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 47 
The use of Raman spectroscopy to measure the biochemical profile of cells and tissue in health 48 

and disease may be a possible solution to many diagnostic problems in the clinical setting. 49 

Although its application has been extensive in identifying changes in the biochemical profiles of 50 

cancerous cells and tissue, its application for analysing changes to the cellular environment by 51 

external factors such as ionizing radiation has been less extensive. In tandem with this, the 52 

biological impact of low doses of ionizing radiation remains poorly understood. Extensive studies 53 

have been performed on the radiobiological effects associated with doses above 0.1Gy, and are 54 

well characterized, but current studies of low dose exposure to ionizing radiation reveal complex 55 

and highly variable responses to low dose exposures.  56 

The current study demonstrates, for the first time, the capability of Raman spectroscopy to detect 57 

radiation-induced damage responses in isolated lymphocytes from donors irradiated to doses of 58 

0.05 Gy and 0.5 Gy. Lymphocytes were isolated from peripheral blood in a cohort of volunteers, 59 

were cultured ex-vivo, and then irradiated. Within 1 hour after irradiation spectral effects were 60 

observed with Raman micro-spectroscopy and Principal Component Analysis - Linear 61 

Discriminant Analysis (PCA-LDA) at both doses relative to the sham-irradiated 0Gy control. 62 

Cellular DNA damage was confirmed using parallel γ-H2AX fluorescence measurements on the 63 

extractred lymphocytes per donor and per dose. DNA damage measurements exhibited inter-64 

individual variability between both donors and dose, which matched that seen in the spectral 65 

variability in the lymphocyte cohort. Further evidence of links between spectral features and 66 

DNA damage were also observed, and may potentially allow non-invasive insight into the DNA 67 

remodeling after exposure to ionizing radiation. 68 

 69 
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1. Introduction 70 

The mechanisms affecting high dose cell survival (at doses above ~0.1Gy) have been studied 71 

extensively and are relatively well understood for a wide range of cell lines (1). The mechanisms 72 

affecting low dose cell survival (at doses below ~0.1Gy) phenomena, such as low dose hyper-73 

radiosensitivity and increased radioresistance are yet to be fully understood (2). Studies have 74 

shown that a region of hyper radiosensitivity (HRS) in the dose region from 0-0.3Gy, followed by 75 

a region of increased radioresistance (IRR) in the region 0.3-0.6Gy (2), exists in many but not all 76 

cell types (3), including peripheral blood lymphocytes (4).  77 

Some suggest that this transition period is due to the activation of DNA repair systems such as the 78 

activation of the ataxia telangiectaisa-mutated (ATM) gene for the recruitment of further repair 79 

proteins such as the MRN complex (RAD50, MRE11 and NBS1) , which is responsible for the 80 

activation of down-stream pathways (5). While there are a myriad of lesion types that can occur 81 

following ionizing radiation, double strand breaks (DSBs) can be the most lethal and mutagenic if 82 

not repaired properly (6). Defects in repair pathways of DSBs can result in severe responses to 83 

radiotherapy or mis-diagnosis of exposure in dosimetry estimates. Histone H2AX is a molecule 84 

that is recruited to the site of DSBs. ATM phosphorylates H2AX to form γ-H2AX which is then 85 

used to recruit further repair molecules to the site of DSBs (7). If the ATM gene is defective then 86 

this process cannot occur through the action of ATM and other less proficient pathways may be 87 

activated. The measurement of phosphorylation of H2AX to γ-H2AX has been used as a method 88 

of assessing DNA damage and repair. The use of the γ-H2AX assay has been demonstrated as a 89 

technique that may be used for retrospective personal biodosimetry, however considerable inter-90 

individual variation in baseline levels of γ-H2AX fluorescence is problematic with this assay (9). 91 

Other approaches may therefore be necessary to allow retrospective dosimetry using direct 92 

biological measurements on exposed individuals. 93 

 94 

Vibrational spectroscopy, both FTIR and Raman spectroscopy, has become a useful tool for 95 

providing a complete biochemical profile of cellular contents, including nucleic acid, proteins, 96 
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lipids and fatty acids. Both FTIR and Raman spectroscopy have been shown to be useful for the 97 

diagnosis of diseased and healthy cells based on their biochemical profiles (10–12) and while 98 

extensive efforts have been made to standardize these techniques Raman spectroscopy has yet to 99 

reach the clinic as a method of diagnosis. Although much emphasis has been focused on disease 100 

diagnosis, Raman spectroscopy has been shown to have potential in the analysis of 101 

radiobiological effects at high ionizing radiation doses in prostate tumor cell lines (13). The 102 

spectral response following high doses of ionizing radiation in (13) showed changes in spectral 103 

intensities of the bands associated with the O-P-O vibration of the DNA back bone at ~810cm-1, 104 

nucleic acid bases (U,T,C,G and A, from DNA and RNA) at 784, 1486 and 1577cm-1, and several 105 

bands associated with vibrations from lipids and proteins (C-C,C-N vibrations at 936 and 106 

1127cm-1) that allowed for disctrimination between sham irradiated and irradiated cells at 24 107 

hours following ionizing radiation. In addition, FTIR spectra of irradiated human skin cells have 108 

demonstrated dose-dependent spectral changes that have been used for biodosimetry at both low 109 

(<0.1Gy) and high (>0.1Gy) doses (14). In this study the authors show that difference in 110 

absorbance spectra occur at bands associated with various vibrations arising from DNA, RNA and 111 

carbohydrates (overlapping vibrations from C-O at 1200 and 1030cm-1 and O-H vibrations at 112 

1290 and 1030) along with other characteristic vibrations from nucleic acids ( U at 996cm-1 and 113 

PO4
- at 965cm-1).  114 

 115 

The present study demonstrates for the first time the ability of Raman spectroscopy to detect low 116 

dose ionizing radiation effects in lymphocytes derived from a cohort of healthy donors. 117 

Discrimination of radiation damage through the use of spectral profile changes is shown to be 118 

possible at γ-radiation doses of 0.05Gy and 0.5Gy, which straddle the inflection in the cell 119 

survival curve in the low dose region. Changes in spectral profiles of individuals were found to be 120 

highly variable, making it difficult to create a model capable of predicting individual response to 121 

low dose ionizing radiation for its use in low dose dosimetry.  122 
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2. Materials and methods 123 

Ethical approval  124 

Ethics approval was awarded by the Dublin Institute of Technology ethics committee (2012) for the 125 

collection of blood donations from volunteers at the Institute for the purposes of this study. 126 

Volunteers consisted of both male and female donors within the age range of 21 to 56, and contained 127 

both smokers and non-smokers.  128 

Peripheral blood lymphocyte isolation 129 

A total of 20ml of fresh whole blood was drawn into lithium heparin tubes after obtaining informed 130 

consent from each of the donors. Peripheral blood mononuclear cells (PBMC) were isolated within 4h 131 

of sample collection. A total of 6 ml of Dulbecco's modified phosphate buffered saline (DPBS) 132 

(Sigma) was added to 6 ml of heparinised blood, mixed by gentle inversion and overlaid over 15 ml 133 

of Histopaque. Samples were then centrifuged at 400g for 30 min at room temperature. The PBMC 134 

layer was removed and washed three times. Finally, cells were centrifuged at 250g for 5 minutes at 135 

room temperature. The cell pellet was then resuspended in 3 ml of full media (RPMI+12.5 %(v/v) 136 

FBS + 2 mML-glutamine (Sigma)) supplemented with 2.5% (v/v) phytohaemagglutinin (PAA 137 

Laboratories). One ml of cell suspension was transferred to a T25 flask containing 4ml of full media. 138 

A total of 3 flasks were prepared for each donor and they were incubated for 72 hours at 37°C, 5% 139 

CO2 to allow separation of lymphocytes and monocytes by plastic adherence.  140 

Cell Irradiation and slide preparation 141 

A total of 5ml of cell suspension was placed in T25 flasks for irradiation. The flasks were either sham 142 

irradiated (0Gy) or irradiated (0.05Gy and 0.5Gy) 17 hours after plating using a cobalt 60 gamma ray 143 

teletherapy source at St. Luke’s hospital, Dublin.  The dose rate was approximately 1.5 Gy/min during 144 

these experiments and was determined from a decay corrected measurement of the in-beam axial dose 145 

at an 80cm source to chamber distance (measured using a secondary standard ionization chamber 146 

within a water equivalent phantom). The dose settings that were used and the actual dose delivered, 147 

with their respective uncertainties, were 0.05Gy (0.058Gy ± 17%) and 0.5Gy (0.511Gy ± 2%). The 148 
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actual dose that was delivered at the time of irradiation was determined from the axial dose, corrected 149 

for scatter and grid factors, the additional time that the sample was exposed to radiation ((with an 150 

accuracy of ± 0.005 min) during the extension and recession of the source from the within the cobalt 151 

unit), and source to sample distance (191.5cm for 0.05Gy and 100cm for 0.5Gy). The samples were 152 

then placed in an incubator at 37°C for 60 mins at which time, cells were fixed using 2% 153 

paraformaldehyde in phosphate-buffered saline. From the suspension, 40 µl was drop cast onto 154 

calcium fluoride (CaF2) slides. The slides were then washed in deionised H2O and the samples were 155 

allowed to dry for Raman spectroscopic measurements. 156 

Raman Spectroscopy 157 

Raman spectroscopy was performed using a Horiba Jobin Yvon Labram HR800 UV system, equipped 158 

with a 660nm solid-state diode laser delivering 100mW of power to the sample. Spectra were 159 

acquired for each of 20 different donors over a period of 6 months. All samples (sham irradiated cells 160 

(0Gy) and irradiated samples (0.05Gy and 0.5Gy) from each individual were recorded on the same 161 

day, together with a spectrum of 1,4-Bis (2-methylstyryl) benzene and NIST SRM 2245 for 162 

calibration purposes. Multiple calibration spectra were recorded before recording a sequential group 163 

of cellular spectra. Spectra were recorded from 30-40 cells per dose and time point and from each of 164 

the independent donors. The cells were ~8-12μm in size and each spectrum was recorded from 165 

individual cells using a 4x4μm raster scan of the cell including both signal from its nucleus and 166 

cytoplasm. Spectra were recorded with a 20 second integration time and averaged across three 167 

integrations per spectrum. Spectra were recorded using a diffraction grating ruled with 300 lines/mm 168 

giving a spectral resolution of ~2.1cm-1. The confocal hole was set to 150μm with the grating centered 169 

at 1350cm-1. All spectra were recorded within two weeks of slide preparation. Slides were stored in a 170 

desiccator until measurement.  171 

Raman spectral post processing  172 

All post processing was performed using Matlab version 7.9.0 (R2009b; Mathworks, USA) using the 173 

PLS-Toolbox version 6.51 (Eigenvector Research Inc.) and in-house algorithms. The spectra were 174 
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wavenumber aligned using the calibration spectrum of 1, 4-Bis (2-methylstyryl) benzene through the 175 

fitting of a polynomial to the relative positions of peaks in the calibration spectrum versus those in a 176 

common reference spectrum of the substance. This results in a spectral misalignment of <0.1 cm-1 177 

through day-to-day variation. Spectral intensity calibration was also performed using a reference 178 

spectrum of standard reference material SRM2245 (NIST). Baseline correction was performed using a 179 

nodal point baseline correction using the minimum amount of points possible to ensure minimal 180 

alteration of the spectra. Spectra were then lightly smoothed using a Savitsky Golay filter (5th order, 181 

15 point window). Substrate contributions from the CaF2 slide were also subtracted from the cellular 182 

spectra. All spectra were subsequently vector normalised before analysis. 183 

Principal component analysis-Linear discriminant analysis and statistical 184 

analysis 185 

Multivariate data classification approaches including Principal Component Analysis (PCA) with 186 

Linear Discriminant Analysis (LDA) have been used to identify features that can classify spectra in an 187 

unsupervised manner (10,15). Cellular Raman spectra consist of many overlapping regions from 188 

different constituents. PCA removes this redundancy while LDA attempts to discriminate between 189 

conditions using the previously determined principal components. In this study PCA-LDA is used to 190 

discriminate between sham irradiated and irradiated donor lymphocytes. All classifications in this 191 

study were performed using a Leave-One-Out-Cross validation (LOOCV) approach and confusion 192 

matrices, sensitivities and specificities were calculated on the basis of LOOCV. 193 

Statistical testing of each wavenumber was performed across the spectrum, to identify regions of the 194 

spectrum that the irradiated spectra varied significantly from the sham irradiated spectra. Significance 195 

testing was performed using a two tailed t-test independently on each wavenumber. Each  irradiated 196 

samples wavenumber was found to be significantly different from the sham if the significance level 197 

was found to be p<0.05. 198 
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γ-H2AX assay 199 

Cells were fixed at 1 hour after irradiation and frozen at -20ºC. They were later permeabilised in 200-200 

1000µl of 0.25% (v/v) Triton X-100 in PBS and incubated for 5 minutes at room temperature. 201 

Permeabilisation solution was then removed and the cells were resuspended in 200µl of blocking 202 

solution (PBS containing 2% (w/v) BSA) and incubated for 30 minutes at room temperature. 203 

Blocking solution was removed and the cells were resuspended in 150µl of primary antibody solution 204 

(Anti-phospho-histone H2AX, diluted 1:500 in blocking solution, Millipore) and incubated for a 205 

further 2 hours at room temperature. Washing was performed three times in 500µl of PBS and 150µl 206 

of secondary antibody solution (Alexa Fluor 488, diluted 1:200 in blocking solution, Invitrogen) was 207 

then added. The cells were incubated at room temperature for 1 hour in the dark and washing was 208 

performed in 500µl PBS three times. Fluorescence was analysed using a BD Accuri C6 flow 209 

cytometer. The mean fluorescence signal intensity due to green Alexa Fluor 488 dye was measured. A 210 

minimum of 10,000 events per sample were recorded, debris and cell aggregates were removed from 211 

the analysis using forward (FSC) and side scatter (SSC) characteristics. Significance testing was 212 

performed between sham irradiated and irradiated γ-H2AX measurements using a two tailed paired t-213 

test. 214 

 215 

3. Results 216 

Raman spectroscopic analysis of sham irradiated and irradiated donor 217 

lymphocytes. 218 

Figure 1 A shows the mean spectra from sham irradiated (0Gy) lymphocytes from 20 donors along 219 

with the pure spectra of DNA, RNA, phosphatidyl-inositol and actin. The spectral profiles of donor 220 

lymphocytes in this study are consistent with that observed in previous studies by (16–19), with bands 221 

observed at 770-790 cm-1 arising from vibrations associated with the DNA double helix, 1000-1003 222 

cm-1 occurring as a result of the vibrations of phenylalanine (20) and  bands occurring in the regions 223 
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1250-1350, 1400-1450 and 1500-1700 cm-1 (Amide I,II and III bands) associated with proteins, lipids 224 

and nucleic acids (21,22). The dotted dashed lines in the plot are to highlight typical spectral bands 225 

associated with biological species and band assignments are provided in table 1. Figure 1 B (top) 226 

shows the difference spectrum of sham irradiated and irradiated (0.05Gy) cells and the difference 227 

spectrum of sham irradiated and irradiated (0.5Gy) (bottom) cells fixed at 1 hour following ionizing 228 

radiation. Samples were fixed at one hour following ionizing radiation in order to correlate the initial 229 

DNA damage sensing measured by the change in Raman spectral profiles, to the DNA damage 230 

sensing measured by the γ-H2AX assay. Analysis of later time points would result in measurement of 231 

residual damage rather than initial DNA damage sensing (measured by γ-H2AX), where Raman 232 

spectroscopy may also measure changes in spectral profiles due to pathways downstream of initial 233 

sensing, such as cell cycle arrest, senescence and apoptosis. These cellular processes will result in 234 

changes in spectral profiles due to the up or down regulation of repair proteins and proteins associated 235 

with the other DNA damage responses in addition to the changes in spectral profiles due to the initial 236 

DNA damage response. The spectra of pure DNA and actin are plotted above and below the 237 

difference spectrum to highlight some of the origins of the change in spectral profiles of donor 238 

lymphocytes following ionizing radiation. The lightly shaded regions of Figure 1 B represent regions 239 

of the spectrum where irradiated samples had significantly higher intensities than that of the sham. 240 

The darker shaded regions represent regions of the spectrum where irradiated samples had 241 

significantly lower intensities than that of the sham. A similar change is observed in both doses with 242 

the exception of the band at 1650cm-1 in the Amide I region, which is associated with C=C stretching 243 

in protein and lipid (38). Increases in the regions 610-620 cm-1 (associated with C-C twisting of 244 

aromatic ring structure (20,23)), 635-640 cm-1  (C-S stretching and C-C twisting of proteins (20)), 245 

715-825 cm-1 (C-N membrane of phospholipids and phosphatidylcholine, A, T, U and C ring 246 

breathing and O-P-O DNA backbone stretching (22,24–27)), 845-850 cm-1 (Monosacchrides, 247 

polysaccrides and glucose (22,28)), 927-955 cm-1 (C-C stretching of amino acids proline and valine 248 

(29)), 1320-1340 cm-1 (G (DNA/RNA) and CH deformation (27)), 1565-1650 cm-1 (G and A nucleic 249 

acids and C=C bending (29,30)) and 1750-1800 cm-1 (C=O and C=C in lipids and fatty acids (24,31)) 250 
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were observed following ionizing radiation. Decreases in the regions 675-700 cm-1 (Ring breathing of 251 

DNA base G (20)), 1005-1020 cm-1 (( significantly less after 0.5Gy only) Phenylalanine and 252 

stretching of C-O of ribose (27,32)), 1085-1090 cm-1 (C-C vibration of acyl backbone in lipids and 253 

PO2 stretching (21,24,33)), 1100-1125 cm-1 (Amide III (21)), 1255-1275 cm-1 (A, T, C and G nucleic 254 

acids, Amide III (20,26,34,35)), 1420-1425 cm-1  (G, A of nucleic acids and CH deformation (27)) and 255 

1450-1525 cm-1 (CH2 bending, C=N stretching of lipids (36,37)) were observed following ionizing 256 

radiation. Although there is a change in the mean of the intensities of these bands, the distributions 257 

overlap considerably across the cohort of donors.  258 

Figure 2 A shows the difference spectra of control versus 0.05Gy in a total of 5 donors. In all cases 259 

there is a change in spectral profiles in the region 700-830cm-1 associated with nucleic acids and the 260 

phosphate backbone of DNA, the region 1070-1115cm-1 associated with C-C stretching of lipids and 261 

fatty acids, the band at 1094 cm-1 associated with the O-P-O stretching vibration of the DNA 262 

backbone, the region from 1550-1600 cm-1 associated with amide II band, tryptophan, guanine and 263 

adenine, and the region 1640-1730 cm-1 associated with the amide I, proteins, lipids and fatty acids. 264 

Although the variation consistently occurs in these regions the changes in spectral profile after 265 

0.05Gy irradiation are inconsistent, with some donors having increases in band intensities in these 266 

regions and others having decreases in band intensities. Aside from these regions there is a large 267 

variation in the changes in spectral profiles following ionizing radiation throughout the rest of the 268 

spectrum, with large variation occurring in the region 1150-1520 cm-1 which is associated with 269 

nucleic acids, proteins, lipids and fatty acids. Similar variation is observed in the spectral changes 270 

following 0.5Gy of ionizing radiation. Figure 2 B shows the difference spectra of 0.5Gy and 0Gy for a 271 

different 5 donors. Again variations are consistently observed in the regions 700-830cm-1, 1070-272 

1115cm-1 and 1550-1600 cm-1, but the change in spectral profile in these regions is inconsistent from 273 

donor to donor.  This matches that of the inter-individual variability in the baseline levels of γ-H2AX 274 

which are discussed under the γ-H2AX  fluorescence measurements section. 275 

 276 
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Classification of donor cohort by dose. 277 

PCA-LDA was performed on each donor’s spectra independently and classifications were performed 278 

on control spectra against 0.05Gy spectra, control spectra against 0.5Gy spectra and 0.05Gy against 279 

0.5Gy spectra. PCA-LDA was performed using three principal components which were selected to 280 

maximize the sensitivity and specificity of each classification and such that they explained ~80% of 281 

the total variance in the spectra. The performance of the classifiers was calculated using leave-one-282 

out-cross-validation (LOOCV). Figure 3 A shows the scatter plot of the PCA-LDA classification of 283 

sham irradiated and irradiated cells (0.05Gy) spectra from a single donor (Donor number 5). Principal 284 

component loadings are not shown due to the large inter-individual variability in the spectral features 285 

associated with the classification, however in all instances the principal components for each 286 

individual showed a high correlation to that of their difference spectra shown in Figure 2. The 287 

Matthews correlation coefficient (MCC) of the classification in Figure 3 A, was 0.79 with a 288 

sensitivity of 0.81 and a specificity of 1. MCC is used here to give a weighted combination of 289 

sensitivity and specificity, a value of +1 results in a classifier that predicts all instances correctly, a 290 

value of 0 results in a classifier that has a 50% chance of classifying any instance correctly and a 291 

value of -1 indicates that the classifier classifies each instance incorrectly. Figure 3 B shows the 292 

scatter plot of the PCA-LDA classification of sham irradiated and irradiated cells (0.5Gy) from the 293 

same donor. The Mathews correlation coefficient of this classification was 0.93 with a sensitivity of 294 

0.97 and a specificity of 0.97. In Figure 3 A the second principal component, which explains 22% of 295 

the total variance, is the principal component primarily responsible for the classification as the 296 

separation in the classes occurs along its axis. In Figure 3 the classification is due to a combination of 297 

principal components two and three mainly. The first principal component in both classifications was 298 

found to be almost identical and contributes very little to the performance of the classification 299 

(Principal component not shown). This principal component may arise from the variability in the 300 

spectra which arises from the inherent variability in the cell cycle distribution within the cell 301 

population, as the features in this component were found to be consistent with those observed by 302 

Matthews et al in (40). In both studies positive peaks in the first principal component occurred at 303 
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~670cm-1 (Guanine and thymine),  719cm-1 (choline), 728cm-1 (Adenine), 1100cm-1 (Phosphate 304 

backbone of DNA/RNA), ~1245cm-1 (Amide III β), 1450-1480cm-1 (Adenine, Guanine), 1575cm-1 305 

(Adenine, Guanine) and 1680cm-1(Amide I β). Negative peaks were observed in the principal 306 

components of both studies at ~700cm-1 (cholesterol),~ 1130cm-1 (C-C from lipids and C-N from 307 

proteins) and 1440cm-1 (CH2 deformation). 308 

 309 

PCA-LDA classification models were created for each donors sham irradiated and irradiated cells 310 

separately. A mean sensitivity and specificity of 0.88 (σ = 0.1) and 0.91 (σ = 0.07) respectively were 311 

obtained for classification of spectra from the 0.05Gy samples versus the sham irradiated samples. 312 

Similarly sensitivities and specificities of 0.92 (σ = 0.07) and 0.93 (σ = 0.07) respectively were seen 313 

in the classification of the 0.5Gy samples versus the sham. The sensitivities and specificities for each 314 

donor’s classifications are listed in table 2, in order of decreasing values of sensitivity. Larger values 315 

of sensitivity and specificity indicate larger changes in spectral profiles between classification 316 

conditions (0Gy v 0.05Gy, 0Gy v 0.5Gy or 0.05Gy v 0.5Gy). The variation in the classification 317 

sensitivities and specificities at each dose point demonstrates the variability in the changes in spectral 318 

profile of lymphocytes from donor to donor after ionizing radiation, which matches that of the 319 

variability of the dose response in the γ-H2AX assay. The classification rates for each individual show 320 

clearly that Raman spectroscopy can detect changes in spectral profiles between sham irradiated and 321 

irradiated cells at doses as low as 0.05Gy. 322 

 323 

PCA-LDA classification was also performed using a pooled set of all on all donor spectra 324 

simultaneously. Classification of sham irradiated versus 0.05Gy and sham irradiated versus 0.5Gy, 325 

using a set of latent variables explaining up to 90% of the total variance of the spectra, demonstrated 326 

that there was a spectral difference between sham irradiated and irradiated cells with a mean MCC of 327 

0.32 and 0.41 across all donors. Classification accuracies were estimated using a leave-one-donor-out 328 

cross-validation for varying numbers of latent variables to optimize the classification rate. 329 

Optimisation was performed using the training (all spectra except those from a single held-back 330 

donor) and testing (held-back spectra from one donor) sets of control versus 0.5Gy spectra. Both 331 
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training and testing sets classification performance was assessed using MCC. The training set 332 

performed relatively well when 35 or more latent variables were used in the classification and resulted 333 

in an MCC>0.3, however  no model performed well on the test set where no model achieved an MCC 334 

of greater than 0.05 (data not shown). This demonstrates that although Raman spectroscopy can detect 335 

changes in biochemical profiles of individual donors following ionizing radiation, classification of 336 

response in individuals using data learned from a cohort of donors is difficult as demonstrated by the 337 

optimization not achieving an MCC greater than 0.05.  338 

 339 

γ-H2AX  fluorescence measurements  340 

Parallel reference measurements of DNA damage following ionizing radiation were obtained using 341 

the γ-H2AX assay. A large inter-individual variation in baseline levels of γ-H2AX fluorescence was 342 

observed. In this study a significant difference was observed in γ-H2AX fluorescence following 343 

ionizing radiation only when samples where normalized to their own control (two tailed paired t-test). 344 

Figure 4 A) shows the normalized γ-H2AX fluorescence with respect to dose. A dose response was 345 

observed following ionizing radiation and 0.05Gy was found to be significantly different from the 346 

control with a significance level of p<0.05, while 0.5Gy was found to be significantly different from 347 

the controls with a significance level of p<0.01. The variation in inter-individual response to ionizing 348 

radiation detected using γ-H2AX fluorescence is consistent with that of the variation observed in the 349 

classification of Raman spectral data. In some donors the γ-H2AX fluorescence increases more so 350 

than others following ionizing radiation; similarly the change in spectral information following 351 

ionizing radiation is more prevalent in some donors than others. This is evident from the ability of the 352 

classifier to distinguish between sham irradiated and irradiated cells in different donors. Higher 353 

sensitivities and specificities indicate a larger change in spectral profile following ionizing radiation, 354 

while lower sensitivities and specificities indicate a lack of change in the spectral profile of sham 355 

irradiated and irradiated cells (see Table 2). While there is large inter individual variation in the 356 

response to ionizing radiation measured by both the γ-H2AX assay and Raman spectral 357 

measurements, there is an increase in the band areas that were found to be significantly different from 358 
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the control which matched that of the γ-H2AX assay. In both γ-H2AX and Raman spectral 359 

measurements a dose response was observed. The correlation between the band areas and the γ-H2AX 360 

MFI is shown in Figure 4 B). 361 

  362 

Figure 5 A shows the frequency distribution of the γ-H2AX fluorescence measurements with dose for 363 

all 20 donors. It demonstrates the frequency of which a measurement of γ-H2AX was measured 364 

within a particular range of γ-H2AX MFI for all 20 donors both sham irradiated and irradiated. The 365 

black curve represents the probability distribution function and the vertical line represents the mean γ-366 

H2AX fluorescence for each dose. The probability distribution function describes the likelihood of a 367 

random measurement to be within a particular interval and the peak of the probability density function 368 

is the interval that represents the most likely outcome of any given measurement. The distribution 369 

shows an increase in γ-H2AX fluorescence following ionizing radiation as the probability distribution 370 

shifts to higher γ-H2AX MFI with the frequency of low levels of γ-H2AX MFI is decreasing and the 371 

frequency of higher levels of γ-H2AX MFI is increasing. Large inter-individual variability was 372 

observed in the baseline levels of γ-H2AX fluorescence and can be seen from this plot as the 373 

frequencies of γ-H2AX MFI span a large range in all doses and overlap between doses. Similarly to 374 

the γ-H2AX fluorescence measurements, Figure 5 B shows the frequency distribution of the total area 375 

of the regions of the spectrum with higher intensities than the sham in terms of dose. Although the 376 

distributions overlap considerably, a positive correlation to γ-H2AX MFI was observed with the total 377 

area of the regions that were significantly higher than the control (see Figure 4 B). A shift in the 378 

probability distribution function towards higher band areas was observed following ionizing radiation 379 

with a decrease in the frequency of lower band areas and an increase in the frequency of higher band 380 

areas. The increase in area of these bands is a result of the increase in the intensities observed in the 381 

bands at 720-850cm-1 associated with the vibrations occurring from the backbones and nucleic acid 382 

bases of DNA and RNA and 1640-1660cm-1 associated with proteins and lipids. The changes in the 383 

distribution of the total area of these bands following ionizing radiation were found to be significantly 384 

different in the sham spectra versus the irradiated spectra, with a significance level of p<0.001. The 385 

significance testing reveals that Raman spectroscopy can detect changes in the spectroscopic finger 386 
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print of cells following ionizing radiation in a normal population at 1 hour after exposure to ionizing 387 

radiation but as the distributions overlap considerably classification of individual responses becomes 388 

more difficult.  389 

5. Discussion 390 

The use of the γ-H2AX assay for dosimetry measurements has been shown previously by (9) to have 391 

high levels of inter-individual variation, while a dose response following ionizing radiation was 392 

observed. In this study, high levels of inter-individual baseline variation has been observed within a 393 

cohort of 20 donor lymphocytes and when samples were normalized to their controls a dose response 394 

was observed and was found to be statistically significantly. Raman spectroscopy has been shown to 395 

be capable of detecting changes in spectral profiles of irradiated lymphocytes compared to sham 396 

irradiated lymphocytes at doses as low as 0.05Gy. Unlike the γ-H2AX assay, however, the detection 397 

of changes following ionizing radiation are not limited to a single molecule in Raman spectroscopy. 398 

Instead Raman spectroscopy provides a cellular biochemical fingerprint containing signatures of 399 

nucleic acids, proteins, lipids and fatty acids. The changes in spectral profiles are highly variable from 400 

individual to individual matching that of the γ-H2AX inter-individual variability. Large variability in 401 

the change in spectral bands associated with nucleic acids (in the region of 720-850cm-1), proteins and 402 

lipids (1200-1350cm-1) was observed from individual to individual. The variability in the change in 403 

these bands may be due to the variation in age, gender, lifestyle, eating habits and genetic 404 

predisposition. PCA-LDA showed poor classification performance when all donors were classified 405 

and tested simultaneously, using a leave-one-donor-out cross-validation. Significance testing revealed 406 

that there were several regions of the spectrum where the intensities of the spectra of irradiated cells 407 

were either significantly higher or lower than that of the control cells. Similarly to the variation 408 

observed in the baseline levels of the γ-H2AX assay the areas under these regions overlap 409 

considerably between doses making uni-variate classification for the purpose of dosimetry difficult. 410 

However, changes to distribution of the area under these regions may provide an alternative method 411 

of dosimetry.  412 
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Analysis of intensity changes in spectral data with dose 413 

The changes in the intensities of the regions that were observed to differ from the controls following 414 

ionizing radiation indicate variation in the spectral information from nucleic acids, lipids and proteins. 415 

Increases were observed in the band intensities associated with DNA, RNA, lipids and proteins. This 416 

suggests that Raman spectroscopy measures an increase in the level of RNA (band at 750-825cm-1) 417 

and thus an increase in transcription and gene expression following ionizing radiation. This is in 418 

contrast to that of the γ-H2AX measurements which measures only the phosphorylation of H2AX as a 419 

result of ATM activation. The changes in spectral profiles also contain signatures of damage and 420 

cellular responses from not only double strand breaks but single strand breaks and other lesion types 421 

as the variation in vibrational modes are not limited to alterations in the O-P-O stretching of the DNA 422 

backbone. Changes were observed in regions of the spectrum which have been associated with double 423 

strand breaks of the DNA (41). Bands around 1110 cm-1, 1160 cm-1 and 1190 cm-1 were significantly 424 

altered after irradiation relative to the sham and are as a result of cleavage of the DNA phosphate 425 

backbone at either at the 3’ end of one DNA strand and the 5’ prime end the other strand or at the 5’ 426 

end on both strands of the DNA. Some of these changes in spectral profiles are consistent with those 427 

observed elsewhere (42) after high doses of ionizing radiation.  428 

 429 

For a more robust analysis, there is need for larger studies with Raman spectroscopy coupled with 430 

parallel reference measurements of DNA damage, repair, cell viability and other high content data. 431 

Inclusion of additional data on the individual such as age, gender, ethnicity, lifestyle and health status 432 

in modeling of biological data at low doses might also account for the high level of inter-individual 433 

variability at low doses. These approaches may in the future provide further insight into the spectral 434 

changes following ionizing radiation and will aid in the development of multivariate models.    435 

 436 
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6. Conclusion  437 

The present study demonstrates the capability of Raman spectroscopy to detect changes in spectral 438 

profiles following low dose ionizing radiation in a cohort of 20 donor lymphocytes as little as 1 hour 439 

after exposure to ionizing radiation. This is the first report where Raman spectroscopy has been 440 

shown to be capable of classifying control samples against irradiated samples with doses as low as 441 

0.05Gy in individuals.  442 
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 585 

 586 
Figure 1: A) The mean of all 20 donors sham-irradiated spectra along with spectra of DNA, RNA, phosphatidyl-inositol (a 587 

typical phospho-lipid) and actin (a typical protein). Guides are included to link some modes of vibration in component 588 

spectra to modes of vibration in lymphocytes. Pure DNA, RNA, phosphatidyl-inositol and actin were purchased from 589 

Sigma-Aldrich and used without further preparation. 590 

B) The difference spectra between sham irradiated and irradiated spectra (0.05Gy and 0.05Gy) along with spectra of DNA 591 

and actin. Shaded regions of the spectra represent where the spectrum of irradiated samples were found to be significantly 592 

higher (light shading) or significantly lower (darker shading) than the sham irradiated samples.  593 

  594 

A) B) 
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Table 1: Raman band assignments for some typical vibrations associated with biological specimens595 

 596 
Frequency (cm-1) Assignment Frequency (cm-1) Assignment 
623 C-C twisting mode 

phenylalanine. 
1127 C-N, C-C stretching  

(protein and lipid) 
645 Tryosine 
666 Guanine, Thymine 

ring breathing 
1175 Cytosine, Guanine, 

C-H bending 
tyrosine (proteins) 723 Adenine 

749 Tryptophan 1210 Tyrosine, 
Phenylalanine 780 Cytosine, Uracil, 

Thymine (Ring 
breathing) 

1230-1295 Amide III 
1332 C3-C3 stretch, C5-O5 

stretch and CHα in 
plane bending, 
Guanine 

807 O-P-O backbone 
(DNA/RNA) 

855 Tyrosine 
941 
 

Skeletal modes 
(polysaccharides) 

1370 Thymine, Adenine, 
Guanine 

1003 Phenylalanine 1430-1460 C-H2 deformation 
1032 C-H bending 1485 Amide II, Guanine, 

Adenine 1064 
 

Phenylalanine ,C-C 
stretch of lipids 1552 Tryptophan 

1085 C-O stretching 1575 
 

Guanine, Adenine  
 

1095 PO2
- from nucleic 

acids 
1614/15 
 

C=C (protein) 
Tyrosine, 
Tryptophan, 

  1650-1680 Amide I, C=C 
stretching (proteins) 

 597 
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 598 

Figure 2: A) Difference spectra of 0.05Gy and 0Gy for 5 donor’s spectra and B) Difference spectra of 0.5Gy and 0Gy for 5 599 

donor’s spectra. 600 

 601 
 602 
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 603 

 604 
Figure 3: The scatter plots of PCA scores of 0Gy and 0.05Gy (A), and 0Gy and 0.5Gy (B) spectra of a single healthy donor 605 

and for the first three principal components. The grey line represents the plane of discrimination determined by LDA.  606 
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 607 

Figure 4: A) Normalised γ-H2AX fluorescence with respect to dose for all donors. Significance testing was performed using 608 

a two tailed paired t-test. B) Normalised γ-H2AX MFI with respect to the total area of the bands of the spectrum that were 609 

found to be significantly higher than the sham. Error bars indicate the standard error. 610 

 611 

Figure 5:A) The frequency distribution (the number of measurements that fell within an interval of  MFI) of γ-H2AX 612 

fluorescence for sham irradiated (0Gy) and irradiated cells (0.05Gy and 0.5Gy). The black curve represents the probability 613 

density function and the vertical black line represents the maximum probability of the probability density function. B) The 614 

frequency distribution of the area of the region of the spectrum that was found to be significantly higher following ionizing 615 

radiation. 616 

 617 

A) 

B) 
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 618 

Table 2: Sensitivities and specificities for the classifications of 0Gy versus 0.05Gy, 0Gy versus 0.5Gy and 0.05Gy versus 619 

0.5Gy spectra for each donors spectra. Donors are ordered in terms of decreasing sensitivities, larger sensitivities and 620 

specificities indicate larger changes in spectral profiles following ionizing radiation. 621 

 622 
 623 
 624 

Donor 
no. 

0.05Gy Donor 
no. 

0.5Gy Donor 
no. 

0.05Gy v 0.5Gy 
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

10 1.00 1.00 2 1.00 1.00 1 1.00 1.00 
11 1.00 0.96 8 1.00 1.00 2 1.00 1.00 
15 1.00 0.94 10 1.00 1.00 15 1.00 1.00 
9 0.97 0.92 20 1.00 1.00 7 1.00 1.00 
2 0.96 1.00 1 1.00 0.97 8 1.00 1.00 
8 0.95 0.94 15 1.00 0.90 5 1.00 0.93 
20 0.93 1.00 12 0.98 0.96 19 1.00 0.88 
7 0.93 0.86 19 0.97 0.92 12 0.97 0.94 
19 0.92 0.94 5 0.97 0.97 13 0.97 0.97 
18 0.91 0.91 7 0.96 0.86 10 0.97 0.90 
14 0.91 1.00 14 0.93 1.00 17 0.97 0.82 
3 0.90 0.93 3 0.92 1.00 20 0.96 0.91 
12 0.90 0.85 9 0.92 0.89 16 0.91 1.00 
1 0.86 0.84 17 0.91 0.83 9 0.90 0.97 
13 0.82 0.94 16 0.86 0.97 6 0.90 0.82 
5 0.81 1.00 6 0.86 0.93 18 0.88 1.00 
6 0.79 0.89 18 0.84 0.91 3 0.85 0.93 
4 0.76 0.80 4 0.82 0.91 14 0.82 0.92 
16 0.71 0.82 13 0.81 0.89 11 0.81 0.73 
17 0.67 0.82 11 0.78 0.85 4 0.79 0.79 

Mean 0.90 0.92 Mean 0.93 0.94 Mean 0.94 0.93 
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