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Thermo-optic tuning of a packaged whispering 
gallery mode resonator filled with nematic 
liquid crystal 
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MALLIK,1 AND YULIYA SEMENOVA

1 
1Photonics Research Centre, Dublin Institute of Technology, Kevin St, Dublin, Ireland 
2Department of Mathematics, Physics and Electrical Engineering, Faculty of Engineering and 
Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK 
*vishnu.kavungal@mydit.ie

Abstract: Thermo-optic tuning of whispering gallery modes (WGMs) in a nematic liquid 
crystal-filled thin-walled capillary tube resonator is reported. WGMs were excited by the 
evanescent field from a tapered optical fiber. Tapered optical fiber fabrication and reduction 
of wall thickness of the capillary tube was carried out by a ceramic micro-heater brushing 
technique. A simple and robust packaging technique is demonstrated to ensure stable and 
repeatable operation of the device. Tunability of WGMs with temperature was demonstrated 
with a sensitivity of 267.5 ± 2.5 pm/°C. The demonstrated thermo-optic method for WGMs 
tuning is potentially useful for many tunable photonic devices and sensors. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (060.2370) Fiber optics sensors; (140.3945) Microcavities; (140.3948) Microcavity devices. 
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1. Introduction 

Optical whispering gallery modes (WGMs) are the electromagnetic resonances supported by 
open dielectric resonators with the dimensions in the order of few millimeters or smaller and 
a circular shape, e.g., spherical, cylindrical, disk, ring, toroidal etc. WGM resonances can be 
used in many applications, including optical sensors for biological and chemical compounds, 
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as electro-optical oscillators and modulators, all optical switches, tunable optical filters, or in 
quantum electro dynamic applications. The versatility of WGM resonators arises from their 
many advantages, such as high Q-factors, low mode volumes, and the exceptional sensitivity 
of the optical properties of the resonator to its size as well the nature of the surrounding 
medium [1, 2]. The exceptional sensitivity of the WGM resonators’ optical properties to the 
changes in their geometry and refractive index may lead to significant temperature 
dependence due to thermos-optic and thermal expansion properties of the resonator’s 
material. 

Several authors reported different approaches to eliminate the temperature cross-
sensitivity of sensors based on WGM resonators, such as liquid core optical ring resonators 
(LCORR) [3, 4], microspheres [5–12], micro ring [13], microtoroid [14–16] and fluorescent 
core micro capillary (FCM) [17], allowing to improve their performance. At the same time 
several studies reported applications of the temperature induced spectral shift in WGM 
resonators for temperature sensing or in tunable devices based on microspheres [18–20], 
microbubble [21], microring [22], microtoroid [23], bent optical fiber [24], dye doped hollow 
polymer optical fiber [25], microfiber knot resonator [26], and spherical droplets [27–29]. 

Silica glass is one of the most popular materials used for fabrication of optical WGM 
microresonators (MRs) due to its low loss and the simplicity of fabrication of high quality 
resonators by melting the material into circular shapes. However, silica has relatively low 
thermo-optic and thermal expansion coefficients, so if a silica resonator device is used for 
sensing of environmental parameters or utilizes thermo-optic tuning, a means to enhance its 
temperature sensitivity is required. Such an enhancement is often achieved by coating of the 
resonator surface with suitable functional materials. For example, authors in [30] used a 
conjugated polymer coated silica microsphere with an improved temperature sensitivity to 
design a thermo-optical switch. B. B. Li et al. [23] used a polydimethylsiloxane (PDMS) 
coating on a toroidal silica micro resonator to enhance its thermal sensitivity. However, 
combinations of sensitivity improving liquids with micro-resonator devices and sensors 
results in multiple design challenges, since applying fluids onto the surface of the resonator 
may lead to poor mechanical stability, the need to protect the fluids from evaporation etc. An 
alternative approach to integration of liquids with WGM resonators is encapsulation of the 
fluid inside the resonator, fabricated in the shape of a tube, a bubble, or photonic crystal fiber. 
In this scenario, a thin-walled capillary tube resonators, also referred to as LCORR [31] are 
especially promising. LCORRs have been used in various sensing applications including the 
detection of DNA, viruses, proteins and cancer biomarkers [32]. 

In this manuscript, we propose to enhance the temperature sensitivity of a silica capillary 
tube resonator with a submicron wall thickness by filling it with a nematic liquid crystal (LC) 
for thermo-optic tuning applications. The light is evanescently coupled to the resonator using 
a tapered silica optical fiber. Apart from traditional display applications, LCs are suitable 
candidates for many photonic applications in which active light manipulation is required. The 
optical, electrical and magnetic properties of liquid crystals are defined by the orientational 
order of the constituent anisotropic molecules. The orientational order can be influenced by 
many factors, such as temperature and electro-magnetic fields. For example, temperature 
dependence of the refractive indices and optical anisotropy of LCs are often utilized in many 
LC based tunable devices for various applications [33]. Nematic liquid crystals are attractive 
temperature tunable materials due to their large negative thermo-optic coefficients and low 
absorption at the infrared and visible wavelengths. The thermo-optic coefficient of a typical 
nematic liquid crystal is significantly larger (−9 × 10−4/°C for 5 CB [34]) than those of many 
common materials such as deionized water (−0.7 × 10−4/°C [35]), ethanol (−3.7 × 10−4/°C 
[35]), isopropanol (−4 × 10−4/°C [36]) etc. The temperature sensitivity of WGMs excited in 
nematic liquid crystal droplets embedded in polymer matrix has been demonstrated by Humar 
et al. [37] and recently Y. Wang et al. [29] reported thermo-optical tuning of optically 
pumped WGM lasing emission from dye-doped emulsion microdroplets of cholesteric liquid 
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crystals (CLCs) suspended in an aqueous environment. More recently, temperature tuning in a 
tapered fiber coupled liquid crystal droplet WGM resonator was reported by Y. Wang et al. 
[27]. However, individual LC droplets have never been considered as a tunable optical 
device. Moreover, in laboratory conditions, evanescent field coupling of light into spherical, 
bottle or bubble MRs using a fiber taper is typically realized by means of high-resolution 3D 
micro-positioning stages and optical microscopes for a precise alignment of the tapered fiber 
waist along the MR equator at a close distance to the resonator surface. Evanescent light 
coupling is somewhat simpler in the case of cylindrical micro-resonators since only the 2D 
alignment is necessary. However, in real world applications even the least complex scenario 
becomes impractical due to the need for bulky and heavy micro-positioning equipment. 
Therefore, for practical applications development of a simple and reliable packaging method 
is required for such WGM devices, which would enable their fabrication in a portable and 
miniature shape without degrading in their laboratory performance. Therefore, in this work 
we also propose and demonstrate a suitable packaging method for our proposed WGM 
device. Such a packaged device can be used as a narrow-band thermo-optic tunable filter. The 
tapered fiber, thin walled silica capillary resonator, and the substrate supporting the resonator, 
are made from silica, which is good for reducing the temperature expansion imbalance in the 
packaged device. Additionally, the simplicity, mechanical stability, and the direct interaction 
of the coupling region with the surroundings (the coupling region is not embedded in a 
polymer) are the advantages of the proposed packaging technique. 

2. Experimental details, results and discussions 

2.1. Packaging of the coupled system 

The operating principle of the proposed tunable device relies on the interaction between 
higher order WGMs penetrating into the capillary and the LC inside the capillary whose 
refractive index is strongly influenced by the applied temperature. In order to increase the 
efficiency of such interaction, the capillary walls should be sufficiently thin [38]. The thin-
walled capillary tube resonator in our experiment was prepared from a short section of a 
coating-stripped silica capillary tube with inner diameter of 700 μm and outer diameter of 850 
μm (Polymicro Technologies). In order to reduce the wall thickness down to the submicron 
scale, the capillary tube was tapered using a ceramic micro-heater and the fiber pulling setup 
[39]. Heating and stretching of the capillary tube resulted in the reduction of the capillary wall 
thickness as well as its external diameter. Resulting external diameter and wall thickness of 
the uniform tapered portion of the resonator were 41 μm and 0.5 μm respectively. As a first 
step of the resonator packaging process, the prepared thin-walled capillary tube was attached 
on to a glass substrate at a height of ~1 mm above the glass surface using a UV- curable glue 
[Fig. 1(a)]. The total length of the capillary tube was 20 mm. 

The tapered optical fiber for light coupling was fabricated using the same fiber pulling 
setup as for the capillary fabrication and the micro-heater brushing technique described in 
[39]. The diameter of a uniform waist portion of the fabricated fiber taper was ~1.3 μm. The 
ends of the tapered fiber were connected to a superluminescent diode (SLD) (Thorlabs) with a 
wavelength range of 1500–1600 nm and an optical spectrum analyzer (OSA) (Advantest, 
Q8384) with a resolution of 0.01 nm. To maximize the light coupling efficiency, the uniform 
tapered portion of the capillary tube acting as the micro-cylinder must be placed 
perpendicularly and in direct physical contact with the fiber taper waist. Figure 1(b) illustrates 
schematically the experimental setup for optimizing the coupling efficiency between the 
fabricated tapered optical fiber and the capillary tube resonator. After achieving the physical 
contact with the tapered fiber, the capillary tube was slowly moved along the taper axis using 
a micro-translation stage while maintaining physical contact and a mutually orthogonal 
orientation. During this process, the transmission spectrum of the taper was observed at the 
OSA screen to determine the optimal position of the contact point, corresponding to the phase 
match between the propagating mode of the fiber taper and the fundamental WGM of the 
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capillary tube resonator. A manual three-paddle polarization controller (FPC030) placed 
between the SLD and fiber taper was used to control the polarization and maximize the light 
coupling efficiency. After achieving the desired WGM spectrum quality, both ends of the 
tapered fiber were glued to the glass substrate using a UV curable epoxy as shown in Fig. 
1(c). The entire packaging process took less than 10 minutes. 

Fig. 1. Schematic of the packaging process: (a) Capillary tube attached to the glass substrate, 
(b) Maximizing the coupling efficiency between the tapered optical fiber and capillary tube
resonator, and (c) Immobilizing the coupled system on a glass substrate. 

Robustness of the packaged device was evaluated by observing the effect of vibration on 
the transmission spectrum. For this test, the packaged sensor was placed on a simple vibration 
generator driven by a signal generator with a maximum peak-to-peak amplitude of 6 V, as 
shown in Fig. 2(b). The packaged device was subjected to vibrations at a frequency of 10 Hz 
for 30 minutes. Spectra of a single WGM resonance dip in the transmission spectrum before 
and after the vibration test are shown in Fig. 2(a). One can see from the figure that this 
resonance dip with a central wavelength of 1515.78 nm does not show any changes, and any 
possible discrepancies are less than the resolution of the OSA employed in the experiment (10 
pm). 

Fig. 2. (a) Selected WGM resonance dip of the packaged device before and after the vibration 
test. (b) Experimental set up for vibration tests. 
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2.2. Thermo-optic tuning experiments using the packaged device 

After packaging, the capillary micro-resonator was filled with a nematic liquid crystal (MLC 
7012, Licrystal) using a micro-syringe pump. Subsequently both ends of the capillary tube 
were sealed using a UV curable epoxy. The WGM spectrum experienced dramatic changes 
due to the significant increase in the effective refractive index inside the resonator. Figure 3 
shows the WGM spectra of the packaged capillary tube resonator before and after it was filled 
with the liquid crystal. One can see from the figure that the average transmission loss of the 
spectrum, corresponding to the resonator filled with the LC, is much higher. The extinction 
ratio of the WGM resonances increased from 6 dB to 13 dB (about 60% increase). It should 
be noted that additional side-lobes appear in the WGM spectra, possibly due to the excitation 
of non-degenerated WGMs after infiltrating the resonator with higher birefringent LCs. The 
shift experienced by the WGMs after infiltration is difficult to calculate since the shift is 
higher than that of the FSR value of the spectrum. The average Q-factor of the highest 
extinction troughs decreased from ~1.9 × 104 to ~0.9 × 103, suggesting an increased loss 
within the resonator. The increase in the average loss of the transmission spectrum of the 
taper after infiltrating the resonator with the LC is probably due to a number of factors such 
as scattering and absorption of light by the liquid crystal medium. In addition, it can be seen 
that the free spectral range (FSR) of the WGMs increased for the LC-filled resonator from 
11.5 nm to 13.35 nm leading to the reduction of a number WGM resonances observed in the 
wavelength range from 1500 to 1600 nm. 

Fig. 3. Experimental WGM spectra of the air core and liquid crystal filled thin-walled micro-
capillary. 

Analysis of the experimental results allows one to determine and compare the so-called 
effective diameter of the capillary tube resonator before and after its infiltration with LC, 
using the approximate equation [40]: 

2

eff
eff

D
n FSR

λ
π

= (1)

where λ is the resonance wavelength and neff is the effective refractive index of the capillary 
tube resonator. 

As can be seen from the above formula, the increase in the effective refractive index of the 
capillary tube and the increase in experimental FSR due to the infiltration with a higher 
refractive index LC, should lead to a reduction in the resonator’s effective diameter. The 
notion of effective diameter relates to the localization of WGMs inside the resonator. As was 
discussed previously by Sumetsky et al. in [38] for liquid ring resonator optical sensor 
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(LRROS), and in our previous study of the photonic crystal fiber resonators [41], an increase 
in the effective refractive index of the resonator core leads to the WGMs moving away from 
the capillary wall toward the higher refractive index core. 

In order to demonstrate thermo-optic tuning of the WGM resonances in the fabricated 
capillary tube resonator we carried out a series of experiments increasing the temperature 
from room temperature 25°C up to 50°C in 1°C steps by placing the packaged device on a 
controlled hot stage. Later the temperature was decreased in 1°C steps back to room 
temperature with all changes in the transmission spectrum recorded using an OSA. The 
temperature of the hot stage was measured by a thermocouple with 0.1°C measurement 
resolution. Figure 4 shows the transmission spectra of the packaged LC filled capillary tube 
resonator with increasing and decreasing temperature in a selected wavelength range. With 
the increase in temperature, all the WGM resonances experienced monotonic blue shifts and 
the decrease in temperature resulted in their return back to their initial spectral positions. 

Fig. 4. Transmission spectra of the LC-filled WGM resonator with (a) increasing and (b) 
decreasing temperature. There is an average spectral shift of 3.23 nm for the temperature 
change from of 26 to 40 °C. 

An average spectral shift of 8.3 nm was observed for the temperature change from of 
26°C to 50.8°C with a rate of −270 pm/°C. By way of justification it is well known that both, 
ordinary and extraordinary refractive indices of nematic LCs depend on the orientational 
order of the LC molecules. An increase in the LC temperature causes orientational 
fluctuations leading to the decrease of refractive index of both components [33]. This 
decrease of the liquid crystal’s refractive index leads to the decrease in the WGM resonant 
wavelengths to satisfy the resonance phase matching condition (

eff mLn mλ= , where λm is the 

mth order resonance wavelength, neff the effective refractive index of the resonator, L is the 
cavity’s round trip length, and m is the integer number of wavelengths along the optical 
round-trip length termed as the azimuthal mode number) [40]. 

An increase in temperature also causes a decrease in the Q-factor of the resonance and 
appearance of additional secondary spectral dips near the main resonance, most likely due to 
the fact that the liquid crystal core is a birefringent medium and thus has different RIs for 
different polarizations. The exact position of the resonance minimum was determined by 
fitting of the primary (highest extinction ratio) spectral trough corresponding to the 
fundamental mode with Lorentz function. For greater clarity, Fig. 5 illustrates the dip 
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wavelength shift of a single WGM resonance [marked p2 in Fig. 4] with increasing and 
decreasing temperatures in the range from 25.6 to 51°C. The measured wavelength shift 
(scatter data) is linearly fitted (solid line). Linear fitting of the wavelength response data 
indicates that the linear regression coefficient is 0.97 for both the temperature increase and 
temperature decrease cases. The slopes of the linear dependencies are −270 pm/°C 
(temperature increase) and −265 pm/°C (temperature decrease). The mean value of the slope 
for the heating and cooling experiments is −267.5 pm/°C. The uncertainty in the slope is 
calculated as ± 2.5 pm/°C. Thus, the temperature sensitivity of the proposed device is 267.5 ± 
2.5 pm/°C. At higher temperatures, the resonance wavelength undergoes stronger fluctuations 
due to the increasing fluctuations of the hot stage temperature. 

Fig. 5. Spectral shift experienced by a selected WGM resonance [p2 in Fig. 4] with increasing 
and decreasing temperature. 

To test the repeatability of the thermo-optic tuning of the packaged LC filled resonator, 
two additional experiments were carried out by setting a specific temperature of the hot stage, 
allowing for a certain time interval to reach the setting and then turning the stage off allowing 
it to cool down to room temperature. The WGM spectra were recorded continuously and the 
spectral shift experienced by the modes were analyzed. In the experiment the temperature of 
the sensor was altered from room temperature (26 °C) to one of two elevated temperatures, 35 
°C and 45 °C, by a controlled heating stage. 

To understand the evolution of the spectrum as temperature changes with time, the 
spectral shifts of a selected resonance [marked p2 in Fig. 4] were measured as the temperature 
was cycled at intervals of 10 minutes between room temperature and an elevated temperature. 
The WGM spectra of the packaged device were sampled with a fixed time interval of 80 
seconds during the experiments. The temperature of the controlled heating stage is monitored 
using a thermocouple attached to the heater. Figure 6 shows the resonance wavelength plotted 
against time as the temperature was cycled, for both elevated temperatures. Temperature 
cycling was repeated for 110 minutes for both elevated temperatures. As can be seen from 
Fig. 6, the spectral shifts in response to a temperature change are consistent with time. It was 
found that after temperature cycling of the sensor to an elevated temperature, the resonance 
wavelength always returned to its room temperature value, with only very minute variations, 
demonstrating that the sensor is unaffected by repeated temperature cycling. It should be 
noted that small fluctuations observed in the WGM spectral positions at the constant but 
elevated temperatures are most likely due to instabilities of the temperature of the hot stage. 
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The heater used in the experiments had a maximum instability of ± 1.5°C, measured using a 
thermocouple attached to its surface. 

Fig. 6. The resonance wavelength [p2] plotted against time as the temperature was cycled, for 
elevated temperatures of 35°C and 45°C from room temperature. 

In order to obtain better understanding of the role of LC core within the proposed thermo-
optic tunable device, we have conducted a set of experiments for characterization of 
temperature response of an empty (air core) capillary tube resonator, fabricated using the 
same method and thus with a similar geometry. The temperature was increased from room 
temperature 31°C up to 47°C with 2°C steps by placing the packaged air-core capillary tube 
resonator on a temperature controlled hot stage while all changes in the transmission 
spectrum were recorded using an OSA. The temperature of the hot stage was measured by a 
thermocouple. Figure 7 illustrates the results of these experiments. 

Fig. 7. (a) Selected WGM resonance dip of an air-core capillary tube resonator with increasing 
temperature. (b) Linear fit of the measured resonance wavelength data with increasing 
temperature. 

As can be seen from Fig. 7(a), the WGM spectrum experiences red shift of 0.24 nm with 
the increase in temperature, resulting in sensitivity of 14.4 pm/°C. Figure 7(b) shows the 
linear fit to the measured resonance wavelength shift data with increasing temperature. The 
redshift of the WGMs with increasing temperature is due to the positive thermo-optic and the 
thermal expansion coefficients (in the order of ~10−5/°C) of the silica glass [6]. The thermo-
optic coefficient of air is even lower than that of the fused silica (~10−6/°C). The sensitivity of 
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the air core silica capillary tube resonator is about 19 times lower than that for the LC filled 
capillary tube resonator. 

2.3. Temperature detection limit 

The temperature detection limit (DL) of the proposed device can be calculated using the 
following formula [42]: 

R
DL

S
= (2)

Here R is the sensor’s resolution and S is the sensitivity. The sensor’s resolution depends 
upon the various sources of noise involved in the measurement and determined by the 
equation [42]: 

2 2 23 ampl noise temp induced spect resR σ σ σ σ− − −= + + (3)

where σ is the total system noise variance, which can be expressed in terms of all the 
individual noise variances for amplitude noise (σampl-noise), temperature induced spectral noise 
(σtemp-induced, and the spectral resolution noise limit (σspect-res). The standard deviation of the 
amplitude noise can be calculated as [42]: 

( )1
44.5

ampl noise

SNR

λσ −
Δ≈ (4)

where ∆λ is the full-width half maximum of the mode amplitude derived from the Q factor 
(Q = λ/Δλ). The Q-factor of the LC-filled, and the air-core capillary tube resonators were 
calculated by fitting the resonance dips with Lorentz equation. The corresponding Q-factors 
of the selected WGMs of the LC-filled and the air-core capillary tube resonators were 807, 
and 10263 respectively. We assumed the SNR of the system as 60 dB (equivalent to a ratio of 
106), then the corresponding σampl-noise were calculated as 13.25 and 1.04 respectively for the 
LC-filled and the air-core capillary tube resonators. We also assumed the standard deviation 
due to the temperature stabilization (σtemp-induced) as 0.01 pm. The spectral resolution of the 
OSA used in our experiment is 10 pm ± 3%. The error in determining the position of the 
resonant mode is uniformly distributed between −0.3 pm to + 0.3 pm and the resulting 
standard deviation of σspect-res is 0.173 pm. The overall sensor resolutions obtained by Eq. (2) 
are 39.84 pm and 3.25 pm respectively for the LC-filled and the air-core capillary tube 
resonators. Then the corresponding temperature DLs can be calculated by Eq. (1) as 0.148°C 
and 0.23°C respectively for the LC-filled and empty (air core) resonators. From the study it is 
clear that even though the Q- factor of the LC-filled capillary tube resonator is lower than that 
for the empty (air core) resonator, the temperature detection limit is slightly better for the LC-
filled capillary tube than for the empty one. 

Finally, we carried out a comparison of the temperature sensitivity of the proposed tunable 
device with a number of WGM temperature sensors reported previously, and the results are 
summarized in Table 1. 

As one can see from the Table 1, the device described in this paper offers competitive 
temperature sensitivity compared to many of the similar WGM devices. Only the dye-doped 
cholesteric liquid crystal microdroplets [29], DCM-doped oil droplet [28], and the integrated 
PMMA microsphere resonator [20] show higher temperature sensitivity than the tunable 
device proposed in this work. It should be noted however that as mentioned in the 
introduction, individual droplet resonators are difficult to implement as a tunable device due 
to light coupling and packaging issues. Moreover, the integrated PMMA microsphere sensor 
described in [20] demands more effort in terms of fabrication and its wavelength tunability 
range is four times less (1.93 nm) than that of the proposed here tunable device (8.3 nm). 
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3. Summary

Table 1. Sensitivity comparison of WGM temperature sensors 

Type of sensor  Sensitivity (pm/°C) 

Water filled thick (thin) 
walled fused silica micro-
capillary resonator [3] 

 7.6 (5.4) 

Dye-doped hollow polymer 
optical fiber [25] 

 11 

Water filled thick (thin) 
walled aluminosilicate 
capillary micro-resonator [3] 

 17.2 (13.8) 

PMMA wire microcylinder 
[43] 

 40.8 

PMMA microsphere inserted 
in a hollow fiber [18] 

 50 

Silica microfiber knot 
resonator [26] 

 52 

Silicon micro-ring [22]  110 
PDMS-coated silica micro-
ring [23] 

 151 

Microbubble filled with 
ethanol [21] 

 200 

Bent optical fiber [24]  212 

PDMS microsphere [19]  245 

PMMA microfiber knot 
resonator [26] 

 266 

Tapered optical fiber coupled 
liquid crystal microdroplet 
[27] 

 267.6 

Liquid crystal infiltrated 
LCORR [This work] 

267.5 ± 2.5 

DCM-doped oil droplet [28] 377 

Integrated PMMA 
microsphere [20] 

 460 

Dye-doped cholesteric liquid 
crystal microdroplets [29] 

 1500 

In summary, thermo-optic tuning of a nematic liquid crystal filled thin-walled silica capillary 
tube resonator was demonstrated experimentally with a sensitivity of −267.5 ± 2.5 pm/°C. An 
evanescent field from a tapered optical fiber was used to excite the WGMs in the capillary 
resonator and record its WGM spectrum in the wavelength range from 1500 to 1600 nm. 
Fabrication of the tapered fiber and the thin-walled capillary tube was carried out by the 
micro- heater brushing technique. A simple and robust packaging technique for the proposed 
tunable device was also developed and demonstrated. Thermo-optic tuning experiments were 
carried out using the LC filled packaged resonator. An increase in the resonator temperature 
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leads to a blue shift of the WGM resonances observed in the transmission spectrum of the 
fiber taper with a rate of −270 pm/°C and the decrease in temperature resulted in their return 
back to the initial spectral positions with a rate of −265 pm//°C. The calculated temperature 
detection limit of the proposed LC filled capillary tube resonator is 0.15°C. The proposed 
device shows good mechanical stability and repeatability of performance. Initial study 
indicates that the demonstrated thermo-optic tuning of the WGMs in a nematic liquid crystal 
thin-walled capillary tube resonator is promising for many photonic applications, for example 
in tunable filters, switches and sensors. 
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