − M̄G (4.1)

where:

M̃G,i = Normalised MFCC feature from game G at step i

MG,i = MFCC feature at from game G step i

M̄G = Mean MFCC feature value from full game G

To calculate the mean filter bank and MFCC values across each game we iteratively

read in the full game audio files (mentioned above) using librosa, downsampling each

file to 16kHz. Once downsampled, we utilised the logfbank() and mfcc() functions avail-

able within the python speech features library with a fast Fourier transform (FFT)

size of 1,103 to extract an array of filter bank and MFCC features from the full game

audio clips. Once extracted we simply took the mean of these arrays and wrote them

to a pandas data frame along with the game ID and source audio location. We would

then join this data frame onto the audio data frame discussed earlier in this section

to store the mean filter bank and MFCC information.

Once we had a mechanism for downsampling the audio clips in place, a dataframe

containing information each of audio files, and corresponding mean values it allowed

us to develop a series of relatively straightforward functions which could create and

save a normalised spectrogram given some input audio data (see listing 4.3). With
11Note that the equation used to normalise filter bank features is identical, however we decided to

illustrate just one equation to avoid unnecessary repetition.

45



CHAPTER 4. DATA COLLECTION & PREPARATION

these functions in place, it allowed to iterate through each audio file in our dataset

and create the 4 spectrograms mentioned above. Figure 4.6 illustrates an example of

each normalised spectogram type created for both a slam dunk and a non-slam dunk

scene.

1 import numpy as np

2 import l i b r o s a

3 from python spee ch f ea tu r e s import mfcc , log fbank

4

5 de f c r ea t e mfcc v i r id i s mean norm ( input l o c , output loc , game mean ) :

6

7 y , s r = l i b r o s a . load ( input l o c , s r =16000)

8 mfcc f e a t = mfcc (y , sr , n f f t =1103) .T

9

10 # mean normal i se

11 mfcc feat norm = mfcc f e a t − game mean

12 f i g = p l t . f i g u r e ( )

13 p l t . imshow ( mfcc feat norm , i n t e r p o l a t i o n=’ nea r e s t ’ , cmap=cm. v i r i d i s ,

o r i g i n=’ lower ’ , a spect=’ auto ’ ) ;

14 p l t . a x i s ( ’ o f f ’ )

15

16 # save the spectrogram

17 f i g . s a v e f i g ( output loc , bbox inches=’ t i g h t ’ )

18

19 # c l e a r the f i g u r e ( f o r memory management and e f f i c i e n c y )

20 p l t . c l f ( )

21 p l t . c l o s e ( f i g )

Listing 4.3: Python function to create spectrogram of input audio using the viridis

colour pallet and normaised MFCC features.
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Figure 4.6: Examples of normalised filter banks (left & middle left) and MFCC (right

and middle right) spectrograms for slam dunk (top) and non-slam dunk (bottom)

scenes.

Finally, in order to ensure consistency between the audio and video datasets, we

split the full audio data into train, validation and test partitions using the same

proportions (60/10/30) and random seed as the visual data. We also oversampled

the minority class in the audio training data using the same random seed that was

used when oversampling the video data.

Once this was complete we compared the training (oversampled), validation, and

testing datasets between the two sensory sources to ensure no temporal mismatching

had taken place by comparing row counts, class balance, and the order of event labels

between the two datasets. No data quality issues were identified.

Figure 4.7: Flow chart of process required to create spectrograms.
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Chapter 5

Experiment design and

methodology

This chapter details the design of both the computer vision and multi-sensory models.

For each model we describe the end to end architectures before detailing the perfor-

mance metrics and statistical tools used to asses and compare their performance.

5.1 Computer Vision Model

The computer vision model provided the basis for our study. This model would not

only form a component of the multi-sensory model, but would also be compared to the

multi-sensory model in order to test our hypothesis (see section 6.1). The computer

vision model was a standard a hybrid network architecture comprised of both CNN

and LSTM layers. This model can be thought of as the eyes of our overall architecture

and how it operates can be broken up into 3 steps:

1. Extract bottleneck features from frames using InceptionV3 architecture

2. Understand the temporal evolution of extracted features using an LSTM layer

3. Classify video

Before passing any of the frames in our dataset through the Inceptionv3 portion

of the model, it was important to configure the architecture parameters in order to
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apply transfer learning and incorporate the architecture into our model. The first

configuration performed on the architecture was removing the final dense layer of the

original model. Since we were developing a hybrid (CNN-LSTM) network model, we

were not interested in making any predictions using the InceptionV3 model alone. As

a result of this we could remove the prediction layer and replace it with a pooling

layer.

In our experiments (described in section 6.1.1) this pooling layer took one of two

forms (maximum and mean) and was used to condense the features extracted in the

penultimate layer of the network into a 2,048 dimensional vector. This vector of

bottleneck features would subsequently be passed into the LSTM component of our

model before a final classification is produced.

The second configuration required was specifying the weights (illustrated in figure

5.1) to use within the InceptionV3 model. Here we had one of two options:

1. Implement the default ”ImageNet” weights within the network. These weights

were derived through backpropogation when training the InceptionV3 architec-

ture ImageNet dataset.

2. Retrain the network (or a portion of the network) on our basketball image dataset

and derive a new set of weights for the model.

Since the ImageNet dataset 1 contained a number of images related to basketball

and slam dunks in addition to pictures of similar team sports such as netball, we were

confident that the default ImageNet weights would be suitable for extracting features

from our input images and configured the architecture accordingly.

1More information on the dataset can be found at: http://image-net.org/index
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Figure 5.1: Illustration of a simple neural network node describing the role of weights

within the network (source: https://skymind.ai/wiki/neural-network).

Once the network was configured, it was necessary to reshape our images to the

dimensions required by the input layer of the InceptionV3 architecture. To do this, we

utilised the Keras image pre-processing functions to reshape each image to 229x229

pixels, extract the RGB values (from 0 to 255) from each pixel into 3 separate arrays

(one containing the red values, one containing the green, and one containing the blue),

and normalise these values in the range [-1,1].

Figure 5.2: Illustration of how a frame extracted from a video segment gets converted

into normalised 229x229 RGB arrays.

From here, we were ready to begin training the computer vision model. To do this,

we iteratively went through each of the 4 second long clips in our training set passing

each of the 26 sub-sampled frames through the reconfigured InceptionV3 architecture

in order. The model produced a 2,048 dimensional vector for each frame in the clip.

Next, we concatenated vector representation for each frame in a clip together.

This resulted in a 26x2,048 dimensional array which represented the extracted visual

features from a given training clip as they evolve over time. Finally, this 26x2,048
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dimensional array was then appended to a larger array (referred to as the feature

array henceforth) which would house each of the 26x2,048 dimensional arrays for each

clip in the training dataset.

Figure 5.3: Flow diagram of the video clip feature extraction process.

It is worth noting here that as we processed more and more clips through the

InceptionV3 network and appended them to our feature array, we observed that the

feature extraction process began to slow down significantly. This was due to the

increasingly large size of the feature array being stored in memory on our machine.

To overcome this, we began processing clips through the InceptionV3 network in

batches of 500 clips (13,000 frames) at a time. Each 500 clip feature array (referred to

as sub-feature arrays henceforth) was then saved to our hard drive before being wiped

from memory to begin processing the next batch of frames. Once every frame in the

training set had been processed through the InceptionV3 network, we were able to

concatenate each of the sub-feature arrays together to create the feature array. This

approach resulted in significant time savings when developing the model and allowed

us to reconfigure/tune the LSTM portion of the network without having to retrain the

entire network.

Once each clip had been processed by the InceptionV3 portion of the network, we

were able to begin passing each of our 26x2,048 dimensional arrays through the LSTM

portion of the model. This LSTM architecture analysed the temporal relationship and
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evolution of our extracted features.

The activation function used within this component of the network was the leaky

rectified linear unit (RELU) activation function. We chose this function not only

for it’s low computational cost but also since unlike the standard RELU function, it

maintains all of the feature information (Zhang, Zou, & Shi, 2017). We felt that this

retention of additional information would help the classifier while also facilitating the

use of pre-class score fusion within our subsequent multi-sensory models by outputting

more signal from the LSTM component. A mathematical comparison of the RELU

and leaky RELU activation functions can be found in equations 5.1 (RELU) and 5.2

(leaky RELU), while a visual comparison can be seen in figure 5.4.

f(x) = max(0, x) (5.1)

f(x) = max(0.1x, x) (5.2)

Figure 5.4: Comparison of RELU and leaky RELU activation functions.

The output from the LSTM portion of the network was then passed into a single

two node dense layer with a softmax activation function. This layer determined the

final classification output for the model by essentially assigning a probability that

the video analysed by the model belongs to the non-dunk or dunk class. Once these

probabilities (which sum to 1) were calculated, the final classification from the model

was deemed to be the class with the highest probability.
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Note that while we could have used other activation functions for the final layer of

the model (such as the sigmoid or hyperbolic tangent activation functions), we chose

to use the softmax activation function as we felt having a higher dimensional output

(two versus one), and a spread of probabilities across both classes in the output layer

would help us when performing any class score fusion within the multi-sensory model

(see section 5.2). Figure 5.5 provides an illustration of the computer vision model at

a high level.

Figure 5.5: High level visual summary of the computer vision model architecture.

As mentioned in section 1.5, the performance of each computer vision model is

assessed based on 4 key performance metrics:

1. Mean class precision (MCP)

2. Mean class recall (MCR)

3. True positive rate (TPR)

4. True negative rate (TNR)

These 4 metrics were chosen due to the large amount of imbalance within the

testing set. As a result of this, relying on a single measure such as accuracy would not

provide a fair assessment of how the model was performing.

For example in our case the model could run at 99% accuracy but not classify

a single slam dunk scene correctly. With this in mind, we felt that the weighted

MCP and MCR metrics, similar to that suggested by Murray, Renals, Carletta, and

Moore (2006) and available within the scikit-learn module2, along with TPR/TNR as

suggested by Batista et al. (2004) would help us gain a better understanding of how

our models performed on this particular dataset at a high level while also helping us

identify each models strengths and weaknesses.

2Library documentation: https://scikit-learn.org/stable/modules/generated/sklearn.metrics

.classification report.html
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The formulas used to calculate these metrics are detailed in equations 5.3, 5.4, 5.5,

and 5.6:

MCP = ((Precisionnon−dunk)(Supportnon−dunk)) + ((Precisiondunk)(Supportdunk))
N

(5.3)

where:

Precisioni = Model precision for class i

Supporti = Number of samples for class i in the testing set

N = Total number of samples in the testing set

MCR = ((Recallnon−dunk)(Supportnon−dunk)) + ((Recalldunk)(Supportdunk))
N

(5.4)

where:

Recalli = Model recall for class i

Supporti = Number of samples for class i in the testing set

N = Total number of samples in the testing set

TPR = TP

TP + FN
(5.5)

where:

TP = Number of true positives predicted by the model

FN = Number of false negatives predicted by the model

TNR = TN

TN + FP
(5.6)

where:

TN = Number of true negatives predicted by the model

FP = Number of false positives predicted by the model
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5.2 Multi-Sensory Model

The multi-sensory model(s) developed as part of this study can the thought of as a

two stream network in which stream 1 is simply the computer vision model described

above (in section 5.1). This stream, as before, models the visual component of the

input video through a hybrid network model.

Stream 2 of the network (illustrated in figure 5.6) analyses the audio information

from each scene in the form of spectrograms (described in section 4.3) and can be

thought of as the ears of our architecture.

Since the each audio spectrograms model the audio frequency over each 4 seecond

long video, the models developed as part of the audio stream did not require a mech-

anism for analysing time series data (such as an LSTM). As a result of this the ar-

chitecture used to model the audio information within this study was a pre-trained

CNN architecture 3, similar to that used in our computer vision model for bottleneck

feature extraction.

As with the computer vision model, it was necessary for us to configure the pre-

trained architectures parameters in order to effectively utilise the power of transfer

learning. Similarly to the computer vision model, we removed the classification layer

from the pre-trained architecture to facilitate our binary classes (dunk and non-dunk).

However, we also introduced a 128 node fully connected layer into the pre-trained

architecture prior to the classification layer. This layer would not only help improve the

performance of the model, but would also facilitate pre-class score fusion by ensuring

that the output from the penultimate layer of both the vision and audio streams were

both the same length (l = 128). Once again, it is worth highlighting that the activation

function used for this layer was the leaky RELU activation function.

Similar to before, rather than completely retraining the InceptionV3 or VGG19

architectures, we utilised the default ImageNet weights for the pre-trained portion of

the audio model. Instead, we allowed the model to train the additional 128 node fully

connected layer as well as the classification layer. While this could be considered a
3We experimented with both InceptionV3 and VGG19 architectures, see chapter 6 for more

discussion on this
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limitation, or weakness in the model (and an area for future improvement), hardware

limitations restricted the amount of retraining we could perform within the audio

stream as part of the multi-sensory network.

Figure 5.6: Illustration of the audio steam which makes up our multi-sensory archi-

tecture.

Once each of the sensory streams were in place, we needed a mechanism for com-

bining the information captured by the eyes and ears of the model before making a

final prediction. To accomplish this we added a fusion layer to the model. While

we experimented with a number of different forms of fusion (discussed in more detail

in chapter 6), this layer can be simply thought of as a layer which takes the output

vectors from each of our sensory streams, and combines them into a single vector via

some simple mathematical operation (addition, mean, subtraction, etc.).

Once the multi-sensory data had been processed through each stream of the net-

work and merged into a single vector, a simple (no more than 2 hidden layers) dense

architecture analysed the information within the vector before making the final clas-

sification for the model 4. An overview of the end-to-end multi sensory architecture is

illustrated in figure 5.7.

4Note: We also explored using support vector machines for this component of the model instead

of a dense neural network and will be discussed in 6
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Figure 5.7: High level summary of the end to end multi-sensory model architecture.

As with the computer vision model discussed above, the multi-sensory model was

assessed based on MCP, MCR, TPR, and TNR. Having the same set of metrics, and

a confusion matrix calculated for both models (trained and tested on the same data)

allowed us to informally compare and assess the performance of both the computer

vision model and multi-sensory models (identify which model is more precise, which

has a lower false positive rate, etc.).

When it came to testing our hypothesis, we used McNemear’s test to formally

compare the errors between the models for statistical significance. McNemar’s test is

a non-parametric statistical test which compares the disagreements between two sets

of model predictions using a contingency table (5.1).

McNemear’s test has been proposed as a suitable statistical tool for comparing the

performance of two models which are computationally expensive to train, such as deep

neural networks (Dietterich, 1998). In cases where the models are computationally

expensive and time consuming to train, traditional methods such as cross validation

are not feasible.
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Model 2

Correct Incorrect

Model 1
Correct a b

Incorrect c d

Table 5.1: Example of a contingency table in which a represents the number of in-

stances Model 1 and Model 2 prediction correctly, b indicates the number of instances

that model 1 predicted correctly which model 2 predicted incorrectly, etc.

In order to accept or fail to reject the null hypothesis, we compared the McNemear’s

test statistic to a χ2 distribution with 1 degree of freedom and a significance level of

α = 0.05 (see figure 5.8). If the improvements in the multi-sensory model across all

4 metrics were deemed to be statistically significant, we could reject H0 and accept

that the multi sensory model is a more effective classifier of slam dunk sequences when

compared to a computer vision model.

Eq. 5.7 describes the traditional calculation of the McNemar’s test statistic. How-

ever, since the differences in errors between our models were small (b + c < 25), we

calculated the test statistic using a modified formula (Eq. 5.8) proposed by Edwards

(1948). This formula corrects for continuity and more accurately approximates the χ2

distribution for smaller sample sizes.

χ2 = (b− c)2

b+ c
(5.7)

χ2 = (|b− c| − 1)2

b+ c
(5.8)
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Figure 5.8: Illustration of the χ2 with 1 degree of freedom and significance level of

α = 0.05 (critical region shaded in blue).
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Chapter 6

Results, evaluation and discussion

This chapter details and discusses the results from each experiment conducted as part

of this dissertation. We begin by detailing the results obtained when each model

developed was applied to the testing set.

From here, we compare the performance of the computer vision model to the multi-

sensory model before comparing the performance of multi-sensory models developed

using different audio features.

Finally, we discuss these results and what they mean in the context of the research

objectives outlined in section 1.4.

6.1 Results

6.1.1 Computer Vision Model

6.1.1.1 Experiment CV-1: InceptionV3 with mean pooling bottleneck fea-

tures and 128 node LSTM

The first computer vision experiment conducted employed the InceptionV3 architec-

ture with a mean-pooling bottleneck layer to create a feature map for each frame

in our training datasets, these feature maps where then analysed by an LSTM layer

containing 128 hidden units, similar to the architecture used by Chow and Dibua

(2018) in their study into tennis action recognition. This LSTM layer also included
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L2 regularisation (λ = 0.03) and a dropout component (p = 0.5) to reduce the risk of

over-fitting.

This model was trained using the Adam optimiser with a dynamic learning rate
1. This feature allowed the model to reduce the learning rate while training if the

validation loss has had not improved over 5 iterations.

The model was trained using the standard categorical cross entropy loss function

for 100 epochs. Once again, to avoid over-fitting a callback was implemented while

training to save the best version of the model. This callback identified which epoch pro-

duced the model with the lowest validation loss and saved the corresponding weights

to the hard drive on our machine. From figure 6.1 we can see that the best model

produced during this experiment occurred after roughly 40 epochs.

Figure 6.1: Illustration of training and validation loss over training for the model

described in experiment CV-1.

Table 6.1 describes the confusion matrix generated when this model was applied to
1Reduced learning rate documentation: https://keras.io/callbacks/#reducelronplateau
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the testing dataset. Examining this table we can see that the model correctly classifies

7 out of 16 slam dunk scenes (TPR = 0.4375), and 3,362 out of 3,512 non-slam dunk

scenes (TNR = 0.9573). On the other hand we can see that this model incorrectly

classified 9 slam dunk scenes as a non-slam dunk scene and 150 non-slam dunks as

slam dunks.

Predicted

Non-dunk Dunk
A

ct
ua

l Non-dunk 3,362 150

Dunk 9 7

Table 6.1: Confusion matrix produced when the model developed as part of experiment

CV-1 was applied to the training set.

Table 6.2 allows us to more formally assess the models performance in terms of

the metrics described in section 5.1. From this table we can see that while the model

operated with an MCP of 99.29%, and an MCR of 95.49%, the model performs par-

ticularly poorly at returning relevant slam dunk scenes. This is highlighted by the

extremely low precision score for the slam dunk class of 4.46%.

Precision Recall TPR TNR Support

Non-dunk 0.9973 0.9573 3,512

Dunk 0.0446 0.4375 16

Total/Avg 0.9929 0.9549 0.4375 0.9573 3,528

Table 6.2: Summary of model metrics from experiment CV-1 which includes precision

and recall metrics for each class, MCP, MCR, TPR, TNR, and support.

6.1.1.2 Experiment CV-2: InceptionV3 with maximum pooling bottleneck

features and 128 node LSTM

With the results from section 6.1.1, we decided to explore the effect of using a maximum

pooling layer as the final layer of the InceptionV3 feature extractor before passing these
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features into our LSTM architecture.

Surprisingly, when we examine the confusion matrix in table 6.3 and the evaluation

metrics described in table 6.4 we can see a decrease in performance based on all of our

model evaluation metrics. This decrease in performance can mainly be attributed to

the high type II error rate within the non-dunk class (825). This high type II error

rate resulted in a 76.51% TNR. We can also see the effects this has on the dunk class

metrics, dropping the TPR to 6.25%.

Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 2,687 825

Dunk 15 1

Table 6.3: Confusion matrix produced when the model developed as part of experiment

CV-2 was applied to the training set.

Precision Recall TPR TNR Support

Non-dunk 0.9944 0.7651 3,512

Dunk 0.0012 0.0625 16

Total/Avg 0.9899 0.7619 0.0625 0.7651 3,528

Table 6.4: Summary of model metrics from experiment CV-2.

Finally, we can see from figure 6.2 that this model struggled to converge on an

acceptable loss for both the training and validation sets (it never drops below 20).

This further suggests that the model struggled with learning the required features

when using the maximum pooling feature maps.
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Figure 6.2: Illustration of training and validation loss over training for the model

described in experiment CV-2.

6.1.1.3 Experiment CV-3: InceptionV3 mean pooling bottleneck features

and 256 node LSTM

In this experiment, we increased the number of hidden units within the LSTM portion

of the model described in experiment CV-1 (section 6.1.1.1) to 256 and explored what

effect this had on the classification power of the model.

Tables 6.5 and 6.6 describe the confusion matrix and summary metrics for this

model. Examining these tables we can see that while this model had a lower TPR,

correctly classifying only 3 out of 16 slam dunk scenes (18.75%) when compared to

the 128 hidden unit model, this model performed well at correctly classifying non-slam

dunk scenes (3,456 out of 3,512) with a TNR of 98.41%.

The models proficiency for correctly classifying non-slam dunks scenes resulted in

an increase in slam dunk class precision (5.08%) when compared to the 128 hidden

unit model described in experiment CV-1 (4%). This increase in precision resulted in
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a higher proportion of relevant positive samples being retrieved by the model.

Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,456 56

Dunk 13 3

Table 6.5: Confusion matrix produced when the model developed as part of experiment

CV-3 was applied to the training set.

Precision Recall TPR TNR Support

Non-dunk 0.9962 0.9841 3,512

Dunk 0.0508 0.1875 16

Total/Avg 0.9919 0.9805 0.1875 0.9841 3,528

Table 6.6: Summary of model metrics from experiment CV-3.

We can see from the training/validation loss plotted in figure 6.3 that there are

no signs to suggest underfitting with this model and that the model converged to its

minimum loss after ∼70 epochs.
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Figure 6.3: Illustration of training and validation loss over training for the model

described in experiment CV-3.

6.1.1.4 Other computer vision experiments

In this subsection we briefly summarise a number of other computer vision experiments

conducted as part of this study. For the most part, these experiments yielded no results

worthy of us exploring these models any further as part of a multi-sensory network.

Nonetheless, we are including them in this dissertation to inform readers of potential

avenues to avoid or areas to improve when performing similar research. A summary

of how each model from these experiments performed on the testing set found in table

6.7, in which:

– TN =⇒ True negative count

– FN =⇒ False negative count

– FP =⇒ False positive count

– TP =⇒ True positive count

Experiment CV-4: Reversing the idea of experiment CV-3, in this experiment we
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explored the effect of reducing the number of hidden units within the LSTM layer

to 64. The model created as part of this experiment was unable to correctly classify

any of the slam dunk scenes within the testing dataset while incorrectly classifying 16

non-slam dunk scenes.

Experiment CV-5: This experiment involved exploring how a 2,048 hidden unit

LSTM with the tanh activation function performed when processing InceptionV3 mean

pooling bottleneck features. This model performed exceptionally poorly when com-

pared to other computer vision models at classifying non-slam dunk scenes (correctly

classifying only 2,019 out of 3,512). As a result of this, despite classifying 6 out

of 16 slam dunk scenes correctly the slam dunk class precision of this model was a

disappointing 0.4%.

Experiment CV-6: In this experiment we examined what effect removing any reg-

ularisation from the LSTM component had on the overall classification power of the

model. To test this, we modified the architecture described in experiment CV-1 (sec-

tion 6.1.1.1) to remove L2 regularisation from the LSTM layer. Perhaps unsurprisingly,

this meant that the model did not generalise well to unseen data and resulted in the

model not classifying any slam dunk scenes (0% TPR) from the test set correctly while

also misclassifying 8 non-slam dunk scenes as slam dunks.

Model ID TN FP FN TP

CV-4 3,488 24 16 0

CV-5 2,019 1,493 10 6

CV-6 3,504 8 16 0

Table 6.7: Summary of confusion matrices produced when models described in the

other computer vision experiments section were applied to the testing set.
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6.1.2 Multi-Sensory Model

6.1.2.1 Experiment MS-1: Mean pooling InceptionV3 features, 128 node

LSTM computer vision model, MFCC viridis audio features and

mean class prediction fusion layer

Given the performance of the model described in experiment CV-1 (relatively high

true positive rate compared to other models and high number of false negatives), we

decided that this would be an ideal model to develop a multi-sensory network on and

compare results.

For the audio component of the model, we trained the audio architecture described

in section 5.2 on the normalised MFCC spectrograms plotted using the viridis colour

map. Table 6.8 details the confusion matrix for the audio stream. This portion of the

model correctly classified a meagre 1 out of 15 slam dunk cases (TRP = 6.25%), while

classifying 3,504 out of 3,512 non-slam dunk scenes correctly (TNR = 99.77%).

Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,504 8

Dunk 15 1

Table 6.8: Confusion matrix obtained when testing set is applied to audio stream of

the multi-sensory network MS-1.

The class predictions from each stream were combined in the fusion layer by taking

the mean prediction for each class between the models. This portion of the model was

a dense architecture containing 2 hidden layers both utilising L2 regularisation (λ =

0.01), and dropout (p = 0.5).

From here, the model was trained over 2,000 epochs with a batch size of 128.

As with the computer vision models described in section 6.1.1, we utilised the cross

entropy loss function and Adam optimiser (with a dynamic learning rate). Once again

we implemented a model callback to ensure the model with the lowest validation loss
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was saved to the hard drive.

Table 6.9 and figure 6.4 illustrate the multi-sensory model’s confusion matrix and

training/validation loss over time respectively. When examining these model outputs,

two items stand out:

1. This version of the multi-sensory model appears have performed extremely well

at classifying non-slam dunk scenes, correctly classifying an impressive 3,511 out

of 3,512 scenes.

2. The fact that the validation loss was lower than the training loss at all points

during training suggests that this particular model was underfit and would need

to be refined.

Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,511 1

Dunk 14 2

Table 6.9: Confusion matrix produced when the model developed as part of experiment

MS-1 was applied to the training set.

69



CHAPTER 6. RESULTS, EVALUATION AND DISCUSSION

Figure 6.4: Illustration of training and validation loss over model training for the

model described in experiment MS-1.

When we take a deeper dive into the performance metrics we can see confirmation

that this model performs extremely well when classifying non-dunk scenes, boasting

a 99.94% TNR. We can also see that although the model performs quite poorly at

identifying the slam dunk scenes as is evidenced by the models 12.5% TPR, the model

does a decent job at returning relevant samples with a precision value 66.67% for

the slam dunk class. It’s worth highlighting however that this metric may be slightly

misleading due to the small number of positive predictions (n = 3) made by the model.

Precision Recall TPR TNR Support

Non-dunk 0.9960 0.9997 3,512

Dunk 0.6667 0.1250 16

Total/Avg 0.9945 0.9957 0.1250 0.9997 3,528

Table 6.10: Summary of model metrics from experiment MS-1.
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6.1.2.2 Experiment MS-2: Mean pooling InceptionV3 features, 128 node

LSTM computer vision model, MFCC viridis audio features, mean

class prediction fusion layer and reduced regularisation

While the precision of the model described above in section 6.1.2.1 was encouraging,

the fact that the model appeared to be underfit was a cause for concern and was

something we wanted to overcome in this experiment.

We understood that over-regularisation is one of the main contributors to under-

fitting in deep neural networks (Alsheikh, Niyato, Lin, Tan, & Han, 2016). With this

in mind, we decided to modify the fusion component of the model described in section

6.1.2.1 by removing any regularisation from both hidden layers while also reducing

the probability of dropout within the first hidden layer to p = 0.3 and removing the

dropout component of the second hidden layer.

When we examine the confusion matrix for this model (table 6.11) we can see

that the model performs similarly to the underfit model described in experiment MS-1

(section 6.1.2.1). Once again we can see that the model correctly classifies 2 out of 14

slam dunks (TPR = 12.5%). However, in this case the model incorrectly classifies 2

out of the 3,512 non-slam dunk scenes (TNR = 99.94%). Encouragingly, when we turn

our attention to the training/validation loss over epochs (illustrated in figure 6.5) we

can see that the reduced regularisation in our fusion layers remedied the underfitting

which was present in experiment MS-1.

Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,510 2

Dunk 14 2

Table 6.11: Confusion matrix obtained when testing set is applied to audio stream of

the multi-sensory network MS-2.
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Figure 6.5: Illustration of training and validation loss over model training for the

model described in experiment MS-2.

As expected when examining the confusion matrix, the model assessment metrics

are largely similar to that of the underfit model. We observed an MCP of 99.37%

and MCR value of 99.54%. Comparing the results to the previous model (MS-1) we

noticed that the precision for the dunk class has dropped from 66.67% to 50%. This

of, course is a result of the model incorrectly classifying an additional non-slam dunk

scene as a slam dunk. While this decrease in precision is disappointing, it is still an

improvement over that of the corresponding computer vision model (4.46%).

Precision Recall TPR TNR Support

Non-dunk 0.9960 0.9994 3,512

Dunk 0.5000 0.1250 16

Total/Avg 0.9937 0.9954 0.1250 0.9994 3,528

Table 6.12: Summary of model metrics from experiment MS-2.
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6.1.2.3 Experiment MS-3: Mean pooling InceptionV3 features, 128 node

LSTM computer vision model, MFCC hot audio features, mean

class prediction fusion layer and reduced regularisation

In this experiment we decided to investigate how the multi-sensory network described

in section 6.1.2.2 performed when the audio portion of the network was trained using

normalised MFCC features plotted with the hot colour map (as opposed to the viridis

colour map used in sections 6.1.2.1 and 6.1.2.2).

Taking a look at the confusion matrix produced by the audio portion of this model,

we can see that the model performed poorly at identifying slam dunk scenes with

a TPR of 0%. Intriguingly, the confusion matrix suggested that this audio model

performed better than the model trained using the MFCC viridis spectrograms at

classifying non-slam dunk scenes by correctly identifying 3,507 out of 3,512 non-slam

dunk scenes (TNR = 99.86%).

Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,507 5

Dunk 16 0

Table 6.13: Confusion matrix obtained when testing set is applied to audio stream of

the multi-sensory network MS-3.

Moving over to the multi-sensory model results, we can quickly see from the con-

fusion matrix (described in table 6.14) that this model did not perform well when

compared to the models described in 6.1.2.1 and 6.1.2.2. The multi-sensory MFCC

hot model was unable to correctly classify any of the slam dunk scenes (TPR = 0%)

while correctly classifying all but 3 of the non-slam dunk scenes (99.15%). We can

also see from the model loss over time, that this model does not appear to be underfit.
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Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,509 3

Dunk 16 0

Table 6.14: Confusion matrix produced when the model developed as part of experi-

ment MS-3 was applied to the training set.

Figure 6.6: Illustration of training and validation loss over model training for the

model described in experiment MS-3.

Taking a closer look at the model performance we can see that this model operates

with an MCP of 99.89% and an MCR of 99.46%.

Considering that everything in this model apart from the audio colour map is

identical to that from the model described in section 6.1.2.2, these result suggests that

perhaps models built on the viridis colourmap perform better than that of the hot
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map and could support the findings made by Amiriparian et al. (2017). This idea will

be formally tested in section 6.2.

Precision Recall TPR TNR Support

Non-dunk 0.9954 0.9991 3,512

Dunk 0.0000 0.0000 16

Total/Avg 0.9909 0.9946 0.0000 0.9991 3,528

Table 6.15: Summary of model metrics from experiment MS-3.

6.1.2.4 Experiment MS-4: Mean pooling InceptionV3 features, 256 node

LSTM computer vision model, MFCC viridis audio features, mean

class prediction fusion layer and reduced regularisation

Given the performance of the 256 node LSTM computer vision model described in

section 6.1.1.3 compared to the 128 node model described in section 6.1.1.1 (lower

true positive rate and false positive rate) in addition to the performance of the multi-

sensory model described in experiment MS-2 (section 6.1.2.2), we decided to combine

these models and explore how the addition of the MFCC viridis audio stream impacts

the results of a computer vision model with a lower false positive rate.

When we take a look at the confusion matrix described in table 6.16 we can see

that the model successfully classifies 2 out of 16 slam dunk scenes (TPR = 12.5%)

while incorrectly classifying 22 non-slam dunk scenes (TNR = 99.37%). Although

these results are not as precise as those achieved by the 128 node multi-sensory model

(section 6.1.1.1), the proportion of relevant slam dunk scenes returned is greater than

that of the corresponding vision only model (6.1.1.3).
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Predicted

Non-dunk Dunk

A
ct

ua
l Non-dunk 3,490 22

Dunk 14 2

Table 6.16: Confusion matrix produced when the model developed as part of experi-

ment MS-4 was applied to the training set.

Looking at the performance metrics highlighted in table 6.17, we can see that

this model operated with an MCP of 99.19%, which equals that of the comparable

computer vision model. However, we observed that this model edged out the computer

vision model in terms of MCR with a score of 98.99% (compared to 98.05%).

Precision Recall TPR TNR Support

Non-dunk 0.9960 0.9937 3,512

Dunk 0.0833 0.1250 16

Total/Avg 0.9919 0.9899 0.1250 0.9937 3,528

Table 6.17: Summary of model metrics from experiment MS-4.

While this model did a good job at increasing the relevance of positive samples

retrieved when compared to the computer vision model, the false positive rate did

not decrease to the same extent that we saw in the multi-sensory model described

in section 6.1.2.2. Finally, we can see from figure 6.7 that there were no signs of

underfitting in the model.
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Figure 6.7: Illustration of training and validation loss over model training for the

model described in experiment MS-4.

6.1.2.5 Other multi-sensory experiments

Similar to section 6.1.1.4, here we briefly summarise some of the other multi-sensory

models experimented with as part of this dissertation. While we don’t delve into

these experiments in as much detail as the others discussed in this section, they could

provide starting point for future research and further model refinement. A summary

of each model’s performance on the testing set is available in table 6.19.

Experiment MS-5: In this experiment we explored the impact of using filter bank

spectrograms plotted with the viridis colour map as part of our audio stream as op-

posed to the MFCC spectrograms described above. In order to allow for meaningful

comparison between the models we simply retrained the model described in experiment

MS-2 (section 6.1.2.2) with the filter bank viridis spectrograms rather than designing

a new architecture.

Taking a look at the performance we can see that this model correctly classified 1
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out of 15 slam dunk sequences (TPR = 6.25%), while correctly classifying 3,508 out

of 3,512 non-slam dunk scenes (TNR = 99.88%). We also observed a slam dunk class

precision of 20% and a non-slam dunk class precision of 99.57% averaging to an MCP

of 99.12%.

Experiment MS-6: Once again, to allow us to compare the performance of the hot

and viridis colour maps against each other we decided to retrain the audio component

of the model described in experiment MS-5 using the filter bank hot spectrograms.

Examining the results summary we can see that this model, as with MS-5 correctly

classified only 1 out of 15 slam dunk scenes (TPR = 6.25%). However, unlike the viridis

model, this model misclassified 8 non-slam dunk scenes (TNR = 99.77%). Finally, in

this experiment we observed slam dunk class precision of 11.11% and a non-slam dunk

class precision of 99.57% for an MCP of 99.12%.

Experiment MS-7: In this experiment we decided to test the effects of performing

pre-class score fusion between the visual and audio streams of our architecture instead

of performing fusion after each stream had made a prediction (as was the case in each

model discussed above).

To achieve this we removed the final dense layer from both our audio and visual

streams, this meant that each model outputted a feature map in the form of a 128

dimensional vector. These vectors are combined into a single 128 dimensional vector

in our fusion layer by taking the mean of the two vectors.

For this experiment we once again used the 128 hidden unit LSTM as the computer

vision component of the model (CS-1) while we trained the audio stream using the

MFCC viridis spectrograms.

This model correctly classified 3 out of 16 slam dunk scenes (TPR = 18.75%) while

also classifying 3,476 non-slam dunk scenes correctly (TNR = 98.97%). In terms of

the relevance of samples returned, this model obtained a precision score of 7.69% for

the slam dunk class and 99.62% for the non-slam dunk class, this resulted in an MCP

score of 99.02%.

Experiment MS-8: This experiment tested the classification power of the model

described above in experiment MS-7 when the audio component is trained using MFCC
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hot spectrograms instead of MFCC viridis.

Similar to other viridis versus hot comparisons, we noticed that this model exhib-

ited inferior performance when it came to classifying slam dunk scenes, being unable

to classify a single slam dunk scene correctly (class precision & recall = 0%). The

model was able to correctly classify 3,503 non slam dunk scenes correctly for a TNR

of 99.74% and a class precision score of 99.54%.

Experiments MS-9 & MS-10: Continuing with the idea of pre-class score fusion

and our desire to compare MFCC and filter bank spectrograms, in these two experi-

ments we tested the performance of a pre-class score fusion model in which the audio

portion was trained on viridis filter bank spectrograms (MS-9) and hot filter bank

spectrograms (MS-10).

In experiment MS-9 we observed that the viridis filter bank model correctly classi-

fied 1 slam dunk scene (TPR = 6.25%), while misclassifying 4 non-slam dunk scenes

as slam dunks (TNR = 99.86%). Similarly, the model developed in MS-10 using hot

filter bank spectrograms classified 1 slam dunk scene correctly (TPR = 6.25%), while

misclassifying 10 non-slam dunk scenes as slam dunks (TNR = 99.72%).

Experiments MS-11 & MS-12: In these experiments we explored the idea of using

a support vector machine (SVM) within the fusion component of the model instead of a

dense neural network. Once again, the computer vision component of this architecture

was the 128 hidden unit LSTM model, while the audio stream was trained using the

MFCC viridis spectrograms.

In experiment MS-11 we applied the SVM to a concatenation of the output vec-

tors from each model (a 4 dimensional vector). Conversely, in experiment MS-12 we

concatenated the outputs from the penultimate layers of both models to create a 256

dimensional vector which would then be analysed by the SVM component (illustrated

in figure 6.8).
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Figure 6.8: Illustration of updated architecture required to incorporate SVM compo-

nent.

In both cases, we used a grid search algorithm 2 to determine the models optimum

hyper-parameters (detailed in table 6.18)

Model ID Cost Kernal Degree

MS-11 1 Polynomial 2

MS-12 10 Polynomial 5

Table 6.18: Summary of hyper-parameters used in SVM experimentation.

However in spite of the grid search algorithm, neither model was able to yield any

successful results. The model trained in MS-11 was unable to classify a single slam

dunk correctly, while classifying each non-slam dunk correctly. Similarly, the model

developed in MS-12 was unable to classify any slam dunk scenes correctly while also

misclassifying 5 non-slam dunk scenes as slam dunks.

These results suggest that the decision boundary of the training data was too

complex to model using our simple SVM implementation.

Experiment MS-13: For this experiment we returned to implementing class score

fusion, however instead of fusing the two dimensional vectors by taking the mean
2Python implementation of grid search algorithim: https://scikit-learn.org/stable/modules/

generated/sklearn.model selection.GridSearchCV.html
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between them, we decided to sum these vectors together. The vision stream of this

model was the 128 hidden unit LSTM model which we are familiar with by now, while

the audio stream was trained using the MFCC viridis spectrograms.

Interestingly, this model performed identically to the mean fusion model described

in MS-2 correctly classifying 2 slam dunk scenes (TPR = 12.5%) while correctly clas-

sifying 3,510 non-slam dunk scenes (TNR = 99.43%).

Experiments MS-14 & MS-15: In these two experiments we toyed with the idea

of using the VGG-19 pre-trained architecture instead of the InceptionV3 model within

the audio stream. As far as recoding went, Keras made this switch quite simple and

the only update required by us was to reshape each spectrogram to 224x224 pixels,

as required by the models input layer. For this architecture we once again utilised a

pre-class score mean fusion layer (similar to experiments MS-7 & MS-8).

For comparative purposes we tested this approach using both MFCC viridis and

MFCC hot spectrograms. Neither model performed well at identifying slam dunk

scenes with both models being unable to identify a single slam dunk scene correctly.

The MFCC viridis model misclassified 6 non-slam dunk scenes (TNR = 99.88%) while

the MFCC hot model misclassified only 2 out of 3,512 non-slam dunk scenes (TNR =

99.94%).
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Model ID TN FP FN TP

MS-5 3,508 4 15 1

MS-6 3,504 8 15 1

MS-7 3,476 36 13 3

MS-8 3,503 9 16 0

MS-9 3,507 5 15 1

MS-10 3,502 10 15 1

MS-11 3,512 0 16 0

MS-12 3,507 5 16 0

MS-13 3,510 2 14 2

MS-14 3,506 6 16 0

MS-15 3,510 2 16 0

Table 6.19: Summary of confusion matrices produced when models described in the

other multi-sensory experiments section were applied to the testing set.

6.2 Model comparison and evaluation

In this subsection we formally compare the performance metrics of our computer vision

and multi sensory models while also testing these results for statistical significance.

Although we experimented with a number of different multi-sensory architectures in

section 6.1.2, we will only formally test the hypotheses defined in chapter 1 on what

we deemed to be the two most effective multi-sensory architectures. The reason for

this is simply that many of the multi-sensory models did not work when it came to

classifying slam dunk scenes. To ensure the comparisons made in this section are fair

and meaningful, each multi-sensory model tested is only compared to its corresponding

computer vision model.

In addition to this, we also briefly compare the performance metrics from multi-

sensory architectures trained on different representations of the audio features. While

this was not something we set out to test or prove when we started this dissertation,
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it was something that intrigued us early on when performing our literature review and

continued to fascinate us as we carried out our multi-sensory experimentation.

All model comparisons performed in this section are tested with a significance level

of α = 0.05.

6.2.1 Computer vision vs. Multi-sensory models

6.2.1.1 128 node LSTM vs. MFCC viridis

Table 6.20 summarises the key performance metrics for both the 128 hidden unit

computer vision model developed in experiment CV-1 (section 6.1.1.1), and the multi-

sensory architecture developed in experiment MS-2 (section 6.1.2.2).

Examining this summary we can see that the multi-sensory model outperformed

the computer vision model in MCP, MCR, and TNR while the computer vision model

outperformed the multi-sensory when it came to identifying the most slam dunk scenes

(TPR).

Model ID MCP MCR TPR TNR

CV-1 0.9929 0.9549 0.4375 0.9573

MS-2 0.9937 0.9955 0.1250 0.9994

Table 6.20: Performance comparison between models developed in experiments CV-1

and MS-2.

With regard to statistical significance, we calculated the McNemar’s test statistic

using the contingency table described in table 6.21. This produced a test statistic

value of χ2 = 131.79 which corresponded to a p-value < 0.001. This indicated that

the differences in errors observed between the two models were indeed statistically

significant. However, since this multi-sensory model did not out perform the computer

vision model in all 4 of the performance metrics defined in our hypothesis, we failed

to reject H0.
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Multi-sensory model

Correct Incorrect

Vision model
Correct 3,364 5

Incorrect 148 11

Table 6.21: Contingency table used to calculate McNemar’s test statistic when com-

paring models CV-1 and MS-2.

6.2.1.2 256 node LSTM vs. MFCC viridis

In this comparison, we compared the 256 hidden unit LSTM model from experiment

CV-3 (section 6.1.1.3) to its related multi-sensory model trained using MFCC viridis

spectrograms from experiment MS-4 (section 6.1.2.4).

Examining the comparisons in table 6.22 we can see that contrary to our previous

model comparison, the computer vision model outperformed the multi-sensory model

in both MCP and MCR. Similarly however, the computer vision model demonstrated

superior performance when it comes to TPR, while the multi-sensory model boasted

a higher TNR.

Model ID MCP MCR TRP TNR

CV-3 0.9929 0.9919 0.1875 0.9841

MS-4 0.9919 0.9899 0.1250 0.9937

Table 6.22: Performance comparison between models developed in experiments CV-3

and MS-4.

Once again, we calculated the McNemar’s test statistic (χ2 = 29.26) using the

contingency table below described in table 6.23. This corresponded to a p-value <

0.001, indicating a statistically significant difference between the two models. However,

since in this case, our multi-sensory only outperformed the computer vision model in

only one of the 4 key performance metrics we safely failed to reject H0.
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Multi-sensory model

Correct Incorrect

Vision model
Correct 3,458 1

Incorrect 34 35

Table 6.23: Contingency table used to calculate McNemar’s test statistic when com-

paring models CV-3 and MS-4.

6.2.2 Viridis vs. Hot colour maps

Here we compared the performance of mutli-sensory models trained using viridis spec-

trograms to that of an identical model trained using hot spectrograms. To perform

this comparison, we used the 128 node LSTM model from experiment CV-1 and com-

pared the performance of 4 of the multi-sensory models trained using different audio

spectrograms on top of this. These 4 models multi-sensory were trained using:

1. MFCC viridis spectrograms (MS-2/section 6.1.2.2)

2. MFCC hot spectrograms (MS-3/section 6.1.2.3)

3. Filter bank viridis spectrograms (MS-5/section 6.1.2.5)

4. Filter bank hot spectrograms (MS-6/section 6.1.2.5)

It’s worth noting here that in order for us to make meaningful, and fair comparisons

we only compared the MFCC and filter bank spectrograms to each other (i.e. we did

not compare MFCC viridis to filter bank viridis)

Table 6.24 summarises the performance metrics for each of the 4 models analysed

in this section. We can see from this table that the multi-sensory model trained using

MFCC viridis spectrograms outperformed an identical model trained using MFCC hot

spectrograms in all 4 of our key performance metrics.

Similarly we can see that the multi-sensory model trained using filter bank viridis

spectrograms outperformed its corresponding hot spectrogram model in 3 out of 4
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performance metrics (MCP, MCR, and TNR, mean class precision & recall), while the

two models exhibited identical performance in terms of TPR.

MFCC comparison
Model ID MCP MCR TPR TNR

MS-2 0.9937 0.9955 0.1250 0.9994

MS-3 0.9909 0.9946 0.000 0.9914

Filter bank comparison
Model ID MCP MCR TPR TNR

MS-5 0.9921 0.9947 0.0625 0.9989

MS-6 0.9917 0.9875 0.0625 0.9977

Table 6.24: Comparison between MFCC viridis/hot multi sensory models (top) and

Filter bank viridis/hot multi-sensory models (bottom).

The results described above suggest that multi-sensory models trained using au-

dio spectrograms plotted using the viridis colour pallet outperform identical models

trained using hot spectrograms. However, when we performed McNemar’s test for

statistical significance we found that there was no statistical difference between the

model errors.

In the case of the MFCC comparison we observed a p-value = 0.3712 (χ2 = 0.8),

while in the filter bank comparison we calculated a p-value = 0.3865 (χ2 = 0.75).

Since neither comparison generated a result which was deemed to be statistically

significant (α = 0.05), we cannot say for certain that the viridis colour pallet out-

performs the hot pallet, however this could be an area for further research. Both

contingency tables used to calculate the McNemar’s test statistic are illustrated in

table 6.25.
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Viridis model

Correct Incorrect

Hot model
Correct 3,508 1

Incorrect 4 15

Viridis model

Correct Incorrect

Hot model
Correct 3,501 4

Incorrect 8 15

Table 6.25: Contingency tables used to calculate statistical significance for MFCC

(top) and filter bank (bottom) spectrogram comparisons.

6.2.3 MFCC vs. Filter banks features

As alluded to in sections 3.4 & 4.3, we were interested in exploring the performance

differences between multi sensory models trained using MFCC audio features and

identical models trained using filter banks features.

Once again, to enable meaningful comparison, we decided to examine two sets of

models (4 models in total) in which every component apart from the type of audio

features used were identical. These models were the same models compared in the

previous section (6.2.2), except rather than comparing the viridis models against the

hot models for each feature type, we comapred the MFCC models to the filter bank

models for each colour pallet:

1. MFCC viridis spectrograms (MS-2/section 6.1.2.2) vs. Filter bank viridis spec-

trograms (MS-5/section 6.1.2.5)

2. MFCC hot spectrograms (MS-3/section 6.1.2.3) vs. Filter bank hot spectro-

grams (MS-6/section 6.1.2.5)
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When we examine the performance metrics for the two comparison detailed in table

6.26, we can see what appears to be contradicting results. In the case of the viridis

comparison we see the MFCC model (MS-2) outperformed the filter banks model (MS-

3) in each of the 4 key performance metrics. However, in the second comparison, we

can see that the filter banks hot model out performed it’s corresponding MFCC hot

model in 3 out of the 4 performance metrics (MCP, TPR, & TNR).

Viridis comparison
Model ID MCP MCR TPR TNR

MS-2 0.9937 0.9955 0.1250 0.9994

MS-5 0.9921 0.9947 0.0625 0.9989

Hot comparison
Model ID MCP MCR TPR TNR

MS-3 0.9909 0.9946 0.000 0.9914

MS-6 0.9917 0.9875 0.0625 0.9977

Table 6.26: Comparison between MFCC/filter banks models using viridis spectro-

grams(top) and hot spectrograms (bottom).

Perhaps unsurprisingly given the contradictory results above, McNemar’s test sug-

gested that both sets of models do not significantly differ from one another. In the

case of the viridis comparison, McNemar’s test yielded a p-value = 0.4497 (χ2 = 0.57),

while the hot comparison observed a p-value = 0.3865 (χ2 = 0.75). As a result of this,

we can say that there is no statistical evidence to suggest a difference in performance

based on the type of audio features used (MFCC vs. Filter banks) within the context

of this study.
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MFCC model

Correct Incorrect

Filter banks model
Correct 3,507 2

Incorrect 5 14

MFCC model

Correct Incorrect

Filter banks model
Correct 3,501 4

Incorrect 8 15

Table 6.27: Contingency tables used to calculate statistical significance for viridis (top)

and hot (bottom) audio feature comparisons.

6.3 Discussion

This study set out to test the hypothesis that a model which analyses both the audio

and visual information from broadcast basketball footage would yield a more effective

classifier (based on MCP, MCR, TRP, % TNR) for slam dunk scenes when compared

to a similar model which analyses the visual information alone. To test this hypothesis

we developed a total of 6 computer vision models and 15 multi-sensory models.

Our computer vision experimentation observed differences in classification power

based on the form of pooling used in the final layer of the feature extractor (maximum

versus mean pooling) as well as the number of hidden units within the LSTM portion

of the model. From these experiments we determined that the two most effective clas-

sifiers (and most appropriate models to compare the multi-sensory classifiers against)

were then 128, and 256 unit LSTM models which utilised mean pooling in the final

layer of the feature extractor. We deemed these two models to be the most effective

as these models exhibited superior performance when it came to returning relevant

positive samples in comparison to the other models developed.
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For our multi-sensory models, we experimented with training audio models using

different audio processing methods (MFCC/filter bank) and spectrogram colour pallets

(viridis & hot). We also explored different forms of fusion layers (pre-classification,

post-classification, and even SVM’s) and pre-trained CNN-architectures (InceptionV3

& VGG-19). From these experiments it appeared that multi-sensory architectures

trained using MFCC viridis spectrograms were the most effective.

When it came to formally comparing the models, we found that in both cases

the multi sensory model outperformed the computer vision model in terms of TNR,

and even in one case both MCP and MCR 6.2.1.1. However, neither multi-sensory

model demonstrated superior performance over all 4 of the key performance metrics

defined in our hypothesis. As a result of this, and although there was shown to be a

statistically significant difference between the errors of the multi-sensory and computer

vision models, we failed to reject the null hypothesis (H0).

In addition to this, we explored whether the colour pallet (viridis versus hot), or

audio features (MFCC versus filter banks) used as part of the audio stream had an

effect on the classification power of the multi-sensory model. While our experimen-

tation showed that the MFCC viridis model always outperformed whichever model it

was compared against, we could not deem these results to be statistically significant.

It’s worth caveating this with the fact that this study was performed on a relatively

small dataset with very few positive samples, and given that the positive samples

typically drove the differences between these models. It is perhaps a point for fu-

ture development/research into this area to rerun these tests on a larger dataset with

more positive samples to explore whether this can produce a statistically significant

difference between the models.

It’s also worth nothing that since the comparisons performed between the colour

pallets and audio features stemmed from intrigue when performing the literature re-

view, and to avoid HARKing3 (Kerr, 1998), we chose to exclude these from our main

research hypothesis but include them in this dissertation to inform readers of future

avenues to explore (with more data).

3Hypothesising after results are known
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Finally, despite failing to reject the null hypothesis, we believe that the pre-

processing steps and models described in this dissertation provide a building block

for future research into multi-sensory architectures for scene detection in basketball

and other sports. In particular we would like to encourage others to explore the 128

node multi-sensory model described in experiment MS-2 (section 6.1.2.2). This model

outperformed its corresponding computer vision model in all but TPR, and it would

be interesting to see how this model could be improved with exposure to additional

(real) positive samples in the training set.
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Chapter 7

Conclusion

7.1 Problem definition & research overview

There has been a significant amount of research put into the application of computer

vision and audio classification techniques for sports scene classification. While these

are certainly interesting and exciting applications of these techniques, much of the

research in this area, particularly relating to the sport of basketball focuses solely

on building classifiers based on information from a single sensory system (audio or

visual).

The primary objective of this dissertation was to determine if a multi-sensory deep

learning architecture which analyses the wealth of information contained in both the

audio and visual features of basketball broadcast footage could yield a more effective

key event classification system when compared to a similar single sense (video) model.

The findings made in this dissertation were achieved by following the steps laid

out below:

• Performing a comprehensive review of existing literature relating to the research

problem.

• Identifying, acquiring, and preparing an appropriate dataset for this study.

• Developing a baseline computer vision model.
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• Extending the baseline model to a multi-sensory (audio-visual) model.

• Performing a statistical comparison and evaluation of the models performance

on a testing dataset.

7.2 Experimentation, evaluation & results

In order to test the research hypothesis detailed in section 1.6 we developed a total of

6 computer vision models, and 15 multi-sensory models.

Our computer vision models analysed a series of sub-sampled frames extracted

from 4 second long scenes within our dataset through a simple hybrid network ar-

chitecture. On the other hand, the multi-sensory models were comprised of a visual

stream (identical to the computer vision model), and an audio stream which analysed

the scene audio in the form of a spectrogram. Predictions from each stream were then

combined in a fusion component which produced the final output for the model.

We tested each model on the same testing dataset (a 30% subset of the full dataset)

and gathered the mean class precision, mean class recall, true positive rate, and true

negative rate for each model. Once these performance metrics were collected, we were

able to compare the performance of the multi-sensory models to their corresponding

computer vision model.

From here, we used McNemear’s test to analyse the differences between the errors

of the two model types. We compared this test statistic to the χ2 distribution with

1 degree of freedom and a significance level of α = 0.05 to determine if there was a

statistical difference between the results observed between the computer vision and

multi-sensory models.

Although we ultimately failed to reject our H0 since none of our multi-sensory

models managed to outperform the computer vision model in all 4 metrics, the results

our experimentation suggest that there is significant potential for the use of multi-

sensory networks in the domain of sports video segmentation.

Our experimentation results demonstrated that multi-sensory networks can im-

prove the mean class precision, mean class recall, and true negative rate of a slam
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dunk scene classifier when compared to a single sense model. Although not outper-

forming the computer vision model in true positive rate, the multi sensory model

retrieved a much higher proportion of relative positive (slam dunk) samples. It is also

not unreasonable to muse over how the multi-sensory models performance could be

improved by the introduction of additional positive samples to the dataset.

In addition to testing our research hypothesis, we also explored the impact on

the performance of multi sensory networks trained using different representations of

the audio features. These experiments explored differences in MFCC vs. Filter bank

approaches as well as determining if the colour map used when plotting the audio spec-

trograms had an effect on classification power. While these comparisons suggested that

MFCC viridis representations of the audio generated the best results, the differences

between the models were not found to be statistically significant.

The experiments designed and results gathered as part of this dissertation were

limited by the following key factors:

• The quality of audio and video footage within the dataset

• The relatively small sample size of 10 games analysed within the study

• Class imbalance and the lack of a large amount of positive samples

• Hardware and time restrictions limited the number of epochs our models could

be trained over and the extent to which we could retrain the InceptionV3 and

VGG19 architectures

7.3 Contributions and impact

The work performed in this dissertation has contributed to the existing body of knowl-

edge by demonstrating that even on a small sample size of 10 games, a multi-sensory

deep learning architecture can outperform a similar computer vision model in terms

of mean class precision/recall and true negative rate when classifying the occurrence

of slam dunks within broadcast basketball footage.
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While this dissertation focused only on the classification of slam dunk scenes within

the sport of basketball, the methodology outlined in this dissertation provides a scal-

able building block for further development of these models which could include iden-

tifying more event types within the game of basketball, or indeed identifying events

in other sports. This further development could go a long way in revolutionising

how sports teams at the highest level collect, annotate, and analyse footage of their

opponents.

7.4 Future work & recommendations

While conducting research and experimentation as part of this dissertation there were

a number of avenues for potential future research that became obvious to us. Unfor-

tunately we were not able to explore these avenues due to time constraints, hardware

limitations, and the ideas relevance to the research question. These ideas and recom-

mendations are outlined below:

Improving the existing models:

Upon reviewing the research performed as part of this dissertation and the limitations

of that research, we have identified 4 key actions which could improve the performance

of the multi-sensory architectures developed.

The first of these actions is to acquire more data to train the models on. This is

perhaps a simple task if one’s hardware permits since this study focused on a subset

of data collected and annotated by Ramanathan et al. (2016). This dataset contains

annotations for 257 games and future researchers could look to retrain the models

described in this dissertation on the full dataset.

Secondly, a major limitation of this study mentioned in section 7.2 is the quality

of the audio/video footage which these models are trained on. For this reason we

would advise that anyone looking to perform future work in this area attempts to

collect/annotate footage of a higher recording quality than that used in this study.

Obviously this is a very time consuming and difficult task, however we feel higher
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quality data could significantly improve the performance of these models.

In addition to this, we advise that anybody looking to perform future work on

the models discussed in this dissertation should look to overcome the heavy class im-

balance within the dataset by introducing more real positive samples before applying

techniques such as oversampling and SMOTE. We feel that access to more real life ex-

amples of slam dunks would help the models generalise better to unseen data. Perhaps

one could start by using footage from one of the many slam dunk highlight packages

available online.

Finally, we would recommend that anybody who is interested in improving on the

models developed in this dissertation should look at training these models over a larger

number of epochs and retraining some of the later convolution layers in the InceptionV3

and VGG19 models. This of course would require additional time/processing power

but could significantly improve the performance of the models, particularly the audio

component of the multi-sensory architecture.

Identifying additional key events:

While this study focused on classifying the occurrence of slam dunk scenes exclusively,

a logical next step would be to expand and retrain the models described in this dis-

sertation to classify a wider range of key events. Considering the fact that the dataset

created by Ramanathan et al. (2016) contains annotations for a number of events,

one could use this dataset and retrain the current models to identify the occurance of

successful jump shots and layups.

Expanding the current models to different sports:

Although this study focused solely on the sport of basketball, a potential avenue for

future research would be assessing the performance of multi-sensory networks at key

event classification in other sports. While the possibilities here are countless, some

ideas include:

• Goal scene classification in Gaelic football, hurling, and soccer
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• Touchdown scene classification in American football

• Highlight detection in golf

Applying multi-sensory architectures to different forms of data:

The multi-sensory models developed as part of this dissertation analyse information

through 2 different sensory streams (audio and visual) before producing a final classi-

fication. While the audio and visual information certainly appears different to us as

humans, they can simply be described as two sets of features which describe the same

event.

For this reason we recommend that some future research should explore the appli-

cation of multi-sensory networks across different forms of data. A simple experiment

could be to develop a multi-sensory network for predicting house prices in which stream

A of the network makes a prediction based on the size of the house, number of beds,

etc. While stream B analyses features to do with the area in which the house is lo-

cated (number of schools nearby, crime rate, etc.). Outputs from these models could

be combined in a fusion layer before a final prediction is made. The results from this

model could be compared to a single sense network which analyses the entire feature

set.

7.5 Closing thoughts

Multi-sensory deep learning architectures for slam dunk scene classification are an

incredibly exciting application of deep learning, image/video classification and audio

processing. The results observed in this study suggest that multi-sensory architectures

demonstrate superior performance in terms of mean class precision/recall and true

negative rate when compared to a single sense model.

While this study was unable to show that multi-sensory models could yield a greater

true positive rate than a similar single sense model, our multi sensory model was

capable of returning a greater proportion of relevant positive samples. In addition

to this, we have identified a number of ways in which the current models could be
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improved for future research. We have also made recommendations on how these

models could be expanded to other domains.

The models developed for this dissertation provide a scalable, dynamic building

block for future work this area. Further refinement of these multi-sensory models could

revolutionise sports video segmentation and change how sports teams approach video

analysis.

98



References

Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., & Luo, S. (1999). Ecg beat detection

using filter banks. IEEE transactions on biomedical engineering, 46 (2), 192-202. doi:

10.1109/10.740882

Alsheikh, M. A., Niyato, D., Lin, S., Tan, H.-P., & Han, Z. (2016). Mobile big data

analytics using deep learning and apache spark. IEEE network, 30 (3), 22-29. doi:

10.1109/MNET.2016.7474340

Amiriparian, S., Gerczuk, M., Ottl, S., Cummins, N., Freitag, M., Pugachevskiy, S.,

& Schuller, B. (2017). Snore sound classification using image-based deep spectrum.

In Interspeech 2017 , 3512-3516. doi: 10.21437/Interspeech.2017-434

Aytar, Y., Vondrick, C., & Torralba, A. (2016). Soundnet: Learning sound represen-

tations from unlabeled video. In Advances in Neural Information Processing Systems,

892-900. Retrieved from http://papers.nips.cc/paper/6146-soundnet-learning-sound

-representations-from-unlabeled-video.pdf

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., & Baskurt, A. (2010). Action

classification in soccer videos with long short-term memory recurrent neural networks.

In proceedings of the International Conference on Artificial Neural Networks, 154-159.

doi: 10.1007/978-3-642-15822-3 20

Ballan, L., Bazzica, A., Bertini, M., Del Bimbo, A., & Serra, G. (2009). Deep

networks for audio event classification in soccer videos. In Proceedings of the 2009

IEEE International Conference on Multimedia and Expo, 474-477. doi: 10.1109/

ICME.2009.5202537

99

http://papers.nips.cc/paper/6146-soundnet-learning-sound-representations-from-unlabeled-video.pdf
http://papers.nips.cc/paper/6146-soundnet-learning-sound-representations-from-unlabeled-video.pdf


REFERENCES

Batista, G., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several

methods for balancing machine learning training data. ACM SIGKDD explorations

newsletter , 6 (1), 20-29. doi: 10.1145/1007730.1007735

Boddapati, V., Petef, A., Rasmusson, J., & Lundberg, L. (2017). Classifying envi-

ronmental sounds using image recognition networks. Procedia computer science, 112 ,

2048-2056. doi: 10.1016/j.procs.2017.08.250

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class

imbalance problem in convolutional neural networks. Neural Networks, 106 , 249-259.

doi: 10.1016/j.neunet.2018.07.011

Burns, B. D. (2001). The hot hand in basketball: Fallacy or adaptive thinking. In

Proceedings of the annual meeting of the Cognitive Science Society, 23 , 152-157.

Campos, J. L., Butler, J. S., & Bulthoff, H. H. (2012). Multisensory integration in

the estimation of walked distances. Experimental brain research, 218 (4), 551-565.

doi: 10.1007/s00221-012-3048-1

Carvalho, T., De Rezende, E. R., Alves, M. T., Balieiro, F. K., & Sovat, R. B.

(2017). Exposing computer generated images by eye’s region classification via transfer

learning of vgg19 cnn. In 2017 16th IEEE International Conference on Machine

Learning and Applications (ICMLA), 866-870. doi: 10.1109/CVPR.2016.308

Chalapathy, R., Menon, A. K., & Chawla, S. (2019). Anomaly detection using

one-class neural networks. arXiv preprint arXiv:1802.06360 .

Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder

for statistical machine translation. In proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), 1724-1734. doi: 10.3115/v1/

D14-1179

100



REFERENCES

Chow, V., & Dibua, O. (2018). Action recognition in tennis using deep neural

networks. Stanford University CS230 , 1-6. Retrieved from http://cs230.stanford.edu/

files winter 2018/projects/6945761.pdf

Costa, Y. M., Oliveira, L. S., Koericb, A. L., & Gouyon, F. (2011). Music genre

recognition using spectrograms. In Proceedings of the 18th International Conference

on Systems, Signals and Image Processing, 1-4.

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE transactions

on acoustics, speech, and signal processing, 28 (4), 357-366. doi: 10.1109/TASSP

.1980.1163420

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised

classification learning algorithms. Neural computation, 10 (7), 1895-1923. doi: 10

.1162/089976698300017197

D’Orazio, T., & Leo, M. (2010). A review of vision-based systems for soccer video

analysis. Pattern Recognition, 43 (8), 2911-2926. doi: 10.1016/j.patcog.2010.03.009

Douzas, G., & Bacao, F. (2018). Effective data generation for imbalanced learning

using conditional generative adversarial networks. Expert Systems with applications,

91 , 464–471. doi: 10.1016/j.eswa.2017.09.030

Edwards, A. L. (1948). Note on the “correction for continuity” in testing the sig-

nificance of the difference between correlated proportions. Psychometrika, 13 (3),

185-187. doi: 10.1007/BF02289261

Ernst, M., & Bulthoff, H. H. (2004). Merging the senses into a robust percept. Trends

in cognitive sciences, 8 (4), 162-169. doi: 10.1016/j.tics.2004.02.002

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun,

S. (2017). Dermatologist-level classification of skin cancer with deep neural networks.

Nature, 542 (7639), 115-127. doi: 10.1038/nature21056

101

http://cs230.stanford.edu/files_winter_2018/projects/6945761.pdf
http://cs230.stanford.edu/files_winter_2018/projects/6945761.pdf


REFERENCES

Fan, Y., Lu, X., Li, D., & Liu, Y. (2016). Video-based emotion recognition using

cnn-rnn and c3d hybrid networks. In Proceedings of the 18th ACM International

Conference on Multimodal Interaction - ICMI 2016 , 445-450. doi: 0.1145/2993148

.2997632

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual

prediction with lstm. 9th International Conference on Artificial Neural Networks

(ICANN ’99), 850-855. doi: 10.1049/cp:19991218

Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball: On

the misperception of random sequences. Cognitive Psychology, 17 (3), 295- 314. doi:

10.1016/0010-0285(85)90010-6

Goldsberry, K. (2012). Courtvision: New visual and spatial analytics for the nba.

In Proceedings of the 2012 MIT Sloan sports analytics conference, 9 , 12-15. Re-

trieved from http://www.sloansportsconference.com/wp-content/uploads/2012/02/

Goldsberry Sloan Submission.pdf

Goldsberry, K., & Weiss, E. (2013). The dwight effect: A new ensemble of interior

defense analytics for the nba. In Proceedings of the 2013 MIT Sloan sports ana-

lytics conference, 10 , 1-11. Retrieved from https://pdfs.semanticscholar.org/2928/

057a2c680906c3333fc0a069fcc547a5f85c.pdf

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

. . . Bengio, Y. (2014). Generative adversarial nets. Proceedings of the International

Conference on Neural Information Processing Systems (NIPS 2014), 2672-2680. Re-

trieved from http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Henz, M. (2001). Scheduling a major college basketball conference—revisited. Oper-

ations research, 49 (1), 163-168. doi: 10.1287/opre.49.1.163.1119

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9 (8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735)

102

http://www.sloansportsconference.com/wp-content/uploads/2012/02/Goldsberry_Sloan_Submission.pdf
http://www.sloansportsconference.com/wp-content/uploads/2012/02/Goldsberry_Sloan_Submission.pdf
https://pdfs.semanticscholar.org/2928/057a2c680906c3333fc0a069fcc547a5f85c.pdf
https://pdfs.semanticscholar.org/2928/057a2c680906c3333fc0a069fcc547a5f85c.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


REFERENCES

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L.

(2014). Large-scale video classification with convolutional neural networks. In 2014

IEEE Conference on Computer Vision and Pattern Recognition, 1725-1732. doi:

doi.org/10.1109/CVPR.2014.223

Kerr, N. L. (1998). Harking: Hypothesizing after the results are known. Personality

and Social Psychology Review, 2 (3), 196-217. doi: 10.1207/s15327957pspr0203 4
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Appendix A

A summary of games analysed

Game ID Year Team A Team B YouTube ID

0 1996 Kentucky UMASS TdFsLf6NdA4

1 2005 West Virginia Wake Forest 63ce3pgTihA

2 2009 Arizona Louisville DgsbjLL1ZwU

3 1996 Syracuse Mississippi State ahEnvgLvRI4

4 2000 Gonzaga Purdue nRfZM1def1k

5 2007 North Carolina Georgetown tjzSVn2WE6o

6 2003 Syracuse Auburn OVRp7 wN3Ys

7 2007 Ohio State Florida 3gtm0aaBkxM

8 1992 Michigan Duke rBQ4-zr22Nc

9 1994 Florida Duke kJFBSK-qX58

Table A.1: Information about each game analysed as part of this dissertation. Games

can be viewed by prefixing the YouTube ID with http://youtube.com/watch?v=
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