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Abstract 

This study explores the potential of Raman spectroscopy, coupled with multivariate regression 

techniques and protein separation technique (ion exchange chromatography), to quantitatively 

monitor diagnostically relevant changes in high molecular weight proteins in liquid plasma. 

Measurement protocols to detect the imbalances in plasma proteins as an indicator of various 

diseases using Raman spectroscopy are optimised, such that strategic clinical applications for 

early stage disease diagnostics can be evaluated. In a simulated plasma protein mixture, 

concentrations of two proteins of identified diagnostic potential (albumin and fibrinogen) were 

systematically varied within physiologically relevant ranges. Scattering from the poorly 

soluble fibrinogen fraction is identified as a significant impediment to the accuracy of 

measurement of mixed proteins in solution, although careful consideration of pre-processing 

methods allows construction of an accurate multivariate regression prediction model for 

detecting subtle changes in the protein concentration. Furthermore, ion exchange 

chromatography is utilised to separate fibrinogen from the rest of the proteins and mild 

sonication is used to improve the dispersion and therefore quality of the prediction. The 
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proposed approach can be expeditiously employed for early detection of pathological disorders 

associated with high or low plasma/serum proteins.  

Keywords 

Raman Spectroscopy; Plasma proteins; Background correction; Extended Multiplicative 

Signal Correction (EMSC); ion exchange chromatography 
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Introduction 

 

Raman spectroscopy has emerged over the past 20 years as an increasingly routine analytical 

technique for a wide range of applications, as it provides specific biochemical information 

without the use of extrinsic labels. This technique can provide intrinsic vibrational signatures 

of the material of interest in a non-destructive fashion, and its potential for diagnostic 

applications has been well demonstrated, notably in human serum and plasma (1–4). Raman 

spectroscopy provides a vibrational signature of a complex biological mixture which is a result 

of the contributions from all the major components from that mixture, and changes in the 

concentrations of the components will give rise to notable changes in the Raman signal. 

However, although both Raman and Fourier-Transform Infrared (FTIR) spectroscopy have 

been widely explored to study bodily fluids over the last two decades, most of these studies 

have been carried out on air dried samples, in order to avoid the water contribution in the case 

of FTIR, and to increase the concentration of the analytes in the case of Raman (5–9). The 

major limiting factor in the use of dried samples is the so-called “coffee-ring” effect, or, 

specifically in terms of blood serum, the Vroman effect (10–12), whereby different analytes 

precipitate from solution at different rates, giving rise to variations in the spectral features due 

to chemical and physical inhomogeneity. This leads to spatially varying chemical compositions 

and sample thicknesses, and unreliable results (13). Ultimately, it is desirable to undertake the 

analysis in the native state of bodily fluids, in which the chemical composition is averaged out 

by molecular motion over the measurement time, and additional drying steps can be eliminated. 

This aim naturally favours Raman analysis, as water is a relatively weak Raman scatterer. 

In this paper, the sensitivity of Raman spectroscopy to detect subtle changes in a simulated 

plasma protein-mixture concentration is explored, specifically for the higher molecular weight 

proteins. Albumin is the most abundant plasma protein, normally constituting about 50% of 
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the plasma protein and has a molecular weight of 66kDa (14). The normal concentration of 

albumin in the human body is 30mg/mL, although it dramatically decreases in critically ill 

patients and does not increase again until the recovery phase of the illness (15). Several studies 

have demonstrated that the functions of albumin, such as ligand binding and transport of 

various molecules, can be applied to the treatment of cirrhotic patients and patients suffering 

from other end stage liver diseases (16–18). It is clear that closely monitoring the variation in 

albumin concentration could act as an indicator of liver diseases and other related pathologies. 

Fibrinogen is a 340kDa (0.4% in human plasma) dimeric plasma glycoprotein synthesised by 

the liver and plays a major role in blood coagulation (19). The normal concentration of 

fibrinogen in human body is ~3mg/mL, and any variation in this concentration can be an 

indicator of disease states (20–22). Many clinical studies have consistently shown elevated 

levels of fibrinogen in patients with cardiovascular disease and thrombosis (23–25).  

The conventional test kits available in a hospital for plasma/serum analysis suffer from long 

time delays for the availability of results due to the need of specialised laboratories, which may 

in turn delay the therapy, and prolong patient anxiety. The potential of vibrational spectroscopy 

techniques coupled with multivariate analysis techniques have been previously investigated for 

a range of clinical applications (1-9), (26-29). This paper evaluates the potential of Raman 

spectroscopy as a diagnostic tool to detect minute changes in the plasma protein concentrations 

in aqueous samples and explores the challenges to such liquid based biopsy techniques, 

including sample scattering and fractionation of individual constituent components.  

A simulated plasma protein mixture of high and low molecular weight proteins, i.e. albumin, 

fibrinogen, cytochrome c and vitamin B12, at physiologically relevant concentrations, was 

prepared and variations were made to these concentrations over physiologically relevant 

ranges. Separation of proteins in the solution was performed by ion exchange chromatography 

to separate high molecular weight proteins from low molecular weight proteins, and high 
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molecular weight fraction proteins from each other. The efficiency of data pre-processing 

methods (rubberband and Extended Multiplicative signal Correction (EMSC)) in removing the 

background, to build an accurate prediction model, was explored and mild sonication was used 

to improve the dispersion of fibrinogen. The standardisation of measurement protocol and other 

experimental parameters is detailed and the results of concentration dependence study of 

proteins, in isolation and protein mixtures, and the chemometric methods used to build the 

prediction model are presented. This study presents a systematic assessment of some of the 

challenges presented by measurements of high molecular weight protein mixtures, and some 

potential solutions to improve the protocols of liquid biopsy monitoring using Raman 

spectroscopy.  

 

Materials and Methods 

Preparation of stock protein and protein mixture 

 

Albumin (A9511), fibrinogen (F3879), cytochrome c (C2506) and vitamin B12 (V2876) were 

purchased from Sigma Aldrich, Ireland. Individual protein solutions of varying concentration 

were prepared in distilled water, to explore the accuracy of detection of each protein and 

sensitivity of vibrational spectroscopic techniques to subtle changes in the protein 

concentrations in its native state. In order to assess the ability of Raman spectroscopic 

techniques to detect subtle changes in the concentration of the protein-mixture, potentially 

usable as biomarkers of various disease states, varying concentrations of each protein in the 

protein-mixture were prepared in distilled water. Concentrations of albumin and fibrinogen, 

were varied in the protein mixture in the physiologically relevant ranges, from 5mg/mL to 

50mg/mL (15) and 0.5mg/mL to 5mg/mL (22) respectively while maintaining the 
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concentrations of cytochrome c and vitamin B12 constant. The stock solutions and the protein-

mixture solutions and analysed in the liquid form using Raman spectroscopy.  

 

Ultrasonication 

A Sonics VCX-750 Vibra Cell Ultra Sonic Processor (Sonics & Materials Inc., USA), equipped 

with a model CV33 Sonic Tip was used to sonicate the fibrinogen stock solution for 5-10 

seconds at 30% amplitude at room temperature to explore the effect of improved dispersion of 

the fibrinogen on the measurement procedure. Fibrinogen can withstand ultrasonication for 10 

seconds at 30% amplitude at low frequency without cleavage of peptide and interchain 

disulfide bonds or formation of interchain and intermolecular cross-links (26).  

 

Ion exchange chromatography 

Carboxymethyl-cellulose (C9481) was purchased from Sigma Aldrich, Ireland. It acts as a 

weak cationic exchanger and binds to the positively charged molecules (27). Glycine (G8898) 

was purchased from Sigma Aldrich, Ireland and glycine buffer of pH 10 was prepared as the 

elution buffer (28). 1mL of the protein-mixture was pipetted into a centrifuge tube and 0.08g 

of carboxymethyl-cellulose. The solution was mixed for 10 minutes on a Spira-mix roller and 

then centrifuged at 14000g for 5 minutes. The unbound material was present in the supernatant 

and was transferred to a fresh tube. The pellet was washed using 2mL glycine buffer by 

repeated inversion, followed by centrifugation at 14000g for 5 minutes. The supernatant that 

contains the fibrinogen was carefully transferred to a fresh centrifuge tube and Raman analysis 

was performed. 
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Raman spectroscopy 

A Horiba Jobin-Yvon LabRam HR800 spectrometer with a 16-bit dynamic range Peltier cooled 

CCD detector was used to record the Raman spectra throughout this work. The spectrometer 

was coupled to Olympus 1X71 inverted microscope and a x60 water immersion objective 

(LUMPlanF1, Olympus) was employed. In the following experiments 532nm laser of 12mW 

was used with the 600 lines/mm grating and the backscattered Raman signal was integrated for 

3 accumulations and a total acquisition time of 80 seconds over the spectral range from 400-

1800cm-1. 

 

Sample substrates 

The Lab-Tek plate (154534) was chosen as the optimal substrate for this study. It has a 0.16-

0.19mm thick glass bottom, 1.0 borosilicate cover glass, and was purchased from Thermo 

Fischer Scientific, Ireland. 

 

Spectral preprocessing 

Pre-processing techniques are essential to remove the background signal and reduce the noise, 

before further analysis. Smoothing of the raw data was done by Savitzky–Golay at a 

polynomial order of 5 and window 13. Two pre-processing techniques, Extended 

Multiplicative Signal Correction (EMSC) and the rubberband method, were trialed on the raw 

dataset of the proteins in Matlab, at different stages of the study. EMSC was employed for the 

pre-processing of protein data to remove the underlying water spectrum (29) , which has an 

OH bending vibration at ~1640cm-1 (30) which can obscure the protein signals at low 

concentrations. The reference for EMSC was prepared by adding a few drops of distilled water 

to the known concentration of protein powder and a thick paste is made (~10mg/mL). 

Rubberband correction was carried out in Matlab by wrapping  a ‘rubberband’ of defined length 
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around the ends of the spectrum to be corrected and fitting against the curved profile of the 

spectrum (31). A Raman spectrum of the paste was recorded using the 532nm laser as source 

and used as the reference spectrum  

 

Partial Least Squares Regression 

Partial Least Squares Regression (PLSR) algorithm was applied to construct a regression model 

that can be used to predict the outcome in varying concentration of proteins, and the 

performance model in predicting varying protein concentration was evaluated in this study 

(32). The PLSR model attempts to elucidate factors that account for the systematic majority of 

variation in predictors ‘X’ (spectral data) versus associated responses ‘Y’ (target values of 

protein concentration). The spectral data (X matrix) is thus related to the targets (Y matrix) 

according to the linear equation Y = XB +E, where B is a matrix of regression coefficients and 

E is a matrix of residuals. Leave – One - Out cross validation was applied to assess the validity 

of the model. In this case, the number of latent variables was assessed, enabling the assessment 

of the performance of a model when applied to an unknown data set. The number of latent 

variables used for building the PLSR model is optimised by finding the value that is equivalent 

to the minimum of the Root Mean Square Error of Cross Validation (RMSECV) and percent 

variance explained by the latent variables. The spectral data obtained from the 30 samples were 

split as 20% training and 30% test sets and the RMSECV was calculated. RMSECV is used to 

evaluate the robustness of the constructed model (33). The percent variance plot explains the 

number of components required for maximum variation in the input data. The appropriateness 

of various pre-processing methods can be determined through the performance of the PLSR 

model.  

 



9 
 

Results 

Standardisation of measurement protocol 

For the analysis of liquid protein samples, an optimised inverted set-up, previously 

demonstrated by Bonnier et al. (13) was used. Better analysis of serum using Raman 

spectroscopy was reported when the sample was analysed in the inverted geometry using a 

water immersion objective with a 785nm laser and CaF2 substrate. In this study, a x60 water 

immersion objective is used with a 532nm laser and the substrate used was a Lab-Tek plate. 

The 532nm laser was chosen as it is compatible with (thin glass bottomed) Lab-Tek plate 

substrates and provides a strong Raman signal of water with minimal background interference. 

A drop of water is used to minimise the differences in the refractive indexes between sample, 

objective and the substrate. However, the water drop does not contribute to the data collected, 

as it is outside the focus of the beam. This set-up also has an added advantage of providing 

high quality, consistent Raman spectra from a sample volumes as low as 1μL. 

Figure 1 presents the spectra of the fingerprint region of the stock solutions of proteins recorded 

in the inverted geometry. The raw spectra of the proteins were baseline corrected using the 

rubberband method and smoothed using the Savitzky–Golay algorithm (polynomial 5, window 

13). Measurement in the inverted geometry, using a water immersion objective, is found to be 

the best instrumental set up that enables an increase in the overall spectral intensity 

accompanied by an improved signal to noise (S/N) ratio with small sample volume. 
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Fig. 1. Raman spectra of the stock solutions of albumin, fibrinogen, cytochrome c and vitamin 

B12 recorded in the finger print region in the inverted geometry focused by water immersion 

x60 objective. Well-defined Raman peaks with minimum background were obtained. 

 

The spectra of albumin and fibrinogen shown in Figure 1 clearly reveal the common Raman 

peaks of these two proteins. These include the amide I band around ~1659cm-1, a relatively 

sharp band at 1003cm-1 associated with phenylalanine, intense bands at ~1336cm-1 and 

~1450cm-1 due to C-H deformation, and a vibration band at ~940cm-1 related to C-C stretching 

mode backbone of α-helix structure. The signature peaks of albumin that differentiate it from 

fibrinogen are bands at 899cm-1 and 1102cm-1, that can be related to ν(CC) and ν(CN) (34). 

The signature peaks of fibrinogen are sharp bands observed at 758cm-1 and 1552cm-1 that can 

be assigned to tryptophan (35). Raman bands of cytochrome c and vitamin B12 are highly 

specific and can be easily distinguished, as evidenced in Figure 1 (36,37). 
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Monitoring the concentration dependence of proteins in aqueous solution 

Albumin 

Protein solutions were prepared by varying the concentration of albumin in order to achieve 

the physiologically relevant range from 5mg/mL to 50mg/mL. Figure 2A show the raw unpre-

processed spectra, which exhibit a steady increase in the spectral intensity when the 

concentration is increased from 5mg/mL to 50mg/mL. The spectrum of the highest 

concentration clearly shows albumin features, whereas those of the lower concentrations are 

dominated by water, which has a characteristic OH bending mode at ~1640cm-1. As the 

concentration of albumin increases, a notable increase in the background can also be observed, 

which can be attributed to scattering. Although many studies suggest that the broad background 

present in Raman spectra is due to fluorescence (38), albumin is a non-resonant protein that is 

optically transparent at 532 nm, so the background is rather due to scattering of the source laser 

as well as the Raman scattered light, which enters the spectrometer as stray light, and is 

dispersed across the CCD in a wavelength independent fashion (39). In order to analyse the 

spectral variations and the albumin concentrations, the PLSR algorithm was applied. The 

percent variance plot in Figure 2B gives a rough indication of how the algorithm progressively 

fits the spectral data, showing that nearly 68% of the variance is explained by the first 

component, while as many as four additional components make significant contributions. 
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Fig. 2. (A): Raw Raman spectra of varying concentrations of albumin (5mg/mL – 50mg/mL) 

in distilled water recorded using 532nm laser, (B): Percent variance explained by the 

components, (C): plot of PLSR coefficient with Albumin features, (D): Linear predictive model 

built from the PLSR analysis 

 

Based on the percent variance explained by the latent variables and the minimum value of 

RMSECV, the optimum number of latent variables to reach the best model is determined. The 

PLSR coefficient plot displayed in Figure 2C, confirms the correlation of the data in Figure 2D 

is based on albumin features, such as the peaks at ~1665cm-1, ~1448cm-1 and ~1337cm-1. 

Finally, after selecting the optimum number of components for the data set analysed, a 

predictive model is built from the PLSR analysis (Figure 2D), to compare the observations to 

the known concentrations of albumin in the samples with the estimated concentrations from 

the spectral data sets. Figure 2D indicates that a good linear model could be obtained with the 

raw data set. However, the PLSR coefficient is not a clean albumin spectrum and has a large 
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background due to scattering, indicating that scattering could have influenced the model. 

Furthermore, the minimum value of RMSECV was found to be 22.59mg/mL, indicating a poor 

accuracy of prediction over the range 5mg/mL to 50mg/mL. Analysis of the raw albumin 

concentration dependence serves as an initial illustration of some of the issues presented by 

measurement of high molecular weight macromolecules in solution. Appropriate pre-

processing steps could help to minimise the background from scattering effects. Hence, 

rubberband pre-processing steps were performed on the data set before PLSR analysis and the 

model obtained is displayed in Figure 3. 

 

 

Fig. 3. (A): Rubberband corrected Raman spectra of varying concentrations of Albumin 

(5mg/mL – 50mg/mL) in distilled water, (B): % variance explained by the latent variables, (C): 

plot of PLSR coefficient with Albumin features, (D): Linear predictive model built from the 

PLSR analysis 
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Figure 3A shows the albumin data set after background correction using the rubberband 

method. Figure 3B shows the percent variance explained by the latent variables, indicating that 

three components accounted for the majority of the variance. Five latent variables were chosen 

for this model and the resultant PLSR coefficient exhibits strong albumin features, as shown in 

Figure 3C. A linear predictive model can be defined from the rubberband corrected data set of 

varying concentration of albumin in water Figure 3D. The RMSECV was found to be 

1.58mg/mL after applying the rubberband pre-processing steps for the same data set. The 

results suggest that there is a significant improvement in the predictive capacity of the 

constructed model when rubberband pre-processing steps are applied to the data set. 

Simulated “pathological” plasma protein mixtures were prepared by varying the concentration 

of albumin in order to achieve the physiologically relevant range from 5mg/mL to 50mg/mL 

and by maintaining the concentrations of fibrinogen, cytochrome c and vitamin B12 constant 

at the concentrations of the “healthy” human plasma. The concentrations for 

hypoalbuminaemia (>30mg/mL) and hyperalbuminemia (<30mg/mL) have been deliberately 

included in the set of samples being prepared. Based on the results of Figure 2, rubberband 

correction was applied to the dataset in an attempt to improve the accuracy of the prediction by 

performing baseline correction. Notably, the Raman spectral features of the protein mixture 

were seen to decrease with increasing albumin concentration (Figure S1A in supplemental 

material), and the PLSR coefficient obtained from this data shows inverse albumin features 

(Figure S1C), indicating that the model built from this dataset is not reliable, as the high degree 

of scattering is effecting the dataset and the prediction model is not based on the albumin 

features. Hence, the EMSC based algorithm was applied to the data set in an attempt to 

eliminate the scattering associated with the albumin data in the simulated plasma and 
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subsequently improve the prediction model. EMSC of polynomial order 4 was performed on 

the data set of varying concentration of albumin in simulated plasma protein mixture. The 

reference used for EMSC is a spectrum of albumin which has been diluted with a minimum 

amount of water, recorded with 532nm.  

Figure 4A displays the albumin spectra after performing background correction using the 

EMSC algorithm. The amide 1 band at 1665cm-1 and CH2 deformation band at 1445cm-1 can 

be clearly seen in the corrected spectra. Based on the percentage variance explained by the 

latent variables (Figure 4B) and the minimum value of RMSECV, seven latent variables were 

found to be optimal for this model. The PLSR coefficient shows albumin features (Figure 4 C), 

indicating that the prediction is now based on the variation in the albumin peak intensity. A 

linear prediction model was achieved from this model (Figure 4D). The minimum value of 

RMSECV is 1.5844mg/mL, indicating an improved prediction capacity. This value is the same 

as the minimum value of RMSECV recorded for the varying concentration of albumin in 

distilled water, indicating that the PLSR model of EMSC corrected simulated plasma spectra 

is as accurate as the PLSR model of rubberband corrected spectra of varying concentrations of 

pure albumin in water. The results demonstrated in this section suggest that this model can be 

effectively used to detect variations in the concentration of albumin in human plasma, as a 

result, for example, of liver disorders at an early stage. A strong reduction in the RMSECV 

indicates that the EMSC algorithm can efficiently subtract the background without altering the 

albumin features, which in turn improves the prediction of the model. 
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Fig. 4 A: EMSC corrected of varying concentrations of albumin in simulated plasma, and B:  

Percent variance explained by the latent variables, C: PLSR coefficient showing albumin 

features, and D:Linear prediction model defined from the dataset 

 

 

Fibrinogen 

Fibrinogen solutions were prepared by diluting the stock solution of 100mg/ml to the more 

physiologically relevant range of 0.5mg/mL to 5mg/mL. Raman spectra were recorded from 

the protein samples and smoothed using Savitzky–Golay (polynomial 5, window 13). When 

the rubberband method was applied on this dataset to perform baseline correction, the PLSR 

coefficient spectrum obtained was an inverse water spectrum, as shown in supplementary 

information (Figure S2). Fibrinogen is poorly soluble in water, such that the fibrinogen solution 

is visually cloudier than the albumin solution. This significant problem of lack of solubility due 
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to the protein aggregation leads to scattering of the more pronounced Raman signal of the 

water, in a concentration dependent fashion. Hence, EMSC with a polynomial of order 4 was 

performed on the same data set to pre-process the data prior to PLSR analysis. The reference 

spectrum was obtained under similar conditions as the albumin reference, from a fibrinogen 

paste with minimal amount of water. A polynomial of order 3 resulted in the best correction. 

The output, however, is a very noisy spectral data set with some indication of fibrinogen 

features in the spectra, notably at ~758cm-1, ~1650cm-1, ~1450cm-1, ~1336cm-1 and ~1250cm1 

(Figure S3 in supplemental). 

In an attempt to overcome the lack of solubility of the protein, the stock solution was 

ultrasonicated to enhance the dispersion of fibrinogen and obtain a clear solution. 

Ultrasonication for approximately 10 seconds at 30% amplitude resulted in a clear solution of 

fibrinogen with a significantly improved Raman signal (Figure S4 in supplemental). Varying 

concentrations of fibrinogen samples in the physiologically relevant range were prepared using 

the ultrasonicated fibrinogen stock.  
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Fig. 5A: Raman spectra of varying concentration of sonicated fibrinogen background corrected 

using EMSC algorithm B: Percent variance explained by the latent variables C:PLSR 

coefficient plotted from the sonicated fibrinogen data set shows strong fibrinogen features, D: 

Linear predictive model built from the PLSR analysis showing correlation between 

concentration and peak intensity. 

 

The spectrum of sonicated fibrinogen after background correction using the EMSC algorithm 

with polynomial of order 3 displays strong fibrinogen features with higher intensity over the 

same concentration range, compared to the non-sonicated fibrinogen samples (Figure 5A). 

Applying PLSR, it is clear from Figure 5B that a total of six components made significant 

contributions to explain the variance in the sonicated fibrinogen spectra. Based on the percent 

variance explained, six latent variables were used to build the prediction model. The PLSR 

coefficient plot shows signature peaks of fibrinogen, indicating that the prediction was based 

on variation in the fibrinogen spectral intensities (Figure 5C). A linear prediction model was 

A B

C D
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defined from the data set, showing correlation between the Raman peak intensity and 

concentration (Figure 5D). The minimum value of RMSECV is found to be 0.0615mg/mL. The 

reduction in the RMSECV value recorded for fibrinogen data after sonication indicates that the 

accuracy of the model increases as a result of the improved solubility following sonication. 

Hence, it can be concluded that sonication improves the solubility of the fibrinogen and 

increases the spectral intensity, in turn leading to a considerable improvement in the predictive 

capacity of the model.  

Simulated “pathological” plasma protein-mixture was prepared by varying the concentration 

of fibrinogen stock in order to achieve the physiologically relevant range from 0.5mg/mL to 

5mg/mL and by maintaining the concentrations of albumin, cytochrome c and vitamin B12 

constant at the normal concentrations in healthy human plasma. The concentrations for heart 

disorders (<3mg/mL) and liver disorders (<3mg/mL) have been deliberately included in the 

concentration range. The raw spectra of varying concentrations of fibrinogen in simulated 

plasma were smoothed by Savitzky–Golay, polynomial of 5, window 13 (Figure 6). 

 

Fig. 6. Smoothed spectra of varying concentration of fibrinogen in simulated plasma 

(0.5mg/mL to 5mg/mL). The arrow indicates the order of increasing concentration. 
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The arrow indicates that both the background and spectral features themselves decrease with 

increasing concentration of fibrinogen. However, noting that albumin is the dominant 

contributor to the Raman signal, and that fibrinogen is the dominant scatterer, this can be 

understood as a (fibrinogen) concentration dependent loss of (albumin) Raman scattering.  

The PLSR coefficient obtained after pre-processing the data using the EMSC based algorithm 

shows an inverse spectrum of albumin rather than fibrinogen, as shown in figure S5 in 

supplemental. As in the case of the water dispersions, the dominant effect of increasing 

concentrations of the poorly soluble fibrinogen is the scattering of the dominant Raman 

spectrum. Hence, although the predictive model built from this dataset shows a good 

correlation with fibrinogen concentration, it is not based on the characteristic spectroscopic 

signature of fibrinogen, and the variation of the albumin signal could equally be due to any 

other scatterer.  

Ultracentrifugation using 100KDa centrifugal filters failed to separate fibrinogen from the rest 

of the protein in the protein mixture. Figure S6 shows that the Raman spectrum of the 

concentrate obtained has pronounced characteristic albumin features at 899 cm-1 and 1102 cm1. 

Ion exchange chromatography was therefore explored as an alternative method for fibrinogen 

separation from the protein mixture, based on its charge. Carboxymethyl-cellulose acts as a 

weak cationic exchanger and fibrinogen is eluted out by altering the net charge of the bound 

protein, and thus its matrix binding capacity. Fibrinogen was detected in the unbound fraction. 

Albumin was not detected in the unbound fraction by Raman spectroscopy and it is concluded 

adsorption of the albumin fraction to the carboxymethyl cellulose resin occurred at the pH 

values employed. Other studies have shown carboxymethyl cellulose may form insoluble 

complexes with serum albumin (40). 
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Fibrinogen was extracted from the protein mixtures over the full concentration range, and 

Raman spectra were recorded from the separated fibrinogen and EMSC was performed on the 

data set before doing PLSR analysis. In the absence of sonication the prediction model 

performed poorly, due to the high degree of scattering, as seen in figure S7. Mild sonication 

can be employed to improve the solubility of and reduce the scattering from fibrinogen, and 

thus the performance of the prediction model. 

 

Fig. 7A: EMSC corrected data of varying concentrations of fibrinogen separated by ion 

exchange chromatography, and B: Percent variance explained by the latent variables, C: PLSR 

coefficient showing fibrinogen features and D: Linear prediction model defined from the 

dataset 

 

The spectrum of sonicated fibrinogen separated by ion exchange chromatography after 

background correction using the EMSC algorithm displays strong fibrinogen features. In 
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Figure 7B, it is clear that nine components made significant contributions to the variance in the 

sonicated fibrinogen spectra. The minimum value of RMSECV is found to be 0.0568mg/mL. 

The PLSR coefficient plot shows the signature peaks of fibrinogen (Figure 7C), indicating that 

the linear prediction model obtained was based on the correlation between the Raman spectral 

intensities of fibrinogen and concentration (Figure 7D). Hence, it can be concluded that ion 

exchange chromatography can successfully separate fibrinogen for Raman analysis from the 

protein mixture within 30 minutes and an accurate prediction model can be built from the 

Raman data to detect subtle changes in the fibrinogen concentration. Early detection of 

fibrinogen concentration could help to prevent disorders that are associated with increased 

fibrinogen level in plasma such as thromboembolism (41), various cardiovascular events and 

post-surgical arterial re-occlusion (42). 

 

Discussion 

In monitoring biological molecules in their native aqueous state in biofluids, Raman 

spectroscopy offers the potential advantage over other spectroscopic techniques such as 

infrared absorption, that water was a relatively low scattering cross section. However, 

applications of the technique face several challenges related to detection of relatively low 

concentrations and variations of concentrations of analytes, and low quality signals from poorly 

dispersed components, and there remains a considerable number of issues relating to the 

fundamental process of recording and extracting the spectral details using chemometric 

techniques.  

Raman analysis in the inverted geometry using a water immersion objective is found to be the 

optimal method to record well defined spectra with minimal background, and notably samples 

of volumes as low as 1L can be measured. In a sample set of varying concentrations over 

physiologically relevant ranges, the albumin contributions to the spectrum dominate over those 
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of the water, and, after minimal preprocessing, PLSR can be employed to establish a regression 

model whose predictive performance shows a close correlation between the concentrations of 

the proteins and the Raman spectral profile. However, in a the more complex simulated plasma 

mixture of proteins, improved data preprocessing techniques are required to account for the 

increased spectral background. 

Although the broad background to Raman spectra is often attributed to fluorescence, this 

cannot be the case for materials with are nonresonant at the Raman source wavelength. Proteins 

such as albumin and fibrinogen can, however, contribute to stray Mie scattered light by causing 

diffusely scattered radiation that is not well collimated by the collection objective of the Raman 

microscope, enters the spectrometer effectively as stray light, and is dispersed across the 

detector (21). The rubberband pre-processing method appeared to efficiently remove the 

background from the data set of varying concentration of albumin in water, but failed to 

satisfactorily deal with the background of varying concentrations of albumin in the simulated 

plasma protein mixture. The more sophisticated EMSC based algorithm helped eliminate the 

scattering associated with the albumin data in the simulated plasma, improving the prediction 

model, and also helped to extract the spectral features of fibrinogen from water. In both cases, 

before subtraction, the primary effect of varying the protein concentrations was to decrease the 

contribution of the dominant Raman scatterer, which can be understood in terms of the presence 

of the poorly soluble, highly Mie scattering fibrinogen component. This proposed method can 

be efficiently used to detect albumin as a standard biomarker for detecting diseases associated 

with hypoalbuminemia (<30mg/mL), such as liver diseases, gastrointestinal protein loss, 

edema and hyperalbuminemia (>30mg/mL), such as severe dehydration and abnormal increase 

in body fat (43,44). The accuracy of the proposed method is comparable to that of the most 

commonly used method for detecting albumin from biological fluids, the enzyme linked 
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immunosorbent assay (ELISA) (45,46), which is sensitive and selective but is very time 

consuming and requires extensive sample preparation steps. 

In varying concentrations of fibrinogen in aqueous solution, the Raman signal of the water 

itself is diffusely scattered, increasingly so with increasing fibrinogen concentration, and thus 

the PLSR identifies a decreasing Raman contribution of water as the dominant concentration 

dependent effect. In the case of albumin in the simulated protein mixture, a concentration 

dependent Mie scattering of the Raman signal of albumin itself is the dominant effect of 

increasing albumin concentration. While one would expect a linear concentration dependent 

increase in the Raman signal of albumin, the inability of the ultracentrifugation technique to 

separate the two high molecular weight proteins may suggest an interaction between the 

albumin and fibrinogen, such that increased albumin Raman scattering is overwhelmed by 

increased Mie scattering.  

Mild sonication is seen to improve the dispersion of fibrinogen in aqueous solutions, and 

significantly improve the Raman signal. Removing the water contribution using EMSC is seen 

to significantly improve the predictive model (Figure 5).  

Separation of the fibrinogen by ion exchange chromatography from the plasma protein mixture 

and application of the ultrasonication technique to reduce aggregation helped to detect 

fibrinogen features from the plasma solution even at a concentration as low as 0.5mg/mL. The 

RMSECV of 0.0568mg/mL compares favourably with similar observations, for example for 

attenuated total reflection – Fourier transform infrared absorption monitoring of glucose in 

blood serum (47). The accuracy of this study is closer to that of the most commonly used gold-

standard method i.e, the Clauss assay, which has a detection limit of ~0.4 mg/mL (48). The 

Clauss assay is relatively time consuming and suffers from inconsistencies in the results due to 

calibration standards, methodologies and variation in the reagents from various manufacturers 

(41). These steps are relevant only in the case of human plasma and can be avoided while 
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working with human serum as fibrinogen is absent in the serum. The optimised protocol can 

be applied to detect low abundant protein in bodily fluids after depletion of the abundant 

proteins to reduce the spectral variability. Currently, such studies are conducted and the results 

are promising. 

Ion exchange chromatography is a quick method to separate the proteins from each other by 

altering their net surface charge, making it an ideal tool for separating all the protein 

constituents and a better alternative to ultracentrifugation. In this case, ultracentrifugation 

failed to separate HMWF proteins from one another, as they tend to form hydrophobic bonds 

and nonspecific binding interactions with the membrane material (Fig S6). However, the ion 

exchange chromatographic method has to be tailored to the specific protein, depending on its 

charge, and cannot be applied as a ‘one-for-all’ separation kit for all the proteins. 

 

Conclusions 

The potential advantages of using vibrational spectroscopy for disease diagnosis based on on 

bodily fluids have been extensively explored over the last two decades. However, little 

consideration has been given to date to the optimisation of a Raman analysis protocol involving 

proteins in their native aqueous state, leading to irreproducible results due to high complexity 

of the plasma proteins. This study is a proof of concept that Raman spectroscopy can be 

successfully used to detect subtle changes in individual plasma protein concentration from 

simulated plasma samples to disease diagnostics purposes.  

It has been shown that measurement in the inverted geometry using a water immersion 

objective yields high quality spectra and the sample volume can be as small as 1μL. This 

experimental set up is advantageous for clinical purposes where the volumes of patient samples 

are minimal. In the simulated plasma protein mixture, the poorly soluble fibrinogen component 

was seen to obscure the systematic variations of the protein concentrations, due to the high 
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degree of scattering. Extraction of the fibrinogen by ion exchange chromatography is seen to 

be more specific than by ultracentrifugal filtration, such that the variations of fibrinogen levels 

themselves can be quantified. In general, the scattering problems caused by fibrinogen favour 

the use of blood serum for the analysis of the remaining lower molecular weight fractions.  

However, to further ensure relevancy and consistency of these results, experiments need to be 

carried out in pooled plasma/serum. The use of Raman spectroscopy coupled with chemometric 

techniques not only gives a mere estimate of whether the protein levels are high or low but also 

gives higher accuracy of quantification. Once appropriate experimental methods are 

established, a hypothesised point-of- care device that can be used in real clinical applications 

for spectroscopic analysis of body fluids can be realised. The proposed approach can be 

expeditiously employed for early detection of pathological disorders associated with high or 

low plasma proteins. 
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