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Abstract 

 

Fraxinus excelsior (common ash) is a hardwood tree, native to Ireland which has 

demonstrated adaptability to growing in a wide range of sites.  In 2013, there was a total 

of over 20,000 hectares recorded under ash in Ireland.  From an economic, ecological 

and carbon aspect ash is also a very important tree species.  Since the arrival of Chalara 

disease, which has the potential to prove fatal to c.97% of the ash population there is an 

urgent need to consider how to preserve the remaining resistant trees and propagate new 

resistant lines.  Grafting is the suggested method which has the capacity to produce a 

tree in a breeding programme which can be field planted within a year, once suitable 

rootstocks can be determined and produced. This thesis examined the potential for 

grafting two Fraxinus excelsior clones M72 and 98, chosen at random onto F. excelsior, 

F. paxiana, F. chinensis, F. japonica, F. platypoda, Syringa vulgaris, and Ligustrum 

ovalifolium rootstocks to confirm their suitability for large scale vegetative 

propagation.   

It was found that when Clone M72 and Clone 98 were grafted onto Fraxinus excelsior 

rootstocks the survival was 100% and 97% respectively, while the non-grafted Control 

returned a plant survival rate of 93%. When Clone M72 was grafted onto Fraxinus 

chinensis and Fraxinus paxiana rootstocks the resultant graft survival was 68% and 

40% respectively.  When Fraxinus platypoda and Fraxinus japonica interstocks were 

used for grafting Clone 98 survival was 87% and 60% respectively.  When Ligustrum 

and Syringa rootstocks were used to propagate Clone M72 survival was 37% and 33% 

respectively.  When  Ligustrum and Syringa were used as rootstocks for Clone 98 the 

result was 30% and 40% respectively.  Propagation by budding was not successful.  
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Vegetative growth of Clone 98 grafted onto Fraxinus excelsior rootstocks  exceeded the 

seedling produced plants by 6%, whereas grafted plants of Clone M72 were 28% lower 

than the control.  When Clone M72 was grafted onto Fraxinus chinensis rootstocks the 

reduction was 38%.  When it was grafted onto Fraxinus paxiana rootstocks the 

reduction was approximately 79%.  When Fraxinus platypoda and Fraxinus japonica 

interstocks were used with Clone 98, growth was reduced by 45% and 65% 

respectively.  When rootstocks of Ligustrum and Syringa were used with Clone M72 

and Clone 98 the reduction in growth was between 41% and 52% respectively. 

There was a wide variance in bud flushing. It ranged from three to fourty one  days over 

all the treatments.  

The mean number of shoots produced per graft was 3.1 and 2.9 respectively for Clone 

M72 grafted onto Syringa and Ligustrum and 1.9 and 2.7 respectively for Clone 98 

grafted onto Syringa and Ligustrum. This compared with 3.7 for the Control.  

The least number of shoots 1.3 to 1.5 was recorded with Clone M72 on rootstocks of  

Fraxinus paxiana and chinensis while interstocks Fraxinus platypoda and Fraxinus 

japonica used with Clone 98 resulted in 1.8 and 1.3 shoots respectively.  

Flowering percentages were low at 0.01% and 0.02% when recorded over two 

consecutive years.   

 It was possible to establish viable grafts on both Asiatic species and related genera.  In 

the case of related genera, their potential to flower and produce seeds would 

significantly accelerate the establishment of disease free orchards.  
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Chapter 1: Literature Review 

 

1.1  Study background 

The genus Fraxinus belongs to the Oleaceae family and comprises about 65 species 

(Brickell, 1996), mostly deciduous and rarely evergreen trees (F. uhdei, evergreen) 

found throughout Europe, Asia, and North America.  Fraxinus excelsior (common ash), 

is indigenous to Ireland and is also cultivated as an ornamental tree in gardens and large 

parks (Kew Science, 2017).  Ash grows best in rich fertile well drained soil, neutral to 

alkaline (Horgan et al.,2004) and tolerates a wide range of growing conditions, such as 

urban pollution and exposed sites.  Ash is extremely important as it is a productive 

species in farm forestry with over 20,000 hectares of plantations in Ireland (Mc Cracken 

et al., 2017).  Ash is also a good choice for a specimen tree or in a woodland setting 

with several cultivars of Fraxinus excelsior such as ‘jaspidea and pendula’ that are 

worth growing.  To date, common ash has been generally pest and disease free in 

Ireland and Europe however, with increasing world trade in plant materials problems 

are starting to emerge, such as Chalara (ash dieback) and Emerald Ash Borer.  

 

1.2  Importance of ash in Ireland 

Common ash (Fraxinus excelsior) is the second most common tree species found in 

hedgerows after hawthorn (Crataegus monogyna) and it is also very important; in 

forests, woodlands, and urban situations (Hendry, 2012).   Ash has a broad ranging 

adaptability to its habitats, in that it will thrive as individual trees in an urban 

environment, as forest cover, along riverbanks or on arid mountainous slopes (Pautasso 

et al., 2013).  It represents 10% of broadleaf afforestation in Ireland (Mc Cracken et al., 

2017) with over 20,000 hectares (NFI, 2012).  
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One of the greatest influences ash has made in Ireland is in the sport of hurling.  The 

hurley stick is called a hurl, hurley or caman; and it has timber qualities of strength, 

shock resistance, with flexibility and 360,000 are needed annually (Mc Cracken et al., 

2017).    In 2012, data showed that 76% of hurley ash timber was imported (McCracken 

et al., 2017).  It had been hoped that due to plantings of ash over the past 25 years, the 

demand for hurley timber could have been satisfied from domestic supplies, however, 

with the arrival of Chalara this is unlikely to happen.  The Irish guild of ash hurley 

makers (IGAHM, 2011) stress the need to maintain this cottage industry which supports 

400 jobs in the hurley-making industry in Ireland (Teagasc, 2016).   

In Ireland, there is no data quantifying the impending loss of ash trees.   The only data 

pertains to the cost to Department of Agriculture Food and Marine (DAFM) for the 

removal of trees with confirmed outbreaks of Chalara.  To date 733 hectares of infected 

plantations (two million ash trees) have been removed and replanted with other species 

at a cost of €2.6 million (McCracken et al., 2017).  In the UK there are142,000 hectares 

of ash yielding £20 million commercial timber value per annum.  This together with the 

environmental value  estimated at £150 million per annum equates to actual value of 

€1340 per hectare (Cotterill, 2014).  On this basis this would value the ash plantations in 

Ireland at €26.8 million.   

 

1.3  History of Chalara 

The organism causing Chalara disease was named Chalara fraxinea (asexual stage) and 

the sexual stage was named Hymenoscyphus fraxineus.  In common reporting, Chalara 

is referred to as ash dieback.  Chalara is thought to have originated in Asia, including 

Japan (Zhao et al., 2013), causing widespread decimation of ash in Europe and is now 

widespread in Ireland (McCracken et al., 2017).  It was first identified in Poland in 
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1992 (Forestry Commission, 2013) and is present in many European countries including 

Ireland.  Chalara fraxinea was first discovered in Ireland in October 2012 on imported 

plants and the disease was later confirmed by Department of Agriculture, Food and 

Marine (DAFM, 2018).  Once confirmed, it instigated legislation (SI No. 431 of 2012) 

in conjunction with Northern Ireland restricting the importation and movement of plant 

material, seed and wood of ash was invoked.  A national survey of all recent plantations 

with imported plants was undertaken (DAFM (2018).   The disease was identified on 

trees in forests, garden centres, farms, roadside plantings, and plant nurseries and such 

plants were eradicated.   This involved the removal of all infected plants and debris on 

site and its burial.  Where infected trees were found in wild hedgerows, they were cut 

down, along with all other ash trees within 250 metre radius.  Confirmed Chalara 

findings have been made in all counties (McCracken et al., 2017).  

 

1.4  The present situation regarding Chalara infection.  

Since the disease was discovered in Europe, it has progressed across the UK and now to 

Ireland.  No ash trees have been found to be totally resistant to Chalara.  However 

different levels of tolerance have been exhibited.  Trees showing 10% crown damage  

comprise 1-5% of the population, while trees with 25% crown damage comprise 10%.  

In the former category, tree growth is generally unaffected since they are without stem 

infections and are regarded as being resistant to Chalara.  Trees that have more than 

25% of their crown affected are unlikely to survive (Enderle et al., 2014). 

 Genotype, site conditions, and the local environment have an influence on a tree’s 

level of growth capacity, which in turn can influence Chalara tolerance / 

susceptibility. Alsop (2014) reported that trees in prime condition which had more 

natural resilience to Chalara. 
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 The death of the tree will not occur immediately, as it depends on the level of 

disease pressure (Alsop, 2014). 

 Disease severity can vary from year to year due to seasonal differences and 

variations between different countries, regions and sites (Alsop, 2014).  

 Trees in unfavourable conditions (such as wet sites) tend to be more susceptible 

(Alsop, 2014).  

 Disease tolerance can only be reliably assessed over a few years in areas of disease 

infection (Alsop, 2014). 

 Ash trees of all age classes, from saplings, to semi mature trees are affected. 

 Once an infection has been discovered, it has progressed to adjoining areas (Alsop, 

2014)   The distribution of the disease on a county by county basis is given in 

(Image1.1). 

 

Image 1.1. Distribution map of confirmed findings of Ash Dieback throughout Ireland 

(as of 31 July 2017). 

Source DAFM - Ash Dieback (Chalara).  Available on the internet at            

http://www.agriculture.gov.ie/forestservice/treediseases/ashdiebackchalara/.  

 (Accessed 02/09/2018). 

http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiGt6XwzajJAhXBtQ8KHfUzBywQFggfMAA&url=http%3A%2F%2Fwww.agriculture.gov.ie%2Fforestservice%2Fashdiebackchalara%2F&usg=AFQjCNHUOS09bjjTEpZObaJm-vs44FLD5g&sig2=SLVx2hZwvv3X7cZsvmaZYw
http://www.agriculture.gov.ie/forestservice/treediseases/ashdiebackchalara/
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The locations of commercial nurseries and garden centres are not depicted. 

Chalara incidences are now reported on the basis of a 10 km x 10 km grid as shown in 

Image 1.2.  

 

Image 1.2. Distribution map of confirmed findings of Chalara in Ireland as of 31st July 

2017.   

Source DAFM - Ash Dieback (Chalara).  Available on the internet at            

http://www.agriculture.gov.ie/forestservice/treediseases/ashdiebackchalara/.  

(Accessed 02/09/2018). 

The locations of horticultural nurseries and garden Centre’s are not depicted. 

1.5   Chalara fraxinae disease:-life cycle and symptoms   

The pathogen isolated was initially named Chalara fraxinea, in the vegetative stage. 

Later, the sexual stage (telemorph) was found and named Hymenoschyphus 

pseudoalbidus (Kirisits, 2014).  H. pseudoalbidus, is closely related to the non-

pathogen, H. albidus, which is common in Ireland.  It has subsequently been renamed as 

http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiGt6XwzajJAhXBtQ8KHfUzBywQFggfMAA&url=http%3A%2F%2Fwww.agriculture.gov.ie%2Fforestservice%2Fashdiebackchalara%2F&usg=AFQjCNHUOS09bjjTEpZObaJm-vs44FLD5g&sig2=SLVx2hZwvv3X7cZsvmaZYw
http://www.agriculture.gov.ie/forestservice/treediseases/ashdiebackchalara/
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Hymenoscyphus fraxineus (Baral et al., 2014).  Chalara fraxinea (telemorph 

Hymenoschyphus fraxineus) is a virulent fungal pathogen of ash, particularly common 

in ash (Fraxinus excelsior).  Hymenoschyphus fraxineus reproduces sexually on ash 

petioles and on the leaf rachises forming apothecia, which in turn release ascospores 

infecting healthy leaves from June to October.  Disease incubation requires up to one 

year, but the rachises can remain infectious and release spores from their apothecia for 

up to five years.  It has been reported that spores may also infect the shoot/root collar 

via the roots and or stem lenticels (Kirisits, 2014).  Once in the stem the fungus can 

develop there over the autumn and winter period.  In spring, leaves emerging from 

above the point of infection wilt and die. The symptoms of the disease have been 

described by Andersson et al., (2010) and Bakys et al., (2009).  

 Dieback of shoots, side branches on main stem and crown loss. 

 Wilting and premature foliage loss resulting in black or brown leaves. 

 Wounds on the branches, shoots and stems of trees. 

 Necrotic lesions starting on the rachises and spreading into the shoots. 

 A discolouration of the wood. 

 Elongated angular stem lesions often diamond shaped on the shoots. 

Dieback of many shoots and loss of foliage over several years generally proves fatal.  

The disease completes its cycle on the rachis and foliage of Fraxinus sp. (Gross et al., 

2013).  Wind can also cause new infections, through the spread of spores (Cotterill, 

2014). The spread of Chalara has been modelled by Cambridge University (Downing, 

2012).  They concluded that between the years 2008-2011 there was a at least 100 days 

within which weather conditions such as wind direction, rainfall and humidity could 

have carried the spores across from Europe to southeast England (Downing, 2012).   

Disease classification can be undertaken by assessing the health status of the tree 
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crowns. Enderle et al. (2014) have developed a classification system based on the 

percentage of the crown defoliation due to dieback, class 0 has no visible symptoms, 

class 1 has 1-10% crown loss, class 2 has 11-25% crown loss, class 3 has 26-60% 

crown loss, and class 4 has 61-99% crown loss; any tree with 100% is dead.  In addition 

Enderle et al. (2014), also recorded the amount of epicormic growth within the tree 

crown the presence of which is indicitave of Chalara susceptibility.  Examples of 

disease symptoms are illustrated in Image 1.3. 

 

         A                                   B                                  C                                    D 

Image 1.3. Disease symptoms of ash dieback  Cleary et al., (2017). Symptoms of ash 

dieback: (a) shoot, branch and stem dieback; (b) bark canker; (c) epicormic shoot 

necrosis (d) leaf and shoot wilting. 

Source: European Ash- Consequences and Guidelines for Sustainable management, 

Cleary et al., (2017) Available online at  https://www.cost.eu/publications/ (Accessed 

22/05/2019). 

 

 

 

https://www.cost.eu/publications/
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1.6  Disease situation in Europe, UK and Ireland 

Chalara is a devastating disease progressing through Europe, with terminal effects for 

Fraxinus excelsior, Fraxinus angustifolia and Fraxinus ornus (Alsop, 2014).  In 

Austria, it is most serious because of the importance of the species.  The management 

strategy is to remove stands which are seriously infected but to maintain individual trees 

which are showing tolerance (Heinze et al., 2017).  In Lithuania the disease was 

discovered in 1995 and 10% of their trees die every year.  They undertake sanitary 

felling and re-assess the sites for re-sprouting and regeneration with a view to 

propagation of Chalara tolerant trees (Pliúra et al., 2017).  In Germany Fraxinus 

excelsior accounts for 2% of their forests and their aim is to develop tolerant germplasm 

(seeds) from tolerant parent trees to establish seed producing orchards.  Chemical 

control of the fungus in the nursery stage shows some promise and may have some 

value for ornamental ash cultivars used, however it is impractical on a forestry scale 

(Enderle et al., 2017).   Denmark has lost most of its ash stands, with some exception of   

trees which remain healthy and show disease tolerance.  According to Kjaer et al (2017) 

this will secure breeding material to produce new stock adapted to the pathogen.  

Sweden is examining the balance between host trees and pathogens (Cleary et al., 2017) 

while also examining the impact of ash dieback on veteran and pollarded trees.  They 

are also assessing veteran trees in grazed, un-grazed and open ground to see if there is a 

pattern with the disease spread.  To date they reported that no tree greater than 140 

centimetres in diameter has been affected by the disease (Cleary et al., 2017).  In 

Norway advancement of the disease is being monitored and reports suggest that it is 

spreading at a rate of 30-50 kilometres per annum using spore sampling to ascertain the 

speed of the spread (Børja et al., 2017).  In Belgium the same monitoring techniques are 

being used as in Norway (Chandelier et al., 2017).  In the UK, while initial attempts 

were made to eradicate infected trees, the current policy is to monitor outbreaks, predict 
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the spread and genome sequence, to find resistant or tolerant trees.  A government 

funded project has planted 250,000 seedlings over 50 hectares which is comprised of 15 

provenances, 10 UK,  2 Irish and 3 European (Clark and Webber, 2017).  Genetic 

markers are also being investigated to determine the level of susceptibility (Sollars et 

al., 2016).  Recently improved genetic markers which will hopefully assist in specifying 

reduced susceptibility to Chalara have been developed (Sollars et al., 2016).   

 

 1.7  What are the options to save ash? 

The long-term solution is to identify individual trees which are tolerant or resistant to 

the disease and to propagate from them.  No trees have shown complete resistance 

(Boshier and Buggs, 2015).  However it has been shown that resistance is stable within 

selected clonal lines over time and over several sites (Cleary et al., 2017).  Studies have 

shown  where disease incidence has been high over the last 20 years such as in 

Denmark, Lithuania and Poland that resistance is genetically determined (Kjaer et al., 

2017).  The scientific community in the UK suggested that one option is to plant 

millions of trees so that 1-2% of the new population will show resistance or tolerance 

(Kjaer et al., 2017). This is based on the assumption that 1% of the estimated 126 

million of the ash trees in woodlands plus an additional 27-60 million in non-woodland 

environments will show Chalara tolerance (Clark and Webber, 2017).   In addition 

careful monitoring of the wild population of trees such as those with low level 

infections to identify tolerant trees is underway in the UK.  Other approaches include 

genetic modification of Fraxinus excelsior and intensive selection breeding programmes 

(Vidal 2015; McEwan, 2016).  However genetic would most likely prove to be 

controversial from the public perspective.  (Leake and Spickernell, 2013).  Molecular 

studies could form part of the solution, which will identify genes that are present in 
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resistant trees, which in turn will assist in initiating a breeding programme and to select 

resistant trees without exposure to the fungus (Sollars et al., 2016). The most straight 

forward way to save the ash is to identify resistant trees, propagate them vegetatively 

and ultimately obtain disease resistant seeds.  

Another option is to cross pollinate native trees with resistant Asian species of 

Fraxinus. (Nielsan et al., 2017; Vidal, 2015).  However, there are varying susceptibility 

among  Fraxinus species, although this information is still somewhat disjointed.  

Fraxinus angustifolia, from Europe and F. nigra from North America are heavily 

affected, to the same degree as F. excelsior, whereas F. pennsylvanica and F. americana 

from North America, and F. mandshurica from Asia, are less susceptible (Kirisits et al., 

2009; Kräutler & Kirisits, 2012).  It is also reported that F. chinensis and 

F.mandschurica in their natural habitats show resistance to Chalara (Gross and Queloz, 

2015).  

There are several Asiatic ash species which have shown resistance to Chalara. 

Asiatic species are occasionally found in Ireland as specimen trees . Their origins 

are specified in Table 1.1.  

Table 1.1 Asiatic Ash species origins 

Species Origin in Asia 
F. paxiana China 
F. chinensis China and Korea 
F. japonica Japan 
F. platypoda China 

 

1.8  Grafting  

Grafting is defined as the natural or deliberate fusion of plant parts so that vascular 

continuity is established between them, with the resulting genetically composite 

http://onlinelibrary.wiley.com/doi/10.1111/ppa.12196/full#ppa12196-bib-0049
http://onlinelibrary.wiley.com/doi/10.1111/ppa.12196/full#ppa12196-bib-0062
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organism functioning as a single plant (Hartmann et al., 2002).   It is achieved by 

connecting two plant parts, the ‘scion’ which is the chosen material, with the 

‘rootpiece’, which is termed ‘rootstock’ or sometimes ‘stock’.   Grafting is commonly 

used to unite parts of two plants with specific desired traits to produce a new plant.  

Fruit and nut trees have been grafted, as it can be quite difficult to propagate them 

efficiently by using cuttings (Propagation Methods and Rootstocks for Fruit and Nut 

Trees, 2010).  Grafted and budded plants can be tailored to deliver desired forms of 

trees, higher yielding fruit, superior form and adaptation to soils, and ecological 

conditions (Mcdonald, 1986).  With greater emphasis on reducing pesticide use, EU 

regulations, and environmental laws, disease tolerant rootstocks will play a greater role 

in plant propagation.   

Grafting is an expensive method of propagation.  Grafted plants have major advantages 

in the production of superior and better adapted plants as described below.  Many 

reasons for grafting are enunciated below (Cornell Horticulture, 2014). 

 

1.9  Reasons for grafting 

 To propagate plants which are difficult to propagate from cuttings. 

 To propagate plants that are sexually sterile and produce few or no seeds. 

 To avoid juvenility, which can last several years in fruit trees, and to speed up 

the onset of flowering. 

 Plants produced by seed are not always true to type; however a grafted scion is a 

true copy.  

 Multiple cultivars can be grafted onto one tree such as in ‘top-working’. If self-

incompatibility is a problem in fruit species, then a pollinator can be grafted 

onto a single tree to ensure cross pollination for fruit setting. 
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 To repair an established tree which has been damaged.   

 To control the size of the tree and achieve the chosen traits whether it is 

dwarfing, or invigoration of the scion being grafted, and to promote earlier 

flowering and fruiting. 

 To achieve resistance to pests and diseases.  Rootstocks have been identified 

which show resistance to bacterial diseases such as fireblight on apples; fungal 

diseases like collar rot on apple which is caused by Phytophthora; nematodes on 

peach and walnut (Meloidogyne); and insect pests like Phylloxera on grapes 

(MacDonald, 2014).  Selection of rootstocks for resistance to the woolly apple 

aphid (Eriosoma lanigerum) facilitated apple production in Australia and New 

Zealand where there was a serious outbreak.  Re-plant disease in old apple 

orchards can be reduced by selecting tolerant or resistant rootstocks (Leinfelder 

and Merwin, 2006).    

 Grafting techniques are often used as a tool whereby ornamental trees are joined 

to make archways or living furniture.   

 To accelerate apple tree breeding by reducing the juvenility period (Fischer, 

1994).   

 It is also claimed that using genetically different rootstocks for perennial 

crops have the capability to influence traits above and below ground of the 

grafted plant (Mudge et al., 2009).   

 

1.10  Grafting principles 

In dicotyledons, there is a continuous ring of cambium tissue under the bark of the stem.  

This arrangement is beneficial in bringing the tissues of the rootstock and scion into 

contact in the grafts, whereas in monocotyledons, this does not occur.  The cambium is 
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a layer of meristematic tissue located between the epidermis and the bark which 

undergoes cell division uniting the scion and the rootstock.   The meristematic cambium 

produces undifferentiated callus initially and subsequently some cells in the callus 

differentiate into xylem and phloem vessels, which conduct nutrients and water between 

the stem and roots.  It is critical to ensure the correct orientation of the scion and 

rootstock occurs, that the scion is dormant and that the rootstock is just about to 

commence growing (Hartmann et al., 2002).  Graft timing must be considered as it 

varies from species to species (MacDonald, 2014).  Generally for plants in the 

temperate zones grafting is generally carried out in early spring or late summer 

(MacDonald,2014).  Ash is grafted during the dormant season, generally at the end of 

winter.  Often the timing is decided by the successes of the various species 

(MacDonald, 2014).  

There are also genetic limits of grafting, for example:  

 It is always possible to graft within clones of the same species  (Fraxinus 

excelsior onto Fraxinus excelsior) 

 It is generally possible to graft various species within a genus  ( Fraxinus 

excelsior onto Fraxinus chinensis). 

 Grafting between different plant genera within a plant family is possible.  

For instance it is possible to graft Chamaecyparis nootkatensis and Thuja 

orientalis, both Cupressaceae; Pyrus communis and Cydonia oblonga both 

Rosaceae; Citrus sinensis and  Poncirus trifoliate both Rutaceae and Solanum 

lycopersicum and Solanum tuberosum  in the family Solanaceae (Hartmann anet 

al., 2002).   

Grafting between different families of plants is considered impossible  

(Hartmann et al., 2002).     
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As much cambium contact between the two is required to maxamise success.  Ideally 

both cambial layers should be perfectly aligned and in perfect contact to achieve a 

strong and successful union (Hartmann et al., 2002).  Where rootstock and the scion 

have the same diameters, the cambial layers are easily placed in contact with one 

another (Image 1.4).  Normally, the situation is that the rootstock will have a greater 

diameter than the scion, so in this instance the cambium from one side of the scion is 

placed in contact with the cambium on one side of the rootstock (Image 1.5).  It is vital 

that the rootstock and scion are bound together tightly and do not become dislodged.  

 

Image 1.4 Whip graft: scion and rootstock of equal size. 

Source available on the internet at http://www.sonneruplund.dk/eng/default.html. 

(Accessed 23/03/2018).  

 

 

 

 

http://www.sonneruplund.dk/eng/default.html
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Image 1.5 Whip graft showing rootstock with greater diameter than scion. 

Source ndsu.edu PLSC 210: Chapter 12 Plant Propagation: Available on the internet at 

https://www.ndsu.edu/pubweb/chiwonlee/plsc210/topics/chap12-

propagation/chpt12propagation.html. (Accessed 02/09/2018). 

 

 

The type of graft chosen will depend on the species, material, and the preferred cut 

chosen by the grafter (Garner, 2013).  Consideration should be given to the selection of 

scions and rootstocks regarding their stem diameters.  There is more variation in sapling 

rootstock diameters in comparison to scion material diameters due to seed source cross 

pollination (Hartmann et al ., 2002).  As a general guideline, rootstocks should measure 

6-9 mm in diameter, so that they are sufficiently pliable while simultaneously 

adaquately lignified.  Ash rootstocks are normally two years old.  The scion material 

should be freshly cut, graded into different diameter classes and stored in a fridge, 

between 0-50 C unless they can be grafted immediately (MacDonald, 2014).  

Furthermore they should be kept moist to prevent drying out whilst also ensuring no 

mould is present or develops.  It is also important that the scion wood and rootstock 

stems  should be free from soil or grit to prevent impurities from contaminating the 

scion and rootstock union thus hindering the graft from making a smooth and clean 

union.  Furthermore only pest and disease-free material should be used in the grafting 

https://www.ndsu.edu/pubweb/chiwonlee/plsc210/topics/chap12-propagation/chpt12propagation.html
https://www.ndsu.edu/pubweb/chiwonlee/plsc210/topics/chap12-propagation/chpt12propagation.html
https://www.bing.com/images/search?view=detailV2&ccid=6H30Zzpk&id=D3722C5C0B68EBD6E9190EB29E6082F2D6C89680&thid=OIP.6H30ZzpkuLSmVvR-myKApAHaH0&mediaurl=https://www.ndsu.edu/pubweb/chiwonlee/plsc210/topics/chap12-propagation/whipgraft.jpg&exph=1158&expw=1096&q=matching+cambial+layers+when+grafting&simid=608051763656851623&selectedIndex=59


 

16 
 

process.  If necessary soluble fungicides may be applied to the scions or rootstocks.  In 

such instances plant materials should be allowed to dry before commencing grafting 

(Garner, 2013). 

Grafting tools are knives, secateurs, tying materials and sealants, depending on the type 

of grafting union undertaken.  The knife is the most important one. It should be 

comfortable to grip and have a high quality steel blade which can retain a smooth sharp 

edge.  Similarly high quality secateurs should be used as they are essential in the 

preparation of rootstocks and scion materials.  Usually degradable rubber bands, raffia, 

plastic patches and non-degradable plastic strips are used to secure the graft unions.  

Once the grafts have been made, the unions are either painted with molten wax or the 

scion is dipped in it to ensure the graft union is sealed.  Paraffin wax which is frequently 

used should not be greater than 75oC (Hewson, 2012).   

 

1.11  Grafting physiology  

For successful grafting, the principal requirement is that a vascular connection is 

established between the grafted tissues (Hartmann et al., 2002).  To achieve this  it is 

important that the rootstock and scion are aligned, then success of the graft depends on 

the vascular tissues of the scion and rootstock growing together therefore both must be 

kept alive.  This vascular connection takes place in five stages as described below.  

1.11.1  Stage 1 Alignment of vascular cambiums of the rootstock and scion 

As described above, the cambial layers of both the scion and the stock need to be in 

direct contact to ensure they connect.  A clean perfectly executed cut through the wood 

is critical.  Ideally both cambial layers of rootstock and scion should match, however 

since both are only one to several cells thick this alignment may not occur.  What must 
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occur to move to the next stage is that the cambial layers of scion and rootstock be close 

enough to ensure that cambial cells from both can form a union.   

1.11.2  Stage 2 Wound healing response 

In preparing the scion and rootstock for grafting, cells are killed in the rootstock and in 

the scion to a depth of several cells.  This leaves necrotic cell debris in the graft space. 

The natural response is that the wounded area of the plant parts is isolated from the rest 

of the plant by production of callus to ensure pathogens do not invade the plant.  Callus 

tissue is formed by cell division mainly in the cambial cells of both the scion and 

rootstock and this tissue is called wound periderm.  Once the callus starts to proliferate 

from rapidly dividing cambial cells and parenchyma cells, the callus bridge area will 

form between the rootstock and scion (Hartmann et al., 2002). 

1.11.3  Stage 3 Callus bridge formation 

The new cambial and parenchyma callus tissue forms in one to seven days on both the 

scion and rootstock.  Without this callus formation, the graft union would fail.  This 

callus continues to proliferate by further cell divisions of the parenchyma cells.  These 

new parenchyma cells soon fill the space between the rootstock and scion.  Initially, 

there is also an adhesion of cells taking place between the cells within the rootstock and 

scion and across the union area.  This adhesive substance (cement) is composed of 

pectin’s, carbohydrates, and proteins.  This adhesive substance can bond the rootstock 

and scion even through many layers of necrotic cell debris.  It is still not certain if it is 

necessary for cell to cell recognition for the process of adhesion to occur.  For phloem 

and xylem of the scion to join up with phloem and xylem of the rootstock, cell to cell 

recognition may be necessary and cell to cell adhesion may act as a signal in the process 

(Hartmann  et al., 2002).  Cell to cell adhesion allows water to pass through the cell 

walls between the cells of the rootstock and scion, in advance of any vascular 
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connections across the graft union space.  This water movement from rootstock to scion 

may be sufficient to cause buds in the scion to develop and flush.  However, this 

flushing may not always indicate a successful graft union.  In some cases, the flushed 

buds may desiccate and die because the vascular connections have not been formed 

across the graft union to provide sufficient water and nutrients for the developing buds. 

1.11.4  Stage 4 Wound repair, xylem and phloem differentiation and development 

of vascular cambium across the callus bridge 

After the process of cell adhesion, the xylem and phloem are generally differentiated 

within the callus bridge area.  In this bridge of callus tissue, parenchyma cells from the 

rootstock and scion become connected initially by plasmodesmata.  Plasmodesmata are 

strands of cytoplasm which extend through the openings in the cell walls and form 

important connections of communication between cells in the callus bridge.  The xylem 

is normally the first tissue to differentiate to bridge the graft union followed by the 

phloem.  On the perimeter of the recently formed callus, parenchyma cells which are in 

contact with the cambial cells of the rootstock and scion differentiate into new cambium 

cells within two to three weeks, post grafting (Hartmann et al., 2002).  This allows for 

secondary development of stem tissues.  This stage 4 of graft formation has been 

discussed in detail by Andrews and Marquez, (1993) and Pina and Errea, (2005). They 

summarised the events that affect the compatibility of the tissues being grafted as 

follows: 

 Cellular recognition, resulting in the expansion of callus from the rootstock and 

scion, which in turn will form a bond between both. 

 Differentiation of the new cells to form a wedge of callus between the rootstock 

and scion.  

 Formation of new phloem and xylem between the rootstock and scion. 
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1.11.5  Stage 5 Production of secondary xylem and phloem from the new vascular 

cambium in the callus bridge 

The most recently formed cambial layer in the callus bridge starts the process of laying 

down newly formed secondary xylem to the inside and phloem on the outside.  In this 

formation of vascular tissues, there is an influence exerted by the rootstock and scion.  

The development of the newly formed xylem and phloem thereby permits the complete 

vascular connection between the rootstock and scion.  It is vital that this process is 

completed prior to the new leaves emerging, as failure for this to happen will result in 

the demise of the plant due to the transpiration losses and the lack of adequate vascular 

system in place to replace that water (Hartmann et al., 2002). This process can be aided 

by not overwatering the plant which will have the result of flooding the graft union.  It 

will be obvious that the graft has achieved the first part of viability once the union has 

begun to callus and the graft buds have begun to swell and later leaves emerge.  

 

1.12  The necessity for different graft types 

Different graft types are required due to the material being grafted, and from size and 

wood quality characteristics:  

 Unequal diameter size of scion and stock may dictate the type of graft employed 

to ensure maximum cambial contact between scion and rootstock (Figure 1.6).  

 Some materials do not need as much cambium contact as others to unite.  

Fraxinus will graft successfully with a splice and with off centre cleft grafts, 

both of which are relatively simple grafts.  Juglans (walnut) requires a lot of 

cambial contact, thus a saddle graft is more successful in this instance. 

 The grafting of incompatible species, whereby an interstock may be used.  
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1.13  Rootstock selection for traits and qualities 

The rootstock may originate from a seedling, a rooted cutting or from a micro-

propagated plant.  Rootstocks which confer specific characters on the composite grafted 

plant are generally vegetatively propagated (cuttings, layering). 

When selecting rootstocks, it is important to use the tried and trusted combinations of 

species which are known to give viable grafts.  Rootstocks are best produced and 

selected to match the scion material in stem diameter.  For deciduous material, it is 

essential that the scion material is fully dormant for winter grafts.  Normally, rootstocks 

are 1–2 years old, nursery grown, from source identified seed and either grown for one 

year in a seedbed then transplanted or grown for another year in the seedbed.  The two 

most important parameters for rootstocks are the stem girth, to suit the girth of the scion 

material size, and that the root system should be well developed and have a fibrous 

structure. The propagator’s preference and experience can determine as to whether to 

use one year old or two-year old rootstock.  

Rootstocks are normally graded to suit the type of graft to be used.  Thin diameter  

rootstocks, 4-6 millimetre generally are one year old while 6-9 millimetre are two years 

old.  Clonal rootstocks are considered preferential, in comparison to seedlings, as they 

are more uniform genetically, ensuring a higher grafting success rate; however, they are 

generally more expensive to develop and produce.  It can be prudent to use clonal 

rootstocks when they have known traits such as resistance to insects, nematodes, and 

fungi.  It is important that winter grafted rootstocks are dried off preferably two to three 

weeks prior to grafting to reduce the risk of flooding the graft union and the aim should 

be 50-60% moisture content of the substrate mix (Macdonald, 1986).  In this case it was 

done by shaking the substrate where applicable off the roots and in the instance of 
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barerooted plants they were removed from the cold store and left in the cold greenhouse 

for a short while prior to grafting.  

 

1.14  Scion wood  

The scion becomes the new shoot system of the graft.   The scion is a shoot which has 

several buds present.  Scion-wood for dormant period grafting is collected during the 

winter, generally January and February and stored in a fridge or suitable cold room 

while shoots with buds that are used for budding are collected during the growing 

period and grafted as soon as possible afterwards. The optimal scion-wood is taken 

from the previous year’s growth, ensuring it is lignified sufficiently.  It is desirable to 

collect healthy scion material which does not have any flower buds.  The ideal scion 

diameter  should be close in diameter to that of the rootstock.   

 

1.15  Types of grafting 

The most common type of graft method is detached scion grafting, which is grafting 

with excised scions.  Examples of these graft types are: whip grafting, side grafting, 

saddle grafting, cleft grafting, micrografting, interstock grafting and budding. 

 

1.16  Detached scion grafting  

In detached scion grafting method, the scion is excised from the parent plant and then 

grafted onto the chosen rootstock.  Several types of cuts are used to maximise the 

alignment of cambial areas in the stocks and scions.  
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1.16.1  Whip grafting 

Whip grafting, sometimes referred to as splice grafting (Images 1.6 and 1.7) is quite a 

common method of joining plants such as apples, peaches, plums, cherries and a 

variation of it is the whip and tongue technique method (Image 1.7).  Whip grafting is a 

relatively easy method of grafting scions and stocks of similar diameter together (Image 

1.6).  To achieve this graft, the rootstock top is removed approximately 7-10 

centimetres above the root collar and a slanted cut of some 450 is made in the scion to 

match.  If the thicknesses of the scion and rootstock are different, it is best not to place 

the scion in the central location; in this instance, ensure one side matches up smoothly.  

The two cut surfaces are then held together, tied and sealed.  The whip and tongue graft 

work best once the stock and scion are of similar diameter (Image 1.7).  The whip and 

tongue grafting process involves making a sloping cut about three centimetres long at 

the top of the rootstock and then repeating this process at the base of the scion. Two 

pieces of material are then aligned to check that the cut length and angles match.  To 

make the tongues start about a third of the way down the tip of the wood of the 

rootstock, cut into the face; the cut must be straight and about half the length of the first 

cut and parallel to the first cut (Image 1.7).  Make similar cuts in the scion.  When the 

cuts are completed, check that the two pieces fit together snugly and interlock smoothly.  

Like other grafts, there should be no air spaces between the pieces of wood; with this 

method of grafting, the wood’s natural tension should hold the graft tight in 

combination with some binding such as rubber bands.  The rubber bands used in this 

thesis were 12.5 millimetre x 4.5 millimetre supplied by Telermaat in the Netherlands. 
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Image 1.6 Whip grafting 

Source sonneruplund.dk.  Available on the internet at 

http://www.sonneruplund.dk/eng/default.html. (Accessed 23/03/2018).  

 

 

 

Image 1.7 Whip and tongue graft 

Source sonneruplund.dk. Available on the internet at 

https://www.sonneruplund.dk/podningfoto/whip2.jpg. (Accessed 02/09/2018). 

http://www.sonneruplund.dk/eng/default.html
https://www.sonneruplund.dk/podningfoto/whip2.jpg
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Side grafting is also an easy graft to perform (Lamb et al., 1985).  Starting about 7 

centimetres above the root collar a downward slice is made leaving this slice attached at 

the base while the scion having a similar cut, on one side and shorter on the other side is 

fitted into it (Image 1.8).  Picea and Acer palmatum are generally side grafted.  

 

 

Image 1.8 Side graft 

Source : lakeshorebonsai.com. Available on the internet at 

https://www.bing.com/images/search?q=Side+Grafting&FORM=IRIBIP . 

(Accessed 02/09/2018). 

 

1.16.2  Saddle graft 

Saddle graft is where the middle is cut from the scion in a wedge shape and the opposite 

cut made in the rootstock so that the scion sits on top of the rootstock like a saddle 

(Image 1.9).  Like other grafts, the union is tightly bound and sealed.  This graft 

maximises the surface areas of cambial tissue in the stock and scion so that contact is 

maximised and enhances the chances of placing the cambium of the stock and scion in 

direct contact.  The stock and scion should be about the same size.  Some 

Rhododendrons and Juglans are saddle grafted.  

https://www.bing.com/images/search?q=Side+Grafting&FORM=IRIBIP
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Image 1.9 Saddle graft 

Source Growables Grafting Techniques, 2016. Available on the internet at  

http://www.growables.org/information/GraftingTechniques.htm. 

 (Accessed 02/09/2018). 

 

 

1.16.3  Wedge or cleft graft 

The wedge or cleft graft is performed by cutting the basal end of the scion in a wedge 

shape on both sides and then splitting the rootstock to receive the scion (Image 1.10).  

However when the scion diameter is smaller than that of the rootstock an off-centre cleft 

graft is made in which just one side of the scion’s cambium makes contact with 

cambium of the rootstock (Image  1.11).  This type of graft is sometimes referred to as a 

cleft graft.  The graft is then tied and sealed.  If the scions and rootstocks are the same 

diameters, then the task is much easier. Species suitable for cleft grafting are Quercus, 

Acer, Prunus and Fraxinus.  

http://www.growables.org/information/GraftingTechniques.htm
http://www.google.ie/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.growables.org/information/GraftingTechniques.htm&ei=XdQLVcXQHuqj7Aa6r4CYDg&bvm=bv.88528373,d.d2s&psig=AFQjCNE5XXE-B3HunqAMGd0YoOKq7MqnrA&ust=1426924818868925
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Image 1.10 Cleft or top wedge graft  

Source: Pinterest.com. Available on the internet at http://anpsa.org.au/APOL7/qu-

graft.gif (Accessed  02/09/2018). 

 

 

Image 1.11 Off centre cleft graft  

Available on the internet at GB-online.co.uk 

http://www.gb-online.co.uk/gb-wordpress/?p=545. (Accessed 02/09/2018). 

 

http://anpsa.org.au/APOL7/qu-graft.gif
http://anpsa.org.au/APOL7/qu-graft.gif
http://www.gb-online.co.uk/gb-wordpress/?p=545
https://www.bing.com/images/search?view=detailV2&ccid=jGMwWhQM&id=40937AE67B1C6CA99620C2858C8EB74A86979742&thid=OIP.jGMwWhQMABXy9DvIVelscAHaJE&q=image+of+wedge+or+cleft+tree+graft&simid=608017558453160816&selectedIndex=3
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Topworking is grafting a newer variety onto a mature tree (Image 1.12).  The type of 

graft used is a cleft graft.  It is mostly used on fruit trees such as apple and pear, which 

have a productive life of 50 years or more and when the variety on these trees becomes 

outdated after 20 years.  In such cases there is no necessity to grub out the trees, as they 

can be gainfully utilised by re-grafting new varieties onto the existing trees as shown in 

Image 1.12.  

 

 

 

Image 1.12 Topworking a fruit tree 

Source https://tomtheappleman.wordpress.com/category/orchards/ 

Available on the internet at 

https://tomtheappleman.files.wordpress.com/2011/03/010.jpg.  

(Accessed 02/09/2018). 

 

1.16.4 Micrografting 

One of the major advantages of micrografting is rapid multiplication of material, the 

elimination of viral problems, multiplication of plants which are difficult to root, and 

https://tomtheappleman.files.wordpress.com/2011/03/010.jpg
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disease indexing.  Around 300 million plants are produced annually by different forms 

of micropropagation (Clark and Toogood, 1992).  Micrografting is a technique where a 

meristem or shoot tip is placed on a decapitated rootstock which has been grown from 

tissue cultured seed, or plants in a sterile environment (Image 1.13).   The technique is a 

difficult slow process and is expensive in comparison to normal grafting, due to a low 

rate of successful grafts.  This is because it requires a lot of technical expertise in 

handling minute and delicate pieces of material while still ensuring that the graft union 

remains intact.  Successful methodologies have now been established for several fruit 

crops such as apple, almond, grapes, olive, cherry, chestnut, mulberry, peach, pistachio, 

walnut, and others (Hussain et al., 2014).   

Micrografting has been shown to be quite successful in fruit crops.  Abousalim and 

Mantell (1992) achieved 94-100% success using in vitro raised rootstocks to micrograft   

pistachio, while Yildrim et al., (2010) managed to achieve 90-100% by using wild 

almond seedlings to micrograft selected cultivars.  Where micrograft’s of fruit trees 

have been less successful it has been attributed to insufficient contact between the scion 

and rootstock, incompatibility factors and browning of the cut surfaces caused by 

phenols (Ramanayake and Kovoor, 1999).  
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Image 1.13 Micrografting.  

Available on the internet at  

http://slideplayer.com/slide/10626288/36/images/13/WHAT+IS+MICROGRAFTING.j

pg. ( Accessed 22/05/2019).  

 

1.16.5  Interstock grafting  

In some cases, it may be necessary to use an interstock to circumvent incompatibility 

between the rootstock and scion or possibly to reduce vegetative growth and accelerate 

flowering.  This methodology is sometimes referred to as double working (Image 1.14). 

Interstock grafting is a method where a piece of a stem is inserted between the scion and 

rootstock by means of two graft unions and generally the interstock is a different 

species or cultivar in comparison to the rootstock or scion.  The piece between the scion 

and rootstock is called an ‘interstock’ or may also be called ‘interstem’, ‘intermediate 

stem section’ or ‘intermediate stock’ (Image 1.14).  Using an interstock is extra work 

when grafting, so the benefits must outweigh the time and effort involved.   

The principal beneficial result of using the interstock may well be the effect of 

overcoming incompatibility between the scion and rootstock.  The purpose of using 

some interstocks and rootstocks may be reducing vegetative growth in the scions and 

http://slideplayer.com/slide/10626288/36/images/13/WHAT+IS+MICROGRAFTING.jpg
http://slideplayer.com/slide/10626288/36/images/13/WHAT+IS+MICROGRAFTING.jpg
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accelerating the onset of flowering in a similar way to that described for using standard 

rootstocks.  Using a dwarfing interstock “Malling 9” with a vigorous rootstock has had 

the effect of producing a well rooted apple tree (Hartmann et al., 2002).  

Much work has been undertaken to determine if the interstock reduces the vigour of the 

rootstock and in certain instances results in early flowering, an increase in fruit and 

quality for species such as apples, cherries, plums and pears (Vercammen et al., 2004; 

Samad et al., 1999; Webster, 1995).  Other researchers have stated that employing M27 

and M9 as weak interstocks grafted onto vigorous seedling rootstocks resulted in, a 

reduction of the actual plant development, accelerated plant cropping, and reduced the 

need for pruning in cases such as apples (Lord et al., 1985; Di Vaio et al., 2008). 

 

             Image 1.14 Interstock grafting 

Source: The Ara Encyclopedia of New Zealand is the complete guide to our people, 

environment, history, culture and society, 2005. Available on the internet at 

http://www.teara.govt.nz/en. (Accessed 02/09/2018). 

http://www.teara.govt.nz/en


 

31 
 

1.16.6  Grafting by budding method 

Budding, which is another form of grafting, is three times more expensive than cuttings, 

and fourteen times more expensive than employing seedling propagation (Hartmann et 

al., 2002).  This is attributed to the fact that it is a very skilled operation. There are two 

main types such as T budding and chip budding.  It is described as taking a single bud 

from a shoot of the current year’s growth and inserting it just under the bark of the 

rootstock.  Rootstocks used for budding are generally grown in the field or may be 

potted plants of seed derived material.  This operation of budding is generally carried 

out at the end of the growing season and in the case of ash from late August to mid 

September.  Roses and citrus are generally bud grafted.  To undertake this operation, 

shoots which have several buds present are generally collected from donor plants.  

Shoot collections should be made as close as possible to the time of budding and should 

be refrigerated if a delay is anticipated.  The buds are normally taken from the axils of 

the leaves using a shallow slicing cut 5-25 mm below the intended bud and coming out 

above it in a uniform cut (Image 1.15).  According to Macdonald, (1986) selected 

clones of Fraxinus excelsior are sometimes budded onto Fraxinus excelsior rootstocks 

as another form of propagation in comparison to normal grafting.  

 



 

32 
 

 

Image 1.15 T- budding 

Source Agriculture Form 2 – Kcse online, 2016. Available on the internet at 

http://www.kcse-online.info/aH53WC/data/text/Ag2-332000text.html. (Accessed 

02/09/2018). 

 

It is beneficial to retain a piece of the petiole with the attached bud, as it is helpful as a 

handle when inserting the bud.  The rootstock is prepared by selecting a clean piece of 

stem, at the position for inserting the bud, and removing all unwanted growth and buds 

below the bud insertion point.  The stock is prepared by making a T cut through the 

bark (Image 1.15).  Using the grafting knife, the flaps of bark are pulled apart and the 

bud inserted into this area of cambial tissue.  The bud is then tied in position using 

budding rubber strips, patches or adhesive tape.  The plant is then left to await its 

success or failure.  If successful, the bud will grow out (Image 1.15) and then the top of 

the rootstock is excised, and the growing bud now becomes the new leader of the 

grafted plant.  The nursery stock industry uses this form of grafting for fruit and roses as 

it is possible to achieve a high daily output.  Acer, Fraxinus, Gleditsia and Tilia are 

frequently budded.  A grafter can bud 2,000-4,000 plants per day if assisted by another 

person tying the buds.  For this method of propagation, the rootstock should be actively 

http://www.kcse-online.info/aH53WC/data/text/Ag2-332000text.html
http://www.google.ie/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjZisa_lKPPAhUDBBoKHQcuBPoQjRwIBw&url=http://www.kcse-online.info/Form 2 Agriculture/Vegetative Propagation.html&bvm=bv.133387755,d.ZGg&psig=AFQjCNEgkpLkdgjCnNnEczalvlPq57MCyA&ust=1474640064380112
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growing, and the bud used should be mature.  These two principles are paramount to 

achieving a successful budded plant graft.   

The other type of budding is ‘Chip’ budding (Image 1.16), which was developed at East 

Malling Research (Rootstock research at East Malling, 2016).  This method is 

performed by selecting a clean piece of stem on the rootstock where the bud is to be 

inserted and removing a sliver of wood while leaving a small shelf to receive the 

intended bud.  The scion bud should be excised as a shape to be a mirror image in shape 

of the sliver of wood that had been excised from the rootstock.  In this case, a small 

piece of wood is retained behind the bud (Image 1.15).  To match up the cambial areas 

due care should be taken to ensure when tying that the bud is in the correct position and 

has not moved.  Chip budding is also suggested for ash propagation by Clark and 

Toogood, (1992). 

 

Image 1.16 Chip budding 

Source forums.gardenweb.com 

 Available on the internet at https://www.houzz.com/discussions/1492993/summer-

budding.   

(Accessed 02/09/2018). 

https://www.houzz.com/discussions/1492993/summer-budding
https://www.houzz.com/discussions/1492993/summer-budding
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1.16.7  Interspecific and intergeneric grafting  

Most grafting involves intraspecific grafts i.e. grafting of stock and scions which belong 

to the same species.  On the other hand, intergeneric grafting is the grafting of two 

plants of different species within the same botanical genus.  In the case of this thesis the 

examples are such, interspecies using Fraxinus chinensis, paxiana as rootstocks and 

intergeneric using Ligustrum and Syringa as rootstocks. According to Macdonald 

(1986) intergeneric grafting is often practised when nurse grafting while using root 

sections as rootstocks.  Cultivars of Syringa vulgaris are sometimes grafted onto 

Fraxinus excelsior roots or Ligustrum ovalifolium seedlings. Thereafter grafted plants 

are planted deeply to encourage self-rooting and later excised from the nurse plant.  

Interspecific grafting has been used to graft vegetables successfully in the cucurbit and 

solanaceous families (King et al., 2010).   A case in point of interspecific grafting is in 

Latin America (Guatemala) where grafting of coffee is a common propagation practice 

that has been used on an extensive scale for more than 30 years.  To avoid nematode 

damage to the roots of the coffee plant (Coffea arabica L.), a widely practiced system is 

to graft it onto a rootstock of C. canephora (Bertrand et al., 2001). 

Intergeneric grafting is a cross between plants in two different genera in the same 

family. Intergeneric grafting has been used in the horticultural industry to circumvent 

problems which have arisen due to pest and disease problems in the soil and to increase 

crop yield (Kubota et al., 2008).  Solanum lycopersicum (tomato) is highly susceptible 

to flooding stress and to overcome this problem the tomato plant has been grafted onto 

an eggplant rootstock (Solanum melongena). Eggplant rootstock grafted plants had 

better plant survival, greater physiological adaptation and also yield was better over the 

self-grafted and ungrafted plants under controlled flooding stress test (Bhatt et al., 

2015).  The other positive response was that the rootstock grafting improved the sugar 
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and starch contents, as well as the fruit yield of the tomato plants under flooding 

conditions.  In the cucurbit family Citrullus lanatus (watermelon) has been successfully 

grafted on rootstocks of Lagenaria siceraria (bottle gourd).   

Araliaceae plants, which are of interest to the foliage industry, were created by using 

interspecific and intergeneric combinations to produce new forms. One hundred and one 

combinations and seven control combinations were tested.  Novelty  forms of 

Araliaceae pot plants were created by testing 24 species of 10 genera combinations, 

intergenerically and interspecifically which resulted in 85 graft combinations which 

grew.  Results indicate that a wide range of intergeneric grafting’s are achievable in 

Araliaceae (Leonhardt, 1996). 

Grafting of vegetables originated in Japan and Korea in the 1920’s.  Vegetables which 

are commonly grafted are watermelon, cucumber, tomato and eggplant (Lee, 1994).  

Grafting of vegetables had not been widely practised in Europe until 2005 when the soil 

fumigant methyl bromide was banned, and nowadays grafted tomato plants are used in 

commercial production as a routine practice for growing.  Grafting focus on vegetables 

has been on yield and overcoming pest and disease problems. The focus is now 

diverging to vegetable quality such as appearance, size, shape, colour, flavour and 

health related compounds like, minerals, vitamins and cartenoids (Rouphael et al., 

2010).  Grafting practice may become more commonly used as the EU imposes further 

bans on pesticides.  One of the big advantages with this approach is that it allows a pest 

or disease susceptible scion to be grafted onto a resistant rootstock without a protracted 

breeding programme for the scion variety.  Furthermore, with the growing number of 

new pests and diseases arriving in Europe, it provides a more flexible solution for 

dealing with soil borne diseases than breeding new varieties for resistance (Cohen et al., 

2007).  With the advancement of science in the area of genetics a realistic goal would be 
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to have rootstocks commercially available with chosen traits and also to have a better 

understanding of rootstock and scion compatibilities.  

 

1.17 The aftercare of grafted plants 

While all stages of the grafting process are important to ensure a high grafting viability 

success, it is advisable to pay attention to their individual environmental requirements.  

The aftercare of the grafted plants has a big effect on viability.  Post grafting, plants 

may be placed into boxes within an enclosed glass or plastic enclosure within a 

glasshouse or polytunnel. This is called “closed case” grafting procedure.  The 

enclosure will contain moist sand or peat and an ambient temperature range of 12.8oC- 

15oC (Lamb and Nutty, 1981).  This regime encourages callusing at the graft union.  

The alternative aftercare to closed case is “open case” in which the grafted plant is kept 

unenclosed in a temperature-controlled greenhouse or an unheated polytunnel.  

Other factors in the aftercare of grafted plants are crucial for graft success.  If the 

grafted plants are kept too dry then the roots will fail, if they are too wet, then the graft 

union will become flooded by exudates from the rootstock into the union area.  If  

shoots, also called suckers or water sprouts form below the graft union are allowed to 

develop, then these shoots will become dominant and result in graft failure.  These 

epicormic shoots have lain dormant beneath the bark of the rootstock and have been 

triggered into growth due to the rootstock being cut, water availability and light.  If the 

grafted plants are not kept in suitable environmental growing conditions, then the failure 

of either of the partners will result in the failure of the graft. 
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Bench grafting is a description given to any grafting methodology which is performed 

while the scion and rootstock are unplanted.  It is so called, as it is mostly carried out on 

a bench.   

Hot pipe callusing is also another post grafting culture method which directs heat at the 

graft union, thus aiding the success rate by pre-callusing the union prior to root and 

shoot activity (Dunn, 1995).  In the situation where hot pipe callusing is used, it is 

important to maintain the graft union at 21o – 27oC while the roots plus scion should be 

maintained at about 5oC in order that bud growth does not occur before callus growth 

and the union has taken place (Hewson, 2012).  Pest and diseases should be monitored 

and dealt with.  In the case of field budded plants, budding materials such as tape or 

rubber bands, budding strips, patches and adhesive tape should be removed once the 

graft union has been formed. 

 

1.18 How to measure grafting success?  

Grafting success is the formation of a permanent union between two plants and the 

proliferation of growth in the scion.  The objectives of grafting are to achieve a high 

percentage of viable grafted plants while performing the graft quickly and efficiently. 

Grafting success depends 45% on preparation, which includes the quality of materials 

used and their preparation, 10% on the craftsmanship in making the graft and 45% on 

the aftercare provided to the grafted plant (Hartmann et al., 2002).  Preparation includes 

the rootstock quality, scion quality and the paraphernalia needed to conduct the grafting.  

It also refers to the type of graft used.  Craftsmanship is the skills required in bringing 

the cambial layers into contact and binding the scion with the rootstock.  After care is 

the monitoring of the grafted plant development and ensuring the temperature and water 



 

38 
 

requirements are sufficient.  Grafting success can easily be measured by the percentage 

of viable plants surviving. 

 

1.19 Effect of grafting on vegetative growth and fruiting 

The desirable results from using grafted plants have been evaluated by many authors in 

relation to measuring fruit yield, quality aspects and vegetative growth rates (Bertrand 

et al., 2001., Di Vaio et al., 2008., Tetsummara et al., 2015).  Using the fruiting 

potential as a parameter, several studies reported fruit yield increases to varying 

degrees.  Plums are normally grafted on Prunus cerasifera rootstocks in Estonia.  Using 

this rootstock resulted in a more vigorous tree that bears fruit late in the season or in 

earlier years after grafting in comparison to unselected rootstocks (Jänes et al., 2005).   

In recent times, numerous rootstocks have become available which now produce smaller 

trees, which are very manageable with regard to harvesting the fruit.  Using nine 

different rootstocks and two cultivars of Prunus domestica, a higher average yield was 

recorded on rootstock’s ‘Kubanskaja Kometa’ and ‘Mariana GF 8-1’ which was 

significantly higher than unselected P.cerasifera rootstock (Jänes et al., 2005).  The 

rootstock used was claimed to be the governing factor on the vigour of the grafted 

plants (Botu et al., 2002).  In Hungary, (Balzás et al.,2011) stated that using 

interspecific rootstocks, 'RS 841' and the Lagenaria rootstock 'FR Strong' for grafting 

watermelon independent of the type of rootstock used gave a higher yield by 

comparison to non-grafted plants.  They concluded that the root proliferation of the 

grafted plants gave more resistance to bad weather conditions and resulted in stability of 

yield.  In one case, a particular rootstock produced 4% lower yield than the non-grafted 

plants, however, using a different rootstock a 20% higher yield was achieved compared 
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to non-grafted plants, which illustrates that not all rootstocks are an improvement i.e.  

they need to be tested (Balzás et al., 2011).  

According to Univer et al. (2010), extensive trials were carried out in Estonia, Latvia 

and Lithuania, using 12 different dwarfing rootstocks on an early apple variety ‘Auksis’ 

over a five-year growing season.  They concluded that the effect of rootstock on fruit 

weight was modest.  Rootstock influence was not the only factor affecting the tree 

vigour; there was also soil, climate, precipitation and the crop husbandry. They stated 

that some rootstocks had a dwarfing effect.  

In Poland, Porebski et al. (2006) investigated the effect of various apple rootstocks on 

growth and fruiting of apple trees.  The objective was to test the apple variety ‘Rubin’ 

on five different rootstocks.  The findings indicated that rootstocks played a significant 

role in reducing tree growth, bud formation, fruit set, and yield.  

In the UK East Malling have undertaken research programmes on rootstock research for 

apples, plums, cherries and quince.  The more notable commercially available apple 

rootstocks are in the following size sequence, M27, M9, M26, MM106, MM111 and 

M25 (Rootstock research at East Malling, 2016).   

Ornamental plants frequently grafted include Camellia, Hammelis, Wisteria, Thuja, 

Picea and Rosea (Brickell, 1996).   

In Korea, it is accepted common practice that 90% of Cucurbitaceous and 30% of 

Solanaceae vegetables are grafted onto different species rootstocks (Lee et al., 2010).  

In relation to fruit quality, and the effects of grafting, research findings have been 

sometimes contradictory as to whether there are any advantages to using grafting as a 

method of propagation, however this is species dependent (Davis et al., 2008; Lee et al., 

2010).  Other research findings concluded that in the case of grafted peppers, other 
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factors apart from the rootstocks such as harvest period and harvest time also influenced 

the textural quality of the fruit.  In addition, it was recommended to choose the 

rootstock and scion combination carefully to obtain the desired fruit characteristics 

(Jang et al., 2013). 

In Tanzania, cashew nuts are an important crop, however, there is an issue with the low 

yield in the island of Flores.  The average yield is 0.6 tonne per hectare per year, in 

comparison to countries like India, Vietnam, Australia, and Nigeria, which record a 

yield of over one tonne per hectare (Martin et al., 1997).  The objective of a study was 

to utilise old cashew trees by ‘topworking’.  The conclusions were that the combination 

of two scions grafted while retaining two productive branches on a tree gave the best 

growth of new material, the earliest flowering and the highest percentage of flowers 

yielding fruit in comparison to the other treatments.  This side grafting combination 

gave an almost 82% survival rate, the new shoots started to flower 113 days after 

grafting with 100% flowering 135 days after grafting, which was significant when 

compared with non-side grafting of trees; the non-grafted branches which had taken two 

years to flower.  The side grafting also gave a very satisfactory result, in that almost 

70% of the flowers yielded fruit.  The result was that using side grafting as a method to 

rejuvenate cashew trees (i.e. topworking) had potential, provided the rootstocks and 

scions were healthy and that the environmental conditions such as temperature and 

humidity were within acceptable parameters (Suharto et al., 2012). 

In Japan, persimmon (Diospyros kaki L.) is produced by grafting scions of designated 

cultivars onto seedling rootstocks.  The resulting grafts tends to have a 4-5 year post 

grafting period in which the plant goes into a vegetative period without fruiting.  When 

two cultivars ‘Fuyu’ and ‘Hiratanenashi’ were tested on a dwarfing rootstock MKR1, 

they produced flowers soon after field establishment and copiously thereafter (Yakushiji 
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et al., 2008).  The fruit yield per tree over a two-year period appeared to be consistently 

good and the result concluded that MKR1 rootstocks, which are easy to propagate 

clonally, are suitable dwarfing rootstock for persimmon cultivation (Tetsumura et al., 

2015). 

In the case of ash tree (F.excelsior) grafting’s, observational experiences have shown 

that F.excelsior grafted onto F. excelsior produced good vegetative growth and 

flowering which could occur on some plants in the year they were grafted.  However, 

the percentage of flowering trees varied from year to year and was not consistent.  The 

production of flowers is a prerequisite to fruit formation.  Years of physiological 

studies indicate that flowering initiates as a response from signals from the 

environment and from endogenous factors from organs such as roots and shoot 

buds.  The environmental signals are changes in day length and temperature.  

The endogenous routes are independent of the environment and are linked to the 

plant development stage and are often referred to as “autonomous” , which 

indicates the non-impact of environmental factors (Wilkie et al., 2008).  

Influences of environmental and autonomous factors on flowering vary greatly 

between and within a species.  Some plants pass through a juvenile phase where 

they are not subject to the environmental factors which trigger flowering 

(Poethig, 1990).  In a study done on the floral initiation of apple (Malus 

domestica) flowering is autonomous with flower initiation governed by the 

previous season’s growth and by interactions of environmental conditions and 

vegetative growth (Wilkie et al., 2008).  This theory of floral initiation in the 

previous season is also supported by research undertaken by Abbot, et al, 

(1970). Apples can have a juvenile phase where they can take up to six years to 

flower however grafting them onto dwarfing rootstocks can reduce this juvenile 

phase (Kotoda et al., 2006). 
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Previous personal grafting experience in Teagasc has shown that some 

individual plants of grafted ash flowered and produced seed in its first year of 

being grafted, and occasionally in subsequent years, albeit sporadically.  One 

explanation of this phenomenon may be that the scion material had been taken 

from mature trees which had retained adult traits of a capacity to produce 

flowers and fruits. The objective of this study was to determine the effects of grafting 

common ash (Fraxinus excelsior) onto rootstocks of Asiatic species of Fraxinus and 

other genera in terms of graft compatibility and the vegetative growth.  By using Asian 

species and other genera as rootstocks, the hypothesis was that vegetative growth of 

Fraxinus excelsior scions would be reduced due to these rootstocks.  In the longer term 

this might shorten the overall period for the onset of flowering and seed production in 

ash trees.  Assuming the identified rootstocks would speed up the onset of flowering 

and seed production, it would offer the option of grafting  Fraxinus excelsior scions, 

which would be selected from trees with resistance to Chalara and grafting them onto 

the optimal species so that the seeds from the grafted resistant trees could be made 

available more quickly.   Asiatic species have co-existed with ash dieback for some 

time and some of the species such as Fraxinus mandchurica and Fraxinus 

chinensis have shown tolerance to dieback disease (Kirisits et al. 2009; Kräutler & 

Kirisits, 2012; Gross and Queloz, 2015).  Although dieback of ash shoots leads to a 

greatly reduced crown of leaves, the fungus H. fraxineus can also infect tree 

trunks at soil level (root collar) (Enderle et al., 2017; Chandelier et al., 2017).  

Propagating resistant trees of Fraxinus excelsior by grafting them onto rootstocks 

of Fraxinus excelsior would leave the rootstocks vulnerable to infection. 

Therefore, it would be advisable to use rootstocks of Asiatic species which are 

known to be tolerant of the pathogen.  Observational forest assessments in Japan 

indicate that there are less dieback lesions on the stems of Fraxinus mandschurica 

http://onlinelibrary.wiley.com/doi/10.1111/ppa.12196/full#ppa12196-bib-0049
http://onlinelibrary.wiley.com/doi/10.1111/ppa.12196/full#ppa12196-bib-0062
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than Fraxinus excelsior (Zhao et al., 2013). There is no previous knowledge as to the 

success or failure of the proposed specific grafting of Asian species of Fraxinus or onto 

species which are in the same botanical family, (Oleaceae) i.e. the genera Ligustrum and 

Syringa.  Fraxinus excelsior rootstocks are proven to be successful (Thompson et al., 

2001) and also from personal experience.   

Chalara infection has now been confirmed in every county in Ireland (DAFM, 2018).  

Research has confirmed that a small proportion of ash trees have a natural resistance to 

Chalara (1%) as reported by Kjaer et al (2012).  Progeny trials studied by Pliūra et al 

(2011) estimate that the level of natural ash dieback resistance to be <5%.  Mc Kinney 

et al (2014) estimate that 1-5% of native trees to have some ash dieback resistance and 

that it is stable in trees that have been propagated vegetatively (Stener, 2013).  It has 

also been shown that resistance is determined genetically i.e. it can be passed onto seed 

derived progeny (Kjaer et al., 2017).   

For this thesis interspecific grafting’s, intergeneric grafts and self-grafts were made.  

Interspecific and intergeneric are referred to as heterografts and self- grafts are referred 

to as homograft’s. The evaluation tasks were to measure the new growth in the 

heterografts and compare that growth with non-grafted ash as controls and observe and 

record the compatibility of various graft unions.  

  The research reported here set out to test the following hypotheses:  

 Grafting of Fraxinus excelsior onto Asiatic rootstocks produces viable 

plants.  

 Grafting Fraxinus excelsior onto Fraxinus excelsior with interstocks of 

Asiatic species produces viable plants.  

 Intergeneric grafting will produce viable plants. 
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 Interspecific and intergeneric grafting results in reduction of vegetative 

growth and potentially accelerated flowering.     

The reason for undertaking this research is to establish a realitively fast methodology of 

propagation, in comparison to micropropagation so as to ensure that the Chalara 

resistant trees which will be identified in the future can be successfully propagated in 

sufficient numbers to be established in seed orchards.  As Ligustrum and Syringa flower 

annually in theory if they can be grafted successfully they should flower more often 

than conventional ash grafted onto ash.  

This study concerns the vegetative propagation of Fraxinus excelsior and other ash 

species by grafting method.  It concentrates on the effects of the different species of 

rootstocks on graft viability and their effects on vegetative growth of the scions over 

two seasons of growth.  The aim is to produce viable grafts with multi shoots which will 

flower early in life thereby accelerating the establishment of seed orchards.  
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Chapter 2: Materials and Methods 
 

2.1  Introduction   
 

Interspecific and intergeneric grafting was carried out as described previously.  The 

scions of ash trees used in this study were from a collection of common ash 

(Fraxinus excelsior) which had been selected by The National Irish Forestry 

Board (Coillte) from across the country. The two clones selected as scion 

material for the grafting experiment were, Clone M72 and Clone 98 and were 

chosen at random as trees which had not exhibited signs of Chalara. The 

original trees Clone M72 and Clone 98  had been selected for their growth rate, 

stem form, apical dominance, absence of forks, disease; and such trees are termed plus 

trees.  They were among a national collection of 100 plus trees which had been 

planted in a clone bank at Teagasc, Kinsealy, Dublin in 2007 and were 

representative of clonal material available, the theory being that if this is 

successful then it will work for other clones.  The trees in this collection were cut 

back hard on three occasions to stimulate the production of suitable scion 

material which ideally should be 6-9 millimeters in diameter, sufficiently long 

enough to handle comfortably, (100 millimeters), five buds and lignified. 

The experimental treatments were interspecific and intergeneric grafts 

(heterografts) of Fraxinus excelsior (Clone M72 and Clone 98) as scions and 

various species/genera as rootstocks and interstocks. Asiatic species of interstock 

material, Fraxinus japonica and Fraxinus platypoda were collected from trees in 

John Fitzgerald Kennedy Park (JFK) in New Ross, County Wexford. This 

material was collected on 19th March 2014 and stored in a fridge at 3oC until 

required.  Special permission had been granted by DAFM to collect this material.  

There was some difficulty with obtaining a sufficient quantity of good quality 
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grafting material for some species e.g Fraxinus japonica and Fraxinus platypoda 

interstocks were not available to test in conjunction with Clone M72.  The reason 

for this was that the trees at JFK had not been culturally managed therefore 

extension growth was minimal. Control treatment was plants of Fraxinus 

excelsior rootstocks, which were cut back as they would be normally for graf ting, 

and allowed to reshoot to determine the effect of cutting the plants on shoot 

regrowth.  The work sequence is outlined in Image 2.1. The numbers grafted for 

each treatment are outlined in Table 2.1 and the various grafting and budding 

combinations are summarised in Table 2.2.  In relation to the grafting techniques 

used, the chosen methods were cleft grafting, which yielded good results (Thompson et 

al., 2001) and T budding.  T budding as a form of vegetative propagation was 

performed as discussed in the literature review.  Bud scions were collected from 

trees in Kinsealy commencing on 8th September 2014 and finishing on 9th and 

budded on the same day of collection.  T budding was used as described by Rudolf 

et al., (2008) and Lamb et al., (1985).   

Throughout this thesis, the following terms were sometimes used: ‘Common ash’ refers 

to Fraxinus excelsior, ‘Privet’ refers to Ligustrum ovalifolium, ‘Lilac’ refers to Syringa 

vulgaris.  Clone M72 and Clone 98 refer to two selected genotypes which were used as 

clonal scions of Fraxinus excelsior.  
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Image 2.1 Experimental work flow chart 

 

The objective was to graft 30 plants for each treatment, however, there was insufficient 

interstock and rootstock material available for treatments 10, 16, and 17 (Table 2.1).  

The selected Clones M72 and Clone 98 were grafted onto various rootstocks, Table 2.2.    

 

 

 

 

 

 

Select potentially resistant trees of Fraxinus excelsior 

Fraxinus excelsior genotypes, Clone M72 and Clone 98 

Graft onto F. excelsior, Asiatic species, Fraxinus spp, 

Ligustrum,Syringa  

 

Use different grafting techniques e.g cleft, interstock and budding 

 

Assess the effect of the rootstock on survival, vegetative growth and flowering 
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Table 2.1  The number of grafting and budding combinations originally performed 

Treatment                      Original Grafting Number of plants 

 
1 F. ex Clone M72 grafted onto Fraxinus paxiana 30 
2 F. ex Clone M72 grafted onto Fraxinus chinensis 31 

3 Fraxinus non – grafted (Control) 30 

4 F. ex Clone 98 grafted onto Fraxinus excelsior 30 

5 F. ex Clone M72 grafted onto Fraxinus excelsior 30 

6 F. ex Clone M72 grafted onto Ligustrum rootstocks 30 

7 F. ex Clone 98 grafted onto Ligustrum rootstocks 30 

8 F. ex Clone M72 grafted onto Syringa rootstocks 30 

9 F. ex Clone 98 grafted onto Syringa rootstocks 30 

10 F. ex Clone 98 interstock Fraxinus japonica * 25 

11 F. ex Clone 98 interstock Fraxinus platypoda * 30 

12 F. ex Clone 98 budded onto Fraxinus paxiana 32 

13 F. ex Clone M72 budded onto Fraxinus paxiana 30 

14 F. ex Clone 98 budded onto Fraxinus excelsior 30 

15 F. ex Clone M72 budded onto Fraxinus excelsior 30 

16 F. ex Clone 98 budded onto Fraxinus platypoda 10 

17 F. ex Clone M72 budded onto Fraxinus platypoda  7 

 

Total               465 

* Rootstock Fraxinus excelsior 

The various grafting and budding combinations are summarised in Table 2.2. 
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Table 2.2 Grafting and budding combinations 

Scions Rootstocks used 

Grafted F. excelsior F. paxiana F. chinensis Syringa Ligustrum 

Clone M72 √ √ √ √ √ 

Clone 98 √ NT NT √ √ 

Budded  F. excelsior F. paxiana F. platypoda   

Clone M72 √ √ √ NT NT 

Clone 98 √ √ √ NT NT 

Clone 98 *F. japonica *F. platypoda NT  NT NT 

 √ √ NT NT NT 

√ = grafting and budding combinations performed 

NT = not tested combination 

* = In these cases F. excelsior was the rootstock and the interstocks were F. 

japonica and F. platypoda  

 

2.2  Experiment location 

The site location chosen to undertake the grafting experiments was an unheated 

glasshouse in Teagasc, Kinsealy, Dublin.  

 

2.3  Plant material preparation 

Plant material preparation is crucially important in the process of ensuring successful 

grafted plants, therefore the selection of the best available plant material was the first 

important factor.  
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2.3.1  Scion and budding material 

The scion material was either in the form of shoots or buds.  The shoot scions 

were 10-15 cm long, with generally 5 buds present, which included the terminal 

bud.  Scions for grafting were collected on 1st April 2014 and placed in a cold 

store at 3oC and removed, as required, between 1st and 4th April for grafting.  For 

budding, single axillary buds were cut from the donor bud scions which were 

collected from the trees on the 8 th and 9th September and inserted in the 

rootstocks using a T- bud cut, then wrapped with budding tape as illustrated 

(Image  1.14).  After budding,  the potted plants were then put in the unheated 

glasshouse along with the other randomized plants.  For the budding experiment, 

the Asiatic rootstock species were Fraxinus paxiana, Fraxinus platypoda and 

Fraxinus excelsior.  The rootstocks for budding had been grown in 3 litre pots 

for one year in standard Bord na Mona nursery stock growing medium 

(Appendix 4).  The scion material used was clones of Fraxinus excelsior (Clones 

M72 and 98).  As controls, bud wood of Fraxinus excelsior Clones M72 and 98 

were budded onto common ash rootstocks.  Rootstocks and scion diameters were 

recorded at the time of grafting. Smaller diameter scions were used on some 

combinations to better match diameters of the rootstocks available.  
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Table 2.3 Rootstock and scion diameters (mm) used for grafting and budding 

Clone Scion (mm) Rootstock / interstock  Rootstock (mm) 

F. ex M72 (6) 8.63 Ligustrum  10.65 

F. ex 98 (7) 8.37 Ligustrum  10.20 

F. ex M72 (8) 7.33 Syringa  9.28 

F. ex 98 (9) 8.04 Syringa  8.17 

F. ex M72 (5) 7.34 Fraxinus  10.35 

F. ex 98 (4) 7.43 Fraxinus  9.32 

F. ex M72 (2) 4.70 F. chinensis  4.88 

F. ex M72 (1) 4.63 F. paxiana  4.28 

F. ex 98 (10) 7.45 F. japonica interstock  10.35 

F. ex 98 (11) 8.35 F. platypoda interstock  10.35 

F. ex 98 (12) F. excelsior Budded F.paxiana  4.89 

F. ex M72 (13) 

F.ex 98 (14) 

F.ex M72 (15) 

F.ex M72 (16) 

F.ex. M72 (17) 

  

F. excelsior 

F.excelsior 

F. excelsior 

F. excelsior 

F.excelsior  

Budded F.paxiana 

Budded F. excelsior 

Budded F. excelsior 

Budded F. platypoda 

Budded F. platypoda 

 4.89 

10.59 

10.59 

4.80 

4.80 

( ) = Treatment number 
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2.3.2  Rootstocks 

The ash rootstocks used were bareroot plants of common ash (Fraxinus excelsior) 

and Asiatic species (Fraxinus paxiana, Fraxinus chinensis and Fraxinus platypoda) 

and were cleft grafted.  Bareroot plants of Syringa vulgaris and Ligustrum 

ovalifolium were also used as rootstocks.  Common ash rootstocks with a diameter 

range of 8 – 13 millimeters were obtained in February 2013 from Coillte Nursery 

located at Ballintemple, Co Carlow.  They had been held in cold storage at 3 oC 

until June 2013, then lined out singly in trenches at Kinsealy for 10 months. They 

were watered and weeds removed by hand as required, then they were lifted and 

place in cold storage in March 2014, allowed to dry off then used as rootstocks in 

April 2014. The Ligustrum ovalifolium and Syringa vulgaris rootstocks were 

barerooted and obtained from Sylva Company in Belgium in 2014.   

The species Fraxinus chinensis and Fraxinus paxiana were grown at Kinsealy in 

2012 from seed collected at John Fitzgerald Kennedy (JFK) arboretum located at 

New Ross Co Wexford.  They were germinated in seed trays in March 2013 with 

Bord na Móna seed and modular compost.  Once the seedings were big enough to 

handle easily they were pricked off in 25th April 2013 into 350 millilitre 

rootrainers, which contained Bord na Móna nursery stock growing medium 

(Appendix 4) and the plants were grown for one year prior to grafting.  These 

plantlets were grown in an unheated greenhouse and were left to partially dry out 

prior to grafting.  Grafting was performed by removing them from the rootrainers 

as required for cleft grafting in 2014.  

2.3.3  Interstocks 

In the experiment, with interstocks of Fraxinus japonica and Fraxinus platypoda 

and with the scion of Fraxinus excelsior Clone 98, common ash rootstocks were 
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used.  The interstock scions of this material were collected from JFK Arboretum,   

19thMarch 2014, stored in a fridge at 3oC until required.  The interstock shoots 

consisted of a piece of stem internode i.e. without axillary buds, so the shoots 

selected were those with internodes which were as long as possible to facilitate  

graft matching.  It was difficult to find sufficient shoots of Fraxinus japonica and 

Fraxinus platypoda with long internodes as interstocks. 

  

2.4  Grafting experiment 

A off-centre cleft graft was used in all cases of grafting’s reported in this 

thesis and T budding.  This is a relatively simple graft type and one of the most 

common types (Lamb et al., 1985).  It is illustrated in Images 1.11 and 2.2. 

This off-centre cleft graft involved cutting the barerooted rootstock about 3 

centimetres above the root collar and then making a downward incision, about 

2.5 centimetres deep close to the bark at an off-centre position to open a cleft.   

The scion was prepared by making two wedge-shaped sloping incisions about 3 

centimetres long, with one side of the scion thicker than the other.  The scions 

were then inserted into the cleft so that the cambial areas of scion and 

rootstock were in contact Image 1.11 and Image 2.2. Extreme care was taken 

when performing this graft to avoid splitting the rootstock. Where interstocks 

were used they were grafted sequentially starting with the rootstock cuts, then 

the interstock and finally the chosen scion.  The graft union was then tied with 

a rubber band and the entire scion and graft union point was dipped in paraffin 

wax at 75oC (Hewson, 2012).  The rubber bands were of sufficient tightness to 

ensure that the graft remained in place while also allowing expansion once the 

union began callusing.  In the case where interstocks were used, common ash 
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rootstocks were first selected, then the interstocks of F. japonica and F. platypoda were 

grafted onto the ash rootstocks and thereafter Clone 98 was in turn grafted onto the top 

of the interstock.   

All the grafted and budded plants were then potted into 3 litre pots, which 

contained Bord na Móna nursery stock growing medium, and grown on for two 

years (Appendix 4). The grafted plants were then placed in an unheated 

greenhouse. In relation to their cultural requirements they were watered 

sufficiently to ensure they were growing, glasshouse was ventilated and in the 

second growing season the leaf colour was judged to be non-chlorotic therefore no 

additional plant feeding was deemed necessary.   

Budding was performed 8th and 9th September 2014. Bud sticks of Fraxinus 

excelsior Clone M72 and Clone 98 whch had approximately 40 buds of each clone 

were collected, at the start of each day and placed in a fridge at 3oC until required 

so that they were maintained fresh.  The method used was T budding which is 

described in the literature review (Image 1.14).   Height of budding depends on the 

material being propagated and, in the case of the experiment reported here in this thesis, 

it was done at 10 centimetres above ground level.  
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Image 2.2 Off centre cleft grafting image 

Image J Mc Namara, 2016 

 

 

2.5  Experimental design and tasks 

When the buds on the scions of the grafted plants had flushed and considered to be 

viable, the plants in each treatment were randomized into experimental blocks on a 

bench on 30th May 2014 within the glasshouse at Kinsealy.  The budded plants were 

added to the randomized blocks in September.  The experimental design was in six 

randomized blocks and the block sequence was as follows: Block 3, Block 2, Block 5, 

Block 6, Block 1, and Block 4.  The design consisted of 17 Treatments, with each 

treatment consisting of seven to 32 replicates, as not all plants survived as viable 

grafts (Table 2.4).  Within each block, the treatment plants were randomly placed 

according to the design. The viable grafts were distributed across as many blocks 

as possible (Grant , 2018) i.e. Treatment 2 had 24 surviving plants therefore they 

could be evenly distributed.   

Graft union 
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This was a matter of allocating as sensibly as possible to blocks given the small 

numbers of some treatments.  There’s no problem allocating more that 1 of a treatment 

to block but it is desireable to have at least 1 per treatment in each block.  After that it 

was a matter of dividing the available grafts across 6 blocks.  

 Each graft in a block was assigned a random number and then these were sorted in 

ascending order to give a position in the block, i.e. the lowest number went to position 

1, the next lowest to position 2, etc.  

  

Table 2.4 The number of plants assigned / block 

Number of plants per block 

 

Treatment Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

1 2 2 2 2 2 2 

2 4 4 4 4 4 4 

3 5 5 5 5 4 4 

4 5 5 5 5 5 4 

5 5 5 5 5 5 5 

6 3 3 3 3 2 2 

7 2 2 2 1 1 1 

8 4 4 3 3 3 3 

9 2 2 2 2 2 2 

10 3 3 3 2 2 2 

11 5 5 5 4 4 4 

12 6 6 5 5 5 5 

13 5 5 5 5 5 5 

14 5 5 5 5 5 5 

15 5 5 5 5 5 5 

16 2 2 2 2 1 1 

17 2 2 2 1 0 0 

 

The grafted plants were observed on a daily basis and watered as required to 

ensure they were maintained in good growing conditions.   Shoots which 

developed from below the point of the graft union were routinely removed.  

Grafted plants were judged to be viable if they produced growing shoots from the 
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scions.  Lilac and privet exhibited an issue with rootstock water shoots which 

needed to be removed as soon as they appeared.  This issue was quite 

manageable, however they continued to re-appear two years after grafting. 

Survival of grafted plants was recorded at the end of the growing seasons in 2014 and 

2015.  All Treatments were assessed for graft survival on 5th December 2014 and 

again on 4th December 2015.   

The new shoot growths produced by each grafted plant were recorded at the end of the 

growing season on 5th December 2014, 245 days after completion of grafting.  

Subsequently in 2015 at the end of the second growing season, recording of growth was 

carried out on 4th December which was 609 days after completion of grafting.  The 

shoot growth extensions on all the main shoots were measured using a measuring tape 

from the point of grafting union to the terminal bud (Image 2.3).  In addition, the 

extension growths of all side shoots were also recorded.  For grafted plants, the total 

vegetative growth increment per year was recorded by the addition of the growth 

measurements recorded for the main shoots plus all side shoots.  Generally, in the first 

year after grafting the scion grew as a single shoot and in year two the grafted plants 

produced side shoots as well as growth in the main shoot.   Shoots were not staked as 

would sometimes be the case in nurseries to ensure apically dominant plants as the 

objective in this experiment was to have multiple shoots which would flower earlier. 

These side shoots were measured and added to the increment of the main shoot to give a 

total value for the shoot production growth.  This data was then statistically analysed 

using continuous responses were analysed using an ANOVA-type linear model fitted 

with the Mixed procedure in SAS 9.4 (SAS, 2014).  
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Budding of Fraxinus excelsior onto various rootstocks was performed on 8th and 9th 

September 2014.  They were considered viable on 5th December 2014 if they showed a 

green colour.  Failed buddings appeared brown.  Shoot growths from the buds was 

recorded on 4th December 2015, as described for the grafted plants. Shoots from budded 

plants were allowed to grow naturally as the objective was to obtain multi shoots.   

In 2014, measurements were taken and recorded for the shoot growth for that 

year and 2015 measurements were taken for the new growth in that year, as 

illustrated in Image 2.3. 
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Image 2.3 Growth example of Fraxinus excelsior Clone 98  grafted onto Fraxinus 

excelsior rootstock, (Treatment 4) and an ungrafted (Treatment 3). 

Image J Mc Namara, 2016 

 

To illustrate the relative effects of rootstock treatment, the vegetative growth 

increment for each year was computed as follows for the purpose of ranking 

rootstock effect. The non-grafted (Control) value was used as 100%.  Deviations 

from this were assigned a positive (+) or a negative (-) value. The extent of 

possible graft incompatibilities between the rootstock and scion was estimated by 

calculating the extent of the restrictions at the graft unions.  This involved measuring 

stem diameters two centimetres above and two centimetres below the graft unions using 

2nd seasons growth 

1st seasons growth 

Original graft 
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a callipers.  This measurement was taken on grafted plants on 9th August 2016 to 

determine the location and extent of the growth restrictions above and below the graft 

union position and comparing the responses in self grafts with heterografts.  This data 

was then computed as the percentage change in diameter of scions relative to rootstock 

diameter. This exercise did not take into account the original differences at time of 

grafting. Positive values indicated that the scion diameters were greater than the 

rootstock and negative values where the scion diameter was less than the rootstock 

diameter. 

Bud burst was recorded, starting on 7th April and continuing on the following 

dates 10th, 12th, 14th 17th, 24th, 27th, 1st May,7th 11th, and 18th 2016 until all buds 

that were viable had emerged. To assess bud flushing, a UK scale (Hemery, 2011) 

was used to determine bud emergence which is a 0-4 scale classifying the progression 

of the bud opening from dormancy to full leaf emergence (Image 2.4).   

 

Image 2.4 Ash bud flushing 

Available on the internet at 

 https://gabrielhemery.com/phenology-and-frost/ (accessed 22/05/2019). 

(0)-represents bud fully closed, (1)-bud starting to swell and losing its black colour, (2)-

leaves beginning to emerge, (3)-first leaves emerged and (4)- leaves fully emerged 

(Hemery, 2011).  

0 1 2 3 4 

https://gabrielhemery.com/phenology-and-frost/
https://gabrielhemery.files.wordpress.com/2010/10/ash-flushing.png
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Flowering and fruiting as depicted in images 2.5, 2.6 and 2.7 respectively.  

 

          Image 2.5               Image 2.6                           Image 2.7 

Image 2.5  A branch with pure male inflorescences, only staminate flowers of 

Fraxinusexcelsior (Wallander, 2013) 

Image 2.6  Branch of Fraxinus excelsior with female inflorescences, pistillate flowers   

with rudimentary stamens (Wallander, 2013) 

Image 2.7   Mast fruiting of Fraxinus excelsior (Wallander, 2013) 

Available on the internet at http://www.oleaceae.info/index.html.  (Accessed: 

28/01/2019). 

To analyse the data which was collected in 2014 and 2015 the following methodology 

was applied, using analysis of variance (ANOVA) with Tukey adjustment in SAS 

Enterprise Guide SAS 9.4 (SAS, 2014).  Data shown is mean +SE (n=6).  The Tukey- 

Kramer is an algorithm within the SAS statistical analysis package that reduces the 

number of false positive results.  The LINES procedure the algorithm generated the 

letters for showing treatment pairs which were of statistical significance.   

Continuous responses were analysed using an ANOVA-type linear model fitted with the 

mixed procedure in SAS 9.4 (SAS, 2014).  The residuals from the analysis were 

checked to ensure that the assumptions of the model were met and, where appropriate, 

log transformation was used to correct distributional issues.  Means from the analysis 

were separated using pairwise t-tests and multiplicity corrections were made with a 

http://www.oleaceae.info/index.html
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Tukey correction to the p-values.  Means on the log scale were back-transformed to 

medians on the data-scale, along with confidence limits. 

The recommended format for the SAS reference was SAS Institute Inc. (2014). 

SAS/STAT® 13.2 User’s Guide. Cary, NC: SAS Institute Inc. 

Unbalanced data was handled straightforwardly when using software designed for 

mixed models.  It was more of a concern for simple ANOVA type models in the past 

when balanced data was expected but now it is not a practical concern.  Appropriate 

standard errors are produced easily. 

 Means were separated by t-tests, with appropriate adjustment (Tukey, simulation) for 

multiple comparisons.  Viability percentages were arrived at by computing the number 

of plants which were originally grafted and the number surviving for 2014 and 2015.  

Survival data was analysed using logistic regression where viability (yes/no) is a binary 

response. Odds ratios are the natural way to express the outcomes. 

Comparisons were made with the Control (Treatment 3) and significance as 

indicated was shown by the range of values between the confidence limits not 

including the value 1.  All odds ratios are expressed as values greater than 1 and 

this changes the direction of some comparisons relative to the control.  

Comparisons were also made when assessing survival with Treatment 4 and Treatment 

5 the logic being that are Fraxinus excelsior rootstocks which would be the standard 

rootstock used.  

Plants were measured at the end of the first growing season and results tabulated.   

Statistical analysis was performed on 2014 growth measurements; however, it 

should be noted that the vegetative growth measurements represent just the first 
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year of growth.  Treatment, in a one-way classification ANOVA, was highly 

significant (F statistic, p<0.0001) and the tests of differences between means are 

represented as letter superscripts where means having letters in common are not 

significantly different. 

Comparisons are made with the non-grafted Control (Treatment 3) and 

significance as indicated is shown by the range of values between the confidence 

limits not including the value 1. All odds ratios are expressed as values greater 

than 1 and this changes the direction of some comparisons relative to the control. 

(2015)  
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Chapter 3: Results 
 

 

3.1  Introduction 
 

The main tasks were to record the graft survival rates of the various combinations of 

scions and rootstocks and then record shoot extension growth, number of shoots 

produced, stem diameter responses around the graft union, bud flushing, flowering and 

graft scion, rootstock compatibility.  All these tasks were measured numerically, apart 

from the graft scion compatibility, which was an observational exercise. 

 

3.2  Number of plants grafted and randomised 
 

Table 3.1 shows the number of surviving plants obtained from various combinations of 

grafting’s and buddings.   

Table 3.1 The treatments and the various rootstocks they were grafted onto 

Treatment 

Number  

Graft combination  Number of  

plants grafted 

Number of  plants 

obtained and 

randomized 

randomized 1 F. ex Clone M72 grafted onto Fraxinus paxiana 30 12 

2 F. ex Clone M72 grafted onto Fraxinus chinensis 31 24 

3 Fraxinus excelsior non – grafted (control) 30 28 

4 F. ex Clone 98 grafted onto Fraxinus excelsior 30 29 

5 F. ex Clone M72 grafted onto Fraxinus excelsior 30 30 

6 F. ex Clone M72 grafted onto Ligustrum ovalifolium 

rootstocks 
30 16 

7 F. ex Clone 98 grafted onto Ligustrum ovalifolium  

rootstocks 
30   9 

8 F. ex Clone M72 grafted onto Syringa vulgaris  30 20 

9 F. ex Clone 98 grafted onto Syringa vulgaris  30 12 

10 F. ex Clone 98 interstock Fraxinus japonica 25 15 

11 F. ex Clone 98 interstock Fraxinus platypoda 30 27 

12 F. ex Clone 98 budded onto Fraxinus paxiana                              32 32 

13 F. ex Clone M72 budded onto Fraxinus paxiana 30 30 

14 F. ex Clone 98 budded onto Fraxinus excelsior 30 30 

15 F. ex Clone M72 budded onto Fraxinus excelsior 30 30 

16 F. ex Clone 98 budded onto Fraxinus platypoda 10 10 

17 F. ex Clone M72 budded onto Fraxinus platypoda  7  7 

Total  465 361 
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Table 3.1a shows the significant difference when compared to the Control, * indicating 

statistical significance.  

 

Table 3.1a Table of results 

 

Effect Point Estimate 95% Wald 

Confidence Limits 

 p-value 

treat 1 vs 3 5.353 0.234 122.478  0.29 

treat 2 vs 3 0.287 0.061 1.357  0.12 

treat 4 vs 3 1.725 0.206 14.418  0.61 

treat 5 vs 3 5.353 0.234 122.478  0.29 

treat 6 vs 3 0.100 0.022 0.446       * * 0.0026 

treat 7 vs 3 0.039 0.008 0.178 * <0.0001 

treat 8 vs 3 0.171 0.038 0.780 * 0.023 

treat 9 vs 3 0.059 0.013 0.266 * 0.0002 

treat 10 vs 3 0.129 0.028 0.603 * 0.0092 

treat 11 vs 3 0.689 0.122 3.902  0.67 

treat 12 vs 3 5.704 0.250 130.019  0.27 

treat 13 vs 3 0.059 0.013 0.266 * 0.0002 

treat 14 vs 3 5.353 0.234 122.478  0.29 

treat 15 vs 3 5.353 0.234 122.478  0.29 

treat 16 vs 3 1.842 0.071 47.647  0.71 

treat 17 vs 3 1.316 0.047 36.787  0.87 

Logistic regression with Tukey adjustment using SAS 9.4 (SAS, 2014).  

 

Table 3.1a shows that Treatment 7, Treatment 8, Treatment 9, Treatent 10 and 

Treatment 13 are significantly different to Treatment 3.   

To compare the various treatments with other standards, treatments 4 and 5 were used 

as they were Fraxinus excelsior rootstocks which would be the normal rootstock used 

when grafting ash. 

Table 3.1b shows that when Treatment 4 was compared to the various Treatments; 

Treatment 1, Treatment 6, Treatment 7, Treatment 8, Treatment 9, Treatment 10 and are 

significantly different to Treatment 4.   
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Table 3.1c demonstrates that Treatment 1, Treatment 2, Treatment 6, Treatment 7, 

Treatment 8, Treatment 9, Treatment 10 and are significantly different to Treatment 5.   

 

Table 3.1b Table of results 

Effect Point Estimate 95% Wald 

 

p-value 

  

Confidence Limits 

 

 

Treatment 4 vs 1 29.4 4.7 166.7 *  0.0003 

Treatment 4 vs 2 6.0 0.9 38.5 

 

0.059 

Treatment 4 vs 3 1.7 0.2 14.5 

 

0.61 

Treatment 5 vs 4 3.1 0.2 83.7 

 

0.5 

Treatment 4 vs 6 17.2 2.8 111.1 * 0.002 

Treatment 4 vs 7 45.5 7.1 250.0 * <0.0001 

Treatment 4 vs 8 10.1 1.6 62.5 * 0.013 

Treatment 4 vs 9 29.4 4.7 166.7 * 0.0003 

Treatment 4 vs 10 13.3 2.1 83.3 * 0.0061 

Treatment 4 vs 11 2.5 0.3 18.9 

 

0.37 

Logistic regression with Tukey adjustment using SAS 9.4 (SAS, 2014).  

Table 3.1c Table of results 

Effect Point Estimate 95% Wald 

 

p-value 

  

Confidence Limits 

 

 

Treatment 5 vs 1 90.3 4.8 >999 *  0.002 

Treatment 5vs 2 18.7 1.0 360.7 * 0.05 

Treatment 5 vs 3 5.4 0.2 122.5 

 

0.29 

Treatment 5 vs 4 3.1 0.1 83.7 

 

0.5 

Treatment 5 vs 6 53.6 2.9 >999 * 0.008 

Treatment 5 vs 7 138.1 7.3 >999 * 0.001 

Treatment 5 vs 8 31.3 1.7 591.5 * 0.02 

Treatment 5 vs 9 90.3 4.8 >999 * 0.0026 

Treatment 5 vs 10 41.3 2.1 791.2 * 0.014 

Treatment 5 vs 11 7.8 0.4 165.3 

 

0.19 

Logistic regression with Tukey adjustment using SAS 9.4 (SAS, 2014).  

 

3.3 Survival of grafted combinations after the first year of growth, 2014 
 

Table 3.2 shows the survival of various combinations of  F. excelsior scions when 

grafted onto different Fraxinus species as rootstocks and interstocks and onto Syringa 

and Ligustrum.  All graft combinations produced plants.  There was no block effect in 

the analysis of survival in both years.  It is notable that the plant survival was highest  in 

the range (100-97%) when the rootstock was Fraxinus excelsior.  Two Control plants of 
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Fraxinus excelsior (Treatment 3) which had been cut back without making a subsequent 

graft had died, which indicated that the cutting back procedure could reduce plant 

survival.  On the other hand, the rootstocks of Fraxinus chinensis and Fraxinus paxiana 

resulted in a substantial decrease in graft survival, 77%, and 40% respectively.  The 

effect of using interstocks of Fraxinus platypoda and Fraxinus japonica resulted in 90% 

and 60% of plant survival, respectively. 

The survival of Fraxinus excelsior scions on rootstocks of Syringa and Ligustrum were 

generally lower than when the rootstocks were Fraxinus spp.  At the end of the first 

growing season, Clone M72 produced more plants when grafted onto Syringa  and 

Ligustrum rootstocks than Fraxinus excelsior Clone 98.  The graft survival for Clone 

M72 on Syringa vulgaris was 67% while Clone 98 had a survival rate of 40%.  The 

graft survival for Clone M72 on Ligustrum was 53% while Clone 98 was 30% (Table 

3.2).  

Budding survival was assessed on 5th December 2014 and all buddings appeared to be  

viable, as they exhibited a green colour.  
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Table 3.2 Survival of Fraxinus excelsior scions grafted onto various species of 

rootstocks at the end of first year of growth, 2014 

 

 

Scions 

 

 

Rootstock 

 

 

Treatment 

 

No 

grafts 

 

No grafts 

Surviving 

  

% 

Survival 

 

F. excelsior ( non –

grafted (Control) 

F. excelsior 3 30 28 93 

(survival) 

F. excelsior Clone 98 F. excelsior 4 30 29 97 

F. excelsior Clone M72 F. excelsior 5 30 30    100 

F. excelsior Clone M72 F. paxiana 1 30 12 40 

F. excelsior Clone M72 F. chinensis 2 31 24 77 

F. excelsior Clone 98 

with interstock F. 

japonica 

F. excelsior       10 25 15 60 

F. excelsior Clone 98 

with interstock F. 

platypoda 

F. excelsior       11 30 27 90 

 

 

Ligustrum and Syringa rootstocks 

 

      

F. excelsior Clone 98 Ligustrum 

ovalifolium 

7                   30       9      30 

F. excelsior Clone M72 Ligustrum 

ovalifolium 

6                        30     16      53 

F. excelsior Clone 98 Syringa 

vulgaris 

9                30     12      40 

F. excelsior Clone M72 Syringa 

vulgaris 

8              30     20      67 

 

 

It also shows that  the ungrafted Control had significantly  more survival rate when 

compared to Treatment 1, Treatment 6, Treatment 7, Treatment 8, Treatment 9 and 

Treatment 10.  Table 3.3 a shows the odds limits, confidence values and p-values when 

comparing Treatment 3 with various Treatments. Treatment 3 is significantly different 

then Treatment 1, Treatment 6, Treatment 7, Treatment 8, Treatment 9 and Treatment 

10.  

Table 3.3b and Table 3.3c show the values when compared to Treatment 4 and 

Treatment 5. The logic of using these comparisons was to ascertain if there were any 
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signifcant differences when comparing Clone 98 and Clone M72 which were grafted 

onto Fraxinus excelsior rootstocks which would be the normal rootstock used.  

Table 3.3 Analysis of survival of Fraxinus excelsior 2014 

Table 3.3a Odds ratios and confidence limits for the analysis of survival of 

Fraxinus excelsior scions grafted onto various species of rootstocks in comparison to 

Treatment 3 at the end of first year of growth, 2014.  * indicates statistical significance 

Effect 

Point 

Estimate 

95% Wald 

Confidence 

Limits 

 

 

 

p-value 

Treatment 3 vs 1 16.9 3.8 76.9 *  0.0002 

Treatment 3 vs 2 3.5 0.7 16.4 

 

0.12 

Treatment 4 vs 3 1.73 0.21 14.4 

 

0.61 

Treatment 5 vs 3 5.36 0.23 122.5 

 

0.29 

Treatment 3 vs 6 10.0 2.2 45.5 * 0.003 

Treatment 3 vs 7 25.6 5.6 125.0 * <0.0001 

Treatment 3 vs 8 5.8 1.3 26.3 * 0.023 

Treatment 3 vs 9 16.9 3.8 76.9 * 0.0002 

Treatment 3 vs 10 7.8 1.7 35.7 * 0.009 

Treatment 3 vs 11 1.5 0.3 8.2 

 

0.67 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

 

Table 3.3b shows comparisons to Treatment 4, where Treatment 1, Treatment 6, 

Treatment 7, Treatment 8, Treatment 9 and Treatment 10  were significantly different.  
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Table 3.3b Odds ratios and confidence limits for the analysis of survival of 

Fraxinus excelsior scions grafted onto various species of rootstocks at the end of first 

year of growth, 2014 in comparison to Treatments 4.  * indicates statistical significance 

 

 

Effect 

Point 

Estimate 

95% Wald 

Confidence 

Limits 

 

 

 

p-value 

    

 

Treatment 4 vs 1 29.4 4.7 166.7 *  0.0003 

Treatment 4 vs 2 6.0 0.9 38.5 

 

0.059 

Treatment 4 vs 3 1.7 0.2 14.5 

 

0.61 

Treatment 5 vs 4 3.1 0.2 83.7 

 

0.5 

Treatment 4 vs 6 17.2 2.8 111.1 * 0.002 

Treatment 4 vs 7 45.5 7.1 250.0 * <0.0001 

Treatment 4 vs 8 10.1 1.6 62.5 * 0.013 

Treatment 4 vs 9 29.4 4.7 166.7 * 0.0003 

Treatment 4 vs 10 13.3 2.1 83.3 * 0.0061 

Treatment 4 vs 11 2.5 0.3 18.9 

 

0.37 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

Table 3.3c shows comparisons to Treatment 5, where Treatment 1, Treatment 2, 

Treatment 6, Treatment 7, Treatment 8, Treatment 9 and Treatment 10 were 

significantly different.  

 

Table 3.3c Odds ratios and confidence limits for the analysis of survival of 

Fraxinus excelsior scions grafted onto various species of rootstocks at the end of first 

year of growth, 2014 in comparison to Treatments 5.  * indicates statistical significance 

 

 

Effect 

Point 

Estimate 

95% Wald 

Confidence 

Limits 

 

 

 

p-value 

Treatment 5 vs 1 90.3 4.8 >999 *  0.002 

Treatment 5vs 2 18.7 1.0 360.7 * 0.05 

Treatment 5 vs 3 5.4 0.2 122.5 

 

0.29 

Treatment 5 vs 4 3.1 0.1 83.7 

 

0.5 

Treatment 5 vs 6 53.6 2.9 >999 * 0.008 

Treatment 5 vs 7 138.1 7.3 >999 * 0.001 

Treatment 5 vs 8 31.3 1.7 591.5 * 0.02 

Treatment 5 vs 9 90.3 4.8 >999 * 0.0026 

Treatment 5 vs 10 41.3 2.1 791.2 * 0.014 

Treatment 5 vs 11 7.8 0.4 165.3 

 

0.19 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

Table 3.3d displays the Treatment details.  
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Table 3.3d Treatment details 

Treatment  Scion / interstock Rootstock 

3 * Ungrafted F.excelsior 

1 F. excelsior Clone M72 F. paxiana 

2 F. excelsior Clone M72 F. chinensis 

4 F. excelsior Clone 98 F.excelsior 

5 F. excelsior Clone M72 F. excelsior 

6 F. excelsior Clone M72 Ligustrum ovalifolium 

7 F. excelsior Clone 98 Ligustrum ovalifolium 

8 F. excelsior Clone M72 Syringa vulgaris 

9 F. excelsior Clone 98 Syringa vulgaris 

10 F. excelsior Clone 98 interstock japonica F.excelsior 

11 F.excelsior Clone 98 interstock platypoda F.excelsior 

 

 

3.4  Vegetative growth measurements of grafted plants at the end of the first 

growing season 2014, recorded 245 days after grafting 

No block effects were found in the compilation of data.  The greatest vegetative 

growth was obtained from Fraxinus excelsior control plants which were not 

grafted but which had been cut back in a similar manner to grafted plants.  This 

was to ascertain what effect the act of cutting back had on the plants and simulate 

what survival and vegetative growth resulted. This treatment was significantly 

different when compared to all other treatments (Table 3.4).  The vegetative 

growth obtained with two different scions of Fraxinus excelsior clones M72 and 

98 were statistically similar but lower than the non- grafted Controls (Table 3.4).  
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All rootstocks of Asiatic species of ash, as well as interstocks, resulted in significant 

reduction of vegetative growth in the scions of both Clones M72 and Clone 98 (Table 

3.4). 

Scion material of M72 grafted onto rootstocks of Fraxinus paxiana and Fraxinus 

chinensis resulted in a growth reduction of 95% and 91% respectively compared 

to non-grafted Control.  The rootstocks of Fraxinus paxiana resulted in less 

growth than Fraxinus chinensis, however the effect was not significant.  

However, Fraxinus paxiana rootstocks gave significantly lower growth than 

rootstocks of both Syringa and Ligustrum.  Using interstocks of Fraxinus 

japonica resulted in a greater growth reduction than when Fraxinus platypoda 

was used as interstock, 95% and 86% respectively, however they were not 

significantly different.  Table 3.4 also shows that rootstocks of Lilac and Privet 

resulted in significant reductions in vegetative growth of scion shoots with each 

Clone of Fraxinus excelsior (Clone M72 and Clone 98) when compared to non-

grafted Controls (Table 3.4).  Furthermore, the rootstocks of Syringa gave a 

significantly greater reduction in growth compared to Ligustrum when the scion 

material was Clone 98 as opposed to Clone M72.  

Vegetative growth of budded plants was not measured in 2014 as they had been grafted 

in September and had not grown out.  
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Table 3.4   Vegetative growth measurements of grafted plants at the end of the first 

growing season 2014, recorded 245 days after grafting 

Scions 

 

Rootstock Treatment 

No 

 Grafts 

surviving (%) 

Mean growth 

increment in (mm) 

 

F. excelsior non –

grafted 

F. excelsior 3 93*(surviving) 338a 

F. excelsior Clone 

98 

F. excelsior 4 97   200b* 

F. excelsior Clone 

M72 

F. excelsior 5 100                208b* 

F. excelsior Clone 

M72 

F. paxiana 1 40                   16f 

F. excelsior Clone 

M72 

F. chinensis 2 77                   32def 

F. excelsior Clone 

98 with interstock F. 

japonica 

F. excelsior 10 60                   18ef 

F. excelsior Clone 

98 with interstock F. 

platypoda 

F. excelsior 11 90                   48cde 

F. excelsior Clone 

98 

Ligustrum 

ovalifolium 

7 30      87c 

F. excelsior Clone 

M72 

Ligustrum 

ovalifolium 

6 53      51cd 

F. excelsior Clone 

98 

Syringa 

vulgaris 

9 40      38def 

F. excelsior Clone 

M72 

Syringa 

vulgaris 

8 67       57cde 

Logistic regression with Tukey adjustment using SAS 9.4 (SAS, 2014).  

*Superscript means with the same letter are not statistically different.  

Budded plants were not measured in year one as they had not produced any 

extension growth at this stage.  

 

3.5  Survival of graft combinations after second year of growth, 2015  
 

At the end of the second year of growth, the survival of the various grafts was recorded 

(Table 3.5).  Overall, the number of grafted plants which survived in 2014 remained 

much the same in 2015, with a few exceptions.  The exceptions were Fraxinus excelsior 

Clone M72 grafted onto Fraxinus chinensis where the survival of grafts reduced from 

77% in 2014 to 68% in 2015 (Tables 3.2 and 3.5).  In the case of Fraxinus excelsior 
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Clone 98 with interstock Fraxinus platypoda graft viability reduced from 90% in 2014 

to 87% in 2015 (Tables 3.2 and 3.5).  

The survival of grafts of common ash grafted onto privet and lilac altered over the two 

years 2014 and 2015.  In the case of Fraxinus excelsior Clone 98, grafted onto either 

privet or lilac, there was no change in the percentage of viable plants from 2014 to 

2015.  However, for Fraxinus excelsior Clone M72, there were some fatalities during 

the recording period.  Survival decreased from 53% in 2014 to 37% in 2015 when the 

rootstock was privet and from 67% in 2014 to 33% in 2015 when the rootstock was lilac 

(Tables 3.2 and 3.5).   

Buddings, when assessed at the end of the growing season in 2014, appeared to be 

100% viable, however, there was a reduction in surviving buddings in 2015.   The best 

performing treatment was Fraxinus excelsior Clone M72 budded onto Fraxinus 

excelsior rootstock at 70% survival, and in descending order of survival, Fraxinus 

excelsior Clone 98 budded onto Fraxinus excelsior rootstock 30% surviving; Fraxinus 

excelsior Clone 98 budded onto Fraxinus paxiana 28% surviving; Fraxinus excelsior 

Clone 98 budded onto Fraxinus platypoda 10% surviving; Fraxinus excelsior Clone 

M72 budded onto Fraxinus paxiana 7% surviving; and Fraxinus excelsior Clone M72 

budded onto Fraxinus platypoda failed completely (Table 3.5).  
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Table 3.5 Survival of Fraxinus excelsior scions grafted and budded onto various 

species of rootstocks at the end of second year of growth, 2015 

Scions Rootstock Treatment No grafts made No grafts 

Surviving  

% Survival 

 

F. excelsior 

(Control) non –

grafted 

F. excelsior 3       30 28       93 

F. excelsior Clone 

98 

F. excelsior 4       30 29       97 

F. excelsior Clone 

M72 

F. excelsior 5       30 30     100 

F. excelsior Clone 

M72 

F. paxiana 1       30 12      40 

F. excelsior Clone 

M72 

F. chinensis 2        31 21      68 

F. excelsior Clone 

98 with interstock F. 

japonica 

F. excelsior 10        25 15      60 

F. excelsior Clone 

98 with interstock F. 

platypoda 

F. excelsior 11        30 26      87 

 

 

 Ligustrum and Syringa rootstocks 

      

F. excelsior Clone 

98 

Ligustrum 

ovalifolium 

      7 30 9 30 

F. excelsior Clone 

M72 

Ligustrum 

ovalifolium 

      6 30 11 37 

F. excelsior Clone 

98 

Syringa 

vulgaris 

      9 30 12 40 

F. excelsior Clone 

M72 

Syringa 

vulgaris 

      8 30 10 33 

 

 Buddings 

 

 

 

 

F. excelsior Clone 

98 

F. excelsior    14 30       9              30 

F. excelsior Clone 

M72 

F. excelsior    15 30      21              70 

F. excelsior Clone 

98 

F. platypoda    16 10       1              10 

F. excelsior Clone 

M72 

F. platypoda    17 7       0                0 

F. excelsior Clone 

98 

F. paxiana    12 32       9             28 

F. excelsior Clone 

M72 

F. paxiana    13 30       2                 7 
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Table 3.6 a has the related statistics for the survival at the end of two years of 

growth when Treatment 3 was compared with all other Treatments the following 

were significant, Treatment 1, Treatment 2, Treatment 6, Treatment 7, Treatment 

8, Treatment 9, Treatment 10, Treatment 12, Treatment 13, Treatment 14, 

Treatment 15, Treatment 16 and Treatment 17.  

Table 3.6 Analysis of survival of Fraxinus excelsior 2015 

Table 3.6a  Odds ratios and confidence limits for the analysis of survival of 

Fraxinus excelsior scions grafted onto various species of rootstocks at the end of second 

year of growth, 2015. * indicates statistical significance 

Effect Point Estimate 95% Wald  p-value 

  

Confidence Limits   

Treatment 3 vs 1 16.9 3.8 76.9 * 0.0002 

Treatment 3 vs 2 5.6 1.2 25.0 * 0.26 

Treatment 4 vs 3 1.7 0.2 14.4 

 

0.61 

Treatment 5 vs 3 5.4 0.2 122.5 

 

0.29 

Treatment 3 vs 6 19.2 4.3 90.9 * 0.0001 

Treatment 3 vs 7 25.6 5.6 125.0 * <0.0001 

Treatment 3 vs 8 22.2 4.9 100.0 * <0.0001 

Treatment 3 vs 9 16.9 3.8 76.9 * 0.0002 

Treatment 3 vs 10 7.8 1.7 35.7 * 0.009 

Treatment 3 vs 11 1.9 0.4 10.2 

 

0.43 

Treatment 3 vs 12 28.6 6.2 125.0 * <0.0001 

Treatment 3 vs 13 125.0 20.4 1000.0 * <0.0001 

Treatment 3 vs 14 25.6 5.6 125.0 * <0.0001 

Treatment 3 vs 15 5.0 1.1 23.3 * 0.38 

Treatment 3 vs 16 71.4 7.8 1000.0 * 0.0002 

Treatment 3 vs 17 166.7 6.1        >1000.0 * 0.0025 

Logistic regression with Tukey adjustment using SAS 9.4 (SAS, 2014).  

 

Table 3.6 b has the related statistics for the viability at the end of two years of 

growth when Treatment 4 was compared with all other Treatments the following 

were significant, Treatment 1, Treatment 2, Treatment 6, Treatment 7, Treatment 

8, Treatment 9, Treatment 10, Treatment 12, Treatment 13, Treatment 14, 

Treatment 15, Treatment 16 and Treatment 17.  
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Table 3.6c has the related statistics when all Treatments were compared to Treatment 5 

and had the same overall result in terms of statistical comparisons as Table 3.6 b. 

 

Table 3.6b  Odds ratios and confidence limits for the analysis of survival of 

Fraxinus excelsior scions grafted onto various species of rootstocks at the end of second 

year of growth, 2015 in comparison to Treatment 4. * indicates statistical significance 

Effect Point Estimate 95% Wald  p-value 

  

Confidence Limits   

Treatment 4 vs 1 29.1 4.5 179.6 * 0.0003 

Treatment 4 vs 2 9.6 1.5 59.8 * 0.015 

Treatment 4 vs 3 1.7 0.2 14.4 

 

0.61 

Treatment 5 vs 4 3.1 0.1 83.6 

 

0.5 

Treatment 4 vs 6 33.3 5.4 206.8 * 0.0002 

Treatment 4 vs 7 44.5 7.1 280.1 * <0.0001 

Treatment 4 vs 8 39.4 6.2 239.6 * <0.0001 

Treatment 4 vs 9 29.1 4.7 179.7 * 0.0003 

Treatment 4 vs 10 13.3 2.1 84.6 * 0.0061 

Treatment 4 vs 11 3.3 0.5 23.5 

 

0.23 

Treatment 4 vs 12 48.6 7.8 304.7 * <0.0001 

Treatment 4 vs 13 224.2 26.8 >999 * <0.0001 

Treatment 4 vs 14 44.5 7.1 280.1 * <0.0001 

Treatment 4 vs 15 8.7 1.4 54.7 * 0.021 

Treatment 4 vs 16 124.6 10.7 >999 * 0.0001 

Treatment 4 vs 17 295.0 9.0             >999 * 0.0014 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

 

 

 

 

 

 

 

 

 

 



 

78 
 

Table 3.6c  Odds ratios and confidence limits for the analysis of survival of 

Fraxinus excelsior scions grafted onto various species of rootstocks at the end of second 

year of growth, 2015 in comparison to Treatment 5. * indicates statistical significance 

Effect Point Estimate 95% Wald  p-value 

  

Confidence Limits   

Treatment 5 vs 1 90.3 4.8 >999 * 0.0026 

Treatment 5 vs 2 29.8 1.6 562.8 * 0.024 

Treatment 5 vs 3 5.3 0.2 122.5 

 

0.29 

Treatment 5 vs 4 3.1 0.1 83.6 

 

0.5 

Treatment 5 vs 6 103.5 5.5 >999 * 0.002 

Treatment 5 vs 7 138.1 7.3 >999 * 0.001 

Treatment 5 vs 8 119.1 6.3 >999 * 0.0014 

Treatment 5 vs 9 90.3 4.8 >999 * 0.0026 

Treatment 5 vs 10 41.3 2.2 790.9 * 0.014 

Treatment 5 vs 11 10.4 0.5 211.8 

 

0.13 

Treatment 5 vs 12 160.0 8.0 >999 * 0.0008 

Treatment 5 vs 13 695.7 30.4 >999 * <0.0001 

Treatment 5 vs 14 138.1 7.3 >999 * 0.001 

Treatment 5 vs 15 27.0 1.4 512.8 * 0.028 

Treatment 5 vs 16 386.5 13.3 >999 * 0.0005 

Treatment 5 vs 17 915.5 14.1             >999 * 0.0014 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  
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Table 3.6d Treatment details 

 

Treatment  

Scion / interstock Rootstock 

3  Ungrafted F.excelsior 

1 F. excelsior Clone M72 F. paxiana 

2 F. excelsior Clone M72 F. chinensis 

4 F. excelsior Clone 98 F.excelsior 

5 F. excelsior Clone M72 F. excelsior 

6 F. excelsior Clone M72 Ligustrum ovalifolium 

7 F. excelsior Clone 98 Ligustrum ovalifolium 

8 F. excelsior Clone M72 Syringa vulgaris 

9 F. excelsior Clone 98 Syringa vulgaris 

10 F. excelsior Clone 98 interstock 

japonica 

F.excelsior 

11 F. excelsior Clone 98 interstock 

platypoda 

F.excelsior 

12 F. excelsior Clone 98 -budded F. paxiana 

13 F. excelsior Clone M72 - budded F. paxiana 

14 F. excelsior Clone 98 -budded F.excelsior 

15 F. excelsior Clone M72 - budded F.excelsior 

16 F. excelsior Clone 98 -budded F.excelsior 

17 F. excelsior Clone M72 - budded F. platypoda 

 

To check how the different treatments affected the scion survival after two years of 

growth and the order ranking, Table 3.7 was compiled.  There was no significant 

differences difference between the graft viabilities of Fraxinus excelsior Clones M72 

and  98 when grafted onto Fraxinus excelsior rootstocks.  However, Ligustrum and 

Syringa had a major reduction effect for each of the Fraxinus excelsior Clones M72 and 

98. 

 

A summary of the ranking of graft and budding survival for each combination is given 

in Table 3.7.  It shows the highest survival (97-100%) for scions of Fraxinus excelsior 

grafted onto Fraxinus excelsior.  Using other species of rootstocks resulted in reduced 

percentages of surviving plants from grafting’s and buddings especially rootstocks of 

Ligustrum and Syringa (range 30-40%) as outlined in Table 3.7 which is an 

observational exercise of viewing the measurements.  
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Table 3.7 Graft survival ranking for each of the treatments at the end of the growing 

season, 2015. Figures in brackets represent treatment numbers. 

Scion Rootstock Survival % Ranking 

 

F. ex Clone M72 (5) Fraxinus excelsior           100 1 

F. ex Clone 98 (4) Fraxinus excelsior 97 2 

Ash non-grafted (Control) (3) Fraxinus excelsior 93 3 

F. ex Clone M72 (11)  F. excelsior/interstock F. platypoda 87 4 

F. ex Clone M72 – budded (15) Fraxinus excelsior 70 5 

F. ex Clone M72 (2) Fraxinus chinensis 68 6 

F. ex Clone 98 (10) F. excelsior/interstock F. japonica 60 7 

F. ex Clone M72 (1) Fraxinus paxiana 40 8 

F. ex Clone 98 (9) Syringa vulgaris 40 8 

F. ex Clone M72 (6) Ligustrum ovalifolium 37 9 

F. ex Clone M72 (8) Syringa vulgaris 33 10 

F. ex Clone 98 (7) Ligustrum ovalifolium 30 11 

Clone 98 – budded (12) Fraxinus excelsior 30 11 

Clone 98 – budded (12) Fraxinus paxiana 28 12 

F. ex Clone 98 - budded (16) Fraxinus platypoda 10 13 

F. ex Clone M72 budded (13) Fraxinus paxiana 7 14 

F. ex Clone M72 budded (17) Fraxinus platypoda 0 15 

Differences in survival were illustrated when Clone M72 and Clone 98 were grafted 

onto rootstocks of Fraxinus excelsior compared to either Syringa or Ligustrum (Table 

3.8). This table contains the figures from which the following deductions were made. 
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Table 3.8  Clonal comparison grafting survival results, 2015 (count and %, total  of 30 

per group) 

Rootstock F. ex Clone M72 

scion 

F. ex Clone 98 

scion 

Average % survival of  

Clones M72 & 98 scions 

F. excelsior 100 97 99 

Syringa 

vulgaris 

33 40 37 

Ligustrum  

ovalifolium 

37 30 34 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

Logistic regression for the binomial proportions underlying the data in Table 3.8 with 

scion and rootstock show no interaction for the two factors.  There was no evidence of a 

difference in the scions (p=0.85) but there was a significant outcome for rootstock 

effects (p<0.0001).  F. excelsior rootstock was more likely (OR = odds ratio) to be 

viable than Syringa (OR = 66 with confidence interval (12, 333) and was also more 

likely to be viable than Ligustrum (OR = 76 (13, 500) while there was no significant 

difference between Syringa and Ligustrum (OR = 1.15 (0.54, 2.44). 
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3.6  Vegetative growth measurements of grafted plants at the end of the second 

growing season 2015, recorded 609 days after grafting 

 

The increment of vegetative growth for the year 2015, for all grafted plants is 

summarized in Table 3.9.   

Table 3.9  Vegetative growth measurements of grafted plants at the end of the second 

growing season 2015, recorded 609 days after grafting 

 Scions Rootstock Treatment  Number of grafts  Mean growth increment  

(mm) 

 

F. excelsior (Control) 

non –grafted 

F. excelsior 3 28 585bc 

F. excelsior Clone 98 F. excelsior 4 29 620a 

F. excelsior Clone M72 F. excelsior 5 30 419ab 

F. excelsior Clone M72 F. paxiana 1 12 126cd 

F. excelsior Clone M72 F. chinensis 2 21 364bc 

F. excelsior Clone 98 

with interstock F. 

japonica 

F. excelsior       10 15 205cd 

F. excelsior Clone 98 

with interstock F.  

platypoda 

F. excelsior 11 26 322bc 

 F. excelsior Clone 98 Ligustrum 

ovalifolium 

7 9 347abc 

 F. excelsior Clone M72 Ligustrum 

ovalifolium 

6 11 295cd 

 F. excelsior Clone 98 Syringa 

vulgaris 

9 12 279bcd 

 F. excelsior Clone M72 Syringa 

vulgaris 

8 10 311cd 

  

 

  Growth extension on buddings 2015 

     

     

F. excelsior Clone 98 F. excelsior 14 9 273a 

F. excelsior Clone 

M72 

F. excelsior 15 21 163a 

F. excelsior Clone 98 F. 

platypoda 

16 1 530a 

F. excelsior Clone 

M72 

F. 

platypoda 

17 0    0a 

F. excelsior Clone 98 F. paxiana 12 9 189a 

F. excelsior Clone 

M72 

F. paxiana 13 2   30a 

 

 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  
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Means with the same letter are not significantly different according to Tukey (Table 3.9 

In this case, the largest increment in vegetative growth of 620 millimetres was recorded 

for Fraxinus excelsior Clone 98 grafted onto Fraxinus excelsior rootstocks.  It is 

notable that this graft combination significantly exceeded the growth of non-grafted 

Control, however the incremental growth of Clone M72 was not significantly different 

from the non-grafted Control.  Fraxinus excelsior Clone 98 produced a greater 

increment of vegetative growth on Fraxinus excelsior rootstocks compared to Fraxinus 

excelsior Clone M72.  However, this difference was not statistically significant.   

Rootstocks of both Fraxinus chinensis and Fraxinus paxiana had a reduction effect in 

vegetative growth when compared with common ash rootstocks in the graft combination 

with Fraxinus excelsior M72 as scions, with F. paxiana showing a significantly greater 

vegetative reduction (Table 3.9). Growth on F. paxiana and F. chinensis were not 

significantly different from one another with Fraxinus excelsior Clone M72 as scions 

Table (3.9).  Syringa and Ligustrum rootstocks  reduced the vegetative growth of scions 

of both Fraxinus excelsior Clone M72 and Fraxinus excelsior Clone 98, in comparison 

to when rootstocks of Fraxinus excelsior were used (Table 3.10). There were no 

significant differences between either of the Fraxinus clones on Syringa or Ligustrum 

rootstocks.  

The effects of the different species of interstocks, in combination with scions of 

Fraxinus excelsior Clone 98, showed that the interstocks of Fraxinus japonica reduced 

vegetative growth more than Fraxinus platypoda; however, these differences were not 

significant.  Furthermore, the use of Fraxinus interstocks resulted in a similar growth 

reduction when compared to the effects of either Ligustrum or Syringa rootstocks.  

The vegetative increment obtained from buddings was generally lower than for grafted 

material (Table 3.9).  Buds of Fraxinus excelsior Clone M72 generally gave poorer 
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growth on all rootstocks in comparison to Fraxinus excelsior Clone 98.  In the case of 

Clone M72 budded onto Fraxinus platypoda, all buddings failed.  There were no 

statistical significant differences between any of the budding treatments (Table 3.9). 

Table 3.10 displays the average growth increment for 2015 and ranks them in 

descending order and % decrease from non-grafted Control. This table is an alternative 

way of viewing the results for discussion purposes.  

Table 3.10 Growth extension increase or decrease in comparison to non-grafted Control 

plants, 2015 

Scion Rootstock Average 

increment mm 

% Increase/ 

Decrease 

F. ex Clone 98 F. excelsior 620 + 6 

F. ex (Control) Non-grafted 585 - 

F. ex Clone M72 F. excelsior 419 -28 

F. ex Clone M72 F. chinensis 364 -38 

F. ex Clone 98 Ligustrum ovalifolium 347 -41 

F. ex Clone 98  F. excelsior /interstock F. 

platypoda 

322 -45 

F. ex Clone M72 Syringa vulgaris 311 -47 

F. ex Clone M72 Ligustrum ovalifolium 295 -50 

F. ex Clone 98 Syringa vulgaris 279 -52 

Clone 98 – budded F. excelsior 273 -53 

F. ex Clone 98 F. excelsior / interstock japonica 205 -65 

Clone 98 - budded F. paxiana 189 -68 

F. ex Clone M72 - 

budded 

F. excelsior 163 -72 

F. ex Clone M72 F. paxiana 126 -79 

F. ex Clone M72 budded F. paxiana 30 -95 

F. ex Clone M72 budded F. platypoda 0*  

F. ex Clone 98 budded F. platypoda 530* 

 

 

* Denotes these treatments were excluded as there was only one plant surviving.  F. 

excelsior Clone 98 budded onto F. platypoda although shows 530 millimetres of 

growth, there was only one plant surviving, therefore it was excluded from ranking. 

Fraxinus excelsior Clone M72 budded onto F. platypoda had no plants surviving. 

% increase or decrease was compared against the non-grafted (Control). 



 

85 
 

3.7  Observations on the development of graft unions at the end of the growing 

season, 2015 

To check the responses and suitability of the different graft combinations, a closer 

examination of all the graft unions was undertaken and comparisons were made 

showing the development of the union at the end of the second growing season in 2015.  

It is notable that the self and heterografts performed in this thesis remained viable for at 

least two years after this study had finished.  Arrows in the images that follow indicate 

the graft union points with the scion above and rootstock below.  The scale in each 

image is marked in 1.0 cm units.   
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Image 3.1 shows a typical morphology of non-grafted Fraxinus excelsior which had re -

grown after the shoot had been removed.   It shows a swelling at the point where the 

rootstock was cut.  It also shows that the cut rootstock had produced three shoots by the 

end of the second year of growth, 2015.  In 2014, the average growth increment of non-

grafted plants exceeded all other treatments.   

 

 

Image 3.1  Non- grafted Fraxinus excelsior 

Image provided by J Mc Namara, 2016 
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Image 3.2 depicts a typical graft union of Fraxinus excelsior Clone 98 grafted onto 

Fraxinus excelsior rootstock and in this instance this treatment exceeded all other 

treatments for vegetative growth.  The mean vegetative growth in 2015 was 620 

millimetres whereas the non-grafted Control gave 585 millimetres (Table 3.9).  It is 

notable for image 3.2 that there was a smooth transition between the rootstock and scion 

at the graft union.  Measurements of the difference in diameter at two centimetres below 

and two centimetres above the graft union revealed that the scions were 25% thinner 

than the rootstocks for this combination two years later.  

 

Image 3.2 Clone 98 on Fraxinus excelsior rootstock 

Image provided by J Mc Namara, 2016 

 

 

 

 

 

 

 

Graft union 
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Image 3.3 depicts the grafting union of Fraxinus excelsior Clone M72 grafted onto 

Fraxinus excelsior rootstock.  The mean vegetative growth was 419 millimetres.  In 

addition, the diameter of the scions at two centimetres above the graft union was 29% 

thinner than the rootstock.  Clone 98 was 25% thinner i.e. generally similar to Clone 

M72 which shows that these two similar species had the same reaction in that they 

showed the least incompatibility.  

 

 

 

 

 

 

 

 

 

 

 

Image 3.3 Clone M72 on Fraxinus excelsior rootstock 

Image provided by J Mc Namara, 2016 

 

 

 

 

 

 

 

Graft union 
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Image 3.4 shows Fraxinus excelsior Clone M72 grafted onto Fraxinus chinensis 

rootstock which resulted in vegetative growth increment of 364 millimetres. This 

combination had a reducing effect on growth compared to Fraxinus excelsior 

rootstocks.  The diameter of the scions was 32% lower when compared with the 

diameter of the rootstock at two centimetres below the graft union Image 3.4. This 

indicates a greater level of incompatibility than previous combinations described of 

Fraxinus excelsior clones M72 and  98 on Fraxinus excelsior rootstocks.   

 

 

 

 

 

 

 

 

 

 

 

  

Image 3.4 Clone M72 on Fraxinus chinensis rootstock 

Image provided by J Mc Namara, 2016 

 

                         

   

 

 

 

 

Graft union 
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Image 3.5 shows Fraxinus excelsior Clone M72 grafted onto Fraxinus paxiana and it 

had resulted in a mean growth increment of 126 millimetres, which would indicate a 

stronger suppressive effect than Fraxinus chinensis as a rootstock as indicated above.  

The greater suppression of vegetative growth of the rootstock Fraxinus paxiana may be 

due to the vegetative incompatibility between the species. This type of incompatibility, 

as shown in the bulging graft union, may also be inferred from the difference in the 

stem diameters above and below the graft union.  The scion diameters were 19% less 

than the rootstock diameters in this combination.   
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Image 3.5 Clone M72 on Fraxinus paxiana rootstock 

Image provided by J Mc Namara, 2016 

 

 

 

 

 

 

  

Graft union 
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Image 3.6 shows Fraxinus excelsior Clone 98 grafted onto interstock Fraxinus 

platypoda and using Fraxinus excelsior as the rootstock.  Diameter measurements 

showed that scions were 46% thinner than the rootstock. The interstock was excluded 

when taking measurement. This indicates a considerable restriction (Image 3.6). The 

average shoot extension growth was 322 millimetres, which demonstrated that the 

interstock had a shoot reduction effect when compared to Fraxinus excelsior rootstocks.      

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 3.6 Clone 98 / Fraxinus platypoda interstock on Fraxinus excelsior rootstock 

Image provided by  J Mc Namara, 2016 
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Image 3.7 shows Fraxinus excelsior Clone 98 grafted onto interstock Fraxinus japonica 

which was then grafted onto Fraxinus excelsior as the rootstock.  Average shoot growth 

extension was 205 millimetres; note the relatively smooth transition at the upper end of 

the interstock with the scion of Fraxinus excelsior Clone 98.  There is a bulge at the 

basal end of the interstock / rootstock junction (see arrows).  There was a 38% reduction 

in scion diameter when compared to rootstock diameter.  

 

 

 

 

 

 

 

 

 

 

 

 

Image 3.7 Clone 98 / Fraxinus japonica interstock on Fraxinus excelsior rootstock 

(Arrows indicate graft unions) 

 

Image provided by J Mc Namara, 2016 
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Image 3.8 shows the graft union Fraxinus excelsior Clone M72 grafted onto Ligustrum 

ovalifolium, which produced a mean increment of 295 millimetres growth extension 

proving that the rootstock had a reducing influence on growth in comparison to 

ungrafted plants and to grafts on Fraxinus excelsior rootstocks.     In this case, the scion 

growth was 10% greater in diameter than the rootstock diameter.  The bulge at the graft 

union is shown (Image 3.8).  The rootstocks of Ligustrum ovalifolium produced 

numerous epicormic shoots from the rootstock and roots over the two-year observation 

period; they were removed routinely.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 3.8 Clone M72 on Ligustrum rootstock 

Image provided by J Mc Namara, 2016 
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Image 3.9 shows Fraxinus excelsior Clone M72 grafted onto Syringa vulgaris.  There 

were incompatibility issues, in that the scion was significantly larger than the rootstock  

(Image 3.9).  In this case, the scion grew more vigorously than the rootstock and was 

26% greater in diameter.  It was noted that the rootstocks of Syringa vulgaris produced 

epicormic shoots from the roots over the two years of observation; these were removed 

routinely. 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

                   

                    

 

Image 3.9 Clone M72 on Syringa rootstock 

Image provided by J Mc Namara, 2016 
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3.8 Rootstock and scion reduction or increase 
 

Plants were measured above and below the graft unions and the differences were 

computed as a positive or negative value.  Without fully paired sets of measurements at 

grafting and two years later Table 3.11 is an observational exercise as it would be 

illogical to use generic numbers to adjust for initial figures.  Results are presented as a 

percentage change between the two positions.  For example, the highly compatible 

grafts of Clone M72 and Clone 98 grafted onto Fraxinus excelsior rootstocks gave 29% 

and 25% reduction respectively in scion stem diameter when compared to the stem 

diameters of the rootstocks.   The overall reduction in scion diameters (negative value) 

and increase (plus value) in scion diameters is summarized in Table 3.11 for all graft 

combinations; this data is contained in Appendix 1.  It shows that negative values were 

obtained with all combinations of Fraxinus rootstocks whereas Ligustrum and Syringa 

rootstocks gave positive values and these were slightly greater with Clone M72 in 

comparison to Clone 98.  

Table 3.11 Rootstock and scion restriction or increase  

Scion Rootstock / interstock Treatment Number % change in 

diameter of scions 

Clone M72 excelsior 5   -29 

“ paxiana 1               -19 

“ chinensis 2 -32 

“ Ligustrum 6               +10 

“ Syringa 8 +26 

Clone 98 excelsior 4  -25 

“ paxiana- not tested   

“ chinensis- not tested   

“ Ligustrum 7 +1 

“ Syringa 9 +8 

“ interstock platypoda 11 -46 

“ interstock japonica 10 -38 

 

+ indicates the scion was greater in diameter than the rootstock and – shows the scion 

was less in diameter than the rootstock. 
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3.9 Number of shoots produced per plant 
 

Generally, in the first year after grafting, only the terminal bud produced extension 

growth (data not shown).   In the second year, secondary shoots were produced by all 

the graft combinations.  The effects of the various types of rootstocks on their capacity 

to produce multiple shoots as well as for the ungrafted controls are summarised in 

(Table 3.12).  The greatest number of shoots was produced by the ungrafted plants of 

Fraxinus excelsior (3.7).  There was no great difference between the number of shoots 

produced by scions of Fraxinus excelsior Clone 98 (2.7) and Fraxinus excelsior Clone 

M72 (2.5) when grafted onto Fraxinus excelsior rootstocks.  Clone M72 grafted onto 

lilac and privet produced 3.1 and 2.9 respectively.  The lowest number of shoots was 

produced on grafts, with rootstocks of Fraxinus paxiana, Fraxinus chinensis, and 

interstocks of Fraxinus japonica and Fraxinus platypoda in the range 1.3-1.8. Table 

3.12 shows that Treatment 3 was significantly different from Treatment 1, Treatment 2, 

Treatment 10 and Treatment 11 and was not significantly different from the remaining 

Treatments.  
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Table 3.12 Mean number of shoots produced per grafted plant at the end of the second 

year of growth 2015 

Scion Rootstock / 

interstock 

Treatment 

number 

Number of shoots / 

plant 

 

Control   3 3.7a  

Clone M72 excelsior 5 2.5ab  

“ paxiana 1 1.5b  

“ chinensis 2 1.3b  

“ Ligustrum 6 2.9ab  

“ Syringa 8 3.1ab  

Clone 98 excelsior 4 2.7ab  

 paxiana- not tested    

 chinensis- not tested    

 Ligustrum 7 2.7ab  

 Syringa 9 1.9ab  

 interstock platypoda 11 1.8b  

 interstock japonica 10 1.3b  

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

 

 

 

3.10  Bud flushing results 
 

Bud flushing was recorded in 2015 and 2016 to determine if there were any effects of 

rootstocks on the rapidity of bud flushing, and if there were any differences between the 

different graft treatments (Table 3.13).  Recording started from dormancy (stage 0) and 

continued until all viable buds had fully emerged (stage 4; Image 2.4).  The scions of 
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Fraxinus excelsior Clone M72 and Clone 98 required ten and six days respectively to 

fully flush when grafted onto Fraxinus excelsior rootstocks.  Interstocks of Fraxinus 

platypoda and Fraxinus japonica required seven and twelve days respectively with 

Fraxinus excelsior Clone 98 whch indicates that interstocks did not have a suppresent 

effect on bud bud flushing. The scions of Fraxinus excelsior Clone 98 grafted onto 

Ligustrum ovalifolium were the first to produce fully emerged leaves within three days 

of breaking dormancy (Stage 1).  In contrast, Fraxinus excelsior Clone M72 required 18 

days to complete bud flushing with Ligustrum rootstocks.  Clone M72 grafted onto 

rootstocks of Fraxinus paxiana also required a long period to flush (17 days). The 

slowest combinations were the budding treatments, with some failing completely (Table 

3.13).   

Ligustrum and Syringa rootstocks when used in conjunction with Clone M72 were not 

significantly different when compared to one another. The same rootstocks when used 

with Clone 98 also showed no significant difference when compared to one another.  

Eventhough Clone 98 grafted onto Ligustrum rootstocks (Treatment 7) had the shortest 

flushing time it was not significant  to Treatment 2, Treatment 4, Treatment 9, 

Treatment 11 and Treatment 3.  
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Table 3.13 Number of days for grafted plants in various combinations to fully flush, 

starting at the dormant stage in Spring 2015  

Scion Rootstock / interstock Treatment Number Mean number of days to 

fully flush 

Clone M72 

(G) 

excelsior 5                   10c 

 paxiana 1 17ab 

 chinensis 2 7dce 

 Ligustrum 6 18a 

 Syringa 8 19a 

Clone 98 (G) excelsior 4     6dce 

 paxiana- not tested   

 chinensis- not tested   

 Ligustrum 7   3de 

 Syringa 9   8dc 

 interstock platypoda 11    7dce 

 interstock japonica 10 12bc 

Fraxinus 

(Control) 

Fraxinus 3  6dce 

Clone M72 

(B) 

excelsior 15 41a 

 paxiana 13 * 

 platypoda 17 * 

Clone 98 (B) excelsior 14 41a 

 paxiana 12 20b 

 platypoda 16 * 

Logistic regression with Tukey adjustment using SAS 9.4(SAS, 2014).  

(G) Grafted  (B) Budded  *  No data available-did not flush 
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3.11  Flowering results 
 

The production of flower buds was recorded in spring 2015 and spring 2016.  None of 

the non-grafted produced flowers out of the 28 plants.  In the first year after grafting, 

one plant of Fraxinus excelsior Clone 98 and one plant of Fraxinus excelsior Clone 

M72 produced some flowers.  In both cases, the selected clones had been grafted onto 

Fraxinus excelsior rootstocks.  In addition, one plant of Fraxinus excelsior Clone 98 out 

of 27 flowered when grafted with an interstock of Fraxinus platypoda and a rootstock 

of Fraxinus excelsior.  None of the plants from the other graft treatments produced 

flowers, even though vegetative extension growth was reduced in several graft 

combinations; data extracted from Appendix 2. 
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Chapter 4: Discussion  
 

European indications are that 1-5% of the Fraxinus excelsior population will remain 

Chalara resistant (Mc Kinney et al., 2014).  Although Chalara has been confirmed in 

all Irish counties there are no report of significant tree deaths so far.  This is due to 

currently low disease pressure however this situation is expected to alter as inoculation 

levels build up year after year. 

The current challenges are to identify resistant trees and to efficiently and quickly 

multiply the resistant trees to initiate seed orchards.  Seed producing orchards will 

consist of selected Chalara resistant trees which will have been propagated by grafting.  

The orchards will be designed to optimise cross pollination of trees within the site so 

that the resistant trees will pollinate each other (Douglas et al., 2013).  In this context it 

is highly desirable that the trees will flower as soon as possible.  This cross pollination 

will result in the progeny of ash having a high level of disease resistance (Kjaer et al., 

2017).  Propagating resistant trees through seed is the cheapest method and it can be 

scaled up by establishing many seed orchards throughout Ireland when the mother trees 

are selected as Chalara resistant.  However, the first step to the production of seed is by 

grafted plants and that is estimated to take approximately five to seven years or perhaps 

longer.  Flowering in grafted trees may begin sooner if scions are collected from adult 

trees that are already flowering.  Clearly, it would be highly desirable to shorten the 

period of vegetative growth in ash in order to accelerate the onset of flowering and seed 

production.  Using various species as rootstocks and interstocks with ash offers the 

potential to achieve this, based on many examples of similar approaches for other trees 

and fruit species.  Resistant trees have not been identified in Ireland to date, as the 

disease has not been in the country long enough and because the disease incidence and 

pressure is not high enough.  In 2016, the DNA of the ash genome was sequenced, and 
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gene markers have been developed which would indicate Chalara susceptibility and 

resistance (Sollars et al., 2016).  This test would save time and energy and has huge 

potential in the identification of disease resistant trees.   In Ireland this selection process 

has begun in that Teagasc have selected what is deemed now to be Chalara resistant 

and grafted these trees to be planted into high disease infestation areas.  It has been 

shown that resistance to Chalara is stable in vegetatively propagated ash trees (Stener, 

2013).  A method for large scale production has been described by Douglas et al., 2017.  

Personal experience of managing to root hardwood cuttings of ash trees has been 

unsuccessful however there is another method. It involves firstly micropropagation of 

the selected trees, followed by a further propagation step of using standard cuttings.  

Micropropagation would seem to rejuvenate the plants and the results were high rooting 

percentages from the cuttings.  Generally the costs of trees that are propagated 

vegetatively are higher than for seed produced plants.  Because of these costs and the 

need to produce c7.8 million trees in Ireland to compensate for the impending loss, a 

production system based on seed is the most feasible way of producing resistant plant 

material for future forestry needs.  An alternative means to seed orchards for producing 

ash trees with resistance to Chalara is to vegetatively propagate individually selected 

resistant trees.  Vegetative propagation has given low rates of rooting in cuttings 

selected from mature trees in the order of 26% (Cahalan and Jinks, 1992).  

Micropropagation of ash is possible however it can be quite challenging, as it tends to 

be difficult to establish aseptic cultures due to contamination (Thompson et al., 2001).   

In trials undertaken (Thompson et al., 2001) of micropropagation of ash, 12.5% of the 

ash cultures from 40 plus ash trees which comprised 13 clones survived up to the 

seventh culture transfer.  However, micropropagation should not be discounted as it 

could be used to supplement a grafting programme.  Therefore, grafting has a major 

advantage over micropropagation, in that it speeds up the process of producing plants to 
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establish seed orchards and it is feasible to produce a plant that is big enough for field 

planting one year after grafting.  The aim of this project was to produce viable grafts 

from Asian rootstocks and interstocks with reduced vegetative growth with multi shoots 

which ideally would lead to an early onset of flowering.  

The grafting method chosen was a modified off-centre cleft graft.  Regarding previous 

work done on off centre cleft grafting of Fraxinus excelsior clones onto two-year old 

Fraxinus excelsior, rootstocks a graft viability of 97% was obtained overall from 70 

clones, with all clones being successfully grafted (Thompson et al., 2001).  

In the case of budding treatments, the viability range was 70% to 0%, however budding 

should not be discounted as it offers another opportunity to propagate the identified 

trees in the same calender year.  Budding as reported in this thesis was not successful 

due to the quality of the available rootstocks. Also on a time element it is possible to 

achieve more grafted plants on a daily basis in comparison to conventional grafting.  

 In the case of this experiment graft viability ranged from 100% to 0%.  The results of 

the experiment from this thesis after two seasons growth were that the two selected 

clones of Fraxinus excelsior, Clone M72 and Clone 98 gave similar results in terms of 

graft viability, 100% and 97% respectively which compared to the findings reported by 

Thompson et al. (2001). 

A method of grafting ash which can also be used  for grafting small seedlings with stem 

diameters ranging from 1.5-4.5 millimetres is ‘tube grafting’.  This system has shown 

that very small and young seedlings can be used as rootstocks and  scions of single buds 

(Douglas et al., 1996).  The research demonstrated that ‘tube grafting’ which was done 

in summer period yielded 85% success rate on 20 clones tested (Douglas et al., 1996).  
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Both winter and summer grafting of Chalara resistant ash trees may be needed to build 

up sufficient stocks of trees for seed orchards.   

The influence of rootstocks on flowering and fruiting behaviours of trees has been 

recently reviewed by (Warschefsky et al., 2016).  It gives many examples where 

specific rootstocks could induce early flowering in crops such as blueberry, pawpaw, 

pear, sapodilla and apple. The advantages of the various rootstocks to produce 

vegetables has also been discussed recently (Kumar et al., 2018). 

To avoid soil borne diseases which are normally accentuated by successive cropping, 

vegetable grafting, which originated in Japan and Korea, has now become popular around 

the world.  It was a practice introduced in the late 20th century, and later to North America.  

In 1990, 59% of the vegetables produced in Japan were from grafted plants and 81% in 

Korea    (Davis et al., 2008).  There are over 40 million grafted tomato plants used on an 

annual basis in North American glasshouses (Kubota et al., 2008).  In peppers, grafting can 

transfer specific traits from the rootstock to influence the phenotype of scion. Grafting 

eggplant onto Solanum torvum has shown to control verticillium wilt (Kumar et al., 

2018).   The significance of this in relation to ash is that it has been discovered that Chalara 

can infect a tree through the roots (Kirisits, 2014).  It is becoming apparent that using 

different rootstocks to achieve desired traits has the ability to transfer these traits both 

above and below ground (Mudge et al., 2009).  Therefore, there may be many more 

species of Fraxinus rootstocks (among the 65 known), and besides the ones tested which 

could offer possibilities for growth reduction and onset of early flowering when 

examining the diverse range of rootstocks used in fruit crops (Goldschmidt, 2014).  In 

view of this fact, then the value of Asian species rootstocks could offer possibilities of 

producing grafted trees in which the rootstock and scion would be resistant to Chalara. 
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To circumvent nematode problems of Coffea arabica, interspecific grafting is used in 

Latin America.  Two cultivars of Coffea arabica were evaluated on four rootstocks, C. 

canephora var. Robusta (‘T3561’ and ‘T3757’) and C. liberica var. liberica (Hiern) and 

var. dewevrei (Lebrun).  Non-grafted plants of two arabica were used as controls and 

the trial was evaluated over five years.  Viability was 80% for two of the rootstock types 

and 90% for the remaining two.  The control rootstocks had 96% viability.  When 

coffee bean yield was assessed over a four-year period, it was discovered that the four 

rootstocks reduced yield between 10-48%.  Also, it was discovered that the scion stem 

girth did not increase, similar to observations in this thesis when Asian species of 

Fraxinus were grafted.  As this experiment was conducted over a two year period 

Fraxinus species resulted in reductions in viability, however there is no data to support 

seed yield reduction as flowering was so low.  However poor productivity was 

attributed to poor adaptation of the rootstocks chosen to suit the specific site and that 

more stringent selection of rootstocks was required to adapt to the environment 

(Bertrand et al., 2001).   

In the case of Oleaceae family, much work has been undertaken on olives regarding 

rootstock production via seed and clonal propagation to achieve size reduction, rooting 

ability, disease resistance, drought tolerance, salt tolerance, and graft compatibility 

(Fabbri et al., 2009).  Size reduction was possible in olive using selected rootstocks 

(Fabbri et al., 2009).  The genus Fraxinus is also in the Oleaceae family and this study 

has shown a reduction in vegetative growth with some rootstocks.  For example, when 

vegetative growth was measured in the second growing season for Clone M72 grafted 

onto Fraxinus paxiana and Fraxinus chinensis the reduction was 79% and 38% 

respectively in comparison to the Control (ungrafted).  When interstocks of Fraxinus 

japonica and Fraxinus platypoda were used with Clone 98 the reductions were 65% and 

45% respectively in comparison to the Control (ungrafted).  Also when Clone 98 was 
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grafted onto Ligustrum ovalifolium and Syringa vulgaris the growth reductions were 

41% and 47% respectively.  This indicates that Fraxinus rootstock species had an effect 

in reducing vegetative growth.  

Grafting is the recommended method to quickly multiply the future selected Chalara 

resistant trees, however it needs further consideration with regard to the rootstocks 

employed.  Relatively less is known about the diverse rootstocks that could be used.  

Rootstocks are generally selected for their grafting capacity to alter scion phenotypes 

(Warschefsky et al., 2016).   This involves the practical testing of species and even of 

genotypes within a species for the desired effects.  For example, in the Malus domestica 

(Apple) industry, clonal rootstocks species of M. baccata, M domestica, M. doumeri, M. 

halliana, M. hupehensis, M. sargenti, M. sieboldi, M. sieversii, M. sikkimensis, M. sylvestris, 

M. transisoria, M. toringoides, M. yunnanensis have been used with the principal targets of 

tree size control/dwarfing, fruit quality, pest and disease resistance, as well as for  drought 

and cold tolerance (Ignatov and Bodishevskaya, 2011).  Dwarfing rootstocks are effective 

in vegetative growth reduction, thereby ensuring earlier fruiting in apples, therefore, it has 

been worthwhile selecting rootstocks of apple which displayed less vigorous vegetative 

growth (Porebski et al., 2006).  Disease tolerant rootstocks have been used in apple 

orchards to overcome the problem of replant disease (Leinfelder and Merwin, 2006).  

This theory may offer opportunities for Asian ash rootstocks which haven’t been 

investigated yet. The phenotypes of trees have been altered by using growth regulator 

such as alar which  (acid succinamic 2,2-dimethylhydrazine) on apple rootstocks which 

reduced the heights and the diameters of the stems (Khanizadeh et al., 2007).  As Alar is 

no longer available using paclobutrazol as a retardant may be worth considering.  This 

subject of growth retardants would be worth investigating in relation to their effects on 

Fraxinus rootstocks and on grafted plants.  Rootstock M9 produces higher levels of 

abscisic acid, which may regulate stomatal opening, and help to alleviate short-term 
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drought resistance. The more vigorous rootstock MM 111 may have more drought 

hardy tolerance characteristics because of its more extensive root system (Atkinson et 

al., 1999).   

For commercial production of Pyrus communis (Pear) with similar targets as in the 

apple industry, clonally produced rootstock species have been used (Warschefsky et al., 

2016).  This goes to prove that a lot more work is necessary in clonal production of ash 

rootstocks.  Experiments undertaken by Fischer, 2009 concluded that in the selection of 

dwarfing rootstocks for Pyrus communis which are vegetatively propagated are required 

to give consistency in shortening the period for fruit production.  Furthermore, 

genetically engineered rootstocks would prove invaluable against fireblight and in 

producing rootstocks with herbicide resistance. In this thesis seed produced rootstocks 

were used therefore it would be worthwhile studying the effects of clonally produced 

rootstocks as seeding rootstocks generally have varying characteristics.  

Similarly for Prunus persica (Peach)  clonally rootstocks have been used for the same 

reasons as for apple and pear (Warschefsky et al., 2016).  When it came to controlling tree 

size Hancock et al. (2008) identified genes that would give reduced vigour.  Byrne (2012) 

states that tree peach breeding takes 10 years to produce a new variety and that a lot more 

research needs to be done on the genetics of desirable traits in grafted scions and the 

influence of rootstocks on the heritability of desirable traits.  

Graft compatibility is paramount in achieving high percentage graft viability and 

permanent graft union, therefore, it is important to select the correct species of rootstock 

to match the scion.  The healing of the graft union may take a year, or, in some cases, 

the incompatibility may not become obvious for several years (Andrews and Marquez, 

1993).  Despite the importance of the rootstock in relation to grafting, the actual 

molecular and physiological aspects of the graft compatibility or incompatibility are not 
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fully understood (Goldschmidt, 2014).  There are limits genetically to what can be 

grafted to what, so generally it is possible to graft together clones of the same species, 

various species within a genus sometimes and grafting between different genera within 

a family is possible but remote (Hartmann et al., 2002).   Generally rootstock and scion 

need to be closely taxonomically related for greater grafting success (Hartmann et al., 

2002).  However this thesis has shown that intergeneric grafts between Fraxinus and 

Syringa / Ligustrum were viable even though distantly related taxonomically. 

Interspecific grafting research has been undertaken successfully using eggplant (Solanum 

melongena) as rootstocks to graft tomato (Solanum lycopersicum) in order to alleviate flood 

stress, which tomato is very susceptible to.  Eggplant rootstocks while conferring flood 

tolerance to tomato also changed the sugar, starch content and yield of the fruit (Bhatt et al., 

2015).  Generally, when one species is grafted onto a rootstock of the same species there 

is no incompatibility (Mudge et al., 2009).   

Grafting is a more successful method of asexually propagating Chinese chestnut 

(Catania mollissima) than any other method.  Graft incompatibility was investigated for 

fifteen Chinese chestnut cultivars, nine American, selections, six Japanese cultivars and 

two Japanese hybrids on two known rootstocks of Chinese chestnut.  In total 32 

genetically diverse selections of C. dentata, C.mollisima and C.crenata were grafted 

onto two known rootstocks of Castanea mollisima.  Interspecific grafting of Chinese 

chestnut yielded an 80% success rate after two growing seasons. Interspecific grafts of 

seven American and five Japanese chestnut selections resulted in ≥ 70% success.  The 

percentages are slightly greater than those obtained in this thesis where the viability 

ranged from 40-87% at the end of the second growing season.  Graft morphological 

abnormalities were also observed at the graft union in interspecific grafting. The results 
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indicate that genetic incompatibility is not a major cause of graft failure (Huang et al., 

1994). 

Interstocks can also be used for several reasons such as to circumvent incompatibility 

between the scion and rootstock and to control the growth vigour (Hartmann et al., 

2002).  They may also be used to get around issues with incompatibility between the 

rootstock and scion; either of whose partners has a desired trait. The interstock while 

reducing vegetative growth may also stimulate flowering.  A specific example of this is 

an interstock of M9 apple rootstock which was grafted between a vigorous rootstock 

and a vigorous scion, the result being the reduction of vegetative growth, with the 

consequence that flowering, and seed production increased, in comparison to a grafted 

plant where an interstock had not been used (Roberts and Blaney, 1967).  In addition, 

other work has shown in apple grafting that using M27 and M9 as weak interstocks 

grafted onto vigorous rootstocks resulted in a reduction of vegetative growth and an 

increase in fruiting (Lord et al., 1985).  As reported in this thesis interstocks did reduce 

vegetative growth however no work has been undertaken on this aspect previously 

therefore the recommendation is to employ the use of other interstocks.  

 Other researchers working on apples used M27 and M9 as interstocks, have shown that 

M27 reduced the vegetative growth by 80%, in comparison to the controls; a 50% 

reduction was obtained when M9 was used.  The researchers also discovered that by 

increasing the interstock length resulted in a reduction in plant vigour and fruit yield (Di 

Vaio et al., 2008). 

Other researchers have stated that using weak interstocks grafted onto vigorous seedling 

rootstocks in apples resulted in, reducing the need for pruning (Lord et al., 1985; Di 

Vaio et al., 2008). This effect was also noted for interstock grafting using Fraxinus 

japonica and Fraxinus platypoda in conjunction with Clone 98 which reduced 
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vegetative growth by 65% and 45% respectively in comparison to the Control.  At the 

same time, interstocks of Fraxinus japonica and Fraxinus platypoda grafted onto Clone 

98 reduced viability to 60% and 87% respectively.  

The effects of interstocks on persimmon was field trialled by Koshita et al., 2006.  In 

this case two years after planting, the total shoot length of the trees was shortened with 

the use of rootstock candidates (Ac-1, Ac-2, and Y) and also where seedlings of 

Diospyros rhombifolia were used as interstocks to 31, 33, 36, and 16% of the control 

trees, and the tree height were shortened by 59, 75, 68, and 58% in comparison to those 

of the control trees, respectively (Koshita et al. 2006).  

The literature shows the effects of a large range of rootstock species on growth and 

development of scions of various crops.  In relation to Fraxinus, there is no knowledge as to 

how Fraxinus excelsior grafted onto the other Fraxinus species or onto other genera, 

will perform in the long term. Therefore there may be other species of Fraxinus besides 

the ones tested, which could offer possibilities for growth reduction and the early onset 

of flowering when examining the diverse range of rootstocks used in fruit crops 

(Goldschmidt, 2014)  . 

Fraxinus excelsior grafted onto Fraxinus excelsior will guarantee a high grafting 

viability success rate, however, ideally a plant which would flower earlier in its life 

cycle would further speed up production, so it may be the case that the Asian rootstocks 

examined in this study have a role to play, as they may be capable of inducing early 

flowering when tested over a few more years than the current study allowed.  Using 

Ligustrum and Syringa as rootstocks may also prove useful in longer term testing 

because these species produce more flowers and they flower earlier in their lifecycle.   
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Differences in vegetative growth were observed between the two clones of self grafted 

Fraxinus excelsior.   Clone 98 when grafted onto Fraxinus excelsior exceeded the 

Control by almost 6% whereas Clone M72 vegetative growth was reduced by 28%.  

This  demonstrates clonal response differences of scions.  Heterografts involving 

Fraxinus excelsior scions grafted onto other species resulted in even greater reductions 

in vegetative growth.  Clone M72 was grafted onto Fraxinus paxiana vegetative growth 

was reduced by 79% and when grafted onto Fraxinus chinensis the reduction was 38%.    

The principal objectives in testing intergeneric grafting in this thesis was to examine the 

graft compatibility and hopefully the acceleration of flowering over the long run.  

To the knowledge of this author this is the first study in which privet and lilac 

rootstocks were used for ash scions.  Regarding privet it has been used for some time as 

a ‘nurse’ rootstock for the propagation of lilac.  In this case the privet is the rootstock on 

which commercial cultivars of lilac are grafted (Rudolf et al., 2008).  Once the graft 

union has taken hold, the grafted plants are then planted deeply with the graft union 

well below soil level so that the adventitious roots begin to be formed by the lilac 

scions.  In this way privet acts as a ‘nurse’ until the lilac forms its own roots.  

Budding when compared with bench grafting by Lipecki et al. (2013) on apples found 

no great differences in tree growth performance, such as tree height, trunk diameter, 

vegetative growth and the number of shoots which shows that employing budding is a 

viable option.  Although the budding results obtained in this thesis were less successful 

than grafting the process of budding allows a second chance to undertake grafting in the 

same year and it is possible to propagate much more daily than conventional off-centre 

grafting.  There is a minor disadvantage with budding, in that it will take one year 

longer to have a plant ready for field planting.   
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Another method of grafting which can also be performed is tube grafting. This similar 

to budding employs single buds grafted onto seedling rootstocks and can also be done in 

summer (Douglas et al., 1996). 

The discussion above has referred to reductions in vegetative growth that are associated 

with early flowering in fruit trees.  According to Prista et al. (2003), it is possible to 

select olive seedlings for earliness in flowering by assessing the vegetative traits early in 

their development.  Based on that research, it is possible to speculate that ash may 

behave in a similar pattern, with some individuals having a natural capacity for early 

flowering compared to others.  While further growth of the grafted ash trees from the 

experiment reported here should reveal more clearly the effects of the rootstocks with 

regards to flowering onset in a longer period of observation. Ash flowers appear before 

the leaves emerge.  In Ireland flowering happens in late April to early May.  The 

flowers emerge in large panicles of 100-400 flowers on shoots from the floral buds on 

the previous year’s growth.   

 While some research in apples has indicated earlier flowering using interstocks 

(Vercammen et al., 2004; Samad et al., 1999; Webster, 1995), this did not occur within 

the period of observations of this thesis.  

Research has shown in two tobacco species that cells from either side of a graft can 

exchange chloroplasts which are responsible for photosynthesis and the entire nucleus of a 

cell could move across a graft and fuse the genomes of the rootstock and scion (Le Page, 

2016).  This may have implications in the choice of rootstocks for grafting disease resistant 

ash in the future if specific genotypes of ash rootstocks can be shown to have specific effects 

for desired traits such as Chalara resistance and early flowering.  As there was very little 

flowering recorded, perhaps in the longer term there may be a relationship between bud 

flushing and flowering. 



 

113 
 

In relation to this thesis there was a wide variance overall in the number of days for the 

plants to flush from three days to fourty one.  However, there was very little differences 

between Fraxinus excelsior Clone M72 grafted onto Fraxinus excelsior rootstocks (ten 

days) and Fraxinus excelsior Clone 98   grafted onto Fraxinus excelsior rootstocks (six 

days). The non-grafted Controls took ten days to completely flush. 

Topworking, which is common practice in apple and pear orchards, also offers major 

potential for ash once resistant trees have been identified. It would be feasible to graft 

Chalara resistant scion material onto mature already flowering Fraxinus excelsior trees  

in situ which should accelerate flowering in the grafted scions.  In addition, it would be 

prudent to identify resistant ash trees, which flower frequently, and topwork these trees 

with scion material from trees that are exhibiting Chalara resistance. 

The results have shown that both clones of Fraxinus excelsior could produce flowers 

when grafted onto common ash but at a low frequency in a two-year period.  It is 

important to note that the scions of the two ash clones were originally derived from 

fully mature trees and so they had already reached the mature physiological state where 

flowering was possible.  Flowering had occurred in the clonal collection on an 

infrequent basis and it had been hoped that the frequency of flowering increased in the 

glasshouse environment.  As the experiment was over a short space of time (two years) 

the hope is that all graft combinations would produce flowers every year in a high 

frequency.  Generally in forestry stands ash trees can take 20-30 years to produce seed 

from saplings.  Once the tree has reached the flowering phase it will generally produce 

seed annually, however heavy crops tend to be produced every two to five years (Savill, 

1991).  

The pathogen H. fraxineus is endemic in Asia and is thought to have originated there    

In Asia, the ash tree species have co-evolved over millennia with Chalara so that the 
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populations of several species are genetically tolerant (Lichtarowicz, 2012).  By 

contrast, in Europe, it is a new pathogen and trees have not co-evolved with Chalara.   

It is also reported that F. chinensis and F. mandschurica in their natural habitats  shows 

resistance to Chalara (Gross and Queloz, 2015).  Dormant buds of F. mandscurica, F. 

chinensis and F. pennsylvanica have been successfully cryopreserved with recovery 

rates ranging from 34 – 100%. This methodology could be used to assist with 

maintaining as much diversity as possible for disease resistant genotypes of Fraxinus 

excelsior (Volk et al., 2009).  Similarly, with ash, the aim is to propagate and to produce 

flowering ash trees as quickly as possible using scions from Chalara resistant trees.  

This will facilitate the interbreeding of many resistant ash trees when they are planted 

together in seed-producing orchards and  from controlled crossings of specific trees 

with each other. 

Therefore the proposal to make interspecific crossings would not incur the public 

resistance such as with that genetic modification (Jepson and Arakelyan, 2017).  Thus a 

logical option for Europe is to assist nature in the process of evolving ash populations 

with resistance.  
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Chapter 5: Conclusions 

 

In summary the clonal scion material of Fraxinus excelsior used was chosen at 

random to test the effectiveness of various rootstocks on graft viability and 

subsequent vegetative growth.  Scions derived from ash seedlings are genetically 

diverse and would be less likely to show the direct effect of rootstocks.  

The experiments were conducted to test the effects of various rootstocks for their ability 

to produce viable grafts and to reduce vegetative growth in Fraxinus excelsior.  The 

objective was to produce a plant with multiple shoots which would flower early in its 

life cycle.  Over the two year growing period assessments were carried out and the 

results were as follows:-   

 When either Fraxinus excelsior Clone M72 and Clone 98 were grafted onto 

Fraxinus excelsior, the graft viability was 100% and 97% respectively, and 

remained at this level over two years   

 Furthermore when Clone 98 was grafted onto Syringa, Ligustrum and with the 

interstock  japonica the viability remained the same at 40%, 30% and 60% 

respectively.  When Clone M72 was grafted onto Fraxinus paxiana, viability 

was 40%.  The un-grafted Control remained at 93% over a two-year growing 

period assessment.  All other treatments dropped viability in the range 33% to 

87%.    

 Budding viability was extremely low with the best treatment at 30% and the 

worst failing. 

 When the plants were measured for vegetative growth extensions in 2014 the 

un-grafted Control exceeded all other treatments, however that situation changed 

in 2015 and Clone 98 grafted onto Fraxinus excelsior exceeded the un-grafted 
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Control by 6%.  All other treatments had less vegetative growth than the un-

grafted Control ranging from 28% to 79%.   

 In 2014 and 2015 there was no significant difference in vegetative growth 

produced by Clone M72 and Clone 98.  

 When the rootstocks and scions were measured for restrictions or increases in 

stem diameters above and below the graft union, interestingly it showed that 

negative values e.g. scion was smaller in diameter than the rootstock for all 

combinations of Fraxinus rootstocks and for interstocks of both Fraxinus 

species, whereas Ligustrum and Syringa rootstocks gave positive values e.g. the 

scion was greater in diameter than the rootstock. This would indicate 

incompatibilities between the rootstock and scion, however these 

incompatibilities are not of major concern if the graft manages to produce 

multiple shoots which flower early in life and also conceivably these 

incompatibilities which could leave the graft union vulnerable to breakage could 

be managed by keeping the plants in a greenhouse. 

 Also, when the number of shoots produced per plant was tabulated Fraxinus 

excelsior Clone M72 grafted onto Syringa rootstocks produced 3.1 shoots per 

plant which was greater than when it was grafted into Fraxinus excelsior at 2.5.    

 Regarding bud flushing, the aim was to determine if different rootstocks would 

influence this trait.  Flushing may have an influence in relation to Chalara 

susceptibility. The variances in flushing times over the grafting treatments 

varied from three days to fourty one days with some plants failing to emerge.  

Clone 98 grafted onto Ligustrum rootstocks was the fastest to fully flush within 

three days.  There was no difference between ash non-grafted and Clone 98 

grafted onto Fraxinus excelsior which flushed at six days.  The budding 
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treatments that were assessed exhibited poor results, in that they took 41 days to 

fully flush.  

 Flowering is a highly desirable trait in the context of accelerating the onset of 

the production of seeds in Chalara resistant trees.  In 2015 and 2016, all plants 

were assessed for flowering, as it might be anticipated that grafted plants might 

flower early in life because the scion material was from mature trees originally 

and they had flowered sporadically in the clonal conservation collection from 

which the scion material was collected.  Flowering was extremely low in 2015, 

on an overall basis and it was at 0.01%, and for 2016 it was 0.02% (Appendix 

2).  However a longer period of observation is required to deliver a fair 

assessment of the situation. 

 The reduction in vegetative growth relative to ungrafted Controls and to Clone 

98 was due to the reduced vigour of the scions of Clone M72.   

Future work recommenadations include topworking onto trees which exhibit prolific 

flowering with Chalara tolerant scion material, micrografting, cross pollination with 

Asiatic species and grafting onto other Asiatic species.  As there is very little 

knowledge on rootstocks for desired traits it would be beneficial to start this 

selection process.  
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Appendix 1 Rootstock / scion reduction or increase 

Rootstock / scion reduction or increase expressed in mm, used in Chapter 3 

 

Rootstock  Scion Difference Scion % reduction / increase 

Block 1 Treat 1 8.54 7.19 -1.35 -15.8 

Block 1 Treat 1 8.33 7.87 -0.46 -5.52 

Block 1 Treat 2 10.43 8.21 -2.22 -21.28 

Block 1 Treat 2 10.16 7.38 -2.78 -27.36 

Block 1 Treat 2 13.25 7.33 -5.92 -44.67 

Block 1 Treat 3 13.49 9.2 -4.29 -31.8 

Block 1 Treat 3 15.88 10.56 -5.32 -33.5 

Block 1 Treat 3 16.84 9.22 -7.62 -45.24 

Block 1 Treat 3 12.08 8.15 -3.93 -32.53 

Block 1 Treat 3 13.21 8.04 -5.17 -39.13 

Block 1 Treat 4 14.12 9.05 -5.07 -35.9 

Block 1 Treat 4 13.05 8.06 -4.99 -38.23 

Block 1 Treat 4 11.59 8.44 -3.15 -27.17 

Block 1 Treat 4 12.21 10.55 -1.66 -13.59 

Block 1 Treat 4 12.94 9.84 -3.1 -23.95 

Block 1 Treat 5 13.04 10.46 -2.58 -19.78 

Block 1 Treat 5 14.02 10.3 -3.72 -26.53 

Block 1 Treat 5 10.34 9.58 -0.76 -7.35 

Block 1 Treat 5 14.24 10.11 -4.13 -29.00 

Block 1 Treat 5 15.67 7.65 -8.02 -51.18 

Block 1 Treat 6 8.43 10.01 +1.58 +18.74  

Block 1 Treat 6 14.04 14.6 +0.56 +3.98  
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Rootstock  Scion Difference Scion % reduction / increase 

Block 1 Treat 7 11.2 14.28 +3.08 +27.5  

Block 1 Treat 7 28.49 12.9 -15.59 -54.72 

Block 1 Treat 8 Dead       

Block 1 Treat 9 8.28 9.84 +1.56 +18.84  

Block 1 Treat 9 13.28 11.09 -2.19 -16.49 

Block 1 Treat 10 12.24 5.69 -6.55 -53.51 

Block 1 Treat 10 13.33 5.93 -7.4 -55.51 

Block 1 Treat 10 12.09 6.77 -5.32 -44.00 

Block 1 Treat 11 14.64 5.06 -9.58 -65.43 

Block 1 Treat 11 10.89 7.26 -3.63 -33.33 

Block 1 Treat 11 11.51 10.46 -1.05 -9.12 

Block 1 Treat 11 10.26 7.5 -2.76 -26.9 

Block 1 Treat11 14.64 7.29 -7.35 -50.2 

Block 1 Treat 12 8.34 10.61 +2.27 +27.21  

Block 1 Treat12 7.93 9.96 +2.03 +25.59  

Block 1 Treat 13 Dead       

Block 1 Treat 14 Dead       

Block 1 Treat 15 Dead       

Block 1 Treat 16 Dead       

Block 1 Treat 17 Dead       

Block 2 Treat 1 9.8 9.16 -0.64 -6.53 

Block 2 Treat 2 11.33 7.59 -3.74 -33.00 

Block 2 Treat 2 12.06 8.25 -3.81 -31.59 

Block 2 Treat 2 14.6 9.29 -5.31 -36.36 

Block 2 Treat 2 12.89 8.43 -4.46 -34.6 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 2 Treat 3 12.64 6.16 -6.48 -51.26 

Block 2 Treat 3 18.41 11.89 -6.52 -35.41 

Block 2 Treat 3 11.07 7.38 -3.69 -33.33 

Block 2 Treat 3 16.92 12.47 -4.45 -26.3 

Block 2 Treat 3 Dead       

Block 2 Treat 4 11.69 10.2 -1.49 -12.74 

Block 2 Treat 4 12.36 8.68 -3.68 -29.77 

Block 2 Treat 4 14.37 10.51 -3.86 -26.86 

Block 2 Treat 4 16.97 12.69 -4.28 -25.22 

Block 2 Treat 4 14.29 12.31 -1.98 -13.85 

Block 2 Treat 5 15.73 9.79 -5.94 -37.76 

Block 2 Treat 5 15.22 11.44 -3.78 -24.83 

Block 2 Treat 5 12.37 9.34 -3.03 -24.49 

Block 2 Treat 5 15.93 8.47 -7.46 -46.82 

Block 2 Treat 5 11.26 9.79 -1.47 -13.05 

Block 2 Treat 6 8.01 8.23 +0.22  +2.74 

Block 2 Treat 6 8.68 11.32 +2.64 +30.41  

Block 2 Treat 7 9.88 8.79 -1.09 -11.03 

Block 2 Treat 7 11.08 12.69 +1.61  +14.53 

Block 2 Treat 8 6.99 7.69 +0.7 +10.01  

Block 2 Treat 8 5.44 6.56 +1.12 +20.58  

Block 2 Treat 9 8.09 14.96 +6.87 +84.91  

Block 2 Treat 9 9.06 12.15 +3.09 +34.10  

Block 2 Treat 10 11.02 6.68 -4.34 -39.38 

Block 2 Treat 10 14.04 10.1 -3.94 28.06 

Block 2 Treat 11 15.3 6.17 -9.13 -59.67 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 2 Treat 11 17.09 8.69 -8.4 -49.15 

Block 2 Treat 11 16.59 10.06 -6.53 -39.36 

Block 2 Treat11 16.52 9.74 -6.78 -41.04 

Block 2 Treat 11 18.5 8.51 -9.99 -54.00 

Block 2 Treat 12 Dead       

Block 2 Treat 13 Dead       

Block 2 Treat 14 10.69 7.72 -2.97 -27.78 

Block 2 Treat 14 11.18 8.36 -2.82 -25.22 

Block 2 Treat 15 11.71 7.69 -4.02 -34.32 

Block 2 Treat 15 8.9 6.07 -2.83 -31.79 

Block 2 Treat 15 10.86 6.04 -4.82 -44.38 

Block 2 Treat 15 10.83 5.93 -4.9 -45.24 

Block 2 Treat 16 Dead       

Block 2 Treat 17 Dead       

Block 3 Treat 1 14.49 8.18 -6.31 -43.54 

Block 3 Treat 1 8.13 8.06 -0.07 -0.86 

Block 3 Treat 2 13.34 9.48 -3.86 -28.93 

Block 3 Treat 2 11.36 7.05 -4.31 -37.94 

Block 3 Treat 2 13.26 9.34 -3.92 -29.56 

Block 3 Treat 2 11.87 6.75 -5.12 -43.13 

Block 3 Treat 3 11.96 8.84 -3.12 -26.08 

Block 3 Treat 3 10.19 6.21 -3.98 -39.05 

Block 3 Treat 3 16.72 10.49 -6.23 -37.26 

Block 3 Treat 3 14.79 10.29 -4.5 -30.42 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 3 Treat 3 10.96 5.53 -5.43 -49.54 

Block 3 Treat 4 16.23 11.09 -5.14 -31.66 

Block 3 Treat 4 12.89 10.09 -2.8 -21.72 

Block 3 Treat 4 11.94 8.41 -3.53 -29.56 

Block 3 Treat 4 13.04 9.84 -3.2 -24.53 

Block 3 Treat 4 11.54 8.28 -3.26 -28.24 

Block 3 Treat 5 11.95 8.93 -2.99 -25.27 

Block 3 Treat 5 16.88 8.92 -7.96 -47.15 

Block 3 Treat 5 13.02 10.32 -2.7 -20.73 

Block 3 Treat 5 14.3 11.33 -2.97 -20.76 

Block 3 Treat 5 14.24 9.25 -4.99 -35.04 

Block 3 Treat 6 11.46 11.65 +0.19  +1.65 

Block 3 Treat 6 11.72 10.85 -0.87 -7.42 

Block 3 Treat 6 23.34 13.88 -9.46 -40.53 

Block 3 Treat 7 9.92 11.06 +1.14 +11.47 

Block 3 Treat 8 Dead       

Block 3 Treat 8 Dead       

Block 3 Treat 9 Dead       

Block 3 Treat 9 Dead       

Block 3 Treat 9 14.82 9.93 -4.89 -32.99 

Block 3 Treat 10  11.89 6.77 -5.12 -43.06 

Block 3 Treat 10 6.3 5.85 -0.45 -7.14 

Block 3 Treat 11 18.17 9.69 -8.48 -46.67 

Block 3 Treat 11 18.09 8.02 -10.07  

Block 3 Treat 11 15.58 10.61 -4.97 -31.89 



 

137 
 

 

Rootstock  Scion Difference Scion % reduction / increase 

Block 3 Treat 11 17.05 9.12 -7.93 -46.51 

Block 3 Treat 12 7.96 6.47 -1.49 -18.71 

Block 3 Treat 12 8.46 8.90 +0.44  +5.20 

Block 3 Treat 13 Dead       

Block 3 Treat 14 10.75 4.71 -6.04 -56.18 

Block 3 Treat 14 10.07 7.03 -3.04 -30.18 

Block 3 Treat 14 14.96 9.35 -5.61 -37.5 

Block 3 Treat 14 11.23 7.84 -3.39 -30.18 

Block 3 Treat 15 8.52 4.30 -4.22 -49.53 

Block 3 Treat 15 12.14 8.54 -3.6 -29.65 

Block 3 Treat 16 10.38 6.93 -3.45 -33.23 

Block 3 Treat 17 Dead       

Block 4 Treat 1 12.96 10.03 -2.93 -22.60 

Block 4 Treat 1 7.32 8.05 0.73  +9.97 

Block 4 Treat 2 15.15 7.71 -7.44 -49.10 

Block 4 Treat 2 13.96 7.02 -6.94 -49.71 

Block 4 Treat 2 11.88 8.97 -2.91 -24.49 

Block 4 Treat 3 14.7 9.18 -5.52 -37.55 

Block 4 Treat 3 17.89 9.14 -8.75 -48.91 

Block 4 Treat 3 15.47 10.43 -5.04 -32.57 

Block 4 Treat 3 13.16 8.40 -4.76 -36.17 

Block 4 Treat 3 14.93 10.79 -4.14 -27.72 

Block 4 Treat 4 12.87 10.45 -2.42 -18.80 

Block 4 Treat 4 13.35 9.91 -3.44 -25.76 

Block 4 Treat 4 11.34 10.42 -0.92 -8.11 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 4 Treat 4 13.14 8.7 -4.44 -33.78 

Block 4 Treat 4 10.88 7.7 -3.18 -29.22 

Block 4 Treat 5 15.42 11.58 -3.84 -24.90 

Block 4 Treat 5 15.44 10.93 -4.51 -29.20 

Block 4 Treat 5 14.63 9.79 -4.84 -33.08 

Block 4 Treat 5 10.87 7.61 -3.26 -29.99 

Block 4 Treat 5 13.34 9.53 -3.81 -28.56 

Block 4 Treat 6 10.28 10.83 0.55  +5.35 

Block 4 Treat 6 9.76 10.8 1.04  +10.65 

Block 4 Treat 6 Dead       

Block 4 Treat 7 9.08 9.82 0.74 +8.14 

Block 4 Treat 7 10.65 12.26 1.61 +15.11 

Block 4 Treat 8 Dead       

Block 4 Treat 9 12.58 7.47 -5.11 -40.62 

Block 4 Treat 9 8.25 8.92 0.67 +8.12 

Block 4 Treat 10 6.85 7.11 0.26 +3.79 

Block 4 Treat 10 10.98 5.64 -5.34 -48.63 

Block 4 Treat 10 18.05 8.86 -9.19 -50.91 

Block 4 Treat 11 14.39 7.98 -6.41 -44.54 

Block 4 Treat 11 15.59 5.88 -9.71 -62.28 

Block 4 Treat 11 21.05 8.7 -12.35 -58.66 

Block 4 Treat 11 17.38 7.88 -9.5 -54.66 

Block 4 Treat 11 17.11 7.39 -9.72 -56.8 

Block 4 Treat 12 7.36 7.33 -0.03 -0.04  

Block 4 Treat 12 7.74 8.14 0.4 +5.16  

Block 4 Treat 12 7.92 6.88 -1.04 -13.13 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 4 Treat 12 Dead       

Block 4 Treat 12 Dead       

Block 4 Treat 13 None       

Block 4 Treat 14 11.58 5.61 -5.97 -51.55 

Block 4 Treat 14 11.45 6.42 -5.03 -43.93 

Block 4 Treat 15 11.24 6.63 -4.61 -41.01 

Block 4 Treat 15 15.63 8.59 -7.04 -45.04 

Block 4 Treat 15 10.3 6.31 -3.99 -38.73 

Block 4 Treat 15 9.45 5.29 -4.16 -44.02 

Block 4 Treat 16 None     

 Block 4 Treat 17 None     

 Block 5 Treat 1 8.83 7.48 -1.35 -15.28 

Block 5 Treat 1 14.3 9.33 -4.97 -34.75 

Block 5 Treat 2 12.27 10.25 -2.02 -16.46 

Block 5 Treat 2 10.07 8.73 -1.34 -13.3 

Block 5 Treat 2 12.82 8.95 -3.87 -30.18 

Block 5 Treat 2 11.39 8.04 -3.35 -29.41 

Block 5 Treat 3 10.87 7.49 -3.38 -31.09 

Block 5 Treat 3 12.55 8.83 -3.72 -29.64 

Block 5 Treat 3 11.19 8.99 -2.2 -19.66 

Block 5 Treat 3 13.56 9.45 -4.11 -30.3 

Block 5 Treat 4 14.74 11.77 -2.97 -20.14 

Block 5 Treat 4 14.26 9.23 -5.03 -35.27 

Block 5 Treat 4 14.37 9.85 -4.52 -31.45 

Block 5 Treat 5 10.96 7.65 -3.31 -30.2 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 5 Treat 5 16.72 10.94 -5.78 -34.56 

Block 5 Treat 5 10.7 9.6 -1.1 -10.28 

Block 5 Treat 5 14.33 10.91 -3.42 -23.86 

Block 5 Treat 5 14.22 11.38 -2.84 -19.97 

Block 5 Treat 6 9.89 10.25 0.36 +3.64 

Block 5 Treat 7 13.24 10.16 -3.08 -23.26 

Block 5 Treat 8 9.92 11.56 1.64 +16.53 

Block 5 Treat 9 Dead     

 Block 5 Treat 10 14.92 7.81 -7.11 -47.65 

Block 5 Treat 11 26.84 9.21 -17.63 -65.68 

Block 5 Treat 11 12.89 8.19 -4.7 -36.46 

Block 5 Treat 11 14.92 7.62 -7.3 -48.92 

Block 5 Treat 11 9.66 7.05 -2.61 -27.01 

Block 5 Treat 12 Dead       

Block 5 Treat 13 Dead       

        Block 5 Treat 14 Dead       

Block 5  Treat 15 Dead       

Block 5 Treat 15 12.03 7.39 -4.64 -38.57 

Block 5 Treat 15 10.38 5.79 -4.59 -44.21 

Block 5 Treat 15 7.68 5.11 -2.57 -33.46 

Block 5 Treat 16 Dead       

Block 5 Treat 17 Dead       

Block 6 Treat 1 12.89 6.47 -6.42 -49.8 

Block 6 Treat 1 13.92 10.63 -3.29 -23.63 

Block 6 Treat 2 14.93 11.07 -3.86 -25.85 
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Rootstock  Scion Difference Scion % reduction / increase 

Block 6 Treat 2 10.58 8.19 -2.39 -22.58 

Block 6 Treat 2 13.82 9.42 -4.4 -31.83 

Block 6 Treat 2 13.73 8.67 -5.06 -36.85 

Block 6 Treat 3 16.12 10.83 -5.29 -32.81 

Block 6 Treat 3 11.64 7.82 -3.82 -32.81 

Block 6 Treat 3 13.26 9.45 -3.81 -28.73 

Block 6 Treat 3 13.08 8.02 -5.06 -38.68 

Block 6 Treat 4 15.62 12.55 -3.07 -19.65 

Block 6 Treat 4 13.35 9.76 -3.59 -26.89 

Block 6 Treat 4 20.66 17.06 -3.6 -17.42 

Block 6 Treat 4 16.26 11.19 -5.07 -31.18 

Block 6 Treat 4 15.47 11.87 -3.6 -23.27 

Block 6  Treat 5 13.61 9.93 -3.68 -27.03 

Block 6 Treat 5 16.27 11 -5.27 -32.39 

Block 6 Treat 5 16.81 10.5 -6.31 -37.53 

Block 6 Treat 5 16.01 10.62 -5.39 -33.66 

Block 6 Treat 5 11.15 7.95 -3.2 -28.69 

Block 6 Treat 6 8.20 12.06 3.86 +47.07 

Block 6 Treat 7 9.40 11.12 1.72 +18.29 

Block 6 Treat 8 10.13 15.69 5.56 +54.89 

Block 6 Treat 9 8.28 8.84 0.56 +6.76 

Block 6 Treat 10 Dead       

Block 6 Treat 11 13.62 7.6 -6.02 -44.19 

Block 6 Treat 11 17.66 8.49 -9.17 -51.92 

Block 6 Treat 11 14.76 Dead     

Block 6 Treat 12 Dead       
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Rootstock  Scion Difference Scion % reduction / increase 

Block 6 Treat 13 6.67 5.23 -1.44 -21.58 

Block 6 Treat 14 8.29 5.34 -2.95 -35.58 

Block 6 Treat 15 8.12 4.88 -3.24 -39.9 

Block 6 Traet 15 11.8 6.95 4.85 -41.1 

Block 6 Treat 15 Dead       

Block 6 Treat 16 Dead       
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Appendix 2 Flowering assessments for 2015 and 2016 

 

Appendix 2 represents the flowering assessments for 2015 and  2016. 0 means there 

were no flowers and 1 that it flowered. This appendix is used in section 3.11 

Assessed 07-04-2015 

Treat number Block1 Block 2 Block 3 Block 4 Block 5 Block 6 Total Flowers 

1 Clone M72 grafted 

onto paxiana 

0-0 0-0 0-0 0-0 0-0 0-0 12 0 

2 Clone M72 grafted 

onto chinensis 

0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 24 0 

3 Ash non – grafted 0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0 0-0-0-0 28 0 

4 Clone 98 grafted 

onto Fraxinus 

excelsior 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 1-0-0-0 0-0-0-0-0 29 1 

5 Clone M72 grafted 

onto Ash rootstocks 

 

1-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 30 1 

6 Clone M72 

grafted onto 

Ligustrum 

rootstocks 

0-0-0 0-0-0 0-0-0 0-0-0 0-0 0-0 16 0 

7 Clone 98 grafted 

onto Ligustrum 

rootstocks 

0-0 0-0-0 0 0-0 0 0 10 0 

8   Clone M72 

grafted onto Syringa 

rootstocks 

0-0-0-0 0-0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 20 0 

9 Clone 98 grafted 

onto Syringa 

rootstocks 

0-0 0-0-0 0-0-0 0-0 0-0 0-0 14 0 

10 Intergrafting      

japonica interstock  

-  Ash rootstock     

0-0-0 0-0-0-

0-0 

0-0 0-0-0 0 0-0 16 0 

11 platypoda 

interstock  -  Ash 

rootstock 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0 0-0-0-0-0 0-0-0-0 0-0-0-0 27 0 

12 Clone 98 budded 

onto Paxiana 

0-0-0-

0-0-0 

0-0-0-

0-0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 32 0 

13 Clone M72 

budded onto Paxiana 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-

0- 

0-0-0-0-0 0-0-0-0-0 30 0 

14 Clone 98 budded 

onto Fraxinus 

excelsior 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 30 0 

15 Clone M72 

budded onto Fraxinus 

excelsior 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 0-0-0-0-0 30 0 

16 Clone Clone 98 

budded onto 

Platypoda 

0-0 0-0 0-0 0-0 0 0 10 0 

17 Clone M72 

budded onto 

Platypoda 

0 0 0-0 0 0 0 7 0 
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Flowering assessments  

 

Flowering Assessed 15-04-2016 

Treatment number Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Total Flowers 

1 Clone M72 grafted 

onto Paxiana 

0-0 0-0 0-0 0-0 0-0 0-0 12 0 

2 Clone M72 grafted 

onto Chinensis 

0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 24 0 

3 Ash non – grafted 0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0 0-0-0-0 28 0 

4 Clone 98 grafted onto 

Fraxinus excelsior 

1-1-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-0 0-0-0-0 28 2 

5 Clone M72 grafted 

onto Ash rootstocks 

 

0-1-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-

0-0 

0-0-0-

0-0 

30 1 

6 Clone M72 grafted 

onto Ligustrum 

rootstocks 

0-0-0 0-0-0 0-0-0 0-0-0 0-0 0-0 16 0 

7 Clone 98 grafted onto 

Ligustrum rootstocks 

0-0 0-0-0 0 0-0 0 0 10 0 

8   Clone M72 grafted 

onto Syringa rootstocks 

0-0-0-0 0-0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 20 0 

9 Clone 98 grafted onto 

Syringa rootstocks 

0-0 0-0-0 0-0-0 0-0 0-0 0-0 14 0 

10 Intergrafting      

Japonica interstock  -  

Ash rootstock     

0-0-0 0-0-0-

0-0 

0-0 0-0-0 0 0-0 16 0 

11 Clone98 Platypoda 

interstock  -  Ash 

rootstock 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0 0-0-0-0-0 1-0-0-0 0-0-0-0 27 1 

12 Clone 98 budded 

onto Paxiana 

0-0-0-

0-0-0 

0-0-0-

0-0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-

0-0 

0-0-0-

0-0 

32 0 

13 Clone M72 budded 

onto Paxiana 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-

0- 

0-0-0-

0-0 

0-0-0-

0-0 

30 0 

14 Clone 98 budded 

onto Fraxinus excelsior 

0-0-0-

0-0 

0-0-0-

0-0 

0-0-0-0-0 0-0-0-0-0 0-0-0-

0-0 

0-0-0-

0-0 

30 0 

15 Clone M72 budded 

onto Fraxinus excelsior 

0-0-0-

0-0 

1-1-0-0 0-0-0-0-0 0-0-0-0-0 0-0-0-

0-0 

0-0-0-

0-0 

30 0 

16 Clone Clone 98 

budded onto Platypoda 

0-0 0-0 0-0 0-0 0 0 10 0 

17 Clone M72 budded 

onto Platypoda 

0 0 0-0 0 0 0 7 0 
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Appendix 3 Odds ratios and confidence limits 

 

Odds ratios and confidence limits for the analysis of viability of Fraxinus 

excelsior scions grafted onto various species of rootstocks at the end of first year of 

growth, 2014. Data used in Table 3.3 

Model Information 

Data Set WORK.TABLE 3.2 

Response Variable (Events) No_grafts_viable 

Response Variable (Trials) No_grafts 

Model binary logit 

Optimization Technique Fisher's scoring 

Likelihood Penalty Firth's bias correction 

 
 

Number of Observations Read 11 

Number of Observations Used 11 

Sum of Frequencies Read 326 

Sum of Frequencies Used 326 

 
 

Response Profile 

Ordered 
Value 

Binary 
Outcome 

Total 
Frequency 

1 Event 222 

2 Nonevent 104 

 
 

Class Level Information 

Class Value Design Variables 

Treatment 1 1 0 0 0 0 0 0 0 0 0 0 

 2 0 1 0 0 0 0 0 0 0 0 0 

 4 0 0 1 0 0 0 0 0 0 0 0 

 5 0 0 0 1 0 0 0 0 0 0 0 

 6 0 0 0 0 1 0 0 0 0 0 0 

 7 0 0 0 0 0 1 0 0 0 0 0 

 8 0 0 0 0 0 0 1 0 0 0 0 

 9 0 0 0 0 0 0 0 1 0 0 0 

 10 0 0 0 0 0 0 0 0 1 0 0 

 11 0 0 0 0 0 0 0 0 0 1 0 

 3 0 0 0 0 0 0 0 0 0 0 1 

 



 

146 
 

 

Intercept-Only Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 
 

Model Fit Statistics 

Criterion 
Intercept 

Only 

Intercept and 
Covariates 

Log 
Likelihood 

Full Log 
Likelihood 

AIC 389.711 315.387 42.170 

SC 393.498 357.043 83.826 

-2 Log L 387.711 293.387 20.170 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 94.3245 10 <.0001 

Score 86.8121 10 <.0001 

Wald 56.1819 10 <.0001 

 
 

Type 3 Analysis of Effects 

Effect DF 
Wald 

Chi-Square Pr > ChiSq 

Treatment 10 56.1819 <.0001 

 
 

Analysis of Penalized Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 

Intercept  1 2.4336 0.6705 13.1730 0.0003 

Treatment 1 1 -2.8257 0.7669 13.5762 0.0002 

Treatment 2 1 -1.2498 0.7933 2.4821 0.1152 

Treatment 4 1 0.5453 1.0833 0.2534 0.6147 

Treatment 5 1 1.6778 1.5973 1.1034 0.2935 

Treatment 6 1 -2.3044 0.7639 9.1010 0.0026 

Treatment 7 1 -3.2504 0.7787 17.4217 <.0001 

Treatment 8 1 -1.7646 0.7736 5.2033 0.0225 

Treatment 9 1 -2.8257 0.7669 13.5762 0.0002 

Treatment 10 1 -2.0441 0.7847 6.7863 0.0092 
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Analysis of Penalized Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 

Treatment 11 1 -0.3722 0.8845 0.1771 0.6739 

Treatment 3 0 0 . . . 

 
 

Odds Ratio Estimates 

Effect 
Point 

Estimate 
95% Wald 

Confidence Limits 

Treatment 1  vs 3 0.059 0.013 0.266 

Treatment 2  vs 3 0.287 0.061 1.357 

Treatment 4  vs 3 1.725 0.206 14.418 

Treatment 5  vs 3 5.354 0.234 122.537 

Treatment 6  vs 3 0.100 0.022 0.446 

Treatment 7  vs 3 0.039 0.008 0.178 

Treatment 8  vs 3 0.171 0.038 0.780 

Treatment 9  vs 3 0.059 0.013 0.266 

Treatment 10 vs 3 0.129 0.028 0.603 

Treatment 11 vs 3 0.689 0.122 3.902 

 
 

 
 

 

Treatment 11 vs 3

Treatment 10 vs 3

Treatment 9 vs 3

Treatment 8 vs 3

Treatment 7 vs 3

Treatment 6 vs 3

Treatment 5 vs 3

Treatment 4 vs 3

Treatment 2 vs 3

Treatment 1 vs 3

0 25 50 75 100 125

Odds Ratio

Odds Ratios with 95% Wald Confidence Limits
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Association of Predicted Probabilities and 
Observed Responses 

Percent Concordant 77.4 Somers' D 0.633 

Percent Discordant 14.1 Gamma 0.691 

Percent Tied 8.5 Tau-a 0.276 

Pairs 23088 c 0.816 

 
 

Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 1 vs 2 0.207 0.068 0.625 

Treatment 1 vs 4 0.034 0.006 0.212 

Treatment 1 vs 5 0.011 <0.001 0.208 

Treatment 1 vs 6 0.594 0.213 1.652 

Treatment 1 vs 7 1.529 0.527 4.437 

Treatment 1 vs 8 0.346 0.121 0.990 

Treatment 1 vs 9 1.000 0.356 2.806 

Treatment 1 vs 10 0.458 0.155 1.350 

Treatment 1 vs 11 0.086 0.022 0.330 

Treatment 1 vs 3 0.059 0.013 0.266 

Treatment 2 vs 4 0.166 0.026 1.070 

Treatment 2 vs 5 0.054 0.003 1.033 

Treatment 2 vs 6 2.871 0.958 8.604 

Treatment 2 vs 7 7.393 2.371 23.050 

Treatment 2 vs 8 1.673 0.544 5.146 

Treatment 2 vs 9 4.835 1.600 14.608 

Treatment 2 vs 10 2.213 0.699 7.008 

Treatment 2 vs 11 0.416 0.102 1.691 

Treatment 2 vs 3 0.287 0.061 1.357 

Treatment 4 vs 5 0.322 0.012 8.689 

Treatment 4 vs 6 17.283 2.814 106.162 

Treatment 4 vs 7 44.508 7.073 280.074 

Treatment 4 vs 8 10.073 1.614 62.856 

Treatment 4 vs 9 29.106 4.715 179.668 

Treatment 4 vs 10 13.322 2.097 84.650 

Treatment 4 vs 11 2.503 0.334 18.770 

Treatment 4 vs 3 1.725 0.206 14.418 

Treatment 5 vs 6 53.636 2.863 >999.999 

Treatment 5 vs 7 138.130 7.262 >999.999 

Treatment 5 vs 8 31.261 1.652 591.499 

Treatment 5 vs 9 90.331 4.806 >999.999 

Treatment 5 vs 10 41.346 2.161 791.192 
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Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 5 vs 11 7.768 0.365 165.359 

Treatment 5 vs 3 5.354 0.234 122.537 

Treatment 6 vs 7 2.575 0.895 7.410 

Treatment 6 vs 8 0.583 0.206 1.652 

Treatment 6 vs 9 1.684 0.605 4.684 

Treatment 6 vs 10 0.771 0.263 2.255 

Treatment 6 vs 11 0.145 0.038 0.553 

Treatment 6 vs 3 0.100 0.022 0.446 

Treatment 7 vs 8 0.226 0.077 0.669 

Treatment 7 vs 9 0.654 0.225 1.897 

Treatment 7 vs 10 0.299 0.098 0.912 

Treatment 7 vs 11 0.056 0.014 0.222 

Treatment 7 vs 3 0.039 0.008 0.178 

Treatment 8 vs 9 2.890 1.011 8.262 

Treatment 8 vs 10 1.323 0.440 3.973 

Treatment 8 vs 11 0.248 0.064 0.968 

Treatment 8 vs 3 0.171 0.038 0.780 

Treatment 9 vs 10 0.458 0.155 1.350 

Treatment 9 vs 11 0.086 0.022 0.330 

Treatment 9 vs 3 0.059 0.013 0.266 

Treatment 10 vs 11 0.188 0.047 0.750 

Treatment 10 vs 3 0.129 0.028 0.603 

Treatment 11 vs 3 0.689 0.122 3.902 
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Odds ratios and confidence limits for the analysis of viability of Fraxinus 

excelsior scions grafted onto various species of rootstocks at the end of first year of 

growth, 2015. Data used in Table 3.6 

 

Model Information 

Data Set WORK.TABLE 3.6 

Response Variable (Events) No_grafts_viable 

Response Variable (Trials) No_grafts 

Model binary logit 

Optimization Technique Fisher's scoring 

Likelihood Penalty Firth's bias correction 

 

 

Number of Observations Read 21 

Number of Observations Used 17 

Sum of Frequencies Read 465 

Sum of Frequencies Used 465 

 

 

Response Profile 

Ordered 

Value 

Binary 

Outcome 

Total 

Frequency 

1 Event 245 

2 Nonevent 220 

 

Class Level Information 

Class Value Design Variables 

Treatment 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

 7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

 9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

 10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

 11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

 12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

 14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

 15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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Class Level Information 

Class Value Design Variables 

 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

 

Intercept-Only Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

 

Model Fit Statistics 

Criterion 

Intercept 

Only 

Intercept and Covariates 

Log 

Likelihood 

Full Log 

Likelihood 

AIC 613.715 462.901 65.213 

SC 617.857 533.316 135.627 

-2 Log L 611.715 428.901 31.213 

 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 182.8141 16 <.0001 

Score 163.2603 16 <.0001 

Wald 94.2208 16 <.0001 

 

 

Type 3 Analysis of Effects 

Effect DF 

Wald 

Chi-Square Pr > ChiSq 

Treatment 16 94.2208 <.0001 

 

 

Analysis of Penalized Maximum Likelihood Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept  1 2.4336 0.6705 13.1730 0.0003 

Treatment 1 1 -2.8257 0.7669 13.5762 0.0002 

Treatment 2 1 -1.7169 0.7720 4.9468 0.0261 

Treatment 4 1 0.5453 1.0833 0.2534 0.6147 

Treatment 5 1 1.6777 1.5972 1.1033 0.2935 

Treatment 6 1 -2.9617 0.7697 14.8059 0.0001 

Treatment 7 1 -3.2504 0.7787 17.4217 <.0001 
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Analysis of Penalized Maximum Likelihood Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Treatment 8 1 -3.1027 0.7736 16.0868 <.0001 

Treatment 9 1 -2.8257 0.7669 13.5762 0.0002 

Treatment 10 1 -2.0441 0.7847 6.7863 0.0092 

Treatment 11 1 -0.6605 0.8475 0.6075 0.4357 

Treatment 12 1 -3.3393 0.7759 18.5226 <.0001 

Treatment 13 1 -4.8672 0.9483 26.3461 <.0001 

Treatment 14 1 -3.2504 0.7787 17.4217 <.0001 

Treatment 15 1 -1.6168 0.7787 4.3109 0.0379 

Treatment 16 1 -4.2794 1.1396 14.1013 0.0002 

Treatment 17 1 -5.1418 1.6994 9.1544 0.0025 

Treatment 3 0 0 . . . 

 

 

Odds Ratio Estimates 

Effect 

Point 

Estimate 

95% Wald 

Confidence Limits 

Treatment 1  vs 3 0.059 0.013 0.266 

Treatment 2  vs 3 0.180 0.040 0.816 

Treatment 4  vs 3 1.725 0.206 14.418 

Treatment 5  vs 3 5.353 0.234 122.493 

Treatment 6  vs 3 0.052 0.011 0.234 

Treatment 7  vs 3 0.039 0.008 0.178 

Treatment 8  vs 3 0.045 0.010 0.205 

Treatment 9  vs 3 0.059 0.013 0.266 

Treatment 10 vs 3 0.129 0.028 0.603 

Treatment 11 vs 3 0.517 0.098 2.720 

Treatment 12 vs 3 0.035 0.008 0.162 

Treatment 13 vs 3 0.008 0.001 0.049 

Treatment 14 vs 3 0.039 0.008 0.178 

Treatment 15 vs 3 0.199 0.043 0.913 

Treatment 16 vs 3 0.014 0.001 0.129 

Treatment 17 vs 3 0.006 <0.001 0.163 
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Association of Predicted Probabilities and Observed 

Responses 

Percent Concordant 80.5 Somers' D 0.667 

Percent Discordant 13.9 Gamma 0.706 

Percent Tied 5.6 Tau-a 0.333 

Pairs 53900 c 0.833 

 

 

Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 1 vs 2 0.330 0.116 0.939 

Treatment 1 vs 4 0.034 0.006 0.212 

Treatment 1 vs 5 0.011 <0.001 0.208 

Treatment 1 vs 6 1.146 0.405 3.240 

Treatment 1 vs 7 1.529 0.527 4.437 

Treatment 1 vs 8 1.319 0.461 3.772 

Treatment 1 vs 9 1.000 0.356 2.806 

Treatment 1 vs 10 0.458 0.155 1.350 

Treatment 1 vs 11 0.115 0.033 0.401 

Treatment 1 vs 12 1.671 0.581 4.811 

Treatment 1 vs 13 7.703 1.713 34.627 

Treatment 1 vs 14 1.529 0.527 4.437 

Treatment 1 vs 15 0.299 0.103 0.866 

Treatment 1 vs 16 4.279 0.610 30.012 

Treatment 17 vs 3

Treatment 16 vs 3

Treatment 15 vs 3

Treatment 14 vs 3

Treatment 13 vs 3

Treatment 12 vs 3

Treatment 11 vs 3

Treatment 10 vs 3

Treatment 9 vs 3

Treatment 8 vs 3

Treatment 7 vs 3

Treatment 6 vs 3

Treatment 5 vs 3

Treatment 4 vs 3

Treatment 2 vs 3

Treatment 1 vs 3

0 25 50 75 100 125

Odds Ratio

Odds Ratios with 95% Wald Confidence Limits
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Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 1 vs 17 10.137 0.436 235.692 

Treatment 1 vs 3 0.059 0.013 0.266 

Treatment 2 vs 4 0.104 0.017 0.648 

Treatment 2 vs 5 0.034 0.002 0.634 

Treatment 2 vs 6 3.472 1.210 9.961 

Treatment 2 vs 7 4.634 1.575 13.634 

Treatment 2 vs 8 3.998 1.378 11.594 

Treatment 2 vs 9 3.030 1.065 8.626 

Treatment 2 vs 10 1.387 0.464 4.149 

Treatment 2 vs 11 0.348 0.098 1.229 

Treatment 2 vs 12 5.065 1.735 14.786 

Treatment 2 vs 13 23.343 5.141 105.984 

Treatment 2 vs 14 4.634 1.575 13.634 

Treatment 2 vs 15 0.905 0.308 2.662 

Treatment 2 vs 16 12.968 1.835 91.651 

Treatment 2 vs 17 30.720 1.315 717.666 

Treatment 2 vs 3 0.180 0.040 0.816 

Treatment 4 vs 5 0.322 0.012 8.689 

Treatment 4 vs 6 33.347 5.378 206.787 

Treatment 4 vs 7 44.508 7.073 280.072 

Treatment 4 vs 8 38.396 6.153 239.594 

Treatment 4 vs 9 29.106 4.715 179.667 

Treatment 4 vs 10 13.322 2.097 84.649 

Treatment 4 vs 11 3.340 0.474 23.534 

Treatment 4 vs 12 48.648 7.767 304.720 

Treatment 4 vs 13 224.195 26.825 >999.999 

Treatment 4 vs 14 44.508 7.073 280.072 

Treatment 4 vs 15 8.690 1.381 54.681 

Treatment 4 vs 16 124.553 10.660 >999.999 

Treatment 4 vs 17 295.047 9.040 >999.999 

Treatment 4 vs 3 1.725 0.206 14.418 

Treatment 5 vs 6 103.476 5.491 >999.999 

Treatment 5 vs 7 138.108 7.263 >999.999 

Treatment 5 vs 8 119.143 6.298 >999.999 

Treatment 5 vs 9 90.316 4.807 >999.999 

Treatment 5 vs 10 41.339 2.161 790.894 

Treatment 5 vs 11 10.363 0.507 211.773 

Treatment 5 vs 12 150.955 7.961 >999.999 

Treatment 5 vs 13 695.675 30.401 >999.999 

Treatment 5 vs 14 138.108 7.263 >999.999 
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Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 5 vs 15 26.964 1.418 512.757 

Treatment 5 vs 16 386.486 13.336 >999.999 

Treatment 5 vs 17 915.529 14.061 >999.999 

Treatment 5 vs 3 5.353 0.234 122.493 

Treatment 6 vs 7 1.335 0.456 3.903 

Treatment 6 vs 8 1.151 0.400 3.318 

Treatment 6 vs 9 0.873 0.309 2.469 

Treatment 6 vs 10 0.400 0.134 1.188 

Treatment 6 vs 11 0.100 0.028 0.352 

Treatment 6 vs 12 1.459 0.503 4.232 

Treatment 6 vs 13 6.723 1.487 30.390 

Treatment 6 vs 14 1.335 0.456 3.903 

Treatment 6 vs 15 0.261 0.089 0.762 

Treatment 6 vs 16 3.735 0.530 26.307 

Treatment 6 vs 17 8.848 0.380 206.260 

Treatment 6 vs 3 0.052 0.011 0.234 

Treatment 7 vs 8 0.863 0.292 2.549 

Treatment 7 vs 9 0.654 0.225 1.897 

Treatment 7 vs 10 0.299 0.098 0.912 

Treatment 7 vs 11 0.075 0.021 0.269 

Treatment 7 vs 12 1.093 0.368 3.251 

Treatment 7 vs 13 5.037 1.095 23.176 

Treatment 7 vs 14 1.000 0.334 2.997 

Treatment 7 vs 15 0.195 0.065 0.585 

Treatment 7 vs 16 2.798 0.392 19.982 

Treatment 7 vs 17 6.629 0.282 155.861 

Treatment 7 vs 3 0.039 0.008 0.178 

Treatment 8 vs 9 0.758 0.265 2.168 

Treatment 8 vs 10 0.347 0.116 1.042 

Treatment 8 vs 11 0.087 0.025 0.309 

Treatment 8 vs 12 1.267 0.432 3.715 

Treatment 8 vs 13 5.839 1.282 26.595 

Treatment 8 vs 14 1.159 0.392 3.426 

Treatment 8 vs 15 0.226 0.077 0.669 

Treatment 8 vs 16 3.244 0.458 22.982 

Treatment 8 vs 17 7.684 0.328 179.792 

Treatment 8 vs 3 0.045 0.010 0.205 

Treatment 9 vs 10 0.458 0.155 1.350 

Treatment 9 vs 11 0.115 0.033 0.401 

Treatment 9 vs 12 1.671 0.581 4.811 
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Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 9 vs 13 7.703 1.713 34.627 

Treatment 9 vs 14 1.529 0.527 4.437 

Treatment 9 vs 15 0.299 0.103 0.866 

Treatment 9 vs 16 4.279 0.610 30.012 

Treatment 9 vs 17 10.137 0.436 235.692 

Treatment 9 vs 3 0.059 0.013 0.266 

Treatment 10 vs 11 0.251 0.069 0.913 

Treatment 10 vs 12 3.652 1.208 11.039 

Treatment 10 vs 13 16.829 3.615 78.338 

Treatment 10 vs 14 3.341 1.097 10.177 

Treatment 10 vs 15 0.652 0.214 1.987 

Treatment 10 vs 16 9.349 1.297 67.367 

Treatment 10 vs 17 22.147 0.937 523.664 

Treatment 10 vs 3 0.129 0.028 0.603 

Treatment 11 vs 12 14.567 4.084 51.965 

Treatment 11 vs 13 67.133 12.752 353.434 

Treatment 11 vs 14 13.327 3.711 47.859 

Treatment 11 vs 15 2.602 0.725 9.344 

Treatment 11 vs 16 37.296 4.696 296.199 

Treatment 11 vs 17 88.349 3.513 >999.999 

Treatment 11 vs 3 0.517 0.098 2.720 

Treatment 12 vs 13 4.608 1.007 21.087 

Treatment 12 vs 14 0.915 0.308 2.721 

Treatment 12 vs 15 0.179 0.060 0.531 

Treatment 12 vs 16 2.560 0.360 18.203 

Treatment 12 vs 17 6.065 0.259 142.215 

Treatment 12 vs 3 0.035 0.008 0.162 

Treatment 13 vs 14 0.199 0.043 0.913 

Treatment 13 vs 15 0.039 0.008 0.178 

Treatment 13 vs 16 0.556 0.060 5.185 

Treatment 13 vs 17 1.316 0.047 36.798 

Treatment 13 vs 3 0.008 0.001 0.049 

Treatment 14 vs 15 0.195 0.065 0.585 

Treatment 14 vs 16 2.798 0.392 19.982 

Treatment 14 vs 17 6.629 0.282 155.861 

Treatment 14 vs 3 0.039 0.008 0.178 

Treatment 15 vs 16 14.333 2.007 102.348 

Treatment 15 vs 17 33.953 1.444 798.303 

Treatment 15 vs 3 0.199 0.043 0.913 

Treatment 16 vs 17 2.369 0.068 82.778 
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Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits 

Treatment 16 vs 3 0.014 0.001 0.129 

Treatment 17 vs 3 0.006 <0.001 0.163 
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Appendix 4 Bord na Móna Growing Media 

 

Bord na Móna seed and modular compost  

Nitrogen -120 milligrammes / litre of compost  

Phosphorous – 60 milligrammes / litre of compost 

Potash – 200 milligrammes / litre of compost 

pH 5.3-5.7 

 

Bord na Móna nursery stock growing medium  

Nitrogen – 300 milligrammes / litre of compost 

Phosphorous – 90 milligrammes / litre of compost 

Potash – 300 milligrammes / litre of compost  

pH 5.3-5.7 
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