
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Chemical and Pharmaceutical 
Sciences 

2008-06-09 

Working Report on the Status Quo of Nanomaterials Impact on Working Report on the Status Quo of Nanomaterials Impact on 

Health and Environment Health and Environment 

Harald Krug 
Empa, St. Gallen, Switzerland 

Margarita Apostolova 
Inst. Mol. Biol., Bulgarian Academy of Sciences, Bulgaria 

Marite Arija Bake 
Institute of Occupational and Environmental Health, Latvia 

Gordon Chambers 
Technological University Dublin, Gordon.chambers@tudublin.ie 

Horia Chiriac 
National Institute for R&D of Technical Physics, Romania 

See next page for additional authors 

Follow this and additional works at: https://arrow.tudublin.ie/scschcpsart 

 Part of the Environmental Health and Protection Commons, International Public Health Commons, 

and the Materials Chemistry Commons 

Recommended Citation Recommended Citation 
Working Report on the Status Quo of Nanomaterials Impact on Human Health and the Environment - 
Improving the understanding of the impact of nanoparticles on human health and the environment, 
ImPart, 2008, Ed by H. F. Krug. 

This Report is brought to you for free and open access by 
the School of Chemical and Pharmaceutical Sciences at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301312902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcpsart
https://arrow.tudublin.ie/scschcps
https://arrow.tudublin.ie/scschcps
https://arrow.tudublin.ie/scschcpsart?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/172?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/746?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Authors Authors 
Harald Krug, Margarita Apostolova, Marite Arija Bake, Gordon Chambers, Horia Chiriac, Eva Herzog, 
Victoria Hand, Jürgen Höck, Peter Hoet, Nicoleta Lupu, Declan McCormack, Maja Remskar, George 
Robillard, Jamila Smisterova, Jan Stetkiewicz, Speranta Tanasescu, Aris Tsatsakis, David Vaughn, Peter 
Wick, and Jörg Wörle-Knirsch 

This report is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschcpsart/18 

https://arrow.tudublin.ie/scschcpsart/18


  
 
  
 NMP4-CT-2005-013968 
 
 
 
 

  

 
 

Working Report on the Status Quo of 
Nanomaterials Impact on Health and Environment 

 
 

IMPART 
 

Improving the understanding of the impact of 
nanoparticles on human health and the environment 

 
 

Integrating Activity 
 

implemented as 
 

Coordination Action 
 

 
 
Contract number: NMP4-CT-2005-013968 
Project Co-ordinator: TEMAS AG 
Work package: 2 
Work package leader: Harald F. Krug 
 
 

Project funded by the European Community  
under the "Structuring the European Research Area" Specific Programme  

Research Infrastructures action 
 

 



  

 IMPART 
 09.06.08 / Page 2/116 

Table of contents 

1 Introduction ...................................................................................................................6 

1.1 General considerations on nanotechnology and nanomaterials......................................6 

1.2 Nanomaterials.................................................................................................................8 

1.2.1 Nanocrystalline Materials (Ceramics, Metals and Metal Oxides)........................8 

1.2.2 Fullerenes.........................................................................................................17 

1.2.2.1 Carbon fullerenes ........................................................................................17 

1.2.2.2 Inorganic fullerenes: WS2, MoS2 .................................................................19 

1.2.3 Nanotubes ........................................................................................................22 

1.2.3.1 Carbon nanotubes.......................................................................................22 

1.2.3.2 Inorganic nanotubes....................................................................................29 

1.2.4 Engineered Quantum Dots ...............................................................................31 

1.3 Nanoparticle Properties.................................................................................................35 

1.4 Risks of Nanomaterials .................................................................................................37 

1.5 What is typical for “nanotoxicology” and different from bulk or other “toxicology”? .......39 

2 Health ...........................................................................................................................41 

2.1 Nanoparticles and Human Health .................................................................................41 

2.1.1 Hazards from Engineered Nanoparticles..........................................................42 

2.1.2 Toxicity of Nanomaterials .................................................................................42 

2.1.3 Do impurities in commercial nanomaterials contribute to toxicological 
properties? .......................................................................................................45 

2.1.3.1 Contamination of nanomaterials during preparation process ......................45 

2.1.3.2 Formation of impurities throughout the system’s life cycle ..........................46 

2.1.3.3 Removal of impurities from nanomaterials ..................................................47 

2.1.3.4 Analysis of impurities...................................................................................47 

2.2 Is there a difference between “local” and “systemic” toxic effects? ...............................47 

2.2.1 Local toxicity at the site of exposure.................................................................48 

2.2.2 Local sites as portals of entry to systemic exposure ........................................48 

2.2.3 Systemic effects of nanomaterials....................................................................49 

2.3 How to express dosing..................................................................................................50 

2.3.1 Is mass relevant versus surface? .....................................................................50 

2.3.2 Surface expressed as outer or / and inner surface...........................................51 

2.3.3 Does porosity play a role ..................................................................................51 

2.3.4 Exposure limits restricted to surface doses? ....................................................51 

2.3.5 Correlation between reactivity and toxicity (dose dependency on reactivity)?..52 



 

 IMPART 
 09.06.08 / Page 3/116 

2.3.6 Do we need information on size distribution; hydro-phobicity; zeta potential; 
wettability..........................................................................................................52 

2.3.7 Discussion on measurement/determination of the surface area.......................52 

2.4 How good are the present protocols? Have we to apply new Tox-test? Do we 
need a new strategy?....................................................................................................53 

2.5 Dissolution / precipitation of material within the biological system (organspecific)?......57 

2.6 Cellular uptake and accumulation in “organelles” and “organs”? ..................................58 

2.7 How will we administer the materials for in vivo and in vitro tests? ...............................60 

2.7.1 Introduction.......................................................................................................60 

2.7.2 Inhalation versus instillation versus aspiration..................................................60 

2.7.3 Dosing (see additional information in Chapter 2.3)...........................................60 

2.7.4 Surface modification to prevent aggregation within a test ................................61 

2.8 What about long term studies at low (more realistic) concentrations? ..........................61 

2.8.1 Long-term toxicity testing for chemical substances ..........................................61 

2.8.2 What are low (more realistic) doses of NPs?....................................................62 

2.8.3 Long-term toxicity testing for nanoparticles ......................................................62 

2.8.4 In vitro assays for long-term toxicity studies.....................................................64 

3 Exposure......................................................................................................................65 

3.1 Occupational exposure .................................................................................................65 

3.1.1 Is occupational exposure an existing problem?................................................66 

3.1.2 How to assess / measure? Is there a need for new / other sampling devices? 67 

3.1.3 What to measure (size, mass, surface…) and what is feasible? ......................71 

3.1.4 Indirect measures of exposure: Lung function or other applicable endpoints ...73 

3.1.5 Synergism or precipitation by other particles/compounds ................................75 

3.1.6 Can we define (possible) biomarkers? .............................................................75 

3.2 Exposure and detection in biological samples/fluids .....................................................77 

3.2.1 Detection limits (depending on technique used and on the material 
investigated) .....................................................................................................77 

3.2.2 Local exposure concentration lung, GIT, skin...................................................77 

3.2.3 Identification and quantification ........................................................................78 

3.2.4 Possible biomarkers .........................................................................................78 

4 Environment ................................................................................................................78 

4.1 Natural Nanoparticles in Geological Systems ...............................................................79 

4.2 Nanotechnology and the Environment ..........................................................................81 

4.2.1 Binding of toxic elements and compounds to nanomaterials............................81 

4.2.2 Mobility of nanoparticles within the environment ..............................................82 

4.3 Conclusions and Future Research................................................................................84 



 

 IMPART 
 09.06.08 / Page 4/116 

5 Law and Regulation ....................................................................................................85 

5.1 Protection of workers’ health and safety against risks due to chemicals.......................87 

5.2 ISO Technical Committee 229 ......................................................................................88 

6 Knowledge gaps and recommendations ..................................................................90 

7 Reference List .............................................................................................................94 

 



 

 IMPART 
 09.06.08 / Page 5/116 

List of Authors  

Margarita Apostolova, Inst. Mol. Biol., Bulgarian Academy of Sciences, Bulgaria 

Marite Arija Bake, Institute of Occupational and Environmental Health, Latvia 

Gordon Chambers, Dublin Institute of Technology, Ireland 

Horia Chiriac, National Institute for R&D of Technical Physics, Romania 

Eva Herzog, Dublin Institute of Technology, Ireland 

Victoria Hand, University of Manchester, UK 

Jürgen Höck, TEMAS, Switzerland 

Peter Hoet, Katholieke Universiteit Leuven, Belgium 

Harald F. Krug, Empa, St. Gallen, Switzerland 

Nicoleta Lupu, National Institute for R&D of Technical Physics, Romania 

Declan McCormack, Dublin Institute of Technology, Ireland 

Maja Remskar, Institut »Jožef Stefan«, Slovenia 

George Robillard, Biomade Technology Foundation, The Netherlands 

Jamila Smisterova, Biomade Technology Foundation, The Netherlands 

Jan Stetkiewicz, Nofer Institute Of Occupational Medicine, Poland 

Speranta Tanasescu, Institute of Physical Chemistry, Romania 

Aris Tsatsakis, University of Crete, Greece 

David Vaughn, University of Manchester, UK 

Peter Wick, Empa, St. Gallen, Switzerland 

Jörg Wörle-Knirsch, Research Center Karlsruhe, Germany 

 



 

 IMPART 
 09.06.08 / Page 6/116 

1 Introduction 
Author: Nicoleta Lupu and Horia Chiriac 

1.1 General considerations on nanotechnology and nanomaterials 
Nanotechnology is regarded as one of the key technologies of the future and 
associated with high expectations by politics, science and economy. Artificially 
produced nanosized particles and nanoscale system components have new properties 
which are of importance for the development of new products and applications. Such 
new properties of materials and substances result from the special properties of 
surfaces and interfaces and in part, from the geometric shape of the material.  

In theory nanoparticles (NPs) can be produced from nearly any chemical; however, 
most NPs that are currently in use today have been made from transition metals, 
silicon, carbon (single-walled carbon nanotubes; fullerenes), and metal oxides (zinc 
dioxide and titanium dioxide). 

Potentially harmful effects of nanotechnology might arise as a result of the nature of the 
NPs themselves, the characteristics of the products made from them, or aspects of the 
manufacturing process involved (Borm and Kreyling, 2004). The large surface area, 
crystalline structure, and reactivity of some NPs may facilitate transport in the 
environment or lead to harm because of their interactions with cellular material. In the 
case of nanomaterials, size matters, and could facilitate and exacerbate any harmful 
effects caused by the composition of the material. 

The highest risks for humans and the environment are associated with nanomaterials 
contained in products in the form of free particles. As long as NPs remain firmly 
embedded in materials, hardly any risk should be expected (Brouwer, 2004). However, 
it has to be clarified in these cases whether and in which form nanomaterials can be 
released into the environment during the production process, the use of a product, due 
to ageing and degradation as well as during disposal and recycling processes. Of 
course, also in the case of nanomaterials, environmental risk assessment should take 
into account their entire life cycle.  

The assessment of the risk involved in NPs will decisively depend on the form in which 
these materials come into contact with humans and the environment. In this respect, 
important open questions still to be answered include the following: How stable and 
persistent are these forms? Do they decompose or agglomerate? Are they soluble in 
water? Will they interact with other NPs, chemicals, or surfaces? Are they degradable, 
and how will their properties change during degradation? Because of their size, NPs 
may cross barriers by the airborne route, also by adherence to aerosols. Unlike gases, 
liquids and many solid materials, the desirable properties of engineered nanomaterials 
closely depend on size, shape and structure (both physically and chemically) at the 
nanoscale. Similarly, there is a strong likelihood that biological activity will depend on 
physicochemical parameters not usually considered in toxicity screening studies. 
Nanoparticles can penetrate into live cells. Therefore, they have a potential to 
accumulate in organisms and thus, also in the food chain.  
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Typically, the biological activity of particles increases as the particle size decreases. 
Smaller particles occupy less volume, resulting in a larger number of particles with a 
greater surface area per unit mass and increased potential for biological interaction.  

The unusual properties of nanomaterials are predominantly associated with their 
nanometer-scale structure, size and structure-dependent electronic configurations and 
an extremely large surface-to-volume ratio relative to bulk materials. Particles in the 
nanosize range can deposit in all regions of the respiratory tract including the distal 
lungs (Brown et al., 2002). Due to their small size, NPs may pass into cells directly 
through the cell membrane or penetrate between or through cells and translocate to 
other parts of the body. Limited data have suggested possible translocation of inhaled 
NPs to the nervous system and other organs/tissues. 

The size of NPs alone may not be the critical factor determining their toxicity; the 
overall number and thus the total surface area may also be important. As a particle 
decreases in size, the surface area increases (per unit mass only; if you normalize to 
number of particles, the surface area decreases) and a greater proportion of 
atoms/molecules are found at the surface compared to those inside. Thus, NPs have a 
much larger surface area per unit mass compared with larger particles. The increase in 
the surface-to-volume ratio results in the increase of the particle surface energy which 
may render them more biologically reactive. 

Chemical composition is another important parameter for the characterization of 
nanomaterials, which comprise nearly all substance classes, e.g., metal/metal oxides, 
compounds, polymers as well as biomolecules. Some nanomaterials can also be a 
combination of the above components in core-shell or other complex structures. 
Dependent on the particle surface chemistry, reactive groups on a particle surface will 
certainly modify the biological effects (Donaldson et al., 2001a). Under ambient 
conditions, some NPs can form aggregates or agglomerates. These agglomerates have 
various forms, from dendritic structure to chain or spherical structures. To maintain the 
characteristics of NPs, they are often stabilized with coatings or derivative surface to 
prevent agglomeration. The properties of NPs can be significantly altered by surface 
modification and the distribution of NPs in the body strongly depends upon the surface 
characteristics. Changes of surface properties by coating of NPs to prevent 
aggregation or agglomeration with different types and concentrations of surfactants 
have been shown to change their body distribution and the effects on the biological 
systems significantly. 

Therefore, it is recommended that the following physico-chemical properties of the test 
materials should be characterized: 

• Size distribution 
• Agglomeration state 
• Shape 
• Crystal structure 
• Chemical composition – including spatially averaged (bulk) and spatially 

resolved heterogeneous composition 
• Surface area 
• Surface chemistry 
• Surface charge 
• Porosity 
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The agglomeration state of a nanomaterial during and following administration may 
have a significant impact on its biological activity. Agglomeration state at different 
structure scales should be characterized, including primary (primary particles), 
secondary (primary particle agglomerates and self-assembled structures) and tertiary 
(assemblies of secondary structures) scales. Ideally, agglomeration state in the 
biological environment following administration should be evaluated. If possible, some 
insight into the binding forces within agglomerates (e.g. relatively weak van der Waals 
forces or relatively strong sintered bonds) should be obtained. Material agglomeration 
or de-agglomeration in different liquid media should also be investigated where 
possible. 

1.2 Nanomaterials 
The focus within this report is on specific materials which have several prominent 
properties. The first criterion is the persistency within the environment or within an 
organism. Thus, we concentrate on stable materials that may have the chance to reach 
the environment in higher concentrations and stay there for months or years. Moreover, 
medical applications have been excluded because there will be used specific materials 
with often biological substances as backbone. This will need a completely different risk 
governance. Taking this into consideration the following materials have been decided to 
be discussed in this report. 

1.2.1 Nanocrystalline Materials (Ceramics, Metals and Metal Oxides) 
Authors: Speranta Tanasescu 

Key parameters to explain the chemical reactivity and toxicity of nanocrystalline 
materials 

Included here are ceramics, metals, and metal oxide NPs. These materials are 
assembled from nanometer-sized building blocks, mostly crystallites. The building 
blocks may differ in their atomic structure, crystallographic orientation, or chemical 
composition. In cases where the building blocks are crystallites, incoherent or coherent 
interfaces may be formed between them, depending on the atomic structure, the 
crystallographic orientation, and the chemical composition of adjacent crystallites. In 
other words, materials assembled of nanometer-sized building blocks are 
microstructurally heterogeneous, consisting of the building blocks (e.g. crystallites) and 
the regions between adjacent building blocks (e.g. grain boundaries). It is this 
inherently heterogeneous structure on a nanometer scale that is crucial for many of 
their properties and distinguishes them from glasses, gels, etc. that are 
microstructurally homogeneous. 

Studies have demonstrated that nanoparticle toxicity is extremely complex and 
multifactorial, potentially being regulated by a variety of physicochemical properties 
such as size and shape, as well as surface properties such as charge, area, and 
reactivity (Cai et al., 1992; Derfus et al., 2004; Nemmar et al., 2003; Sayes et al., 2004; 
Sclafani and Herrmann, 1996). Nevertheless, these and other studies do lend 
substantial weight to the hypothesis that the health hazard of some engineered 
nanomaterials will be dependent on chemistry and structure (Maynard, 2007), as well 
as on the energetics of the crystalline phases (Navrotsky, 2004; Tanasescu and 
Marinescu, 2006; Wang et al., 2007).  
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Understanding the properties of nanoparticles presents a host of challenging questions 
and problems. In the following some key parameters involved in the control of the 
toxicity of NP will be analyzed. A focus will be given to nanosized metal oxides 
emphasizing on some critical aspects and new topics related to these compounds. 

Particle size versus particle composition 

Studies assessing the role of particle size on toxicity have generally found that ultrafine 
or nanoparticles (Ø < 100 nm) are more toxic on a mass-based exposure metric when 
compared to larger particles of identical chemical composition (Oberdörster et al., 
1994; Li et al., 1999; Höhr et al., 2002). In their inhalation studies, Oberdörster et al. 
(1994) and Ferin et al. (1992) observed a significant increase in inflammation signs or 
parameters during administration of 20 nm TiO2 particles in comparison with the same 
mass of 250 nm particles. Until these studies performed by the same team, titanium 
oxide was considered to be nontoxic dust and served as an inert control in several 
toxicological studies. Damage to the pulmonary epithelium, obstruction of Kohn’s pores, 
development of sources of interstitial fibrosis and alteration of macrophage functions 
(inflammation mediators) were significantly greater. These results show that inert 
particles can become biologically active when nanoscaled. Reduction in size to the 
nanoscale level results in an enormous increase of surface to volume ratio, so 
relatively more molecules of the chemical are present on the surface, thus enhancing 
the intrinsic toxicity (Donaldson et al., 2004b). The extraordinarily high number 
concentrations of NPs will likely be of toxicological significance when these particles 
interact with cells and subcellular components. Many studies have shown that particle 
surface area dose is a better predictor of the toxic and pathologic responses to inhaled 
particles than is particle mass dose (Brown et al., 2001; Donaldson et al., 1998; 
Driscoll, 1996; Duffin et al., 2002; Lison et al., 1997; Oberdörster et al., 1996; Tran 
et al., 2000). Likewise, their increased surface area per unit mass can be toxicologically 
important if other characteristics such as surface chemistry and bulk chemistry are the 
same. Donaldson et al. (2001a) and his team had proved that nanoparticulate forms 
(< 50 nm) of titanium oxide, aluminium oxide and carbon black increased the 
pulmonary inflammation parameters 10 times more than administration of fine particles 
of the same products. Borm et al. (2004), in a lung cancer journal, point out that low 
solubility particles, such as carbon black and titanium oxide, are recognized to cause 
fibroses, neoplasic lesions and pulmonary tumours in rats. The quantity of these 
products required to generate the same effects is much smaller with NPs. 

It is well known that a high surface area can be attained either by fabricating small 
particles where surface to volume ratio of each particle is high, or by creating materials 
of high porosity. So not only the particle diameter but also the porous surface adds to 
the total surface area of the particles. It can be therefore speculated that particles with 
complex porous surfaces will give different results than the particle of same size but of 
negligible porosity (Singh, 2005). Since pores or crevices on the particle surface adds 
more to the surface area, we can predict that the surface area is much more important 
factor than the size. For particles of very small size and complex pore structure, the 
size of the gas molecule may affect the penetration of the gas molecule into the pores 
and therefore not being able to predict the actual surface area. In this case the surface 
area would depend on the precision and sensitivity of method used (Singh, 2005). 
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The chemical composition and the intrinsic toxicological properties of the 
chemical are also of importance for the toxicity of particles. Early indications were 
that transitional metals and their oxides might be more toxic as ultrafine particles 
(UFPs) than other materials (Donaldson et al., 1999). However the evaluation of toxicity 
for both micron and nanosized materials gave interesting results. For micron sized 
biomaterial particles, the in vivo distribution was dependent on the composition of the 
material. Research is now showing that when normally harmless bulk materials are 
made into ultrafine particles they tend to become toxic. The effect of carbon black has 
been shown to be more severe than that of titanium dioxide (Kim et al., 1999), while for 
both compounds the NPs induced lung inflammation and epithelial damage in rats at 
greater extent than their larger counterparts. Other studies have shown very similar 
toxicities between very different materials when presented as UFPs, for example latex 
and TiO2 (Oberdörster, 2003). For several different nanoscale particles (polyvinyl 
chloride, TiO2, SiO2, Co, Ni), differences in cytotoxicity are obtained due to size 
difference at the nanoscale, as the particle size ranged from a mean diameter of 14 nm 
to 120 nm (Peters, 2004). What seems clear from all these papers is that exposure of 
living systems to UFPs tends to increase oxidative stress and from this point of view 
the size effect is considerably more important to UFP toxicity than the actual 
composition of the material (Howard, 2003).  

However, recent studies have provided evidence that intentionally produced 
nanomaterials can display unique toxicity that cannot be explained by differences 
in particle size alone (Lam et al., 2004; Warheit et al., 2004)1. Although a correlation 
between increasing surface area and biological effects is shown in many cases, there 
are also research reports in which this relationship between size, surface area and 
toxicity is not straightforward or even reverse. Therefore, it is not always possible to 
predict effects on the basis of size or surface area alone (Warheit et al., 2006; Yin 
et al., 2005). 

Particle size versus crystalline structure 

Shvedova et al. (2005) reported unusual inflammatory and fibrogenic pulmonary 
responses to specific nanomaterials, suggesting that they may injure the lung by new 
mechanisms. The combination of small particle size, large surface area, and ability to 
generate reactive oxygen species have been suggested as key factors in induction of 
lung injury following exposure to some incidentally produced nanomaterials (Nel et al., 
2006). Uchino et al. (2002), Warheit et al. (2006) and Sayes et al. (2006b) have 
reported that specific crystal structure and the ability to generate reactive oxygen 
species are important factors to consider in evaluating nanomaterial toxicity. Inhalation 
studies using rodents have demonstrated that 20 nm diameter TiO2 particles had a 
greater impact on the animals’ lungs than pigment-grade particles with the same 
composition, even though both particle sizes were administered as micrometer–
diameter agglomerates (Bermudez et al., 2004). So, the published toxicity studies 
clearly show that particle size alone is not a good criteria for differentiating 
between more or less hazardous materials. Oberdörster et al. (2005a) address the 
potential health impact of nanostructured particles—those having sub-100 nm scale 

                                            
1 The toxicity of carbon nanotubes and especially of their contaminants will be addressed in chapters 1.2.3.1 
and 2.1.3 
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structures—rather than solely focusing on nanometre–diameter particles. Maynard and 
Kuempel (2005) further suggest that the structure-dependent behaviour of 
nanomaterials indicates an emphasis on nanostructured rather than nanosized 
particles. The association between structure and functionality provides a useful handle 
for beginning to explore occupational health risk (Maynard, 2007). There is a 
dependency between the physical and chemical structure of engineered nanomaterials 
and the health hazard they present (for instance, see Maynard et al., 2005, 2006; 
Oberdörster et al., 2005a, b; Lam et al., 2006). 

With these observations in mind, an important conclusion is being raised. The biological 
behaviour of NPs is determined not only by the chemical composition, but also by the 
corresponding shifts in chemical and physical properties, associated to the increase in 
surface to volume ratio (Navrotsky, 2004; Tanasescu and Marinescu, 2006). Or, in 
other words, for every compound, every property has a critical length scale where the 
fundamental physics of that property starts to change. It is noteworthy that the surface 
cannot be considered only as a two-dimensional boundary limiting the solid, but rather 
as a zone several atomic layers deep with specific properties different from the bulk. 
Then the question is to know how the influence of surface properties can be modified 
when the crystallite size decreases to the limit of stability of the nanocrystal. Therefore, 
it may be expected that the energetics of nanostructured materials is a key factor of the 
life of oxide materials and of their reactivity. In fact it is an enormous field of research 
which is starting to be explored.  

Particle size versus energetics of nanomaterials 
Energetics of the polymorph phases 

As a first example of the size effects on the energetics of nanosized oxide materials 
one can quote works on the competition between polymorphism and surface energy 
(McHale, 1997; Navrotsky, 2004; Zhang, 1998). Many oxides are polymorphic, often 
showing different structures for small particles. Examples are α- and γ-Al2O3 and 
Fe2O3, the TiO2 polymorphs (rutile, anatase and brookite), the ZrO2 polymorphs (cubic, 
tetragonal and monoclinic), manganese oxides, as well as Al and Fe oxyhydroxides. 
The reason for such polymorphism can be related to the competition between small 
free energies of phase transitions and differences in surface free energies of different 
polymorphs. Some examples are illustrated in Table 1 in which the transformation and 
surface enthalpies as a function of surface area for titania, alumina, zirconia and iron 
oxide (Gribb et al., 1997; Navrotsky, 2003; Ranade et al. 2002) are presented. The 
closely balanced energetics directly confirms the crossover in stability of nanophase 
polymorphs. For instance, TiO2 is known to exist in three polymorphs, namely, rutile 
(tetragonal), anatase (tetragonal), and brookite (orthorhombic). The energetic driving 
force represented in the Table 1 and Fig. 1 by the surface enthalpies and the enthalpies 
of the sequence transformation rutile/brookite/anatase evidences the crossover of the 
phase stability at level nano. In Fig. 1, the dark solid lines represent the phases of 
lowest enthalpy (meaning the highest stability) as a function of surface area. Rutile is 
energetically stable for surface area <592 m2/mol (7 m2/g), brookite is energetically 
stable from 592 to 3,174 m2/mol (7-40 m2/g), and anatase is energetically stable for 
greater surface areas (Table 4 and Fig. 1). The anatase and rutile energetics are 
crossing at 1, 452 m2/mol (18 m2/g) (Fig. 1). The energetic stability crossovers are 
confirmed. Assuming spherical particles, the calculated average diameters of rutile and 



 

 IMPART 
 09.06.08 / Page 12/116 

brookite for 7 m2/g surface area are 201 nm and 206 nm, and of brookite and anatase 
for 40 m2/g surface area are 36 nm and 39 nm. When particles become smaller, the 
surface free energy becomes dominant, and if the surface energies of the polymorphs 
are sufficiently different, phase stability can be reversed for nanocrystalline particles. 
Rutile is the stable high-temperature phase, but anatase and brookite are common in 
fine-grained natural and synthetic samples. 

Tab. 1: Surface enthalpies, transformation enthalpies and surface area for several 
oxides.

Sample ΔHs 
(J/m2) 
(surface 
enthalpy) 

ΔHtransf  (kJ/mol) 
(enthalpy of 
phase 
transformation) 

Surface area 
(m2/mol) 

TiO2 (rutile) 2.2 ± 0.2  0 < 592 
TiO2 
(anatase) 

0.4 ± 0.1  2.61 ± 0.41 (bulk 
rutile - anatase) 

>3,174 

TiO2 
(brookite) 

1.0 ± 0.2 0.71 ±0.38 (bulk 
brookite – rutile) 

592-3174 

-Al2O3 2.6 ± 0.2 0 <10000 
AlOOH 
(boehmite) 

0.5 ± 0.1 4.9±2.4 5140 

ZrO2 
(monoclinic) 

6.5 ± 0.2 0 Coarse 

ZrO2 
(tetragonal) 

2.1 ± 0.05 9.5 ± 0.4 4313-5545 

ZrO2 
(amorphous) 

0.5 ± 0.05 34 ± 4 37700 

α-Fe2O3 
(tetragonal) 

1.0 14.9±1.5 4000-6400 

γ-Fe2O3 
(cubic) 

0.6 18.7±3.6 8000-39200 

ZrO2 
(monoclinic) 

6.5 ± 0.2 0 Coarse 

 

Zhang et al. (1998, 1999) and Gribb et al. (1997) observed that the synthesis of 
ultrafine titania resulted in anatase and/or brookite, which transformed to rutile on 
coarsening. Once rutile was formed, it grew much faster than anatase. From the 
thermodynamic analysis, they conclude that anatase becomes more stable than rutile 
for particle size smaller than 14 nm. Ranade et al. (2002) directly confirmed the 
energetic crossover in nanophase polymorph stability of TiO2 by high-temperature 
oxide melt drop solution calorimetry. The energetics of the TiO2 polymorphs (rutile, 
anatase, and brookite) explains the differences between the bulk and surface properties 
(Table 2). The closely balanced energetics directly confirms the crossover in stability of 
nanophase polymorphs inferred by Zhang et al. (1998, 1999), explaining the differences 
between the bulk and surface properties (Fig. 1). An amorphous sample with surface 
area of 34 600 m2/mol is 24.25 ± 0.88 kJ/mol higher in enthalpy than bulk rutile.  
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Tab. 2: Comparison between the bulk and surface properties of the TiO2 polymorphs. 
Data from Navrotsky (2003). 

TiO2 polymorphs Bulk enthalpies Surface enthalpies 

rutile 0.71 ± 0.38 kJ/mol 2.2 ± 0.2 J/m2 

brookite 0.71 ± 0.38 kJ/mol 1.0 ± 0.2 J/m2 

anatase 2.61 ± 0.41 kJ/mol 0.4 ± 0.1 J/m2 

 

Fig. 1: Enthalpy relative to bulk rutile for rutile, anatase, and brookite of various surface 
area. Figure modified from Ranade et al. (2002). 

Because many oxides (silica, iron and aluminium oxides and oxyhydroxides, 
manganese oxides, titania, zirconia, zeolites) show polymorphism with relative small 
free energy differences between polymorphs, such crossovers in stability at the 
nanoscale may be a rather general phenomenon. The metastable phases are 
somehow structurally more similar to their precursors in solution, melt, or glass and are 
able to nucleate more readily. Thus, a strategy for making a given polymorph in the 
laboratory, and one that may be used by organisms as well, is to control the size of the 
initial crystal (typically by controlling concentration of reactants, ionic strength, and 
organic and inorganic additives) to precipitate the desired polymorph with a relatively 
uniform size distribution within the size range in which that polymorph is stable and then 
to aggregate and coarsen the particles without phase transformation. In ceramic 
processing, coarsening is often accomplished by controlled heating; nature finds other 
aggregation and growth mechanisms at biological temperatures. 

If there is a general correlation between increasing metastability and decreasing 
surface energy, as discussed above, then crossovers in thermodynamic stability at the 
nanoscale may be a key parameter controlling the global reactivity and toxicity.  
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Correlation between the stability, energetic parameters and the toxicity of nano-
TiO2 nanoparticles 

Different authors further evaluated the toxicity of the different TiO2 polymorphs. Uchino 
et al. (2002) studied the relationship between the amount of radicals produced in UV 
irradiated TiO2 particles and cytotoxicity. The viability of Chinese hamster ovary (CHO) 
cells with internalized TiO2 particles decreased significantly after UV irradiation. 
Although the intensity of UV light did not influence cytotoxicity, the anatase fraction in 
TiO2 particles had a significant effect on cytotoxicity. In addition, cell viability was 
proportional to the formation of DMPO-OH radical adducts. The Electron Spin 
Resonance (ESR) results confirmed the presence of DMPO-OH radical adducts, 
consistent with the formation of OH· radicals. The optimum crystal size for OH· radical 
formation was 30 nm for anatase. Most anatase samples produced more hydroxyl 
radicals than rutile or amorphous TiO2 (Fig. 2). These findings indicate that when 
anatase forms TiO2 with UV exposure, hydroxyl radicals have cytotoxic effects. 

Recent studies (Singh, 2005; Dreher, 2005; Warheit et al. 2006; Sayes et al. 2006b) 
assessed the photocatalytic properties, reactive oxygen species generation, and in vitro 

cytotoxic potentials of nano-TiO2 particles of the three different crystal phases, namely, 
anatase, anatase/rutile, and rutile phases. These investigators reported that, when 

compared to the other crystal phases, the nano-TiO2 particles in the anatase phase, 
produced the most reactive oxygen species generation and the largest cytotoxic 
responses following in vitro exposures to human dermal fibroblasts or to A549 human 

lung epithelial cells. Sayes et al. (2006b) concluded that the nano-TiO2
 particles in the 

anatase crystal phase are a superior photocatalyst to the rutile particle types because 
of differences inherent in the crystal structures. It remains to be determined whether 
similar results will be measured under in vivo conditions. 

 
Fig. 2: Oxidative stress hydroxyl radical production (ESR) in different TiO2 polymorph 
phases Uchino et al. (2002). 

Barnard and Zapol (2004) performed various studies in order to elucidate the physical 
and chemical parameters affecting the stability of TiO2 at the nanoscale. Using a 
thermodynamic model, they have presented predictions of the transition enthalpy of 
nanocrystalline anatase and rutile as a function of shape, size, and degree of surface 
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hydrogenation, showing that transition enthalpies may differ as a result of 
morphological changes and surface structure. 

Nanoparticles in the aqueous environment have hydrated surfaces. The enthalpy of 
hydration and the enthalpy of adsorption of other inorganic ions and organic molecules 
on NPs can be also studied by calorimetry. Such adsorption is expected to be sensitive 
to polymorphism and, for particles below 10 nm or so in size, new phenomena may 
come into play. Unfortunately, the enthalpy of hydration has been explored only for a 
small number of oxides (McHalle, 1997; Navrotsky, 2003). Further work by adsorption 
and immersion calorimetry is needed. 

The influence of different compositional variables on the reactivity and 
thermodynamic data 

In the description of the multicomponent oxides reactivity by referring to ideal surfaces, 
it is necessary to consider several interconnected structural and compositional features: 

• intrinsic defects 
• foreign atoms 
• nonstoichiometry 

The reactivity of iono-covalent oxide surfaces at moderate temperatures is made 
possible by the existence of defects that play a basic role in the adsorption of 
molecules, which often in the step required before the nucleation of new solid phases. 
Therefore, an efficient control of the oxide reactivity characterizes both nature and 
number of structural defects pre-existing at surfaces, or those forming or vanishing as 
a consequence of the solid state transformation.  

In addition to these intrinsic defects, foreign atoms are often present as a 
consequence of their existence as additives or impurities, or combined or not with 
segregational effects. Foreign atoms can also be intentionally deposited onto surfaces 
for specific purposes. Their influence on the thermodynamic properties and toxic effect 
is generally poorly known and underexploited. However, when they are controlled they 
can be used not only for obtaining or improving the suitable properties in specific 
applications (such as catalysis, elaboration of sensors, sintering of ceramic oxides or 
electronics), but also to predict the possible bio/non-bio interaction. 

TiO2 displays its high photoactivity only when it is irradiated by ultraviolet light due to its 
wide band gap (3.2 eV for anatase). Doping with impurities has been widely used to 
modify the properties of TiO2 by introducing new states in its electronic structure 

(Diebold, 2003; Xie et al., 2003). Because of the unique 4f electron configuration, 
lanthanide metal ions are ideal dopants to modify the electronic structure of TiO2. For 
example, cerium element doping (Hou et al., 2006; Wang et al., 2007) could introduce 
new energy level into band gap of nano TiO2, making it possible for light with a 
wavelength over 400 nm (generally named visible light) to excite an electron jump to 
conduction band from valence band. At the same time, Ce(IV) can separate e-/h+ pair 
by grasped electron, then liberate h+ to react with H2O to generate OH and H2O2, 
leading to accumulation of ROS in cell membranes and in cytoplasm. 

When we discuss the influence of different compositional variables on the reactivity and 
thermodynamic data under the conventional risk assessment paradigms, understanding 
the risk presented by these materials will be a function of both hazard (incorporating 
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toxicity and health outcomes) and exposure (including exposure routes and dose). 
There is also a third component that deserves specific attention when addressing 
engineered nanomaterials: Characterization (EPA, 2007; Maynard, 2007; Oberdörster 
et al., 2005a; SCCP, 2007; SCENIHR, 2007; Tanasescu et al. 2008). 

In constructing a framework for nanomaterials toxicity testing, Oberdörster et al. 
(2005a) recommend sixteen physicochemical parameters that should be evaluated in 
toxicity tests. These range from surface area and surface chemistry to particle size 
distribution and particle charge. Engineered nanomaterials are notoriously difficult to 
characterize—even two materials that are notionally the same may have subtle but 
significant differences that determine their behaviour. For instance, introducing a small 
percentage of impurities to the surface of nano-TiO2 particles may fundamentally alter 
their propensity to generate free radicals under UV radiation (Wakefield et al., 2004). 
Without rigorous nanomaterials characterization, it will be near-impossible to interpret 
toxicity studies, compare similar studies and develop predictive models of 
nanomaterials hazard. Besides the other physicochemical parameters, the control of 
the energetic parameters could be important step in understanding the stability and 
reactivity of the micro and nanostructured materials (Navrotsky, 2003; Tanasescu et al. 
2008). 

One of the major problems results from the difficulty in characterizing the surface in 
perfectly controlled conditions and in using the classical techniques to analyze its 
properties at equilibrium in situ. Another difficulty is that, in contrast to macro-
thermodynamics, the thermodynamics of a small system will usually be different in 
different environments (Hill, 2001a, 2001b). The thermodynamic functions of a small 
system differ from those of the corresponding macroscopic system, and also are 
depending on the “environmental” variables of the small system (e.g., for a single 
component: N, p, T; μ, V, T; μ; p, T in conventional thermodynamic notation). If we take 
the environmental variables N, p, T as an example, applied to, say, small crystallites of 
various fixed sizes N, the thermodynamic properties of interest, such as free energies, 
enthalpies, entropies, heat capacity are in fact size effects. Or, in other words, for every 
compound, every property has a critical length scale where the fundamental physics of 
that property starts to change. 

In the Chemical Thermodynamics Laboratory from Institute of Physical Chemistry of the 
Romanian Academy a detailed investigation of the thermodynamic properties of micro 
and nanostructured multicomponent oxides was initiated in order to evidence new 
features related to the effect of different compositional variables on the thermodynamic 
behaviour. The focus of the research was to emphasize modifications of the 
thermodynamic properties connected with the nanocrystalline state in some oxide 
systems with perovskite structure. In previous papers (Tanasescu et al., 2008, 2008), 
examples from nonbiological systems illustrate features potentially important for the 
interaction of small-scaled particles within large-scaled settings. The size 
(1 nm - 100 nm) and surface area alter some behaviours such as work function, 
energetic parameters, chemical potential, and oxygen capacity storage. The results 
obtained for the nanocrystalline ceramics can be discussed only being related with the 
significant changes in the overall defect concentration, suggesting reduced formation 
energy of oxygen vacancies and an increase of order in the oxygen sublattice. 
Searching for the potential harm associated with UFPs, there are indications that size 
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matters as much as or more than the material of which the particle is composed. 
Interesting or unusual properties appear because the size of the system approaches 
some critical length.  

Recommendations 

• There is need for more and advanced tools for the surface characterization 
under controlled conditions, thus, the properties and environmental effects of/on 
nanoparticles can be related to each other 

• To enhance the endeavours in development and application of theory and 
modelling, expanding conceptual framework, and calibrating the state of our 
understanding to the nanoscale 

• Integration of theory, modelling, and simulation into experimental design 

Knowledge gaps 

• regarding the dependence of particle energy on size; in contrast to 
macrothermodynamics, the thermodynamics of a small system will usually be 
different in different environments. 

• Information about the correlation between surface energy, reactivity and 
biological activity is needed 

• No or little information regarding the fundamental understanding of the reaction 
specificity of nanoparticles in solution is available 

1.2.2 Fullerenes 
Authors: Maja Remskar 

Fullerenes and fullerene-like particles are spherical NPs with self-terminated shells. 
Due to their geometry they undergo to a strong Brownian motion, they easily become 
airborne, especially the smallest C60 fullerenes. Agglomeration is the usual process to 
minimize the large surface energy, but it changes the desired physical and chemical 
properties typical for nanoobjects. Therefore they are usually functionalized with polar 
molecules-surfactants.  

1.2.2.1 Carbon fullerenes 
C60 is a molecule that consists of 60 carbon atoms, arranged as 12 pentagons and 
20 hexagons. The spherical molecules, 3.52 Å in diameter, do not exhibit 
"superaromaticity", the effect that the electrons in the hexagonal rings would be 
delocalized over the whole molecule. Therefore they have a high electron affinity at 
pentagon rings, which can lead to reaction with oxygen dissolved in water and creation 
of oxygen free radicals. These are responsible for oxidative cell damage. They are 
hydrophobic and very sparingly soluble in water. Common solvents for the fullerenes 
include toluene and carbon disulfide. Solutions of pure C60 have a deep purple color. 
Under a variety of conditions, upon contact with water, C60 spontaneously form stable 
aggregates with nanoscale dimensions (d=25-500 nm), termed as “nano-C60”, with a 
partially oxidized shell. The colour, hydrophobicity, and reactivity of individual C60 are 
substantially altered in this aggregation form. Smallest aggregates are typically circular 
in cross section, intermediate and large particles are mostly rectangular, and the very 
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largest particles often appear to be triangular. The properties of C60 are summarised in 
Tab. 3. As the pH of water is varied, a change in the average particle size is observed 
(Fortner et al., 2005). The removal of electrons from the surface via a mild oxidizing 
agent is necessary to destabilize nano-C60 and cause disassembly to single C60 
molecules. These aggregates allow for concentrations up to 100 mg/L, which is 11 
orders of magnitude more than the estimated molecular solubility (<10-9 mg/L). These 
photoactive nanocrystals can then produce oxygen radicals that damage lipid bilayer of 
cells, although it does not appear to oxidize the cellular proteins and other organelles. 
This crystallization can be prevented by partially oxidizing the C60 molecule in advance. 
For example, C60(OH)24 is not toxic at all, but the question appears if it shows still the 
same promising chemical and physical properties for applications? It was discovered 
(Bogdanovic et al., 2004) that water soluble derivatives of C60(OH)22 inhibited the 
growth of human breast cancer cell lines at a range of nanomolar concentrations, so 
such molecules are still biologically active. Only two (OH) groups more completely 
prevent toxicity in water bio-media. How to control the stage of complete oxidation in 
water or (OH)- rich media inside human body? 

Nevertheless, the ability of oxidising the C60 molecule is a perspective for health and 
cosmetic industry for neutralisation of free radicals caused in human body due to 
internal and external processes, like UV irradiation, aging, food additives, etc. From the 
available data it is not clear how the oxidising of C60 takes place without to go through 
partial toxic C60(OH)x phases. 

The world's first Fullerene-based cosmetic ingredient is already on market2. Part of the 
advertising: “The effects of Fullerene are maximized in Radical Sponge®, which can 
easily be applied to and absorbed by the skin. The product is designed to remain in the 
epidermis and protect the keratinocyte that forms the corneum and the melanocyte, the 
key players in skin protection, from harmful radicals. "Radical" is a generic name given 
to any reactive molecular species, including active oxygen, that is harmful to living 
organisms. Examples include •O2

- (superoxide anion radicals), •OH (hydroxide 
radicals), •NO (nitrogen oxide radicals), and lipoperoxide. These radicals are produced 
in abundance by ultraviolet radiation, irritant chemical substances (including make up 
ingredients), and stress. Due to their high reactivity, radicals begin to attack and 
destroy nearby living tissue immediately after production, causing various skin 
problems and illnesses. Radical Sponge can take you to realms unreachable by vitamin 
C, a still superb radical-eliminating agent.” 

                                            
2  http://www.vc60.com/english/radicalcontrol/  
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Fig. 3: Fullerene as possible radical scavenger? 

Drug delivery was the second important use of C60, but USA scientists producing DNA 
buckyballs3 instead of C60 are concerned on the C60 potential toxicity to humans and 
animals. They report: “Even miniscule alterations to the surface of the buckyballs can 
dramatically affect how toxic they are to individual cells. Toxicity is desirable for 
example, for particles that kill cancer cells or harmful bacteria. In other cases, like 
applications where particles may make their way into the environment - toxicity is 
undesirable.” 

Tab. 3: Characteristic properties of Fullerene C60.

No.crt. Properties of C60 Details 

1 Morphology 

0.704 nm in diameter 
Aspect ratio: L/l/h(D): 1 
Specific surface (m2/g): 5,2.105 
Agglomeration: nC60 

2 Crystallinity Rectangular crystals 

3 Wettability Hydrophobic 

4 Reactivity/Degradation Radical scavenger, persistent 

5 Solubility 10-9 mg/L as C60 and 100 mg/L as 
nC60 colloidal aggregates 

6 Toxicity Moderate or no toxicity (Sayes et al., 
2007a; Zhu et al., 2007) 

1.2.2.2 Inorganic fullerenes: WS2, MoS2 
WS2 and MoS2 inorganic fullerenes (Tenne et al., 1992) are onion-like NPs with several 
molecular layers (S-W-S or S-Mo-S) in wall thickness. They can be hollow or partially 
filled with MoOx or WOx compounds, which serve as precursor material during the 
synthesis. Inorganic fullerenes were firstly produced by the sulphidization of thin films of 
trioxides and later-on from NPs of transition metal trioxides or suboxides in gas flow of 

                                            
3http://www.in-pharmatechnologist.com/news-by-product/news.asp?id=62142&k=researchers-create-dna 
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mixture of H2 and H2S. The particle diameters range from 20 nm up to 150 nm for WS2 
(Fig. 4) and up to 80 nm for MoS2. The particles are frequently agglomerated and 
sintered into clusters composed of few up to several tens of NPs of different diameter. 
Surface of the particles is inert due to saturated sulphur bonds composing the top most 
atomic layer. The only reactive sites are surface defects in form of screw dislocations, 
edges of broken molecular layers or exfoliated layers. These sites are saturated by 
oxygen forming transition metal oxides. Pure material is hydrophobic. It is possible to 
des-aggregate the assemblies in solvents containing surfactants using ultrasound. The 
inorganic fullerenes are relatively heavy and therefore too heavy to become airborne 
easily, if the wall thickness exceeds 10% of radius in MoS2 and 6% in WS2, which is 
always the case. The values were estimated for the empty spheres, so real values are 
even smaller. Charging of the particles or use a flowing gas including convection can 
take up them into air for a time dependent on their geometry. The sedimentation rate of 
the particles in air or in water is not known. The properties of inorganic fullerenes are 
summarised in Tab. 4. 

One of the most promising applications is as advanced solid-state lubricant in 
automobile and aerospace industries, as well as in military use as lubricants. The 
spherical geometry of the particles enables their use as the best known shock 
absorbers (Zhu et al., 2005). Under uniaxial shockwave they survive pressure up to 30 
GPa, what evidences that they are superior to the all-carbon cage structures, which 
collapse and convert into diamonds under similar or much lower pressures.  

Currently ApNano can manufacture only a few kilograms of the new material a day at 
their lab in Nes Ziona. In an interview by IsraCast4, Dr. Menachem Genut, ApNano 
CEO, explained that the company is moving into semi-industrial manufacturing within 
the next six months producing between 100-200 kilograms of the material per day, 
gradually moving to full-scale industrial production by 2007, creating several tons each 
day. 

 
Fig. 4: HRTEM of typical WS2 nanoparticles. 

Due to inertness of the structure, toxicity is not expected. The first analysis performed 
on rats have shown that the WS2 NPs are not toxic for oral digestion, breathing, neither 
they produce any irritation of the skin. Open question is accumulation of the particles in 
human lung if the particles become airborne, and possibility of self-cleaning of sulphur 

                                            
4 http://www.isracast.com/tech_news/091205_tech.htm 
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rich material from human body. The possible reactions with body liquids are not known. 
If the accumulated particles would undergo the decomposition, the appearance of 
hyper-sensitivity on metals is possible. Sensitivity of human body to metallic tungsten or 
molybdenum oxides is not known. 

No reports were located in which death in humans could be specifically associated with 
exposure to airborne tungsten or tungsten compounds5. Increased mortality has been 
attributed to occupational exposure to dusts containing tungsten carbide and cobalt 
among hard metal workers. It is generally believed that the health effects observed in 
hard metal workers are the result of exposure to cobalt or other metals (e.g., nickel), 
not tungsten. Mechanisms concerning absorption, distribution, and toxic action of 
tungsten have not been studied to date; studies should be designed to identify such 
mechanisms. 

No established methods or treatments for reducing the body burden of tungsten were 
identified in literature searches. No information was located regarding treatments to 
repair damage or improve compromised function resulting from exposure to tungsten. 

There is not enough information to determine whether inhalation, oral, or dermal 
exposure to tungsten or tungsten compounds can cause cancer in humans. Tungsten 
has not been classified for carcinogenic effects by the Department of Health and 
Human Services (DHHS), the International Agency for Research on Cancer (IARC), or 
the US Environmental protection Agency (EPA). 

Data documenting molybdenum toxicity in humans are limited6. The physical and 
chemical state of the molybdenum, route of exposure, and compounding factors such 
as dietary copper and sulphur levels may all affect toxicity. Mild cases of molybdenosis 
may be clinically identifiable only by biochemical changes (e.g. increases in uric acid 
levels due to the role of molybdenum in the enzyme xanthine oxidase). Excessive 
intake of molybdenum causes a physiological copper deficiency, and conversely, in 
cases of inadequate dietary intake of copper, molybdenum toxicity may occur at lower 
exposure levels. 

Sulphate and molybdate follow similar metabolic pathways7. Sulphate will alleviate 
molybdenum toxicity. Molybdate and sulphate act together in creating copper deficiency 
in cattle and sheep giving rise to molybdenosis or "teart" condition. Molybdenum 
inhibits the activity of the enzyme liver sulphide oxidase and the toxicity of molybdenum 
compounds is enhanced by sulphide. In assessing possible biological effects of 
molybdenum it is important to take into account its metabolic interrelationships with 
other trace elements (phosphorus, sulphur, potassium, iron, copper, zinc, and iodine).  
Acute molybdenum poisoning in human beings is extremely unlikely because of the 
massive dose required. The effect of repeated exposure to small concentrations of 
molybdenum compounds is more difficult to assess. In animals and human beings 
molybdenum is adsorbed and excreted rapidly and so is not likely to be a cumulative 
poison. In checking for possible molybdenum toxicity it is important to know where and 
in what form toxic effects may occur. In experimental animals molybdenum toxicity 

                                            
5 http://www.atsdr.cdc.gov/tfacts186.html 
6 http://risk.lsd.ornl.gov/tox/profiles/molybdenum_c_V1.shtml 
7 International Molybdenum Association, U.K., http://www.imoa.info/Default.asp?Page=110 
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causes loss of weight, harmful changes in the liver, kidneys, and bones and diminution 
of the strength of conditioned reflexes.  

Tab. 4: Characteristic properties of inorganic Fullerenes.

No.crt. Properties of WS2 and 
MoS2 fullerenes Details 

1 Morphology 

20nm-150 nm in diameter 
Aspect ratio: L/l/h(D): 1-2 
Specific surface (m2/g): 35 – 9 for 
MoS2 and 23-9 for WS2 

Agglomeration: yes 

2 Crystallinity Yes, faceting, exfoliation 

3 Wettability Hydrophobic 

4 Reactivity/Degradation Inert/no information, probably 
oxidation of metal 

5 Solubility In water with ionic or cationic 
surfactants 

6 Toxicity No, according to available 
information 

 

1.2.3 Nanotubes 
Nanotubes are quasi one-dimensional objects with extremely large aspect ratio: 
diameters in a range from 1 nm up to several microns, and length from a few microns 
up to several millimetres. They are hollow; wall thickness varies from 0.3 nm up to 
100 nm, density of defects depends strongly on the way of synthesis and on the 
selected materials. The tubes prepared from layered materials (graphite, MoS2, WS2, 
TiS2, etc.) show a tendency of spontaneous formation of self-terminated cylinders, 
while metal or metal oxide nanotubes need a template growth process to force the 
structure to form the cylindrical shape.  

1.2.3.1 Carbon nanotubes 
Authors: Gordon Chambers, Eva Herzog, Declan McCormack. 

Carbon nanotubes (CNT) were first observed by Sumio Iijima in 1991 (Iijima, 1991). 
They are unique, one dimensional macromolecules, comprised entirely of carbon. They 
consist of extended tubes of rolled graphene sheets with an axial symmetry and a 
diameter in the nanometer range and can grow up to several centimetres long (Saito, 
1998). There are two main types of CNT, differentiated by their structure, single wall 
carbon nanotubes (SWCNT) and multiwall carbon nanotubes (MWCNT). SWCNT 
consist of a singular graphene cylindrical wall (diameter 0.7 - 2 nm), whereas MWCNT 
have walls made up of several coaxial graphene cylinders, so that the diameter of 
MWCNT is about ten nanometres or more, depending on the number of layers 
(Ebbesen et al, 1993). CNT exhibit a number of unique properties including strength, 
toughness, chemical robustness, thermal conductivity and electrical conductivity 
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(Dresselhaus, 1996). These properties, coupled with their nanoscale geometry make 
them ideal candidates for a number of potential applications in the nano area although 
production costs and processibility are restricting factors.  

Synthesis and purity of carbon nanotubes  

Several methods have been developed for the synthesis of CNT, including electric arc 
discharge, laser ablation and catalytic vapour decomposition of hydrocarbons. No 
synthetic processes for the production of CNT however can guarantee specific 
dimensions or physical properties. Furthermore, the separation of tubes from tangles 
(or bundles) in which they emerge from the production process is still problematic and it 
is often necessary to remove catalyst or amorphous carbon residues present after 
synthesis. The most commonly used catalysts for CNT production are metal particles 
such as cobalt (Co), molybden (Mo), iron (Fe), nickel (Ni) and yttrium (Y). These metals 
can be encapsulated and therefore coated with carbon, or adhere to the surface of the 
tubes so that an apparent metal oxide layer forms on the outside of the tube. The type 
and content of residual metal particles is thus important in terms of the relative toxicity 
of ‘as produced’ CNT since the health risk associated with CNT prior to removal of 
catalyst material will likely be due to both the carbonaceous and metallic components. 
(Shvedova et al., 2003; Kagan et al., 2005) (compare Chapter 2.1.3). 

Ultrasonication or acid washing is frequently employed to purify SWCNT samples, but 
these methods increase the risk of damaging or chemically altering the tubes 
(Donaldson et al., 2006). Furthermore these purification processes are of unequal 
efficiency, so that the final chemical composition of nanotube samples often varies 
(Muller et al., 2005). Hence even purified SWCNT may contain some amount of 
catalyst residues and amorphous carbon. 

Aggregation  

As-produced CNTs pack into crystalline ropes via electrostatic and Van der Waals 
forces, these ropes can further aggregate into tangled networks and reduce the unique 
properties of the individual tubes acting as an obstacle to the realisation of many 
applications. The degree of aggregation however also determines how CNT are 
presented to exposed cells or tissue (Casey et al., 2007; Davoren et al., 2007). For 
example their lung deposition characteristics can change, as aggregates have a greater 
aerodynamic diameter than single particles beyond the range of respirabiltiy (> 5 µm), 
and making it more difficult for them to be inhaled deep into the lung (Muller et al., 
2005). However much of the CNT research over the last decade has focused upon the 
separation and purification of ‘as produced’ samples with a range of methods now 
available to disperse CNT for application purposes. This could inadvertently increase 
the risk of inhalation exposure (Muller et al., 2005). Furthermore evidence suggests 
that lung surfactant itself might also separate single fibres (Jia et al., 2005).  

Exposure to carbon nanotubes  

Due to the growing interest in development and production of CNT, there is increasing 
potential for human exposure (see Chapter 3). Currently the greatest potential for CNT 
exposure is undoubtedly occupational. Owing to their extremely light weight, CNT can 
become airborne and be inhaled as either single particles or aggregates, if they are 
incorrectly stored and/or handled in an industrial setting (Fiorito et al., 2006). The 
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propensity of SWCNT to form aerosols was shown in a study on HiPco8 single walled 
carbon nanotubes which indicated that CNT aerosols formed under laboratory 
conditions gave rise to between 0.7 and 53 µg/m3 

of nanotubes in air samples 
(Maynard et al., 2004). The same study showed that potential dermal loading during 
material handling in the field was 217 to 6020 µg on individual gloves for the same 
HiPco SWCNT.  

Toxicology of carbon nanotubes 

Pulmonary toxicity  
In vivo studies  

To date there is only a handful of published in vivo studies assessing the impact of CNT 
on the lung and results of these investigations are conflicting (Huczko et al., 2001; Lam 
et al., 2004; Muller et al., 200; Shvedova et al., 2005; Warheit et al., 2004). 
Nevertheless nearly all in vivo studies have found histological evidence of inflammation 
and granuloma formation in rodent lungs via intratracheal administration. However, an 
important limitation of all tests using intratracheal administration is that a single dose of 
CNT suspended in a vehicle such as PBS (Phosphate buffered saline), directly 
introduced into the trachea or pharynx of anaesthetized animals, results in an 
unrealistic situation compared to natural inhalation exposure. Artefacts are possible due 
to the non-physiological rapid delivery of particles. In addition, many of the reports have 
the intrinsic problem that CNT form aggregates in aqueous solutions, despite the use of 
surfactants and sonication (Smart et al., 2006; Royal Society, 2004). By injecting a 
bolus dose of aggregated material, foreign body granulomas can be induced that are 
non-specific and may not reflect the intrinsic effects of the test material. Even the 
investigators themselves questioned the toxicological relevance of their findings 
because of this fact. The absence of dose response relationships noted in some of the 
literature might also be the consequence of the CNTs clumping into large masses 
instead of being evenly distributed throughout the lung (Muller et al., 2005). Although 
pharyngeal aspiration results in some exposure to single CNT fibres, it still cannot 
mimic the real situation, because the nose is bypassed and CNT are delivered as a 
bolus dose.  

Another drawback in experiments by Huczko et al. (2001), Warheit et al. (2004), Lam 
et al. (2004), and Shvedova et al. (2004) is that the degree of purity of CNT 
preparations used was not reported. The toxicological findings, particularly 
inflammatory effects observed, could be influenced by the presence of graphite and 
metal particle contaminants present in the samples (Fiorito et al., 2006). Finally rat and 
mouse instillation studies also have their limitations due to difficulties occurring when 
extrapolating data to the human situation. Nikula et al. (2001) have shown that rat lungs 
process inhaled particles very differently from larger mammals, particularly humans.  

In vitro studies  

Muller et al. (2005), as in their in vivo studies, tested the inflammatory potential of 
MWCNT on peritoneal and alveolar macrophages, derived from Sprague-Dawley rats. 

                                            
8 HiPco® a form of commercial SWCNT produced via the high pressure decomposition of carbon monoxide 
available from Carbon Nanotechnologies, Inc. (Houston, TX) 
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In comparison with asbestos and carbon black, ground MWCNT was seen to be as 
effective in inducing dose-dependent cytotoxicity and up-regulation of TNF-α 
expression, an indicator of inflammatory potential. In contrast as-produced MWCNT 
showed significantly lower activity. The authors suggested that increased 
agglomeration in the ‘as produced’ samples resulted in a decrease in CNT availability 
to the cells, reducing their cytotoxic and inflammatory potential.  

Jia et al. (2005) also conducted cytotoxicity studies of both SWCNT and MWCNT on an 
alveolar macrophage cell line. Due to the tendency of CNT to aggregate, the effect of 
particle size was attempted to be removed by the researchers by adopting a modified 
dosing regime of 1.41 to 226 µg/cm2 

for SWCNT. At an exposure concentration of 
22.6 µg/cm2, cytotoxicity using the MTT assay revealed that SWCNT were more toxic 
than MWCNT on a mass basis.  However the SWCNT sample used was synthesised 
via the electric arc discharge method and had trace amounts of iron, yttrium and nickel 
catalysts and so the influence of trace catalysts may have played a role in this 
outcome. Indeed other reports indicate that purified SWCNT (with catalyst removed) 
did not stimulate inflammatory responses in murine and human macrophages and are 
actually low in cytotoxicity (Fiorito et al. (2006)). Furthermore the presence of iron in the 
samples could affect redox dependent macrophage responses (Kagan et al., 2006). 

Jia et al. (2005) however also explored the phagocytic ability of macrophage cells with 
the results indicating that SWCNT were more effective in impairing phagocytosis and 
caused a larger number of cells to lose their phagocytic abilities. Furthermore, TEM 
analysis showed that with increasing SWCNT concentrations, swelling of the 
endoplasmic reticulum (ER), vacuolar changes, and phagosomes were produced. At 
higher doses of 3.06 µg/cm2, surface protrusions, as seen following apoptosis, could 
also be observed (Jia et al., 2005). A drawback of this study however was that authors 
did not provide enough information to gauge whether the dose dependent increase in 
toxicity corresponded to an increase in CNT particle size or an increase in total mass to 
which cells were exposed.  

In a study by Wörle-Knirsch et al. (2006) A549 lung carcinoma cells were exposed to 
SWCNT, containing mainly Co catalyst residues. Cell viability was determined using 
different cytotoxicity assays, namely MTT, WST-1 and LDH. After 24 hour exposure to 
SWCNT, no decrease in viability could be observed, indicating no reduction in 
mitochondrial viability and membrane integrity, respectively. In addition, propidium 
iodide (PI) and annexin-V staining was employed to confirm the results obtained and 
neither necrosis nor apoptosis could be detected. TEM studies performed by these 
authors revealed that SWCNT bundles are taken up into A549 cells and are surrounded 
by a membrane. Immunohistochemistry showed that focal adhesion kinase (FAK) and 
cytoskeletal actin filaments strongly accumulated near SWCNT which adhered to the 
cells. As described by Tian et al. (2006), cells seemed to detach from the culture dish 
and grow out of plain, so that authors supposed this might be the explanation for 
granuloma formation seen in vivo.  

The inconsistencies reported for the in vitro studies can potentially stem from a number 
of interference effects such as aspects of sample purity and aggregation. However, for 
cytotoxicity tests which utilise fluorescent end points the interactions between the CNT 
and the cell culture medium’s components may also represent a considerable degree of 
interference. The in vitro cytotoxicity testing of SWCNT (Cui et al., 2005; Bottini et al., 
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2006) typically involves their dispersion within a cell culture medium, followed by their 
subsequent addition to a cell line of interest in the medium in which they have been 
dispersed. The interaction between the SWCNT (bundles) and the cell culture medium 
and the influence of such interactions on cell viability has been explored by Casey et al. 
(2007). Both the intrinsic components of the medium and the added growth supplement 
are seen to interact with the SWCNT most likely through physisorption. The interaction 
of these SWNT bundles with the growth medium and supplement is postulated to result 
in a reduction in the availability of the constituents to the cells, causing a secondary 
rather than primary toxicity of the SWCNT. In summary due to medium depletion by the 
absorption of constituents onto the nanotube surface a false positive toxic effect could 
be observed for a range of cytotoxic dyes and assays. Indeed most authors now agree 
that a more detailed physico-chemical characterisation of CNT samples is crucial, 
before testing their biocompatibility and drawing any conclusion concerning their 
toxicity. 

Dermal toxicity  
In vivo studies  

There is extremely limited information available on the skin irritating potential of CNT. A 
preliminary study was published by Huczko and Lange (2001) who conducted two 
routine dermatological tests. A 96 hour patch test and a modified Draize rabbit eye test. 
In both tests, no irritation due the CNTs was observed. Koyama et al. (2006) evaluated 
the biological responses to four different types of CNT by measuring CD4+ 

and CD8+ T-
cells in peripheral blood obtained form BALB/c mice. In addition, they carried out 
histopathological studies on tissues surrounding subcutaneously implanted CNT. 

After one week only the SWCNT activated the major histocompatibility complex class 
one (MHC I) pathway of the antigen-antibody response system resulting in the 
appearance of oedemas. After two weeks, CD4+ 

and CD4+/CD8+ 
values were 

significantly high with no change in CD8+ 
suggesting an activated MHC class II could be 

measured for all samples. The time dependent changes in peripheral T-lymphocytes 
correlated with a processing phase of granuloma formation reported by Warheit et al. 
(2004) and Sayes et al. (2006a). Physico-chemical analysis of the SWCNT sample 
revealed Iron residues were present however no significant correlation between the iron 
amount and T-cell responses could be found, suggesting that the metal catalysts were 
a minor factor in the T-cell responses to CNT in vivo. 

In vitro studies  

The first dermal cytotoxicity warnings were reported by Shvedova et al. in 2003 after 
investigating the effects of unrefined HiPco SWCNT on immortalized human epidermal 
keratinocytes (HaCaT). SWCNT exposure resulted in accelerated oxidative stress, 
including increased free radical and peroxide generation, depletion of glutathione 
levels, oxidation of protein SH groups, and depletion of total antioxidant reserve in 
vitamin E. Furthermore, loss in cell viability and morphological alterations to cellular 
structures was observed. It was concluded that oxidative stress might be associated 
with the concentration of the iron catalyst which for this sample was up to 30 percent 
iron residues per mass.  Similar dermal toxicity results were reported by Monteiro-
Riviere et al. (2005) for MWCNT after a study on human neonatal epidermal 
keratinocytes (HEK). In addition vacuoles could be seen within the cytoplasm of cells 
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containing MWCNT as detected by TEM. As the exposure time and dose was 
increased it was noted that the cell viability decreased although localization and 
initiation of an irritation response by MWCNT could not be shown. However the 
MWCNT samples used in this study were free of catalyst particles, suggesting that CNT 
themselves are potentially dermatotoxic (Monteiro-Riviere et al., 2005). 

Another study on the effects of SWCNT exposure on human keratinocytes (HaCaT) 
was carried out by Manna et al. (2005), were significant increases in Reactive oxygen 
species (ROS) could be seen at SWCNT concentrations ranging between 1 and 
10 μg/ml after 72 hour exposure. In addition significant dose-dependent decreases in 
cell viability at a SWCNT concentration of 0.5 μg/ml was also observed. Other cell lines 
used in this study including HeLa (epithelial cells), A549 and H1299 lung carcinoma 
cells showed a similar behaviour. Finally Tian et al. (2006) evaluated the in vitro 
cytotoxicity of a number of carbon nanomaterials, including SWCNT and MWCNT on 
human dermal fibroblasts. SWCNT exposure resulted in the highest drop in cell survival 
with 58% viability after five days. In addition cell adhesion assays showed that only 
SWCNT exposure caused a significant decrease in the ability of cells to adhere and 
form colonies.  

Environmental Aspects of CNT  

A limited number of ecotoxicological studies of carbon nanomaterials have been 
published. Oberdörster et al. (2006) showed that fullerenes as well as SWCNT can be 
taken up into aquatic organisms following exposure in the water column. It appeared 
that SWCNT elicit fewer biochemical or gene expression level changes than fullerenes. 
The main problem however occurring during these studies was the non-solubilisation of 
the test material. Not solubilised particles were floating on top of the water and 
mistaken as food and ingested. An interesting observation made by Oberdörster and 
colleagues (2006) regarding C60 however was the increase in lipid peroxidation in fish 
brains after 48 hour exposure to 0.5 mg/l. 

A study on the life-cycle effects of SWCNT on an estuarine meiobenthic copepod was 
reported by Templeton et al. (2006). The test SWCNT’s were functionalized making 
them dispersable in water and were processed to remove metal and carbon residues. 
Toxicity assays were carried out using meiobenthic copepods Amphiasus tenuiremis, a 
critical food source for shrimps, fish and crabs which passes through three distinct life 
stages. A 96-well microplate life-cycle bioassay was employed where larvae were 
exposed to 200 µl of SWCNT concentrations of 0.58 to 10 mg/l prepared in seawater. 
In addition, a simulated matriarchal stage structured population growth model, derived 
from population life-cycle characteristics was used to define the growth rate of exposed 
copepods. Finally, adult Amphiascus tenuiremis and their foecal material were 
investigated by confocal laser scanning microscopy (CLSM). The authors concluded 
that purified SWCNT were exhibiting very low toxicity to deposit-feeding estuarine 
copepods, only producing adverse effects at environmentally unrealistic concentrations 
of 10 mg/l. As seen by CLSM, copepods were ingesting SWCNT, which formed clusters 
in the gut and were eventually incorporated in a morphologically altered state into 
faecal pellets. 
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Other toxicity studies  

In 2001, Mattson et al. reported that CNT can inhibit the growth of embryonic rat-brain 
neuron cells, but no further studies were performed on this issue. Tamura et al. (2004) 
briefly investigated the cytotoxic effects of purified CNT on neutrophils isolated from 
human blood. Significant increase in super-oxide anion and TNF-α production could be 
observed after cell contact for one hour, while cell viability decreased. The lack of 
details on the type of CNT, synthesis or handling methods was identified as a major 
drawback of this publication (Smart et al., 2006).  

Confounding problems occurring during CNT toxicology studies  

A common problem in all studies on carbon nanotubes is their hydrophobic surface 
which makes them hardly soluble in aqueous solutions. Manipulation and 
characterization of large numbers of individual CNT is difficult because high molecular 
weights and strong intertubular forces, both van der Waals and electrostatic, promote 
the formation of bundles and ropes. This occurs particularly in saline, media or serum 
solutions as commonly used in toxicity testing. In addition, it is not known how CNT in 
general behave when dispersed in exposure media -and if absorptive interferences 
render some assays inconclusive or inappropriate for assessing CNT toxicity 
(Belyanskaya et al., 2007; Casey et al., 2007; Wörle-Knirsch et al., 2006). Researchers 
have used various different methods to disperse their CNT samples, which ultimately 
determines how CNT are presented to exposed cells, leading to discrepancies in 
toxicity data due to differences in sample preparation and handling, making inter-study 
comparisons problematic (Smart et al., 2006) and raising the question of the materials 
natural behaviour if it enters an eco-system. 

Another important issue in comparing and interpreting CNT toxicity data is the presence 
of residual metal catalyst particles. The type and content of residual metals may be 
important in terms of relative toxicity. The health risk associated with CNT prior to 
removal of catalyst material may be due to both the carbonaceous and metallic 
components. However it also has to be kept in mind, that purified CNT also appear to 
generate oxidative stress on cultured cells, by as yet unknown mechanisms. 
Nevertheless it is widely accepted that suitable nanotoxicology assays for carbon 
based nanostructures must incorporate adequate physical and chemical 
characterization studies on the pristine material to allow traceability and standardization 
between studies. 

Added after revision of the report by H.F. Krug on request of the EC: 

Recently, Ken Donaldson and his coworkers (Poland et al., 2008) have presented new 
data on CNT toxicity and draw the conclusion that very long carbon nanotube fibres 
may act as asbestos fibres in provoking granuloma-like tissue alterations directing to 
mesothelioma formation. As most of these results have been presented and discussed 
at different events during the past months the published data have been known already 
within the scientific community before this publications appeared in Nature 
Nanotechnology Online in May 2008. This work makes several points pretty clear: In 
the field of “Nanotechnology” we are confronted with totally different materials even 
within a „consistent“ family of materials like the CNTs. There is a big difference in the 
activity of single-walled versus multi-walled CNTs, and several papers claimed that it is 
the relatively high proportion of contaminants (such as iron, nickel or amorphous 
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carbon) that is affecting biological systems, as recent studies have shown 
(Belyanskaya et al., 2007; Kagan et al., 2006; Pulskamp et al., 2007a; Pulskamp et al., 
2007b; Wick et al., 2007; Wörle-Knirsch et al., 2006). 

Members of the consortium have already published last year that there is a remarkable 
difference in biological activityof CNTs if they are agglomerated or highly dispersed; 
hence, the effect shown in Donaldson’s paper is not totally new (Wick et al., 2007). 

Moreover, Donaldson’s “very long” CNTs were synthesised in a very special way, and 
the fraction containing the longest CNTs also contain the highest amount of iron 
residues (used as catalysts for synthesis of the CNTs). Donaldson himself stated that it 
is totally unclear and not shown if these long fibres will reach tissues beyond the lung in 
a real life-scenario, hence there is so far no final indication for the induction of 
mesothelioma under “normal” conditions. 

To my believe, Andrew Maynard, one of the co-authors of this publication, is absolutely 
right, stating that it would be totally wrong not to investigate the advantages of these 
new materials and we can not abstain from the use of these materials. But it goes 
without saying that we also have to be aware of their possible biological effects that 
may end in a catastrophe as it did in the case of asbestos. 

The study does clearly indicate that not all different CNT variations have the same 
severe effect in this mouse model (Poland et al., 2008). Especially the shorter tubes 
have no effect at all, thus confirming the earlier results obtained in the laboratories of 
the members of the consortium with several cell cultures. The study also demonstrates 
undoubtedly that we have to keep in mind that specific forms or special shapes of some 
of the (nano)materials may induce important biological effects and give rise for severe 
concern. Thus, we should not cease to work in the field of nanotoxicology and the 
international funding has to be continued to guarantee a sustainable nanotechnology. 

1.2.3.2 Inorganic nanotubes 
Authors: Maja Remskar 

Since the first report on WS2 and MoS2 nanotubes in 1992, several compounds have 
been found stable in cylindrical geometry. Six families of inorganic nanotubes (NTs) 
have been synthesized up to now (Remskar, 2004). 

1. transition metal chalcogenide NTs: MoS2, MoSe2, WS2, WSe2, NbS2, NbSe2, TaS2, 
ZrS2, HfS2, TiS2, ZnS, NiS, CdSe, CdS;  

2. oxide NTs: transition metal oxides: TiO2, ZnO, GaO/ZnO, VOx, W18O49, V2O5, 
Al2O3, In2O3, Ga2O3, BaTiO3, PbTiO3; silicon oxide: SiO2; MoO3; RuO2; rare earth 
oxides: (Er, Tm, Yb, Lu) oxide; 

3. transition metal halogenous NTs: NiCl2; 
4. mixed phase and metal doped NTs: PbNbnS2n+1, Mo1-xWS2, WxMoyCzSz; Nb-WS2, 

WS2-carbon NTs, NbS2-carbon NTs;Au-MoS2, Ag-WS2, Ag-MoS2; Cu5.5FeS6.5;  
5. boron and silicon based NTs: BN, BCN, Si; 
6. metal nanotubes: Au, Co, Fe, Cu, Ni, Te, Bi.  

The aspect ratio in different NTs depends on the synthetic route and ranges from 
several tens up to several tens of thousands. The longest tubes show several 
millimetres in length. Regarding diameters, NTs with diameters below 20 nm have been 
synthesized quite rarely. BN NTs with inner diameters from 1 to 3 nm and outer 
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diameters from 6 to 8 nm were made by the arc-discharge process; 15 nm diameter 
WS2 NTs were grown by sulphurization of WO3; NbS2 NTs with inner diameters in the 
range ~4-15 nm were made by decomposition of NbS3; CdSe NTs with outer diameters 
in the range 15-20 nm have been made from cadmium oxide using surfactant assisted 
synthesis. Titania nanotubes with diameters of about 8 nm have been produced by 
hydrothermal treatment of nanosize TiO2 powder in NaOH solution. A long term 
discussion of their composition, balancing between the anatase and rutile phases of 
TiO2, is coming to the conclusion that the titania nanotubes are actually H2Ti3O7 single 
sheets rolled up into cylindrical geometry. 

The nanotubes differ from the corresponding compounds in high aspect ratio, small 
dimensions and due to defect structure, in enhanced chemical reactivity. The lighter 
nanotubes are those composed of BN, BCN and silicon based ones due to low 
molecular mass and titania ones due to low dimensions. The least stable ones in the 
ambient atmosphere are NiCl2 NTs, which facilitate water intercalation resulting in slow 
self-dissolution. Until now, no g-quantities of inorganic nanotubes have been reported 
and their physical and chemical characterisation is still in research stage. 

Inorganic NTs exist in different states of crystallinity. Semi-single crystal structures are 
typical for non-helical or mono-helical NTs (WS2, Fig. 5, left image), while 
polycrystallinity appears either in the structure of the nanotube wall, composed of small 
thin crystal flakes or in the radial direction as multi-helicity. Many of the inorganic NTs 
prepared by the decomposition process appear as an assembly of nanocrystallites 
forming the nanotube wall (e.g. HfS2, NbS2, Fig. 5, right image). 

 

     
Fig. 5: Inorganic NTs. 

 

No data are available about possible toxicity of inorganic nanotubes, which would differ 
from bulk material of the same compound. Their needle like geometry enables 
expectations about similar effect on lung as in case of asbestos, but only in a case that 
the NTs are light enough to become airborne, which is not likely in most inorganic 
nanotubes due to large molecular mass. 

Inorganic materials have a wide range of useful properties that might be exploited in 
nanotube and nanowire form, including high temperature superconductivity for low-loss 
electrical power delivery, enormous magnetoresistivity for information storage, and 
ferroelectric and ferromagnetic properties for quantum computing and spintronics 
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applications. Currently, the field of synthesis of inorganic nanotubes is one the most 
quickly developed area of chemistry and material science. 

Tab. 5: Characteristic properties of inorganic nanotubes. 

No.crt. Properties of Inorganic 
nanotubes Details 

1 Morphology 

8 nm-few μm in diameter 
Aspect ratio: L/l/h(D): 10 - 104 

Specific surface (m2/g): Depends on 
the compound 
Agglomeration: yes, into ropes 

2 Crystallinity Yes, single crystallinity or 
polycrystallinity 

3 Wettability Depends on the compound 

4 Reactivity/Degradation Depends on the compound 

5 Solubility Depends on the compound 

6 Toxicity 
Depends on the compound and 

aspect ratio (not enough data 
available) 

 

1.2.4 Engineered Quantum Dots  
Author: Declan McCormack 

Whilst on the nanoscale there has been a true convergence of medicine, engineering 
and the sciences leading to a blending of these disciplines, from another perspective 
there has been a divergence and proliferation in the potential applications of new 
technologies enabled by nanomaterials. Quantum dots have been one of the most 
interesting classifications of such nanomaterials. A quantum dot (QD) may be defined 
as a semiconductor nanostructure which confines the motion of valence band 
electrons, conduction band holes or excitons (bound pairs of electrons and holes) in all 
3 spatial directions. Quantum dots, per se, cannot be considered as an entirely novel 
classification of compounds. Biogenic and anthropogenic nanosized inorganic particles 
occur in water streams, silts, clays and other natural sources. It should be noted that 
there is little evidence to indicate that such nanosized materials have had a more 
detrimental ecotoxicological or environmental impact than their corresponding bulk 
analogues. 

The situation for engineered quantum dots (EQDs) currently lacks much corresponding 
data. As their prevalence increases it is important to investigate the potential risks 
associated with such nanomaterials. It should be noted that studies on their cytotoxicity, 
bioaccumulation, biopersistence and ecotoxicity are at quite preliminary stages. The 
recent comprehensive review by Hardman (2006) suggests strongly that one must take 
account of many specific factors when assessing the toxicity of EQDs. 
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Commercially manufactured quantum dots generally are based upon CdSe spherical 
nanoparticle cores coated or capped by a thin layer of ZnS as a stabilizing agent 
(Alivisatos et al., 2005) although recently a number of non-heavy metal based 
InGaP/ZnS materials have also become commercially available (Evident- 
www.evidenttech.com). Their global production is relatively small in comparison to 
other nanomaterials and the concentrations at which such materials are deployed are 
quite low (of the order of μM). 

Surface Modification 

In most situations quantum dots such as CdSe/ZnS are surface-modified for a number 
of reasons. Firstly it is important to stabilize such EQDs and this may be achieved by a 
variety or combination of routes including capping agents, affinity ligands, polymer 
coatings and shells. Such stabilizing agents can also play other important functions in 
that they improve dispersion properties, assist binding and biocompatibility, whilst also 
minimizing dissolution and reactivity of the metals present in both the shell and core. 
The addition of robust surface chemistries e.g. dithiols, cross-linked ligands, oligomeric 
phosphines, dendrimer and peptide coatings have been quite successful in improving 
the stability of such EQDs and furthermore have also resulted in increased quantum 
yields for QDs such as CdSe (Tsay and Michalet, 2005). Polymeric coatings such as 
PEG not only enhance the aqueous solubility of QDs but also reduce non-specific 
adhesion to biological cells. Much evidence is available (Guo et al., 2007; Hoshino 
et al., 2004) to suggest that the properties (including toxicity) of EQDs are controlled by 
the surface modifiers rather than the QD cores.  

Applications 

Currently the main applications of EQDs are as biological markers where they may 
replace traditional fluorescent dyes (O’Brien, 2003). In comparison with organic 
fluorophores, these EQDs display unique properties such as size- and composition-
tunable fluorescence emission from visible to infrared wavelengths, large absorption 
coefficients across a wide spectral range and high levels of brightness and 
photostability (Gao et al., 2004). Indeed the use of such EQD-based probes in 
biological applications has escalated from 4 in 2000 to approximately 100 in 2005 
(Pinaud et al., 2006). Their narrow emission range and tunability allows multi-colour 
imaging of biological samples and fluorescence labelling of biomedical samples using, 
for example, confocal fluorescence microscopy (Bruchez et al., 1998). Other potential 
applications include advanced displays (QDLEDs), site specific gene and drug delivery, 
ultrafast optical switches and logic gates (> 15 TB/sec), encryption and anti-
counterfeiting technologies (O’Brien, 2003) ), molecular diagnostics (Smith et al, 2006) 
and drug discovery (Ozkan, 2004). 

Toxicity 

Uncoated CdSe dots have been reported to be highly toxic to cells under certain 
conditions. One of the earlier reports by Derfuss et al. (2004) noted that such acute 
toxicity to primary hepatocytes occurs upon exposure to ultraviolet light. This process 
facilitates the release of Cd2+ ions due to degradation of the nanostructure. Such UV 
degradation of QDs may have some benefit as a therapeutic agent. For example 
potential exists for photodynamic therapy in that the release of Cd2+ allied to the 
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formation of free radicals and reactive oxygen species which may assist destruction of 
targeted cancer cells (Pinaud et al., 2006; Rhyner et al., 2006). Cadmium has a half life 
of 20 years in the human body and is a suspected carcinogen which accumulates in the 
liver and kidney. It biodistributes in all tissue since there are no known active 
mechanisms to excrete Cd from the body (Nath, 1984). Both cadmium and selenium 
are known to cause acute and chronic toxicities in vertebrates and are of considerable 
concern for both human health and environmental impact (Hardman, 2006). Lovrick 
et al. (2005) have attempted to quantify the differences in sub-cellular distribution and 
toxicity of CdSe based QDs of varying size. In particular they found that coated EQDs 
were significantly less (by a factor of 10) cytotoxic to rat phenochromocytoma cell 
cultures than their uncoated equivalents. Another important finding was that smaller 
EQDs (2.2 nm) show more pronounced cytotoxicity than larger (5.2 nm) counterparts. 
This relationship between cytotoxicity and EQD size was also observed by Shiohara 
et al. (2004) in their cell viability investigations using mercapto-undecanoic acid coated 
EQDs. Clarke et al. (2006) note that little toxicity is seen when EQDs are retained in 
lyosomes whereas severe damage can occur when EQDs associate with mitochondria. 

In his summary of EQD toxicity Hardman (2006) states that “the studies reviewed here 
suggest that QD toxicity depends on multiple factors derived from both the inherent 
physicochemical properties of QDs and environmental conditions. QD size, charge, 
concentration, outer coating bioactivity (capping material and functional groups), and 
oxidative, photolytic, and mechanical stability are each factors that, collectively and 
individually, can determine QD toxicity. Of these physicochemical characteristics, 
functional coating and QD core stability figure prominently and likely will be significant 
factors in assessing the risk of QD toxicity in real-world exposure scenarios”. 

Exposure Routes 

The main exposure routes of EQDs are gastrointestinal and to a lesser extent, dermal. 
Inhalation can be discounted as EQDs are formed and exist in solution-based media. 
Gao et al. (2004) indicate that EQD probes accumulate at tumours both by the 
enhanced permeability and retention of tumour sites and by antibody binding to cancer-
specific cell surface biomarkers. Such bioconjugated probes can combine in-vivo 
targeting along with direct imaging of human cancer cells. In situations where a 
substantial decrease in fluorescence has been observed on administration of EQDs in-
vivo such a diminution has been attributed to degradation of surface ligands and 
coatings by body fluids. However in the study by Gao et al. (2004) hydrophobic 
protective layer ensures stability of these EQDs, which have been observed in the 
blood for as long as 72 hours. Such polymer-based coatings show no effect on cell 
division or no ATP reduction. Indeed a dose of up to 3  106 EQDs in a single cell did 
not reduce its viability or growth. 

Ryman-Rasmussen et al. (2006, 2007) report that both spherical (4.6 nm) and 
ellipsoidal (12nm  6nm) Qds when flowed across porcine skin cells resulted in 
penetration across the stratum corneum and localization within the dermal and 
epidermal layers. Whilst there was some difference in rates of translocation depending 
on particle size and coating the main finding reported was that penetration of intact 
skin, at an occupationally relevant dose, can occur within the span of an average 
working day. 
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Biopersistence 

A quantum dot is approximately the same size as a small protein (< 10 nm) hence QDs 
can easily enter most cells and indeed reach vital organs via the blood stream as it 
circulates through the body. Some authors (Sharma et al., 2006) have suggested a 
strong correlation between surface nano-architecture and biocompatibility i.e. 
increasing aspect ratio indicating increased toxicity. However EQDs are, by and large, 
spherical in structure, which diminishes the importance of shape as an influencing 
factor. 

Little is known about the mechanism of metabolism or clearance of EQDs from living 
animals although EQDs have been detected in mouse bone marrow, spleen and liver at 
least 4 months after administration whilst other reports suggest that particles larger 
than 50 nm could not be easily cleared by the kidney (Yu et al., 2006). 

Risk 

A detailed analysis of the risk factors associated with the industrial scale production 
and use of one specific type of (ZnSe based-) EQD was undertaken by Ogilvie 
Robichaud et al. (2005). The QD material chosen was produced by Karanikolos et al. 
(2004). Relative risk factors such as volatility, carcinogenicity, flammability, toxicity and 
persistence were considered based on a listing of input materials, output materials and 
waste associated with the manufacturing process of such materials. The overall risk 
score was determined by an insurance database risk evaluation and by a separate 
qualitative method. Both yielded similar results and the overall risk associated with QDs 
was found to be on a par with the production of aspirin and significantly lower than the 
production of refined petroleum. 

Future 

Future work needs to address the potential long-term toxicity, degradation and 
metabolism of nanoparticle agents, to identify and develop new biomarker-probe 
systems and to develop multifunctional nanoscale platforms for integrated imaging, 
detection and therapy. 

Recommendations / Knowledge Gaps 

Future work needs to  

• address the potential long-term toxicity, degradation and metabolism of 
nanoparticle agents,  

• identify and develop new biomarker-probe systems  

• develop multifunctional nanoscale platforms for integrated imaging, detection 
and therapy. 
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1.3 Nanoparticle Properties 
Author: Nicoleta Lupu and Horia Chiriac 

Particle Size  

As extensively covered in Chapter 1.2.1 two main parameters from particles are of 
importance for their possible toxicity: one being the size and the other the chemical 
composition, which is responsible for the intrinsic toxicity of the compound (Donaldson 
et al., 2002; Donaldson et al., 2004a; Donaldson and Stone, 2003). Reduction in 
particle size to the nano-level results in an enormous increase of surface area, so 
relatively more molecules of the chemical are present on the surface, increasing the 
risk of an enhanced intrinsic toxicity. This may be one of the explanations why NPs are 
more toxic per unit mass than larger particles of the same material when used on a 
mass base (compare Chapter 1.2.1, page 9. Similar dose response relationships 
between particles of different sizes have been observed when the dose was expressed 
in surface area (Oberdörster, 1996; Oberdörster et al., 2000, 2005a). 

Chemical Composition  

The chemical composition of the surface is important for the adverse effects of NPs. 
Fractions isolated from particulate pollutants (diesel exhaust particles) were 
demonstrated to exert toxic effects on cells in vitro. So, besides the particulates also 
the chemical composition, or for air pollutants the chemical absorbents can be 
responsible for the toxic effects. 

Ultrafine particles can interact with metals. Iron was able to potentiate the effect of 
carbon black NPs, resulting in enhanced induction of reactive oxygen species (ROS) in 
a cell free system (Wilson et al., 2002). In addition, surface modification of NPs can 
result in a diminution of cytotoxicity. The in vitro cytotoxicity of superparamagnetic iron 
oxide NPs could be abrogated by coating the NPs with pullulan (Gupta and Gupta, 
2005). Also for dextran and albumin derivatised iron oxide NPs a reduction in their 
in vitro cytotoxicity was noted (Brown et al., 2002). 

Geometric Form  

A special category to consider for adverse effects is nanotubes or nanofibres of a few 
nanometers in diameter but a length which could be several micrometers. It is 
speculated that even at this very small level differences may occur regarding the 
aspects ratio of NPs, especially when not roundish but fibrous. 

Nanoparticle Properties and Biological Effects  

Little is known about the pathways of non-degradable nanoparticles, their distribution 
throughout the body and the dependency of the biological behaviour from their 
physicochemical properties. It has to be assumed that accumulation will take place 
predominantly in the organs of detoxification. Whether or not a risk may arise from such 
accumulation of particles in the body has not yet been sufficiently examined. The 
biological activity of a tissue in contact with NPs depends both on the tissue as well as 
on the NPs chemistry, surface, shape and size. It is, therefore, rather difficult to define 
a material “biocompatible”, since, in the vast majority of cases, such definition takes 
into account its chemistry and, to a lesser extent, its surface, but very seldom the 
shape that particular material takes when it is transformed into an implantable device 
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or, in any case, into something that comes in contact with a living tissue, and even 
more rarely its size or surface topography (Kaiser et al., 2006; Maniura et al., 2006). In 
order to be biocompatible, a synthetic material that is put in touch with a biological 
tissue must induce a specific protein adsorption from the extracellular matrix. There are 
many cellular processes, which are triggered by the type of protein adsorbed, by its 
conformation and by its biological activity. If the presence of a certain protein is 
requested to guarantee a proper interaction of such a synthetic material, generally, but 
not exclusively, an implantable medical device, with the biological environment, it may 
be possible to manipulate the implant surface in order to induce in advance that 
situation (Maniura et al., 2006). The so-called “biomimetic” surfaces base their activity 
in the human body upon this concept. The ability to design such a system is greatly 
supported by biotechnologies and nanotechnologies. 

Nanospheres are already employed in humans, though only experimentally, in the 
diagnostic field. In fact, it was observed that highly lymphotrophic super-paramagnetic 
NPs (monocrystalline iron oxide) can easily gain access to lymphnodes by means of 
interstitial lymphatic transport in patients suffering from prostate cancer. Their presence 
in lymph nodes can be detected by MRI (Magnetic Resonance Imaging) and their 
concentration can indicate a metastasis. But the possibility to interact with the smallest 
components of the human body is not much known and makes NPs potentially 
dangerous, while verifying the results of this interaction is an awkward matter. It has 
already been demonstrated that those materials interact in different ways with the 
endothelium, macrophages and gut and liver epithelial cells. It was also discovered that 
metals are more hazardous than plastics for the survival activity of the cells. The 
production of the inflammatory and defence mediators depends on the particle 
chemistry. In vitro tests suggest that some new phenomena can occur when the 
nanoscale range of interaction is investigated. From the clinical point of view, it has 
been known for a long time that inhaled particles can induce diseases like asbestosis 
and silicosis. Another well-known clinical phenomenon is that a number of implantable 
medical devices wear in vivo, thus creating debris of micro- and nanosized particulate 
matter: an example of that is the wear of hip-joint prostheses and of dental restorations. 
The possibility that inorganic, chemically inert, microscopic debris can induce 
granulomas even in regions beyond the implant site is familiar to orthopaedic surgeons 
who must remove worn hip-joint prostheses because the debris their erosion produce 
brings about the local formation of granulomatous tissue and a bone degeneration with 
the ensuing loosening of the device. The data induced us to think that a pathology can 
be started by the presence of inorganic particles that cannot be metabolised or, in any 
case, disposed of, and these findings have us strongly suspect that the size of the 
particles, their local concentration and their velocity to reach the critical concentration 
can have an influence on the type of pathology. As a consequence, the concept of 
biocompatibility should be revised, keeping into account the fact that a material, which 
is certainly accepted in bulk form, may be no longer biocompatible when its size is 
reduced below a certain “critical” threshold. Probably, also the different chemistry of the 
particles (either ceramic or metal or plastic materials) can influence the relationship 
between the cells and the material's surface, which can lead to a different cellular 
reaction and, as the next step, to a clinical expression, although no literature has ever 
considered this so far. Those foreign “intruders”, not only bacteria, viruses and 
parasites, can be the cause of various pathologies. 
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As particles become smaller, the surface to volume ratio increases. Since catalytic 
reactions, particularly evident with transition metals, occur at surfaces, a given mass in 
nanoparticulate form will be far more reactive than the same mass of material made up 
of larger particles (for review: Nel et al., 2006). 

A further, well-known property of nanoparticles is their quantum effect. As their size 
approaches the smaller end of the nanoscale, the effect on their electric, optical and 
magnetic behaviour becomes more and more visible. Finally, NPs, being on the same 
scale as cellular components, have the ability to cross cell membranes and evade 
natural defences and this is a peculiarity that deserves the greatest attention. The 
properties briefly summarized above, probably among other that are not as well-known 
or are still ignored at all, are of the utmost importance to understand why NPs behave 
in such a distinctive way and can interact so oddly with cells and organisms, from 
humans down to bacteria. To assess the noxiousness of those particles, a number of 
factors must be taken into consideration. Probably, the most important of all is their 
being a foreign body, which the organism regards as an outsider or even an enemy to 
be somehow eliminated or, failing that, as far as possible, safely isolated; all reactions 
that may be unsuccessful and trigger the onset of a pathological condition. 

Prevented agglomeration and Environmental Exposure 

Many of the nanoparticles that occur in nature are soluble in water, but scientists claim 
that manufactured NPs could adversely affect the environment (for details see 
Chapter 4). 

NPs tend to agglomerate and change into larger microparticles, which are less reactive, 
less mobile and less well-distributed. To prevent agglomeration, manufacturers will 
often coat commercially available NPs. This makes them reactive and highly mobile in 
the environment. If these NPs are released into the water or air, they could contaminate 
soil and groundwater. Pollutants could spread globally if these NPs enter into the water 
cycle. If plant roots were to absorb NPs, the human and animal food chain could 
become contaminated through crop consumption. Artificially manufactured NPs used in 
disposal items could also contaminate soil and groundwater if they are not properly 
recycled or removed as waste. 

1.4 Risks of Nanomaterials 
Author: Nicoleta Lupu and Horia Chiriac 

Health and environmental threats can occur from the production, use and disposal of 
NPs. Workers in nanotech industries are especially at risk, as they can be exposed to 
high concentrations of NPs that may be taken up. NPs used in consumer products may 
threaten public health, yet there are no labelling requirements for products using 
nanomaterials. Already it is known that ultrafine (nano) particles in air pollution can be 
up to 50 times more damaging to lung tissue than fine particles of the same chemicals 
but no such rule exists for synthetic engineered materials. Scientists believe that 
ambient air ultrafine particles are more toxic due to both their small size and their ability 
to carry large loads of toxic metals and hydrocarbons into the lungs, exacerbating 
breathing problems and asthma. NPs may also damage the body’s natural defences or 
can lead to the formation of free radicals, highly reactive elements that can damage or 
destroy cells and cause inflammation, heart and lung disease but none is still 
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evidenced in living organisms. Scientists are developing NPs used as drug delivery 
devices, in some cases hoping to cross the blood-brain barrier, yet some warn that NPs 
could carry toxins into the brain that promote Alzheimer’s or other diseases. There has 
been little study of the health affects of manufactured NPs, but there are already 
reasons to be concerned. Animal studies suggest that NPs can trigger unpredictable 
inflammatory and immune responses (Borm and Kreyling, 2004; Resnik and Tinkle, 
2007). Studies have found NPs in the livers of lab animals and show that they can seep 
into living cells. In a 2004 study, fifteen percent of rats exposed to nanotubes in the 
lungs unexpectedly died immediately (Warheit et al., 2004), and another study showed 
damage to the brain in fish exposed to NPs (Oberdörster, 2004). But both these studies 
indicate the real problems with the investigation of nanoparticle toxicity: whereas the 
rats in David Warheits study ceased from suffocation by thick bundles of carbon 
nanotubes within their airways (Warheit et al., 2004), Eva Oberdörster tested the 
toxicity of the peroxides in the solvent used (THF, tetrahydrofuran) to suspend the 
fullerenes in water (Oberdörster, 2004). These two examples make very clear that 
there is a great need for standardised methods and the experimental protocols have to 
be proven if they were usable or adjustable for the testing of NPs. 

Little is also known about the environmental persistence or impact of engineered 
nanoparticles. It is difficult to predict which of these new materials may persist and 
bioaccumulate, as there have been no long term studies observing the unique 
physicochemical characteristics of these new materials. There have also been no life-
cycle analyses that look at the possibilities for environmental release from production 
through disposal of NPs. Their large, “sticky” surface area and mobility through air, 
water or food leads to fears that NPs would be particularly adept vehicles for 
transporting toxic pollutants globally. Remediation problems from such nanopollution 
would be difficult if not impossible. 

For medical applications immobilized nanostructures on surfaces may pose a minimal 
risk as long as they remain fixed on the surface. The potential risk would be related to 
the possibility of release from such structures depending on the strength of fixation of 
the NPs within or on the carrier material. Such release may occur in the form of wear 
debris due to continuous chemical processes and/or mechanical stresses at the 
interface of implant and surrounding tissue. In addition, for implants wear particles may 
be generated with a size in the submicron range, including particles at nanolevel below 
100 nm. Whether such wear particles have similar increased reactivity/toxicity as 
ultrafine ambient air particles or model polymer particles is unknown and needs further 
investigation. 

From a regulatory point of view, the implementation of a risk management strategy that 
includes a risk assessment by the manufacturer is already a requirement for all medical 
technology applications. Health care providers and European and National Authorities 
also have a significant role in the management of risks associated with healthcare 
technology. With regard to applications utilizing nanotechnology, this focus on risk 
management is considered sufficient, as long as all the stakeholders are made aware 
of the possible specific toxicological properties of nanostructures and nanoparticles. 
From our current knowledge of the effects of size reduction on material properties, we 
can conclude that an evaluation of the possible specific behaviour of nanostructures in 
the products needs to be incorporated into any risk assessment performed. Risk 
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assessment needs to be carried out for each separate formulation of a nanosized 
product. One should not rely on existing knowledge of the toxicity of the constituent 
chemicals or materials but include particle size among the parameters to be considered 
during the risk assessment. This may result in the recognition of a new or additional risk 
to those who are exposed. It is strongly recommended that specific guidance at 
European level is developed, pointing out the above conclusions to the relevant 
stakeholders. 

1.5 What is typical for “nanotoxicology” and different from bulk or other 
“toxicology”? 
Author: Juergen Hoeck 

Given the overall definition of toxicology as the science involving the study of the actual 
or potential danger presented by harmful effects of substances on living organisms and 
ecosystems, the relation of the effects to exposure, the mechanisms of action 
diagnosis, prevention and treatment, nanotoxicology is a 100% subdivision of "normal" 
toxicology. As such, the terminology nanotoxicology is not an artefact but a distinct 
name for one of the areas of toxicology.  

The term "Nanotoxicology" has been proposed by Donaldson et al. (2004b) as a new 
subcategory of toxicology to address gaps in knowledge and the special problems likely 
to be caused by NPs, because these have a greater potential to travel through the 
organism than other materials or larger particles and might be “nanonoxes (Kern et al. 
2004). 

For a distinction from (or a more precise description of) bulk toxicology, nanotoxicology 
is already an established expression in use worldwide for the area of the toxicological 
effects of materials going beyond the effects of the bulk material when coming to the 
nanoscale. The following examples give clear evidence for this statement: 

• The journal Nanotoxicology invites contributions addressing research relating to 
the potential for human and environmental exposure, hazard and risk associated 
with the use and development of nanostructured materials (including materials 
with at least one dimension in the nanometer size range = nano-objects) 

• a book entitled "Nanotoxicology - Interactions of Nanomaterials with Biological 
Systems", edited by Zhao and Nalwa, has been released in June 2006 

• an international conference named "Nanotoxicology" has been established in 
January 2006 with the aim to address all aspects of occupational, environmental 
and consumer risks in relation to nanoparticle and nanotube exposure. The 
second conference in this series will be held in Zurich Switzerland, in 2008 and 
is organized by a member of the IMPART-consortium. 

• a definition of nanotoxicology can already be found on the free on-line 
Encyclopaedia "Wikipedia": nanotoxicology is the study of the toxicity of 
nanomaterials. Because of the small size and large surface area of 
nanomaterials, these materials have unique properties compared with their 
larger counterparts. The nanomaterials, even when they are made of inert 
elements like gold, become very active at the nanometer range. 
Nanotoxicological studies are intended to determine whether and to what extent 
these may pose a threat to the environment and to human beings 
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• the recent review of Oberdörster et al. (2005b) on “Nanotoxicology as an 
emerging new discipline” outlines the importance of this topic. 

Being specifically nano-oriented, nanotoxicology as a term as well as a scientific 
discipline is the appropriate means and a prerequisite for the discussion (scientific or 
public) of typical nanotechnological risks. 

To stress the delimitation of particularities, a more stringent definition of 
nanotoxicology, including ecotoxicological aspects, is necessary. As one possible 
definition the following can be suggested: nanotoxicology is the science involving the 
study of the specific toxicological effects of nanomaterials with a special focus on 
nanoparticles in living organisms and ecosystems, which go beyond the effects of the 
corresponding bulk materials, taking into account the different effects which different 
forms and modifications of the same material can have on the nanoscale (e.g. 
nanotubes, nanofibres, fullerenes, nanographite,...). 

So the actual scope of nanotoxicology should comprise the influence of quantum 
effects, surface factors, and special interactions with all types of biomolecules and -
structures on the toxicity of nanoscale particles, as opposed to micro or macro 
materials as well as dissolved substances, which belong to the field of standard (bio-) 
chemistry. It has to be stressed that the restriction given here clearly excludes toxic 
effects which arise from the solution of NPs, and therefore belong to "normal" toxicity 
issues originating from the purely chemical properties of the substances, disregarding 
their size. However, as these "normal" toxic effects are produced by the application of 
nanoscale particles, a strict distinction between nanotoxicology and other toxicologies 
in this case is not advisable when talking about risks of nanotechnologies. 

The above mentioned book "Nanotoxicology - Interactions of Nanomaterials with 
Biological Systems" gives a concise overview of the topics which need to be covered 
when discussing "nanotoxicology": 

• biological activities of nanoparticles 
• interactions between nanoparticles and living organisms 
• interactions of nanoparticles with cells and their cellular nanotoxicology 
• uptake and cytotoxicity 
• toxicology of carbon nanomaterials 
• interaction with biomolecules and molecular nanotoxicology 
• effects on the immune system 
• the role of oxidative stress 

The results evolving from current studies of ultrafine particles will give an important 
input for the elucidation of the effects of NPs. The incorporation and extension of 
evolving knowledge about differences between classical particle (inhalation) toxicology 
and specific nanoparticle-cell-interactions should be a focal point.  

Risk assessment of the potential toxicities of NPs must include the identification of toxic 
effects, the establishing of dose-effect-relationships, assessment of the exposition, 
calculation of the risk, and development of new test strategies (Oberdörster et al. 
2005b). 
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As a conclusion it can be stated that nanotoxicology is a distinct part of the whole of 
toxicology, showing specific and typical effects that are based on nanoscale properties 
of the particles. Nanotoxicology does not differ from normal toxicology, it only displays 
additional features which are not yet entirely understood and have to be further 
investigated. 

 

Missing information and knowledge gaps: 
• a deeper understanding of the differences between nano and bulk, based on 

experimental and theoretical work, including quantum, surface and size effects, 
also taking into account the consequences of agglomeration and 
deagglomeration of the particles is missing 

• other primary effects apart from oxidative stress are underrepresented in 
research on nanotoxicology, and should be addressed in more detail (such as 
adverse effects on the immune system, lung disease, inflammation) 

• an evaluation of current test methods for "normal" toxicology with respect to their 
applicability for nanotoxicological testing is required, if necessary new dedicated 
test methods must be developed 

2 Health 

2.1 Nanoparticles and Human Health 
Author: Nicoleta Lupu and Horia Chiriac 

The economic growth in the field of nanotechnologies will lead to an increased variety 
and increased volumes of engineered NPs that are produced. Even if exposure 
assessments and data are still lacking it is foreseeable that some degree of exposure 
to engineered NPs -- for various segments of the population and for the environment – 
will occur to an increasingly extent over the coming years. 

Keeping in mind that these “free nanoparticles” can enter the human body over various 
pathways (inhalation, ingestion or via the skin) or disperse into the environment, it is 
important to understand the implications for human health and the ecosystems. 

To assess the risks of NPs, established methods of chemical safety assessments have 
to be modified to address the special characteristics of NPs. The main difference to the 
assessment of bulk materials is the fact that additional parameters like size, shape or 
surface properties will come into play (see Chapter 1.2). The same reason that makes 
NPs technologically interesting leads to the fact that they represent a new category of 
(potentially) toxic substances. The interaction with the human body and their health 
effects are perhaps expected to be different from molecules as well as from bulk 
materials of the same composition. 

It is necessary to understand both, the hazards associated with nanomaterials and the 
levels of exposure, which are likely to occur. In both areas, the existing knowledge is 
quite limited and it will be necessary to generate and establish new data in the future. 
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2.1.1 Hazards from Engineered Nanoparticles 
When coming from bulk materials down to the nanoscale, nanomaterials tend to 
become chemically more reactive – this is why they are very interesting as catalysts. 
Even chemically inert materials like gold or platinum are able to catalyse chemical 
reactions in nano-powder form. Many studies indicate that NPs generally are more toxic 
when incorporated into the human body than larger particles of the same materials. 
Experts are overwhelmingly of the opinion that the adverse effects of NPs cannot be 
reliably predicted or derived from the known toxicity of the bulk material. 

The biggest concern is that free NPs or nanotubes could be inhaled, absorbed through 
the skin or ingested. 

2.1.2 Toxicity of Nanomaterials 
Iron oxide NPs have been used extensively for biological applications and as pigments. 
NPs with a wide degree of morphologies and crystal structures exist. According to 
Cornell and Schwertmann (2003), there are fifteen known polymorphs of ferric oxide. 
Ferric oxide NPs are in fact one of the few classes of nanomaterials approved by the 
FDA for parenteral (IV) administration to humans. 

The magnetic properties of mixed valent Fe(II), Fe(III) oxides are finding increased 
applications for imaging, drug delivery, and separations. The toxicity of these mixed 
valent materials is far less clear. The ability of many microorganisms (i.e. 
magnetosomes), fish and mammals to produce and/or utilize magnetite, Fe3O4, 
demonstrate that they are not toxic under all conditions. Magnetic NPs are also thought 
to be exploited by more advance organisms such as trout, migrating birds, and whales. 
Conversely, the well known Fenton reaction of Fe(II) yields hydroxyl radicals that 
damage DNA and can oxidize a wide variety of organic and biological reagents. Below 
we review recent cellular studies of magnetic iron oxide NPs. The vast majority of these 
studies are focused on superparamagnetic Fe3O4 particles that respond rapidly to 
magnetic fields but retain no residual magnetism when the field is removed. Such 
materials have long been commercially available as micron-sized magnetic beads, in 
which the superparamagnetic particles are encapsulated within an organic sphere. The 
use of nanometer-sized materials presents new opportunities for separations and 
imaging technologies, where possible toxicity is a critical concern. 

Gupta and Gupta (2005) reported a cytotoxicity decrease and internalization increase 
for pullulan-coated superparamagnetic NPs with human fibroblasts. Uncoated, 20 nm 
iron oxide particles were toxic to human dermal fibroblasts. Internalization of these 
particles resulted in disruption of the cell cytoskeleton. Pullulan coated particles were 
non-toxic and had a different effect on the cytoskeleton. TEM data indicated that the 
internalization mechanisms were different for the two particles – behaviour that was 
attributed to the hydrophilic nature of the pullulan coating. 

The effect of surface-coated superparamagnetic iron oxide NPs on the human cancer 
cells was investigated recently (Fond and Meyer, 2006). Nine-nm iron oxide NPs were 
coated with poly (vinyl alcohol) (PVA) or PVA with carboxylate, amine or thiol functional 
groups. The PVA and the carboxyl and thiol functionalized PVA NPs were non-toxic to 
the melanoma cells. Some cytotoxicity was observed for the amine functionalized PVA 
NPs, particularly when the polymer concentrations were high. The amine groups 
increased cellular uptake of the NPs. 
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Stroh et al. (2005) reported on studies of rat macrophages incubated with citrate coated 
iron oxide NPs (9 nm). Atomic absorption and NMR studies showed a large uptake of 
the NPs that could be easily visualized by confocal microscopy.  

Cytotoxicity of metal ions and other chemicals differs among cell lines. Larger particles 
(only if phagocytised) tended to have higher cytotoxicity than smaller particles.  

Hanawa (2006) and Yamamoto (2004) studied the toxicity of metal oxide particles 
ranging from 500 to 3000 nm in diameter. The particles were incubated in human 
fibroblasts for 24 h and stained with haematotoxylin and eosin to determine the 
magnitude of toxicity. With this assay, cells that adhered to the coverglass would stain, 
while dead cells would detach from the glass during staining. A digitizer was used to 
assess the area that was stained. The area stained was considered to be proportional 
to the magnitude of cytotoxicity of the metal oxide particles. Cells incubated with Al2O3, 
TiO2, Fe2O3, Fe3O4, Co2O3, NiO, Ga2O3, SnO, SnO2, HgO showed no cytotoxic effects. 
A difference in formal oxidation state of some of these metals yielded different effects, 
e.g., CoO, Co3O4, and Ni2O3 appeared to be toxic. In addition, Cr2O3, Cu2O, CuO, ZnO, 
and Ag2O proved to be cytotoxic. A potential problem would be that the study was 
based on particles dissolving into elements/ions, which have a cytotoxic response. 
Therefore, larger areas of affected cells indicated a more cytotoxic effect, which does 
not necessarily correlate with the components of the particles being more effective at 
killing cells. Larger cytotoxic effects could have been a result of a higher particle 
concentration in the medium. 

Research into the toxicity of nanoparticles has, in the past, been largely uncoordinated. 
Recent articles highlight the need for a systematic approach to studying this important 
aspect of nanotechnology and additionally, the need for a regulatory framework for the 
protection of workers exposed to NPs during their production. Nanotoxicology is now an 
established discipline having evolved from studies on NPs, where it is well known that 
such particles cause morbidity and mortality in susceptible populations. In comparison, 
there is a paucity of data for human or environmental exposure levels of NPs. There 
are significant differences between NPs and larger particles in terms of their deposition 
and clearance from the respiratory system. NPs, in contrast to larger particles, move 
throughout the body and can reach other organs. During the life-cycle of a product it is 
likely that nanomaterials will enter the environment. The stability of coatings on NPs 
therefore needs to be investigated both in vivo and in the environment. A significant 
factor in risk assessment is the likelihood of exposure - which has been shown to be 
negligible with due care in handling procedures. 

Benign NPs in cosmetic products (10 and 20 nm particles) induce oxidative stress in 
human bronchial epithelial cells without photoactivation, noting that oxidative stress is 
implicated in aging, atherosclerosis, carcinogenesis and inflammatory disorders. The 
larger particles (200 nm) do not have the same effect, and it therefore seems that the 
smaller the particle the easier it is to induce oxidative damage. This suggests that 
ultrafine particles could cause an inflammatory response intratracheally, whereas 
particles larger than 100 nm are classified as benign in humans and animals.  

We observed NPs penetrating into the corneocyte layers of stratum corneum with no 
particles in the cytoplasm of the granular cells (Kreuter, 2001). Schulz et al. (2002) 
found that surface characteristics, particle size or shape of micronised pigments result 
in the dermal absorption of the substance. Nanoscale particles of PVC, TiO2, SiO2 and 
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cobalt metal (Co) are taken up into human endothelial cells. Only exposure of HDMECs 
(human dermal microvascular endothelial cells) to Co particles leads to enlargement of 
vacuoles, and HDMECs exposed to Co, SiO2 and TiO2 NPs induce pro-inflammatory 
effects. Co and SiO2 particles produce a larger effect than TiO2 particles. The 
inflammatory lung disease caused by SiO2 particles might share a common mechanism 
with that shown by the endothelial cells. 

Most nano-products can be designed in such a way as to either increase or decrease 
toxicity depending on the desired outcome. For treatment in drug delivery, minimizing 
toxicity of the carrier is necessary and in most cases this can be done. On the other 
hand for chemotherapeutic agents, toxicity is designed to be magnified and targeted to 
specific tissues or areas. Altering the coating of many of these therapeutic agents can 
increase selectivity and toxicity. 

However, as a general principle, reduction in size results in an increased reactivity, 
which may be expressed as increased toxicity after exposure. Observations with 
several chemicals show small (nano)particles to be more toxic than larger particles of 
the same chemical composition after inhalation exposure. Even materials of 
established low toxicity can become highly toxic when are administered as NPs, 
because they are similar in size to proteins in the body. NPs are considerably smaller 
than many cells in the body (for example, human alveolar macrophages are 24 µm in 
diameter and red blood cells are 7-8 µm in diameter), and consequently cells growing 
in tissue culture will pick up most NPs (Borm and Kreyling, 2004; Donaldson and Stone, 
2003; Goodman et al., 2004; Kirchner et al., 2005; Tinkle et al., 2003). 

It is evident that micro- and nano-sized inorganic particles can enter biological tissues. 
According to what we observed, the most common way of entry is inhalation. (a human 
breathes approximately 15 m³ of air per day). Because of their size, micro- and 
nanoparticles, no matter how they are produced, stay suspended in the air for a very 
long time. From the air, they are breathed in and, once they are inside the bronchial 
alveoli, depending on their size, they can be phagocytized by the macrophages the way 
any foreign body in that anatomical district is, or, in the smaller sizes, pass directly, with 
a mechanism that is still to be made clear. As it was proved, micro- and nanometric 
particles can be found in the blood (and cause thrombosis in predisposed subjects) and 
nanometric debris can even enter the red cells, an excellent Trojan horse to negotiate 
virtually any barrier. 

Whatever the modality through which they enter the blood, sooner or later those 
particles are sequestered by a tissue and, being not biodegradable, are impossible, or, 
in any case, very hard, to remove through the physiological ways of elimination. A 
further and certainly not negligible problem is that those non biodegradable foreign 
bodies are also non biocompatible. That means that, just because of their non-
biocompatibility and by definition, they can induce adverse reactions, and this is what, 
under certain conditions, they do. As it happens with any foreign body, inflammation is 
how tissues generally react against that unwanted presence, and that reaction grows 
visible when the concentration the debris has reached is high enough. But when the 
particle is of nanometric size, it passes unnoticed and can enter cells, even being able 
to go as deep as their nucleus. It may be interesting to note that NPs can pass into 
macrophages directly and interfere with functions as motility and ability to remove 
bacteria. 
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2.1.3 Do impurities in commercial nanomaterials contribute to toxicological 
properties? 
Author: Aris Tsatsakis 

The investigation of structure and toxicology of impurities in drug formulation takes an 
important place in pharmaceutical chemistry and technology (Basak et al., 2007). 

The solution of these problems should play the decisive role for development of 
harmless drug systems and delivery systems in genetic engineering of those on the 
basis of nano-sized carriers including, first of all, liposomes, solid liposome 
nanoparticles, polymer nanospheres, aggregates of amphiphilic polymers, and 
dendrimers. 

The nano-sized objects are commonly defined as those up to 100 nm in size. But in 
practice the size of particles applied in bio-medical area is larger and may reach some 
hundred nanometers. This is reasonable due to simple technology, which does not 
affect the activity since the production of smaller particles requires a more complicated 
process.  

With respect to toxicological properties of impurities in nano-sized carriers used in 
pharmaceutical technologies it can be noted that despite its importance this field now is 
only under consideration. 

Despite their promising features NPs have so far displayed several toxicological 
drawbacks. For instance, there is a number of complications related to administration of 
carbon nanotubes (CNT) (Donaldson et al., 2006; Kagan et al., 2006; Monteiro-Riviere 
et al., 2005; Wörle-Knirsch et al., 2006). Also the ultra small particles can generate 
harmful oxyradicals (ROS), which can cause cell injury by attacking DNA, proteins, and 
membranes (Brown et al., 2001). On the contrary there is little information on 
toxicological properties of impurities in nanoparticles (Zhao and Nalwa, 2006).  

There are two main causes for impurities in bio-medical nanosystems, i.e.:  

 Contamination in process of preparation  
 Formation of impurities throughout the system’s life cycle. 

2.1.3.1 Contamination of nanomaterials during preparation process 
During formation a nanoparticle captures various by-products, which may in general 
have a negative effect on the surrounding tissue and the organism itself (compare 
Chapter 1.2.3.1 for carbon nanotubes). Such foreign materials may be first of all the 
initial chemicals used for production of nanoparticles such as residual monomers, 
catalysts, solvents, surfactants, etc. Usually toxicity of these substances, if they are 
admitted to application, is known and can be taken into consideration. 

Largely diffusion retention of impurities in bulk nanoparticles is common for branched 
macromolecular systems, e.g. dendrimers or particles produced on the basis of 
crosslinked polymers or water insoluble polymers, purification of which can be 
complicated. 

There is a number of possibilities for inclusion of initial substances into the resulting 
NPs. For example among the water insoluble polymers used for production of NPs are 
the polymers of hydroxycarboxylic acids, e.g. glycolic acid, lactic acid and the like, as 



 

 IMPART 
 09.06.08 / Page 46/116 

well as the esters of poly-α-cyanacrylic acid. These polymers can undergo 
biodegradation in the body tissues, which may be accompanied by release of impurities 
formed in bulk of NPs during synthesis into the surrounding tissues. For example the 
particles produced on the basis of poly-α-cyanacrylates by polymerization of 
appropriate monomer esters containing medium-sized alkyl radicals, e.g. butyl- or 
ethoxyethyl-α-cyanacrylates may in general occlude the monomers (Díaz-Torres et al., 
2005). This also applies to all polymer particles produced in dispersion systems 
(suspension or emulsion polymerizations) produced on the basis of water-insoluble 
polymers. Formation of NPs from polymers insoluble in water but soluble in organic 
solvents like polyesters of hydroxycarboxylic acids, may lead to inclusion of solvents 
(e.g. methylene chloride) and surfactants used for formation of two-phase systems into 
the bulk of particles. 

If NPs are obtained in the form of associates of amphiphilic polymers, e.g. low-
molecular weight amphiphilic derivatives of polyethylene oxide or poly-N-vinyl 
pyrrolidone, a certain amount of the polymer may remain unassociated (Torchilin et al., 
2001). Moreover formation of polymer NPs just as any other chemical process may be 
accompanied by side processes resulting in formation of such substances, toxicological 
properties of which may not be even identified. All these substances are often highly 
toxic and may have a severe negative impact. 

2.1.3.2 Formation of impurities throughout the system’s life cycle 
Degradation products of nanoparticle systems forming throughout the system’s life 
cycle within the body can also be toxic. This first of all refers to biodegradable polymers 
(Panyam and Labhasetwar, 2003). For example degradation products of polymers of 
hydroxycarboxylic acids, such as glycolic acid (polyglycolides) or D- and L-lactic acid 
(polylactides) show little or no toxicity since these acids are natural metabolites. On the 
contrary degradation products of polycyanacrylates are not so harmless. It is well 
known that polymers of esters of α-cyanacrylic acid are biodegradable. It is assumed 
that this process results in formation of formaldehyde. Degradation of poly-α-
cyanacrylates starts at рН 7.0 and considerably accelerates at pH 8.0. A smaller 
alcohol radical also increases the rate of hydrolysis. Polymers of methyl-α-cyanacrylate 
show the fastest decomposition. This process can result in damage of surrounding 
tissue (Leonard et al., 1966; Wide and Leonard, 1980). Some natural polymers applied 
for production of biodegradable NPs such as chitosan also biodegradable. 

Nanoparticles based on aggregates of amphiphilic polymers are rather unstable and 
can dissociate to yield the initial polymers that in turn are separately carried by 
biological fluids. Finally the toxicity of polymers used for surface modification of NPs, 
which can be released into the surrounding body tissues, must also be considered. 
Thus 9 nm iron oxide NPs were coated with polyvinyl alcohol (PVA) or PVA with 
carboxylate, amine or thiol functional groups. The PVA and the carboxyl and thiol 
functionalized PVA NPs were non-toxic to the melanoma cells. Some cytotoxicity was 
observed for the amine functionalized PVA NPs, particularly when the polymer 
concentrations were high. The amine groups increased cellular uptake of the NPs 
(Gupta and Curtis, 2004; Gupta and Gupta, 2005). 

An example of such modifying coating is polyethyleneglycol (PEG) that was seen in a 
prolonged presence in the circulation by avoiding recognition and phagocytosis by the 
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mononuclear phagocytic system (Bazile et al., 1995). Special attention should be paid 
to substances used for chemical modification of nanoarticle surface (if any) as well as 
to by-products of these reactions.  

2.1.3.3 Removal of impurities from nanomaterials 
If a nanoparticle carries a bioactive (drug) substance, which is to be gradually released 
into the surrounding tissue (controlled release action), then removal of contaminants by 
extraction with organic solvents is inapplicable since the extracting agent may be itself 
caught by the particles. Beside that the extracting solvent may remove the immobilized 
substance.  

Furthermore this method can not be used for immobilization of bioactive protein-like 
substances in NPs since the organic solvent may lead to denaturation of proteins. 
Therefore, the most applicable way for elimination of impurities from NPs is to apply 
membrane methods and sometimes gel-filtration and ultracentrifugation. However, such 
methods as gel-filtration and ultracentrifugation applied in laboratory practice become 
useless in case of scaling. 

Dialysis in bags and tubes with various pore sizes is the most common practice. 
However ultrafiltration is more efficient on a larger production scale (Dalwadi et al. 
2005; Hammady et al. 2006; Heydenreich et al. 2003; Limayem and Charcosset 2004; 
Miglietta et al. 2000; Sweeney et al. 2006). It is noteworthy that membrane methods 
that usually require a lot of time may result in partial loss of the immobilized substance 
due to its diffusion detachment from the nanoparticle.  

2.1.3.4 Analysis of impurities 
Analysis and identification of impurities in NPs is quite complicated. A foreign 
substance can be separated during purification, concentrated and then analyzed by a 
standard method. In case of impurities formed throughout the life cycle of a 
nanoparticle it is often impossible.  

The processes that occur during interaction of NPs and body tissues can be simulated 
to a certain extent in vitro. However a comprehensive recreation of the conditions of 
interactions between the NPs and intracellular and extracellular enzymes as well as 
with the reticuloendothelial, scavenger and giant cells of the foreign body is more than 
difficult. 

2.2 Is there a difference between “local” and “systemic” toxic effects? 
Author: Peter Hoet 

Exposure sites of engineered nanomaterials are skin (and eye), lung and intestinal 
tract. From these exposure sites nanomaterials can penetrate the body (systemic 
circulation). This differs significantly from medical applications because often direct 
injection into the systemic circulation is performed (Hoet et al., 2004a). 
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2.2.1 Local toxicity at the site of exposure 

Pulmonary exposure 

Multiple reports exist on toxic effect of pulmonary exposure, mostly reporting on 
environmental exposure to pollutants; less frequent (but still a significant number) 
reports on exposure on engineered nanomaterials. In studying the local effects of 
nanomaterials in the lung a few important notes must be made: particulate matter vs 
tubular matter, exposure level and the phenomena of overload (Hoet et al., 2004a; 
Oberdörster et al., 2005a, b). 

Nanomaterials in the lung can affect other tissues indirectly by two pathways. 
Inflammation in the lungs caused by NP causes atheromatous plaque development and 
destabilization and the inflammation in the lungs causes alteration in the clotting status 
or fibrinolytic balance favouring thrombogenesis (Duffin et al. 2007a; Nemmar et al., 
2004) 

Skin exposure 

Skin exposed to solid materials such as fibre glass or ceramic fibres can be irritated 
(see ref below), but no such an effect has been studied for nanomaterials (Jolanki 
et al., 2002). Nevertheless, there is a multitude of publications on skin and NPs (Cross 
et al., 2007; Díaz-Torres et al., 2005; Gamer et al., 2006; Lademann et al., 1999; 
Mavon et al., 2007; Pflücker, 2001; Pflücker et al., 2001; Ryman-Rasmussen et al., 
2007; Tinkle et al., 2003) as well as a big European project calles “NanoDerm” 
(Nanoderm, 2007).  

The cytotoxicity of CNT on skin cells has been evaluated and reviewed by Lam et al. 
(2006). 

Thus, indications exist that the skin itself can be a target of nanomaterials but it is 
general accepted that these effects are relatively uncommon which is maybe a good 
reason to stimulate studies on local skin effects of both particle as well as fibrous 
materials. 

Oral exposure 

The local effects of nanomaterials in the intestinal track are not studied in detail. 
Recently, Duncan and Izzo (2005) reviewed the toxic effects of dendrimers. The anionic 
PAMAMs had no effect on viability and TEER of Caco-2 cells while cationic PAMAM 
dendrimers reduced significantly the viability and TEER. As for the skin it is general 
accepted that ingested nanomaterials will not be harmful, since we daily swallow 
particulate material, but clear evidence has never been generated. 

2.2.2 Local sites as portals of entry to systemic exposure 

Pulmonary exposure 

It has been shown several time that nanomaterials can enter the circulation via the lung 
(Geys et al., 2006; Nemmar et al., 2001; Nemmar et al., 2002a), although also at least 
equal amount of papers show the opposite (Mills et al., 2006). The NP themselves or 
metals/organics released by the particles enter the circulation and have direct effects 
on the endothelium, plaques, the clotting system or the autonomic nervous system/ 
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heart (Duffin et al., 2007a; Nemmar et al., 2002b; Silva et al., 2005; Vermylen et al., 
2005). 

Skin exposure  

Until recent no reports could be found on the translocation of nanomaterials through 
intact skin, quantum dots (size 5 – 12 nm) were proven to penetration through the skin. 
It has been suggested that the skin may serve as portal for systemic exposure of 
quantum dots for humans (Ryman-Rasmussen et al., 2006). The local effects of 
nanomaterials on the skin can be very diverse, mainly depending on the material, e.g. 
oxidative stress (TiO2 and UV) or sensitisation (Be particles) (Lademann et al., 1999, 
2001; Tinkle et al., 2003). 

Silver nanomaterials (in e.g. cotton gauze) are examined as possible anti-bacterial 
treatment on damaged skin (Lee et al. 2007). Although there is no in vivo evidence to 
suggest nanocrystalline silver is toxic to human keratinocytes and/or fibroblasts, there 
is some in vitro evidence; moreover no study on uptake of the silver particles via the 
wounded skin can be found. Thus these type of dressings should be studied better and 
be used with caution (Fong and Wood 2006). 

Oral exposure  

Oral uptake of nanomaterials has never been questioned, and has been studied for 
many years in pharmacology (not scope of this overview). 

Other routes of entering the body 

It has been show that in the nose nanosized materials can be taken up by the olfactory 
bulb. The observation has been reported by different researchers, but the toxicological 
importance has not been cleared (Oberdörster et al., 2004).  

Probably nanosized materials can enter the eye (Pignatello et al., 2006), although this 
is not considered as an important portal (SCCP 2007). 

2.2.3 Systemic effects of nanomaterials 
The systemic effects of nanomaterials, after entering the circulation via one of the 
portals have not been studied in large detail. We certainly do not have a good view on 
the toxicokinetics of nanomaterials. 

The following knowledge gaps are obvious: 

1. Recently the distribution of nanomaterials in the lung tissue has been studied in 
some detail. Unfortunately no clear mechanisms could be appointed (Mühlfeld 
et al., 2007) 

2. Entering the system: air – blood; nose – brain; skin – blood; intestine – blood (Hoet 
et al., 2004a; Oberdörster et al., 2004, 2005b) 

3. Moving from one compartment to another: blood to organs-tissue: brain, liver, 
spleen, kidney; from organ-tissue to blood? 

4. The excretion of nanomaterials, the half-life time in the body has not been studied 
for most of the known materials. 



 

 IMPART 
 09.06.08 / Page 50/116 

Theoretically, we can we speculate that any organ can be a potential target organs for 
circulating nanomaterials, but we can also speculate that most probably the lung and 
liver will be affected. The lung has an important vascular bed and can be therefore an 
important target for nanomaterials. It is also very well documented that the liver can 
function as a trap for particulate matter in the circulation. Both organs can play an 
important role via e.g. stimulation of macrophages, release of prothrombic mediators, 
and further mechanisms. 

Organ, tissue, cellular accumulation has been described in a number of reports, 
unfortunately, most of these reports are rather separate studies? The uptake of 
nanomaterials in the brain of rodents (olfactory bulb or via the BBB) (Oberdörster et al., 
2004), or in the brain fish has been described (Oberdörster, 2004). Until now only a 
small number of long (rather sub acute and sub chronic) term studies (Borm and Tran, 
2002; Ji et al., 2007; Li et al., 2007; Schins et al., 2002) are available to discuss in 
detail this issue. Cellular accumulation in phagocytotic cells has been described in 
some detail; nanosized materials seem to inhibit the phagocytosis. In a number of 
studies the uptake of nanomaterials has been described in non-phagocytotic cells 
(epithelium, endothelium) (Baeza-Squiban et al., 1999; Jia et al., 2005). 

Recently more studies describe the biocompatibility of nanomaterials (use of specific 
coatings of e.g. implants, nano-dots, drug delivery devices) (Ballou et al., 2005; Jain, 
2003, 2005). This has certainly also a consequence on the half life time of the material 
(some quantum dots circulate a long time in the blood of animals) and can maybe 
result in significant serum levels in chronic and repeated exposure (Dubertret et al., 
2002; Michalet et al., 2005). Another point of concern is the decay of quantum dots 
since the core constituents such as cadmium and selenium are toxic. Some evidence 
exists that the toxicity of QD is often related to the capping material rather than to the 
core metalloid complex (Hoshino et al. 2007). 

2.3 How to express dosing 
Authors: Harald F. Krug; Peter Wick 

2.3.1 Is mass relevant versus surface? 
The small size and corresponding large specific surface area of solid NPs confer 
specific properties to them, for example, making them desirable as catalysts for 
chemical reactions. The importance of surface area becomes evident when 
considering that surface atoms or molecules play a dominant role in determining bulk 
properties (Amato, 1989); the ratio of surface to total atoms or molecules increases 
exponentially with decreasing particle size. Thus, the increased surface area per unit 
mass of NPs can be toxicologically important if other characteristics such as surface 
chemistry and bulk chemistry are the same. Moreover, an increased surface reactivity 
predicts that NPs exhibit greater biologic activity per given mass compared with larger 
particles, should they be taken up into living organisms and provided they are solid 
rather than solute particles. This increased biologic activity can be either positive and 
intended (e.g., antioxidant activity, carrier capacity for therapeutics, penetration of 
cellular barriers for drug delivery) or negative and unintended (e.g., toxicity, induction of 
oxidative stress or of cellular dysfunction) (Limbach et al., 2007), or a mix of both. Not 
only may adverse effects be induced, but interactions of NPs with cells and subcellular 
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structures and their biokinetics are likely to be very different from those of larger-sized 
particles (Oberdörster et al., 2005a). 

Tab. 6: Particle size, number and particle surface area per 10 μg/m³ airborne particles. 

Particle diameter 
(nm) 

Particle no. 
(cm–3) 

Surface Area 
(μm²/cm³) 

5 153 000 000 12 000 

20 2 400 000 3 016 

250 1 200 240 

5,000 0.15 12 

Compared with larger particles on a mass basis, NPs have a higher predicted 
pulmonary deposition, greater potential to induce pulmonary inflammation, larger 
surface area, and enhanced oxidant capacity. NPs also have the potential to cross the 
epithelium and enter the systemic circulation. The lower effect per unit mass dose seen 
for larger particles is consistent with earlier studies showing that particle surface area of 
low toxicity particles is a more appropriate dosimetric for induction of inflammation in 
the lungs than particle mass (Frampton et al. 2004; Gallagher et al., 2003; Hohr et al., 
2002; Li et al., 1999; Oberdörster, 1996; Oberdörster et al., 2000; Oberdörster, 2000; 
Renwick et al., 2001).  

2.3.2 Surface expressed as outer or / and inner surface 

Agglomerates of NPs may cause adverse health effects because of their large surface 
area. Despite the fact that there is a large number of studies dealing with NPs and their 
biological effects especially on lung tissue (Beck-Speier et al., 2001; Brown et al., 2001; 
Dick et al., 2003; Donaldson et al., 2002; Donaldson and Stone, 2003; Frampton et al., 
2004; Hamoir et al., 2003; Hext et al., 2005; Hohr et al., 2002; Kreyling et al., 2004; Li 
et al., 1999; Oberdörster et al., 1992; Oberdörster et al., 1994; Oberdörster, 1996; 
Oberdörster, 2000; Oberdörster et al., 2005a; Yin et al., 2005), no single publication 
compares these effects in dependence on the outer or the inner surface of NPs or 
agglomerates or aggregates with the activity of primary particles. To my knowledge 
there is no study comparing the biological effects of NPs in dependency on their active 
surface on a systematic level (Sayes et al., 2007b; Warheit et al., 2006, 2007) and 
surely no study on that compares the outer and the inner surface. 

2.3.3 Does porosity play a role 

As for inner surface there is no real information on the porosity of NPs and the effect of 
porosity on the intensity of their biological effects as stated recently (Oberdörster et al., 
2005a). Nevertheless, the porosity of some materials is important for their use in cell 
culturing of nerve cells (Yang et al., 2004). 

2.3.4 Exposure limits restricted to surface doses? 

Taking together all above mentioned aspects, the first approach is surely the surface 
dose as limit value, as the original publications of Oberdörster recommended 
(Oberdörster et al., 2000; Oberdörster, 2001). Some more recently published results 
confirm this model (Yin et al., 2005; Zhang et al., 2003), but more data are needed to 
establish such a threshold or limit value solely on the basis of surface area (see 2.3.5). 
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2.3.5 Correlation between reactivity and toxicity (dose dependency on reactivity)? 
Besides the surface area several other properties may determine the toxicity of NPs. 
The number of atoms on the surface compared to the interior of the particles, the 
reactivity of the elements or atoms on the surface and the binding capacity of biological 
molecules, such as proteins or DNA, may also be important characteristics in toxicity 
(Chen et al., 2005; Cheng, 2004; Dick et al., 2003; Donaldson and Borm, 1998; Duffin 
et al., 2001; Knaapen et al., 2002). 

Moreover, it is known that surface reactivity plays an important role in catalytic activity 
of NPs technically used in the destruction of pollutants (Rajagopalan et al., 2002). 
Thus, such particles with high surface reactivity will exhibit additionally a higher 
biological activity (Cheng, 2004). 

2.3.6 Do we need information on size distribution; hydro-phobicity; zeta potential; 
wettability 

Some first results indicate a dependency of toxicity of NPs on their surface area and 
not on their hydrophobic status or coatings (Höhr et al., 2002). Nevertheless, there is 
too little data for a realistic estimation of these properties and their contribution to 
health effects. Actually, Warheit has recommended the knowledge of a set of properties 
of NPs to understand publications and compare data (Warheit, 2008; see our 
“knowledge gaps” at page 90). We claimed for such a “minimum” catalogue of 
properties at the beginning of the report (page 7).  

2.3.7 Discussion on measurement/determination of the surface area 
Reliable, standardised methods are not available to measure the surface area of NPs, 
except the Brunauer-Emmett-Teller-method (BET; Robert et al., 1971). For this method 
larger amounts of the nanomaterials are needed (mg to g range) that normally are not 
available. A sensitive technique for small amounts is therefore urgently required. 

Recommendations/ knowledge Gaps: 

• Which information is enough to clearly define a given dose or concentration 
within an experiment? 

• Should we refer to mass, surface area or particle number? 

• Should sedimentation or deposition play a role for considerations regarding the 
actual dose which reaches the cells in an experiment? 

• Is information needed at the end of an in vitro experiment about the amount of 
material still measurable within the supernatant for better calculation of the 
reactivity of the investigated nanomaterial? 

• What is the minimum knowledge about dose or concentration for a reader of a 
study to interpret the data properly? 

• Should we have guidelines for in vitro experiments for dosing nanomaterials? 

• What about in vivo experiments and dosing? 

• We (toxicologists) need a sensitive and cheap method to determine particle 
number and surface to include this information into the discussion of the results. 
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2.4 How good are the present protocols? Have we to apply new Tox-test? Do we 
need a new strategy? 
Authors: Petya Krasteva and Margarita Apostolova 

Included here are ceramics, metals, and metal oxide NPs. These materials are 
assembled from nanometer-sized building blocks, mostly crystallites. The building 
blocks may differ in their atomic structure, crystallographic orientation, or chemical 
composition. In cases where the building blocks are crystallites, incoherent or coherent 
interfaces may be formed between them, depending on the atomic structure, the 
crystallographic orientation, and the chemical composition of adjacent crystallites. In 
other words, materials assembled of nanometer-sized building blocks are 
microstructurally heterogeneous, consisting of the building blocks (e.g. crystallites) and 
the regions between adjacent building blocks (e.g. grain boundaries). It is this 
inherently heterogeneous structure on a nanometer scale that is crucial for many of 
their properties and distinguishes them from glasses, gels, etc. that are 
microstructurally homogeneous. 

The manufacture of novel nanomaterials has gained increasing and considerable 
attention by the scientific community over the past decade. The applications of these 
various nano-scale materials continue to grow, and their potential to beneficially impact 
the medical and technological world is seemingly boundless. However, with increased 
manufacturing of these diverse NPs worldwide, comes an urgent need for 
investigations regarding their toxicity. The realization that these materials may pose a 
threat, and that exploration of the subject is sorely lacking, has only just come into 
popular attention (Gorman, 2002; Service, 2003). Different studies have been 
undertaken that investigate the toxicity of nanomaterials. The impact of these 
nanomaterials should be established, in order both to avoid problems in the future. 
Biological activity and biokinetics are modified by many parameters; hence detailed 
physicochemical characterization is necessary. The parameters of concern include the 
following: Size, Shape, Chemistry, Mono/Polydispersity, Crystallinity, Surface 
properties (area, porosity, charge, coating), Agglomeration state, Biopersistence, Dose, 
etc. (compare criteria list on page 7). Most generalized data for the analytical methods 
used come from the review by Oberdőrster et al. (2005). They summarized the 
currently used analytical techniques to provide specific physicochemical information on 
engineered nanomaterials, in the context of toxicity screening studies (Table 7): 
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Tab. 7: Analytical Techniques 

 
T 
E 
M 

S 
E 
M 

X 
R 
D 

X 
P 
S 

Auger 
Spectro-

scopy 

SI 
M 
S 

Scanning 
Probe 

Microscopy 

D 
L 
S 

Zeta 
Potential 

Size Exclusion 
Chromatography 

Analytical 
Ultra-

centrifugation 

D 
M 
A 

Isothermal 
adsorp. 

Spectro-
scopic 

techniques 
Size 
Distribution ▲ • •    • •  • • •   
Shape ▲ •     • √    √   
Surface area • ◊     ◊ ◊   ◊ √ •  
Composition • • •   ▲        • 
Surface 
chemistry • √  • • √ √  ◊     √ 
Surface 
contamination √   • •  √       √ 
Surface charge         ▲      
Crystal 
structure • ◊ ▲            
Particle 
physico-
chemical 
structure 

▲ •    √         

Agglomeration 
state ▲ • √    • √  √ √ •   
Porosity ◊           • •  
Heterogeneity ▲ •     ◊       √ 

▲ Highly applicable 
• Capable of providing information in some cases 
◊ Capable of providing information in some cases, with validation from more accurate/ applicable 

techniques 
√ Capable of providing qualitative or semi-quantitative information 

Even though so many techniques exist, it is clear that there are several research gaps, 
namely the need of development of 

techniques for the in vivo detection of nanomaterials: 
1. Inexpensive real-time monitoring instruments and methods for aerosol mass 

concentration (low concentrations, nanoscale particles), surface area 
concentration and size distribution. 

2. Standardized, well characterized nanomaterial samples.  
3. Radio-labelled nanomaterial samples or samples that can be tracked and 

detected through neutron-activation. 
4. More advanced surface chemistry characterization techniques, in particular 

techniques capable of detecting and speciating biological molecules on the 
surface of nanoparticles and nanomaterials. 

5. Electron microscopy techniques for biologically-relevant nanoscale analysis. 

Standards and protocols that exist assume that particulate mass is most closely 
associated with health risk. This is not the case with nanomaterials: early toxicity 
studies show that particulate surface area and number are more relevant to health 
effects than mass is. The ratio of surface to total atoms or molecules increases 
exponentially with decreasing particle size. The increased surface area counts for 
increased chemical and biologic activity of NPs. The increased biologic activity can be 
positive and desirable (e.g. antioxidant activity, carrier capacity for therapeutics, 
penetration of cellular barriers), negative and undesirable (e.g., toxicity, induction of 
oxidative stress or of cellular dysfunction), or a mix of both. 

It has to be noted that both in vitro and in vivo studies should make attempts to 
differentiate the primary particle size ranges, aggregate sizes, or morphologies. Fibres, 
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fibre bundles or aggregates, fibre/uni-sized particulate aggregates, or other complex 
nanoparticle composites pose a variety of airstream responses and deposition 
behaviours (Tab. 8). 

Tab. 8: Deposition mechanisms of inhaled particles to be studied. 

Impaction particle velocity, directional changes, inertia 

Sedimentation gravity, settling velocity, residence time 

Diffusion collision with air molecules, residence time 

Interception fibrous particles 

Electrostatic precipitation charged particles, image forces 

Another issue that should be considered is the in vitro/in vivo alterations of 
nanomaterials: deagglomeration, solubility, weathering of protective coatings, 
adsorption of proteins, lipids, etc. (for example, adsorption of pulmonary surfactant 
constituents that could facilitate the translocation of NPs via the pulmonary epithelium)  

A key issue in both in vitro/in vivo assays is the exposure-dose-response relationship, 
but most important the relevance of dose levels. It has been a continual practice to 
perform both in vitro and in vivo experiments with high doses of NPs without any 
consideration of realistic organismic, organ, or cellular exposures. Hence knowledge 
about exposure levels and about the correlation of exposure with doses (an exposure is 
not a dose) is absolutely necessary. Lack of data in the low- oftentimes most relevant- 
dose range can result in severer misinterpretation if a threshold or even a hormetic 
response is present.  

 

In vitro assays: 
1. Non-cellular assays are to consider: 

• Free radical production: (EPSR- electron paramagnetic spin resonance, 
DCFD- di-chloro-fluorescein-di-acetate, plasmid DNA scission, 8-OH-dG 
production in ‘naked’ DNA, etc.) 

• Durability: appropriate deagglomeration / solubility assessment methods 
should be developed 

• Adsorptive properties 

• Complement activation 

2. Portals of entry and target organs cellular assays are to consider: 
• dose-response relationships and appropriate controls (negative and 

positive) 

• target organs and cells (epi-/endothelial, neuronal, keratinocytes, other) 

• endpoints: oxidative stress, viability, cytokines, cell signalling pathways, 
other 

• cytoskeletal effects (microtubule, mitochondria, endoplasmic reticulum) 
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In vivo assays- issues of consideration: 
• exposure-dose-response relationships, realistic dose/ exposure values  

• exposure route (inhalation, intratracheal instillation, or pharyngeal and laryngeal 
aspiration ingestion, dermal exposure, biomedical applications (intravenous, 
subcutaneous, intramuscular)) 

• deposition mechanism (Tab. 8)  

• portal of entry vs. remote organ effects, with special attention to possible 
theratogenic activity 

• acute vs. chronic exposure/ effects  

• kinetics (Tab. 9): translocation, accumulation, biopersistence 

• in vivo interaction of nanomaterials with proteins and biologically active 
substances 

• endpoints: inflammation, function impairment (BAL damage markers, oxidative 
stress markers, histopathology, cell proliferation) 

• proteomic, genomic, and metabolomic alterations 

• design of the experiments: animal model, gender of the test animals, appropriate 
positive and negative controls 

• long-term studies with attention to the effect on genomic stability 

 
Tab. 9: Clearance mechanisms to be taken into consideration for inhaled solid particles 

in the respiratory tract: 

Physical clearance processes Chemical clearance processes 
Mucociliary movement (translocation) 

Macrophage phagocytosis (tracheobronchal, 
alveolar) 

Epithelial endocytosis (tracheobronchal, 
alveolar) 

Interstitial translocation (nasal, tracheobronchal, 
alveolar) 

Lymphatic drainage (tracheobronchal) 

Blood circulation (tracheobronchal, alveolar) 

Sensory neurons (nasal, tracheobronchal) 

Dissolution 

Leaching 

Protein binding 
(nasal, tracheobronchal, alveolar) 
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2.5 Dissolution / precipitation of material within the biological system 
(organspecific)? 
Author: Peter Hoet 

Dissolution can be defined as a dynamic process by which a molecule (of a particle) 
goes into the solution phase to form a homogeneous mixture. The molecules of the 
solid migrate from surface of the material to solution.  

We have to note a few points: 

1. Particles have a surface energy which partly depends on their morphology (the 
surface curvature). Particles with a smaller convex radius (positive curvature) have 
a higher interfacial surface free energy and therefore are subject to preferential 
dissolution (Gibbs-Thompson effect - relationship between curvature, interfacial free 
energy and dissolution), surface features with a small concave radius (negative 
curvature) are less prone to dissolution due to a lower localized surface free energy. 
(Ruckenstein and Djikaev, 2005; Tang et al., 2004) 

2. It is noted that amorphous materials dissolve more easily compared to the 
crystalline forms. E.g. amorphous silica has a solubility ranging from 2 mmol/l (pH 7, 
25°C) to 4.5 mmol/l (pH 7; 45°C), differs from Cristobalite at 0.45 mmol/l and Quartz 
at 0.09 mmol/l. But it is important to state the following: most natural amorphous 
particles are unstable and tend to transform with time towards more crystalline 
forms, either by aging or possibly, by dissolution and re-crystallization 
(Mavrocordatos et al., 2004). 

3. The solubility of particles can depend on the pH of the dissolution milieu. E.g. for 
TiO2 an increased solubility is found in the acidic region pH < 3. For most metallic 
particles a low pH will increase the potential of the material to solubilise. The 
presence of different ionic species in the solution can play a role. Also temperature 
plays a role in dissolution, for most materials the dissolution increases with 
increasing temperature (remark: maybe this is not relevant in humans). 

4. For many nanomaterials the chemical purity will play a role in their toxicological 
profile. Impurities have to be taken into account also when measuring the 
dissolution of the nanomaterial (compare Chapter 2.1.3). This can be e.g. important 
for metallic compounds present in the sample (Hostynek, 2003; Lam et al., 2006; 
Pulskamp et al., 2007a). In addition to impurities (point 4), Limbach et al. (2007) 
have shown that particles can act as a Trojan-horse to efficiently deliver metallic 
ions into cells. 

5. The discussions in points 2 to 4 brings us to a problem which has not been studied 
yet: “Do dissolved nanomaterials precipitate at (other) target sides in the body (not 
defined which ones)”. This hypothetic consideration has to be taken into account 
because the saturation concentration of a compound can change (lower) in view of 
differences in pH, osmolarity, etc. in the body (Ruckenstein and Djikaev, 2005). 

Importance for toxicology (and health effects) 

From points 1 and 2 we learn that the external appearance of the particle (and thus 
also the surface energy) can be very important towards the availability of the dissolved 
material and/or the (bio)persistence of the material. This is closely linked to the physical 
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organisation of the material, amorphous vs crystalline (and even different types of 
crystals). Therefore a first suggestion could be to try to include this information (shape 
and surface energy) in building a database linking material properties and biological 
effects. 

The conditions of the milieu play an important role in dissolution of materials (point 3). 
No or little information has found on organic materials, or the organic coatings used to 
make materials biocompatible. The lack on data on organic materials in somewhat 
different environmental conditions (as found in cellular vesicles) is probably due to fact 
that not many organic nanomaterials are produced compared to metal based materials. 
But since the growing interest gap needs to be filled as soon as possible. 

Another important finding has been published recently (Lison et al. 2008). In this paper 
it is describe that mono-disperse nanomaterials behave (at least in the conditions used 
in the paper) as solubilised molecules. This is important for all dispersed materials but 
the impact of the small nanomaterials (smaller than 20 nm) seems to be bigger 
because the toxic effects seen could be related to the total surface area of the 
materials. This finding needs to be verified using different types of materials. 

It has certainly also be stressed that dissolution can be a desired property. The 
formulation of drugs as a nanomaterial can help to dissolve the active substance 
(Perrut et al., 2005). Micronisation alone cannot guarantee a significant enhancement 
of dissolution rate or bio-availability of hydrophobic drugs. Many other factors play a 
major role in the bioavailability (this is not necessarily dissolution) among which 
probably the most important one is wettability; as shown e.g. by Yang et al. (2007); 
they used ionic-complementary peptides (EAK16-II) to modify surfaces. Due to the 
amphiphilic nature of these molecules they can interact with both hydrophobic and 
hydrophilic surfaces allowing the use in several applications. The main question that 
can be put forward is: how stable are these interactions in a biological system and what 
is the fate of the amphiphilic material. This is a valid question since a well described 
effect of cationic amphiphilic molecules is the induction of phospholipidosis (Reasor 
et al. 2006). 

Knowledge gaps: 

• How does surface energy correspond with toxicity, if it does at all? 

• Does conversion from amorphous to crystalline status in all cases enhance 
toxicity of the NPs? 

• The stability of most of the nanomaterials in biological fluids is unknown 

2.6 Cellular uptake and accumulation in “organelles” and “organs”? 
Author: Peter Wick, Harald F. Krug, Jörg Wörle-Knirsch 

For most, if not all nanomaterials an uptake into cells and tissues has been observed 
and is well documented in the literature (for overview see: Kumar, 2006). So far there 
are no real material specific mechanisms described. Nanomaterials that are poorly 
water soluble and can therefore not be administered to cells are usually chemically 
modified to fulfil the criteria of being available to the cells. Then an uptake can take 
place. In a recent work, the biodistribution of carbon nanotubes was described (Wang 
et al., 2004). It was found that carbon nanotubes (CNT) distribute significantly stronger 
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in the stomach, kidneys and bones than in any other tissue or organ. The modality of 
distribution is more or less independent on the site of intrusion of CNT into the mouse 
body but Wang and his colleagues used hydroxylated and water-soluble forms of the 
SWCNT. Another study used various functionalized CNTs and investigated their uptake 
by different cell types (Kostarelos et al., 2007). They found all CNT variations in all cells 
despite the fact that active mechanisms were inhibited. The underlying mechanism of 
nanoparticle uptake is still controversially discussed. Some neglect an active uptake 
(Geiser et al., 2005) and postulate a passive not specified nonphagocytic mechanism 
(Rothen-Rutishauser et al., 2006) as others find indications for active phagocytic ways 
like clathrin coated vesicles and endosome formation (Shi Kam et al., 2004). Apparently 
some nanomaterials do not remain in endosomes as they are widely distributed within 
organisms. If this is true for non carbonaceous materials it has not been shown yet. But 
from our work, we see metallic or metal oxide particles in most cases within endosomes 
(Wörle-Knirsch, personal data). This has been confirmed by Limbach et al. (2005) with 
their experiments on cerium oxide NPs of different sizes and their uptake by fibroblasts. 
They found the larger particles more rapidly within the cells and most particles were 
enclosed in endosome-like structures. 

A clear correlation between nanoparticle size and surface area has been described with 
regard to toxicity by Oberdörster and his coworkers (Oberdörster, 2000, 2001; 
Oberdörster et al., 2000). They described the intrusion of leukocytes into the lung upon 
treatment with TiO2 NPs of different size regimes. No correlation between the applied 
dosages could be observed, but with regard to the applied nanoparticle surface data of 
both materials matched. It has been postulated that carbon nanotubes interfere in vitro 
with the DNA-polymerase, inhibiting as well as boosting performance of this important 
enzyme for DNA replication (Cui and Tian, 2004). Unfortunately in vivo no such data 
are present or available today. Lu as well as Gao described an interaction of carbon 
nanotubes and DNA (Gao et al., 2003; Lu et al., 2005). These materials can be easily 
linked with DNA and therefore can be used as gene delivery tools. If this is true for in 
vitro experiments it is also likely to happen in vivo. For other nanomaterials so far no 
interaction with DNA has been postulated. 

So there is still a clear need to investigate nanomaterial interaction with cells and cell 
organelles and perform work on nanomaterial persistence within living organisms and 
the environment. 

Key-issues as postulated from the 2nd IMPART expert meeting in Karlsruhe, December 
2005: 

• Material specific mechanisms 
• Size and surface dependency 
• Active and passive processes (phagocytosis, caveoli, endocytosis) 
• Interaction with metabolic pathways 
• Remaining or using endosomes 
• Accumulation in membrane-enclosed compartments 
• Effects on genetic material (e.g. chromosomes) 
• Interaction with DNA 
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2.7 How will we administer the materials for in vivo and in vitro tests? 
Author: George Robillard 

2.7.1 Introduction 
The entire REACH regulation does not make a single reference to NPs but since NPs 
are being examined as potentially hazardous chemicals the REACH protocol standards 
could at least serve as the minimum standards which could be applied to NPs as well. 
Nevertheless, there can be extenuating circumstances which prevent such a simple 
approach. 

2.7.2 Inhalation versus instillation versus aspiration  
For instance the requirements of large amounts of material for testing might make it 
difficult if not impossible to apply the same testing methods for standard potentially 
hazardous chemicals and NPs. An example is the in vivo inhalation test in which the 
REACH regulation, Volume IV, requires a dynamic air flow with 12 volumes of air 
changing per hour for the entire experimental set-up and the set-up should have a size 
large enough that the volume of the test animal is less than 5% of the total volume of 
the test chamber. For well-characterized NPs, such a procedure can be prohibitively 
expensive. In such a case REACH offers intratracheal instillation as an acceptable 
alternative. 

If inhalation is used, the particle size distribution has to be determined in the same 
atmosphere as the test chamber involving liquid or solid aerosols. Conditions and 
standards are specified in section B.30 of REACH volume IV which can be directly 
applied to nanoparticle aerosol inhalation studies concerning the size distribution 
measurements etc. 

In inhalation studies involving aerosols formulations or the use of an emulsifier of 
uncharacterized biological activity, REACH requires that an additional control group 
which is not exposed to the vehicle be utilized. 

2.7.3 Dosing (see additional information in Chapter 2.3) 
The IOM (Institute of Occupational Medicine) report (Tran et al., 2005) summarizes all 
studies dealing with inhalation of NPs. On the issue of dosing they conclude that “it is 
difficult to make firm recommendations about the most appropriate metric by which to 
assess exposure by inhalation to NPs. Current toxicological evidence suggests that, for 
most NPs, the most appropriate metric is surface area. (This is probably not universally 
true e.g. for particles which could be considered to be fibres, such as some forms of 
carbon nanotubes, particle number may be more appropriate).” Other suggestions are 
to use mass, volume or particle number. “Depending on the circumstances, surface 
area, mass, volume, particle number, or some other property could be the appropriate 
basis for expressing the dose of a nanoscale material. The nature of the material itself 
could be the most important determinant of this decision” (Gainsville, Florida, 2004). It 
is stated that for some NPs, health effects correlate best with the surface area 
measured by the BET nitrogen absorption methodology. This statement appears to be 
in relation to the findings of epidemiology studies of air pollution effects on humans and 
may not be universally applicable to other types of NPs (NIA Comments on SCENIHR 
Opinion May 2007.doc, further information: http://www.nanotechia.co.uk). 
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Additionally, dosimetry of NPs in in vitro studies includes also understanding of ability of 
NPs to settle, diffuse and aggregate to different extents. Recently, Teeguarden et al. 
(2007) introduced the concept of cellular dose in vitro in which they outlined an 
approach for simulation of nanoparticle particokinetics in cell culture systems as a 
function of media density and viscosity and particle size, shape, charge and density. 

In the context of dosing the nanomaterials: 

• there is a lack of international consensus on measurement techniques or 
standards for monitoring nanoparticles in the workplace 

• there is a strong need for a measurement device that can differentiate between 
engineered nanoparticles and the background level of natural nanoparticles 

• there is a need for the evaluation of nanoparticle formulations on a case-by-case 
basis in order to choose the most appropriate metrics 

2.7.4 Surface modification to prevent aggregation within a test 
Aggregation/clumping of NPs is a common occurrence with dry, aerosolized or 
aqueous suspensions of NPs. In general, NPs, even when aggregated have been seen 
to be more toxic than larger complexes. Many surfactants can be found in the 
environment that might promote particle deagglomeration. Deagglomeration is likely to 
aid dispersion of NPs in the environment and hence increased interaction with different 
organisms. Deagglomeration may also promote uptake of NPs into an organism via 
specific routes if particle size determines access to the site of absorption (e.g. lung). 
The role of aggregation in influencing the ability of NPs to cross biological membranes 
has not been studied in any system.  

The recommendation is to prevent agglomeration by using tissue-specific components 
to cover the surface of the particle; for instance, a lung surfactant should be used if 
working with lung cells, etc. 

2.8 What about long term studies at low (more realistic) concentrations? 
Author: Jamila Smisterova 

2.8.1 Long-term toxicity testing for chemical substances 
According to Guidelines for the testing of toxicity of chemical substances (REACH) the 
long-term toxicological information includes sub-chronic (repeat dose toxicity study 
for 90 days) and chronic study, performed with one species, male and female, testing 
the most appropriate route of administration. The long-term toxicity studies are required 
for the quantities above 10 tons. Concerning the ecotoxicological information, the long-
term aquatic ecotoxicity study on Daphnia should be conducted already for the 
quantities already above 1 ton if the short-term aquatic toxicity data indicates the need 
to further investigate and if the substance is poorly water soluble (< 1mg/l). The sub-
chronic study is proposed if  

• the frequency and duration of human exposure indicates that a longer term 
study is appropriate;  

• other available data indicate that the substance may have a dangerous property 
that can not be detected in a short-term toxicity study; 
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• toxicokinetic studies revealed accumulation of the substance or its metabolites in 
certain tissues or organs which would remain undetected in a short-term toxicity 
study but which are liable to result in adverse effects after prolonged exposure. 

2.8.2 What are low (more realistic) doses of NPs? 
Studies on toxicity of nanomaterials should use the appropriate doses of NPs, i.e. not 
overload organs, to gain realistic hazard information and hence the potential risks 
posed. However, there is a complete lack of data for human or environmental exposure 
levels of NPs. Current human exposure to NPs is likely to be from manufacturing, 
processes at the workplace or research environment. First measurements of carbon 
nanotubes at a model workplace resulted in very low concentrations, < 50 µg/m³, and 
these were most likely in the form of aggregates (Maynard, 2004). Airborne 
concentrations of nanotube material generated during handling have been estimated to 
be lower than 53 µg/m³. Glove deposits of SWCNT during handling were between 
0.2 mg and 6 mg per hand (Tran et al., 2005). It is, however, estimated that exposure 
concentrations of NPs at workplace conditions might reach up to several hundreds 
micrograms per cubic meter (Muller, 2005). 

Probably the most direct exposure studies could be done on NPs derived from the 
products applied to the skin (cosmetics), swallowed, injected, inhaled or implanted 
medicines. 

Data regarding exposure of NPs to soil and water is extremely limited and little is 
known about their behaviour. In terms of exposure to humans, the route is most likely 
to be through drinking water. Currently there is no apparent direct data on 
measurements of NPs in water systems. 

Thus, what is needed are: 

• Methods, combinations and strategies to provide knowledge about real-world 
exposure to different classes of nanoparticles and nanoparticle aerosols 

• Methods to evaluate dermal and ingestion exposure  

• Knowledge about the biokinetics of NP in order to estimate appropriate doses at 
the target site. 

2.8.3 Long-term toxicity testing for nanoparticles 
Most studies concerning the nanotoxicity follow short-term in vivo effects. Long-term 
animal toxicity studies are sparse, although some of the harmful effects on 
nanomaterials may only be confirmed after many years of exposure. To compensate 
for this, animals are exposed to high dose over a shorter period of time. Shvedova 
et al. (2005) tested the effect of low concentrations of NPs in mice by the administration 
of SWCNT either by laryngeal aspiration or intrapharyngeal instillation in mice (10-
40 µg/mouse). Maximum dose in these studies extrapolates to 20 days exposure at the 
current occupational safety and health administration standards. The aspiration of 
SWCNT resulted in the substantial pulmonary toxicity, including granulomas 
surrounding SWCNT, diffuse interstitial fibrosis, dose –dependent increase in airway 
resistance persisting for 60 days, aortic mt-DNA damage and reduced clearance of 
bacteria. These studies gave indication of human toxicity at realistic doses of inhaled 



 

 IMPART 
 09.06.08 / Page 63/116 

NPs and demonstrated that workers exposed to the current permissible exposure levels 
may be at risk of developing pulmonary fibrosis.  

Prolonged exposure of rats (Muller et al., 2005, Warheit et al., 2004) and mice (Lam 
et al., 2004) to intratracheal instillation of higher doses of CNTs, 0.5-5 mg/rat and 
0.1-0.5 mg/mouse, respectively revealed the persistence of inflammation and 
nanotubes in the lung after 60 days (Muller et al., 2005). Similarly in mice, dose-
dependent epithelioid granulomas has been observed which was pronounced in 90 
days. On other hand, long-term exposure of rats to water soluble fullerenes appeared 
to cause no adverse lung tissue effects up to 3 months postinstillation at the highest 
dose applied, 3 mg/kg (Sayes et al., 2007a).  

Although lower inhalation exposure has been applied in studies with ultrafine titanium 
dioxide, applied doses were still far from the realistic ones. Muhle et al. (1995) exposed 
rats to ultrafine silica and titanium dioxide at the doses of 1 mg/m³ and 5 mg/m³, 
respectively for 24 months and observed increased lung tumour incidence. Warheit 
et al. (1997) exposed rats to air containing 5-250 mg/m³ titanium dioxide NPs for 
4 weeks and observed sustained pulmonary inflammatory response through a period of 
3-6 months. Similarly Baggs et al. (1997) and Warheit et al. (1996) observed persistent 
adverse pulmonary effects in rats, 1 year after the 3 months exposure to about 
23 mg/m³ of ultrafine titanium oxide. Bermudez et al. (2002, 2004) observed the 
differences in the persistence of the adverse effect of the exposure to ultrafine titanium 
dioxide in different rodents. The inflammation, retardation of particle clearance and 
progressive epithelial damage as a result of the inhalation of 0.5 to 10 mg/m³ NPs for 
90 days were still present by 52nd week in mice, while rats recovered by 26th week. 

Similarly, pulmonary toxicity has been observed for rats intratracheally instilled with 
nano TiO2 rods and dots for prolonged period of 90 days (Warheit et al., 2006). After 
this period the inflammation was still evident for the highest dose of 5 mg/kg. 

As nanomaterials are unlikely to leave the environment after exposure, a long-term 
study may result in better understanding of the bioaccumulation of NPs and their 
chronic effects on organisms. The toxicity tests for bioaccumulation of nano-ZnO and 
C60 from the alga to the Daphnia, for example, revealed that the effects of these NPs 
were greatest in the long-term (20 days) when compared to to the initial period of 48 
hours (Luo, 2007). In addition to lengthening the experimental period, new methods to 
evaluate the responses to nanoparticles, such as DNA microarray, and to keep the 
particles suspended in the medium will be required to test the effects of 
bioaccumulation.  

To date, human studies were limited to acute exposures, measuring both pulmonary 
and systemic inflammatory endpoints. Only a few of them used NPs in concentrations 
which are close to the realistic exposure. For example, effect of two hours inhalation 
exposure of normals and asthmatics to ultrafine carbon NPs in the concentration range 
between 10 and 50 µg/m³ was studied by Pietropaoli et al. (2004) and Frampton et al. 
(2004). No significant effects on respiratory symptoms, blood pressure, oxygen 
saturation, pulmonary function, markers of airway inflammation (NO), soluble markers 
of systemic inflammation or coagulation have been observed. 

The issue of skin absorption of NPs is of obvious importance when these materials 
are introduced into cosmetics and sunscreens. A number of studies have investigated 
skin penetration by nanoscale TiO2. For example, Pflücker et al. (2001) found that 
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micronised titanium dioxide is solely deposited on the outermost surface of the stratum 
corneum and could not be detected by EM or light microscopy in deeper stratum 
corneum layers. Lademann et al. (1999) found less than 1% of the applied coated 
titanium dioxide NPs from sunscreen in skin follicles. Cross et al. (2007) found that less 
than 0.03% of the applied zinc content of nanoparticulate zinc oxide sun screen 
penetrated the epidermis and no particles could be detected in the lower stratum 
corneum or viable epidermis. Gamer et al. (2006) report similar findings on the 
penetration of zinc oxide and titanium dioxide microfine particles into porcine skin. 
Mavon et al. (2007) reported the absence of titanium dioxide penetration from a broad 
spectrum sunscreen formulation into the viable skin layers through either transcorneal 
or transfollicular pathways. Tan et al. (1996) have found that the penetration into the 
epidermis of TiO2 from sunscreen containing 8% micronised 10–50 nm TiO2 upon 
exposure for a prolonged period of 6 weeks was greater when applied as an oil-in-
water emulsion than an aqueous suspension.  

It is highly recommended to perform: 

• In vivo long-term toxicity assays for inhalation, oral, skin and injection exposure 
with the evaluation of markers for inflammation, oxidative stress, cell proliferation 
in portal-of-entry and selected remote organs, like liver, spleen, bone marrow, 
heart, kidney, CNS 

• Reproductive and immunotoxicity studies 

• Cardiovascular and coagulation tests mainly for those NPs for which 
translocation to the blood circulation, after e.g. inhalation has been shown.  

• Studies on deposition, translocation and biopersistence of NPs.  

• Validation of results of high dose studies using order of magnitude lower 
concentrations resembling those realistic in vivo exposures, for quantum dots, 
fullerenes, metal oxides NPs. For inhalation, a 2 week exposure is 
recommended in multiple doses (1-10 µg/kg body weight), e.g. dosing daily for 4 
weeks with 3 months follow up.  

 

The National Toxicology Program is planning short and long-term studies, including 
oral, dermal, and inhalation exposures for some NPs (http://ntp-
server.niehs.nih.gov/files/nanoscale05.pdf). 

2.8.4 In vitro assays for long-term toxicity studies 
The necessity of long-term toxicity studies is supported by the ability of NPs to persist 
and to accumulate. Since the metabolism in the cell determines the biopersistence, 
long –term in vitro studies might give indication about the long-term effect in vivo. 
However, current in vitro test systems are mainly focused on acute cytotoxicity testing 
rather than short-term or long-term repeated dose toxicity investigations. In vitro 
methods including the use of cells of human origin relevant for respiratory (Brown et al., 
2004; Duffin et al., 2007b; Geys et al., 2007), dermal (Manna et al., 2005; Monteiro-
Riviere et al., 2005; Papageorgiou et al., 2007; Rouse et al., 2006; Shvedova et al., 
2003), cardiovascular (Gojova et al., 2007; Radomski et al., 2005; Yamawaki and Iwai , 
2006) and neuronal (Hussain et al., 2006; Pisanic et al., 2007) systems confirmed the 
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cytotoxic potential of carbon nanotubes, fullerenes and metal oxides, especially at 
higher concentrations (above 10 µg/ml).  

An example of promising long-term in vitro cytotoxicity studies is the use of human 
HepG2 cells for the comparison of the in vitro long-term cytotoxicity of chemicals with 
acute human toxicity data by following the 6 weeks exposure of the cells and 
measuring the concentration of compound which was needed to reduce the total cell 
protein content by 50% (Scheers et al., 2001).  

It is highly recommended to: 

• Perform chronic nanotoxicity assays, including the development and validation of 
nonanimal test methods 

• Gain more knowledge about the reproductive toxicity, mutagenicity, 
immunotoxicity and irritancy of nanomaterials 

3 Exposure 

3.1 Occupational exposure 
Author: Marite Arija Bake 

As the nanotechnology workforce is growing rapidly, the nanotech industry is projected 
to employ two million workers and have a $1 trillion impact on the global economy by 
2015. Nanotechnology is the manipulation of matter on a near-atomic scale to make 
new structures, new materials and devices in the nanometre scale. Today, about 80 
consumer products and over 600 raw materials, intermediate components and 
industrial equipment items, are used by manufacturers and produced or handled by 
workers.  There are only some data about real amount of exposed workers in US and 
UK but information is not available about other countries. The US national 
nanotechnology initiative has estimated that around 20 000 researchers are working in 
the field of nanotechnology. For UK Institute of Occupational Medicine has estimated 
that approximately 2 000 researchers are employed in new nanotechnologies 
companies and universities where they may be exposed to NPs but this number may 
double over the next five years. A maximum of 500 workers are considered to 
potentially be exposed through existing manufacturing of ultrafine carbon black; around 
100 000 individuals may potentially exposed to fine powders through various powder 
handling processes, including pharmaceutical industry. More than 1 000 000 workers in 
the UK may be exposed to NPs via incidental production in processes such as welding 
and refining (Aitken et al., 2004; HMGovernment, 2007; NIOSH CDC, 2006). 

As with all technologies new risks might appear that we have not thought about yet, 
underlining the need for continuous dynamic risk reviews (Allianz, 2005; ICON/RICE, 
2005; IRSST, 2006) and books (Maynard et al., 2007). Concerns about the lack of 
knowledge and possible risks arising from exposure to NPs led to the formation of 
working groups in different organisations of occupational health and safety to assess 
the health risk from exposure to these materials and collect the information on websites 
for example: 

http://www.iom-world.org/research/nanoparticles/; 
http://www.nanotech.org.uk/; 
http://hse.gov.uk/research/; 
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http://icon.rice.edu/research.cfm; 
http://www.cdc.gov/niosh/topics/nanotech/; 
http://www.vcu.edu/oehs/chemical/nanotech.pdf; 
http://www.irsst.qc.ca/; 
http://www.defra.gov.uk/environment/chemicals/achs/index.htm; 
http://www.temas.ch/nano/nano_homepage.nsf/ 

There is organized special Online Libraries collecting information on nanotechnology 
and occupational risks: IOM Library http://www.iom-org/ , Centre of Diseases Control 
and Prevention and National Institute of Occupational Health and Safety 
http://www.cdc.gov/niosh/topics/nanotech/safenano/; Nanoscale Science and 
Engineering Center at the University of Wisconsin - Madison to explore the self-
assembly of complex materials and building blocks at the nanoscale and develop the 
means of communicating advances in nanotechnology to the public 
http://www.nsec.wisc.edu/NS-Home.php; International Council on Nanotechnology, 
RICE University and CBEN database on Environmental Health and Safety (EHS) with  
research records on nanotechnology and nanomedicine based on TOXNET, Medline 
and NTIS EHS – http://icon.rice.edu/research.cfm. Health and Safety Executive (2006, 
2007) designed bulletin service to provide overview of publications of studies that have 
examined the exposure and potential health effects of nanomaterials, which have been 
published in two areas of interest: measurements, characterisation and control of 
exposure to NPs; potential for toxic effects of NPs in humans. 

3.1.1 Is occupational exposure an existing problem?  
Epidemiological data is limited for occupational exposure to NPs. Primary routes of 
occupational exposure to NPs include inhalation, transdermal desorption and ingestion 
(Borm et al., 2006). There are four main groups of nanoparticle production processes 
(gas-phase, vapour deposition, colloidal and attrition) all which may potentially result in 
exposure by inhalation, dermal or ingestion routes. From an occupational hygiene 
perspective, the processes are not dissimilar to existing chemical production 
processes. Only gas-phase processes have the potential to cause exposure to primary 
NPs by inhalation during the synthesis stage. All processes may give rise to exposure 
(by inhalation, dermal and ingestion) to agglomerated NPs during recovery, powder 
handling and product processing (Aitken et al., 2004, IRSST, 2006). Flame synthesis is 
one of the most versatile and promising technologies for large-scale production of 
nanoscale materials. Pyrolysis has recently been shown to be a useful route for the 
production of single-walled nanotubes, quantum dots and a wide variety of 
nanostructured ceramic oxides for catalysis and electrochemical applications 
(Beaucage et al., 2004).  

Non-engineered NPs (release of diesel, gasoline and gas combustion, frying, cooking, 
welding) are widespread occupational risk factors (Dennekamp et al., 2001; Ono-
Ogasawara and Smith, 2004). In modern society, printers are widely used in the office 
environment and the newest researches showed the problem of carbon NPs in indoor 
air generated by different types of printers. The mean size detected in different studies 
varied from 35 nm to 120 nm and the range of number concentration is 350 – 3.8 
104 particles/cm3 (He et al., 2007; Koponen et al., 2001; Uhde et al., 2006). 

Specific characteristics of NPs (size, shape, surface area charge, chemical properties, 
solubility and degree of agglomeration) can influence their effects in biological systems. 
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Nanosized particles may behave differently to larger sized materials. Information about 
production volume, occupational exposure potential of nano-sized material as well as 
safety and potential hazards is urgently needed. New problems of occupational health 
arise with nanotechnology (Maynard and Pui, 2007; Oberdörster et al., 2005b). 
Separate question is release of NPs throughout the application life cycle. Köhler et al. 
(2008) showed that release of carbon nanotubes (lithium-ion secondary batteries, 
synthetic textiles) can occur not only in the production phase, but also in the usage, 
recycling and disposal phase of nanotube applications. 

Development of nanotechnologies and growing number of employed workers is cause 
for organization special conferences. The first European Conference focusing on 
occupational safety and health from the viewpoint of nanotechnologies and engineered 
NPs in workplaces was NanOSH Conference – Nanotechnologies ”A Critical Area on 
Occupational Safety and Health” on 3-5 December 2007 in Helsinki (Finland). Selected 
papers will be published as proceedings after the Conference in a thematic issue of 
Human & Experimental Toxicology Journal. The estimated publishing date is in the end 
of 2008 (http://het.sagepub.com/).The 4th International Conference on Nanotechnology 
– Occupational and Environmental Health (NanOEH 2009) will be held on 26–29 
August 2009 in Helsinki, Finland 
(http://www.ttl.fi/Internet/English/Information/International+meetings+and+symposia/Nanoeh2009/). 
Special question for today is managing occupational and safety risks and how effective 
are filters at removing nanometer-diameter particles from the air (Maynard and Pui, 
2007).  

Recommendations / knowledge gaps: 

• Information about production volume, occupational exposure potential of nano-
sized material is urgently needed to determine potential risk of employees. 

• The workplace represents a critical interface between people and 
nanotechnology, and an area where potential impact needs to be understood 
and managed. In the future, it is also likely that even wider distribution of these 
particles may have significant effects on organisms.  

• The potential effects of engineered nanoparticles on the ecosystem must also 
be considered in order to assure the safety of humans and the environment 
from production emissions. 

• Development of innovative technologies for effective health and safety 
management in workplaces. 

• Studying the potential release of nanoparticles throughout the application life 
cycle including recycling process workplaces and emissions in environment. 

3.1.2 How to assess / measure? Is there a need for new / other sampling devices? 
There is not one sampling method that can be used to characterize exposure to NPs. 
Inhalation is the traditional route of occupational exposure to NPs. Occupational 
nanoparticle aerosols should be monitored by three exposure metrics – mass, surface 
and numbers. Current best practice to measure the exposure by inhalation is to use a 
personal sampling device to collect a sample of aerosols as the most appropriate, 
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biologically relevant fraction. Aerosol samples can be collected using inhalable, 
thoracic, or respirable samplers. Respirable fraction samplers will also collect a nominal 
amount of nanometre-diameter particles that can deposit in the upper airways. The 
commercially available filters could not give quantitative sampling of smallest 
nanoparticle because the smallest size of pores is 25 nm. Respirable fraction samplers 
allow mass-based exposure measurements to be made using gravimetric and/or 
chemical analysis; they do not provide information on aerosol number, size, or surface 
area concentration. Generally accepted, realistic methods for exposure 
assessment are still lacking for workplaces; no commercially available personal 
samplers are designed to measure the particle number, surface area, or mass 
concentration of nanometre aerosols, no standardized, well-characterized reference 
standards of NPs are developed (Aitken et al., 2004; Allianz, 2005; NIOSH CDC, 2005). 
However, several methods are available that can be used to estimate number, surface 
area and mass for particles smaller than 100nm (Aitken et al., 2004; IRSST, 2006; 
Wake, 2006): 

Mass could be analysed by weighing or chemical analysis; limitation is the mass which 
should be collected in accordance with limit of detection (0.01 mg on filter, in case of 
usual sampling rate 5 l/min the lowest measurable concentration based on a full shift 
collection would be 0.02 mg/m3  

Number of particles could be measured with different types of methods: 

• optical particle counter (OPC) – is governed by the wavelength of their source, 
usually detection size limit 300 nm (particle counter the Grimm 1.104 Work-
Check (http://www.dustmonitor.com/monitors/occupational/1104.htm); 

• condensation particle counter (CPC) – device operate by condensing vapour 
onto sampled ultrafine particles to grow them to size range that can be detected 
optically by a standard optical counter (TSI Model 3007 – www.tsi.com), claimed 
size range 10 - 1 000 nm, concentration range ~ 0 - 100 000 particles per cc, 
limitation of this device is lack of size information; 

• scanning mobility particle sizer (SMPS) – operates by charging particles and 
separating them based on their mobility passing between electrodes, separated 
particles are than counted to give size range of mobilities; devices are capable of 
measuring aerosol size distribution from 3 to 800 nm (www.tsi.com, TSI model 
3934), although not simultaneously over the complete range, limitation of use in 
occupational hygiene due to lack of mobility, expense and complications in use; 

• electronic low pressure impactor (ELPI) – sampled particles are charged and 
then passed into low pressure impactor with  electrically isolated collection 
stages; the electrical current by the charged particles onto each impactor stage 
is measured in real time by sensitive multi channel electrometer, the particle 
collection into each impactor stage is dependent on the aerodynamic size of the 
particles, particles can be removed from the impactor stages for further analysis; 
device can measure particle size distribution and concentration in the size range 
7 nm to 10 μm (addresses of devices production www.dekati.com; 
http://appliedphysisusa.com/moudi.asp). 

A major limitation of all these measurement methods is that they cannot discriminate 
agglomerates of NPs from single larger particles. 
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Surface area:  

• Epiphaniometer is the only instrument which has been successfully used to 
measure particle surface area directly with lead isotope charging chamber, the 
amount of radioactivity measured is proportional to the particle surface area – 
this is a complex  and difficult instrument; 

• Brauner-Emmet-Teller (BET) bulk method of surface area measurements in 
which used process depends on gas adsorption using nitrogen, krypton, argon 
or carbon dioxide gases; the sample sizes used are typically greater than 
expected in occupational hygiene sampling. 

Image analysis – includes range of imaging processes which may be used along with 
scanning (SEM) or transmission electro-microscopes (TEM) to obtain size, shape, 
structure and in some cases compositional information from single or collections of 
aerosol particles. Resolution for SEMs – 5-10 nm whereas TEMs can resolve down to 
about 1 nm; samples can be collected directly onto filters, filter substrates or impactor 
substrates; methods need complex arrangements for sample collection (especially 
TEM) and calibration of particles onto sample filter. 

All of the methods which may be used clearly fall short of what would be an ideal 
sampling and measurement system for NPs. There is a pressing need for more 
research into the development of new and improved measurement methods to provide 
reliable assessments of exposure of NPs (HMGovernment, 2007). Only few exposure 
measurements are from real engineered NPs workplaces (Brouwer et al., 2004; 
Maynard et al., 2004) but more research is dedicated to measurement of diesel and 
gasoline exhaust carbon NPs. The above mentioned methods or part of them are used 
in research of exposure of different type of NPs: 

• the combined use of all methods applied to metals of very low concentrations 
(gold nanocrystals in pyrite and uranium nanocrystals, U and Fe nanocrystals 
embedded in an aluminosilicate, As-bearing nanophase, westerveldite -FeAs) 
was identified (Utsunomiya and Ewing, 2003). 

• emissions from a silicon smelter in Southern Tasmania, Australia were 
characterized using optical microscopy for the initial assessment of particle 
density and transmission electron microscopy was used for primary particle and 
aggregate sizing. The authors conclude that the size distributions could be 
important in the consideration of health effects from silica fume exposure 
(Cunningham et al., 1996). 

• researchers of Work Environment Institute of Norway (STAMI) detected 
nanoparticles by counting in the aluminum processing workplace area by anode 
processes (because during electrolysis vapour containing fluorine quickly 
changes to  ultrafine particles which exist freely in the work environment). Size of 
NPs - 10-250 nm, concentration was 20 000 particles per cm3 in pot rooms work 
area and rises up to 10 times higher top concentrations during anode changing 
on open bath (Thomassen et al., 2006; 
www.ams-aluminium.no/html/happa__survey_of_occ__exposure.html). 

• diesel engine exposure are investigated by use of different combinations of 
above mentioned methods to identify the nanocrystalline or nanoparticulate 
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components, especially their degree of crystallinity, size, structural/morphologic 
features, and chemistries. Reference aggregates of TiO2 rutile and anatase as 
well as Si3N4 nanoparticles were used to establish these characterization 
protocols, which were applied to several hundred individual particulates: 
homogeneous aggregates of carbonaceous/diesel particulate matter, complex 
mixtures of carbonaceous matter, including carbon nanocrystals, and inorganic 
nanocrystals; and heterogeneous, nanocrystal/nanoparticulate aggregates (Murr 
et al., 2004a). A nano-differential mobility analyzer was used to size-select NPs 
(mass median diameter similar to 25-60 nm) from diesel engine exhaust for 
subsequent chemical analysis by thermal desorption particle beam mass 
spectrometry. Mass spectra were used to identify and quantify nano particle 
components (Tobias et al., 2001). The particle number concentrations were not 
significantly different for the compressed natural gas (CNG) and diesel engines 
(Hasegawa et al., 2004). Originally constructed an electrical low-pressure 
impactor designed to monitor the particle size distribution of heavy-duty diesel 
truck exhaust (Brown et al., 2000b). 

Research on sampling strategy showed possible influences of both distance to source 
and time course on particle number concentration and particle size distribution. For the 
studies CPC devices are well for the identification of particle emission sources. The 
range of ultrafine particle number concentration can be detected by both SMPS and 
ELPI. An important advantage of the ELPI is that aerosols with ultrafine sizes can be 
collected for further analysis. Specific surface area of the aerosols can be estimated 
using gas adsorption analysis; however, with this technique ultrafine particles cannot be 
distinguished from particles with non-ultrafine sizes. Consequently, estimates based 
on samples collected from the breathing zone and scanning electron 
microscopic analysis may give a more reliable estimate of the specific surface 
area of the ultrafine particles responsible for personal exposure. The results 
suggest both spatial and temporal variation in total number concentration and aerosol 
size distribution. Therefore, the results obtained from static measurements and grab 
sampling should be interpreted with care as estimates of personal exposure. For 
evaluation of workplace exposure to ultrafine particles it is recommended that all 
relevant characteristics of such exposure are measured as part of a well-designed 
sampling strategy (Brouwer et al., 2004). 

Famous nanoparticle researchers (Maynard and Aitken, 2007) explore the idea of a 
universal aerosol monitor, which would enable personal exposure measurements to be 
collected for all three metrics simultaneously, while being inexpensive enough to 
encourage widespread use. Such a device would provide an economical and adaptable 
solution to monitoring exposure to nanostructured aerosols, as both the materials and 
information on the potential risks they present are developed. 

Recommendations / knowledge gaps: 

• There is not one sampling method that can be used to characterize the 
traditional inhalation route of occupational exposure to NPs therefore research 
should be in progress to determine most appropriate of three exposure metrics 
(mass, surface and numbers) to be monitored as well as realistic and suitable 
sampling equipment. 
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• Generally accepted, realistic methods for exposure assessment are still lacking 
for workplaces; no commercially available personal samplers are designed to 
measure the particle number, surface area, or mass concentration of nanometre 
aerosols. 

• There are lacks of the occupational exposure limits for nanoparticles (different 
type) and no standardized, well-characterized reference standards of 
nanoparticles are developed. 

• Skin absorption of nanoparticles has to be evaluated as acceptable or 
unnecessary method for detection of summarized exposure. 

3.1.3 What to measure (size, mass, surface…) and what is feasible? 
Engineered NPs are not uniform group of substances. Differences in size, shape, 
surface area, chemical composition and biopersistence require that the possible 
environmental and health impact be assessed for each type of nanomaterial separately.  

There is a lack of reliable, affordable and standardized methods for measuring of NPs 
size and shape and characterization of NPs (their composition and surface behaviour). 
These properties are essential for valid risk assessment and receiving comparable and 
repeatable results. It is important to define the most appropriate metrics in exposure as 
well as in hazard studies (surface area of NPs or fibre number for nanotubes). 
Research activity defined in UK (characterisation and metrology) is to identify the most 
suitable metrics and associated methods for the measurement and characterisation of 
NPs (Aitken et al., 2004, HMGovernment, 2007, Wake, 2006). International Standards 
Organization (ISO, 2006) has developed document “Workplace Atmospheres – 
Ultrafine, nanoparticle and nano-structured aerosols – Exposure characterization and 
assessment” that will be starting point for more comparable measuring of NPs. 

For evaluation of workplace exposure to ultrafine particles it is recommended that all 
relevant characteristics of such exposure (total number concentration and aerosol size 
distribution) are measured as part of a well-designed sampling strategy (Aitken et al., 
2004, Allianz, 2005, Brouwer et al., 2004). After investigation of emissions from a 
silicon smelter in Southern Tasmania the authors conclude that the size distributions 
could be important in the consideration of health effects from silica fume exposure 
(Cunningham et al., 1996). The number deposition fraction increased as particle 
size decreased. The deposition at rest was greater in these subjects with asthma than 
in previously studied healthy subjects. The efficient respiratory deposition of ultrafine 
particles increases further in subjects with asthma (Chalupa et al., 2004). Currently, 
ultrafine particles (UF, PM0.1) should be characterised by particle number instead of 
particle mass. However, data on UF exposure and health effects are still limited. The 
mechanisms by which particles influence human health are only poorly 
understood. Under discussion is the role of particle size and particle 
composition (Allianz, 2005, Englert, 2004). 

Carbon nanotubes are leading to the development of mass production and handling 
facilities but little is known of the risk associated with exposure. Occupational exposure 
and the potential exposure routes of single-walled carbon nanotube material (SWCNT) 
were investigated while handling unrefined material. Estimates of the airborne 
concentration of nanotube material generated during handling suggest that 
concentrations (mass concentration) were lower than 53 µg/m3 in all cases. Glove 
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deposits of SWCNT during handling were estimated at between 0.2 mg and 6 mg per 
hand (Maynard et al., 2004). Exposure to graphite and carbon materials has been 
associated with increased incidence of skin diseases and these findings indicate the 
necessity for skin exposure detection and use of protective measures. The 
investigations showed dermal toxicity of SWCNT due to accelerated oxidative stress in 
the skin of exposed workers (Shvedova et al., 2003). 

Beryllium is a lightweight metal which causes a chronic granulomatous lung disease 
among workers who become sensitized to it. Research confirm a previous finding in 
certain plants that particle number concentrations are higher in areas where 
historical estimate of risk showed a high risk of disease despite relatively lower 
mass concentrations. By providing side-by-side measurements of both particle 
number and mass, this research adds support to the proposal that particle number 
rather than particle mass may be more reflective of target organ dose and 
subsequently a more appropriate measure of exposure for chronic beryllium disease. 
The investigation also shows that particle mass exposure measurements and particle 
number exposure measurements were not correlated (McCawley et al., 2001). 

Health effects of ultrafine particles were larger than those of the mass of the fine 
particles. In addition, the effects of the number of the ultrafine particles on peak 
expiratory flow PEF were stronger than those of particulate matter smaller than 10 µm 
(Peters et al., 1997). 

Research on human pulmonary responses to controlled experimental high-dose 
exposure to fine (< 2,5 μm) and ultrafine (< 0,1 μm) magnesium oxide particles showed 
no evidence of any pulmonary inflammatory response (bronchoalveolar lavage (BAL) 
cell and cytokine concentrations, pulmonary function, and peripheral blood neutrophil 
concentrations) in six healthy volunteers. These findings are in contrast to those 
previously seen in a similar study using zinc-oxide particles. The results of study 
support the concept that particle chemical composition, in addition to particle 
size, is an important determinant of respiratory effects (Kuschner et al., 1997). 
There is still insufficient evidence to preferentially select one exposure metric over 
another—particularly for airborne exposures—and that where there is uncertainty, all 
three should be measured (Maynard and Kuempel, 2005; Maynard et al., 2007; 
Oberdörster et al., 2005a). Wake (2006) recommended that none of the parameters 
(mass, number and active surface area) taken in isolation can give insufficient 
information to predict toxicity of NPs after laboratory comparison the results of mass, 
number and surface area measurements of five types of NPs. 

Recommendations / knowledge gaps: 

• Unlike research results on different chemical composition do not provide 
sufficient evidence to preferentially select one exposure metric and research 
have to be continued. 

• Research has to be continued on skin absorption of different compositions of 
nanoparticles as way of occupational exposure and for development of safety 
measures.  
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3.1.4 Indirect measures of exposure: Lung function or other applicable endpoints  
Epidemiological studies have shown adverse health effects associated with exposure to 
the ultrafine particulate fraction of air pollution. Most nano-sized spherical solid 
materials can easily enter the lungs and reach the alveoli (Allianz, 2005, Hoet et al., 
2004b). Inhaled particles can have two major effects on the human body. The primary 
toxic effect is to induce inflammation in the respiratory tract causing tissue damage and 
subsequent systemic effect: the secondary effect is transport through the blood stream 
to other organs or tissues of the body. The property that determine the 
inflammogenicity of NPs is unknown but is expected relate to particle surface area and 
number of particles. NPs can impair the ability of macrophages to phagocytose and 
clear particles, and this may contribute to inflammatory reactions (Allianz, 2005, 
Nemmar et al., 2002b). Further investigations will confirm different impact of NPs on 
health. 

The association between fine and ultrafine particles and respiratory health was studied 
in adults with a history of asthma in Erfurt, Eastern Germany. Both fractions were 
associated with a decrease of peak expiratory flow (PEF) and an increase in cough and 
feeling ill during the day. Health effects of the 5-d mean of the number of ultrafine 
particles were larger than those of the mass of the fine particles. In addition, the effects 
of the number of the ultrafine particles on PEF were stronger than those of particulate 
matter smaller than 10 µm (PM10). (Peters et al., 1997). The negative association 
between the number of ultrafine particles and ventilatory function in other study 
demonstrates a need for further investigation into the pulmonary health effects of 
ultrafine particles (Hauser et al., 2001). The results suggest that the total deposition 
fraction of ultrafine particles increases with a decrease of particle size and with 
breathing patterns of longer respiratory time, a pattern that is consistent with diffusion 
deposition of ultrafine particles. The results also suggest that there is a differential lung 
dose of ultrafine particles and thus there may be a differential health risk for men 
versus women (Jaques and Kim, 2000.). Six panel studies with patients suffering from 
chronic pulmonary diseases have been performed in Germany, Finland and the United 
Kingdom. Overall, a decrease of peak expiratory flow (PEF) and an increase of daily 
symptoms and medication use were found for elevated daily particle concentrations. 
Effects were seen with both fine and ultrafine particles (UFP). One large study on daily 
mortality from Germany showed comparable effects of fine and ultrafine particles in all 
size classes considered. However, fine particles showed more immediate effects while 
ultrafine particles showed more delayed effects on mortality. The limited number of 
epidemiological studies suggests that there are health effects of fine and ultrafine 
particles which might be independent of each other. If these effects are confirmed by 
ongoing research, monitoring and regulation of particulate air pollution (air quality 
standards) may need to be revised (Ibald-Mulli et al., 2002). Araujo et al. (2008) 
demonstrate that UFP exposures have a higher proatherogenic potential than fine 
particles and these effects could be linked to a greater propensity of UFP to generate 
systemic oxidative stress and to interfere with the anti-inflammatory capacity of plasma 
HDL. UFP promote early atherosclerosis and systemic oxidative stress. Authors noted 
that further epidemiological and experimental data collections are required to determine 
the critical physicochemical and toxicological properties of UFPs in humans. 

The exact mechanism by which ultrafine particles have adverse effects is unknown, but 
these particles have recently been shown to enhance calcium influx on contact with 
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macrophages. Oxidative stress is also to be anticipated at the huge particle surface; 
this can be augmented by oxidants generated by recruited inflammatory leukocytes. 
Athermanous plaques form in the coronary arteries and are major causes of morbidity 
and death associated epidemiologically with particulate air pollution. In populations 
exposed to air pollution episodes, blood viscosity, fibrinogen, and C-reactive protein 
(CRP) were higher. More recently, increases in heart rate in response to rising air 
pollution have been described and are most marked in individuals who have high blood 
viscosity (Li et al., 2003). In the study of elderly individuals, there were significant 
rises in CRP, an index of inflammation. In this present review, authors consider the 
likely interactions between the ultrafine particles the acute phase response and 
cardiovascular disease (Donaldson et al., 2001b). Inconsistency with previous finding 
an absence of particle-associated symptoms or changes in lung function were 
indicated despite a relatively high overall deposition fraction in initiated human clinical 
studies of the health effects of UFPs (Frampton, 2001). 

Several nanomaterials characteristics can culminate in reactive oxygen species (ROS) 
generation and direct relationship may exist between surface area, ROS generation 
capability, and pro-infammatory effect of NPs in the lung, several types of NPs target 
mitochondria directly, and other forms of injury include protein denaturation, membrane 
damage, immune reactivity, and formation of foreign body granulomas (Brown et al., 
2001; Nel et al., 2006).  

Impressive progress has been made in recent years when objectives changed from 
classical tests like lung function, etc. to endpoints comprising of particle induced 
oxidative stress, cell signalling and activation, release of mediators initiating 
inflammatory processes not only in the respiratory tract but also in the cardio-
vascular system. Particularly, the large surface area of ultrafine particles provides a 
unique interface for catalytic reactions of surface-located agents with biological targets 
like proteins, cells, etc. (Donaldson et al., 2006; Kreyling et al., 2004). The available 
data are consistent with the occurrence of a systemic inflammatory response and an 
alteration of autonomic cardiac control, but evidence on endothelial dysfunction, pro-
coagulatory states, and particulate-related myocardial malfunction is as yet scarce. 
Further studies are therefore needed to substantiate our current understanding of the 
pathophysiological links between PM exposure and adverse cardiovascular outcomes 
(Mossman et al., 2007; Schulz et al., 2005). 

Exposure to graphite and carbon materials has been associated with increased 
incidence of skin diseases, such as carbon fibre dermatitis, hyperkeratosis, and naevi. 
These data indicate that dermal exposure to unrefined SWCNT may lead to dermal 
toxicity due to accelerated oxidative stress in the skin of exposed workers (Shvedova 
et al., 2003). The chances of penetration again depend on size and surface properties 
of the particles and strongly on the point of contact as well as of nature of particles 
(Allianz, 2005; Pflücker, 2001; Ryman-Rasmussen et al., 2007). NANODERM project is 
dedicated to clarify the problem of skin exposure (NanoDerm, 2007). 

Recommendations / knowledge gaps: 

• Investigation of lung function could be indirect measure for evaluation of health 
risk of nanoparticles but there still need wider research in this area to confirm air 
quality standards of nanoparticles and monitoring methods. 
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• Further studies are therefore needed to substantiate our current understanding 
of the pathophysiological links between PM exposure and adverse 
cardiovascular outcomes. 

• Further epidemiological and experimental data collections are required to 
determine the critical physicochemical and toxicological properties of NP in 
humans. 

3.1.5 Synergism or precipitation by other particles/compounds 
Most airborne particulates were aggregates and agglomerates ranging in aerodynamic 
diameters from a few nanometres (nm) to a few microns (μm); containing as few as two 
nanocrystals to several thousand nanocrystals or nanoparticulates such as 
carbonaceous spherules arranged in complex branched homogeneous aggregates 
composing diesel exhaust, with spherule diameters ranging from 10 to 30 nm. The 
potential for ultrafine airborne aggregates to fragment into hundreds or thousands of 
nanoparticulate components in human airways and act as toxic agents in deep lung 
tissue is demonstrated by Murr et al. (2004a). 

Carbon nanotubes and other aggregated fullerene-related multi-layer shell structures 
have been collected in propane and natural gas flame emissions from cooking stoves 
and observed by transmission electron microscopy: some aggregated NPs were mostly 
multi-walled nanotubes; many tangled and distorted and aggregated with other closed-
concentric, multi-shell forms. Such clean-burning regimes may be major contributors to 
complex particulate matter in indoor and outdoor air (Bang et al., 2004). 

Engineered NPs have the strong tendency to aggregation or to agglomerate. The 
degree to which NPs aggregate or agglomerate in the occupational or ambient aerosol 
and subsequently do or do not deagglomerate following inhalation and particle 
deposition in the lung will strongly influence particle deposition rates and patterns as 
well as interactions with lung cells. If the NPs deagglomerate upon interaction with 
alveolar lung fluids at sites of particle deposition, than they could behave as discrete 
individual NPs. Alternatively, aggregated nanoparticle-types could behave as fine-sized 
particles. Inhalation studies with aggregated NPs cause more inflammation, but no 
general conclusions regarding nanoparticle toxicity in connection with agglomeration 
and deagglomeration especially for different kinds of NPs (Borm et al., 2006). 

Recommendations / knowledge gaps: 

Development of a model describing the dispersion and transformation of nanoparticles 
and their agglomerates in the working environment to assess location of maximum 
exposure and to develop safe workplaces. 

3.1.6 Can we define (possible) biomarkers? 
Impressive progress has been made in recent years when objectives changed from 
classical tests like lung function, etc  to endpoints comprising of particle induced 
oxidative stress, cell signalling and activation, release of mediators initiating 
inflammatory processes not only in the respiratory tract but also in the cardio-vascular 
system in epidemiological studies indicated an association between adverse health 
effects and ambient ultrafine particle concentrations in susceptible individuals.  
Particularly, the large surface area of ultrafine particles provides a unique interface for 
catalytic reactions of surface-located agents with biological targets like proteins, cells, 
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etc (Kreyling et al., 2004). The possible biomarkers of above mentioned health impact 
of NPs are included below with described use of them in few of studies.  

The pulmonary health effects of ultrafine particles can be investigated by measurement 
of peak expiratory flow (PEF) and an increase of daily symptoms and medication use, 
the predicted forced expiratory volume in 1 second (FEV1.0) allow  evaluate the 
association between the number of ultrafine particles and ventilatory function 
(Donaldson et al., 2001b; Hauser et al., 2001; Ibald-Mulli et al. 2002). 

Researchers quantified pulmonary inflammatory response by bronchoalveolar lavage 
(BAL) cell and cytokine concentrations, pulmonary function, and peripheral blood 
neutrophil concentrations for evaluation of the impact after inhalation of fine and 
ultrafine metal oxides to exposed volunteers (Kuschner et al., 1997). The cellular 
responses to particle exposure could be measured by the levels of IL-8 chemokines 
produced as a function of exposure time (Cheng et al., 2003). Ultrafine particles (UFPs) 
are related to their uptake in macrophages and epithelial cells and their ability to 
induce oxidative stress. UFPs were most potent toward inducing cellular heme 
oxygenase-1 (HO-1) expression and depleting intracellular glutathione. HO-1 
expression, a sensitive marker for oxidative stress, is directly correlated with the high 
organic carbon and polycyclic aromatic hydrocarbon (PAH) content of UFPs in case of 
diesel exhaust studies. The dithiothreitol (DTT) assay, a quantitative measure of in vitro 
reactive oxygen species (ROS) formation, was correlated with PAH content and HO-1 
expression. UFPs also had the highest ROS activity in the DTT assay. Because the 
small size of UFPs allows better tissue penetration, authors used electron microscopy 
to study subcellular localization. UFPs localize in mitochondria, where they induce 
major structural damage. This may contribute to oxidative stress. The study 
demonstrates that the increased biological potency of UFPs is related to the content of 
redox cycling organic chemicals and their ability to damage mitochondria (Cheng et al., 
2003).  

Nanotechnology encompasses an increasingly sophisticated ability to manipulate 
matter at the nanoscale, resulting in new materials, products and devices that 
demonstrate new and unusual behaviour. While emerging nanotechnologies have great 
potential for good, there are increasing concerns that the selfsame attributes that make 
them attractive will also lead to new risks to human health. People involved in making 
and using these materials need to know what the risks are and how to manage them, if 
safe nanotechnology-based businesses are to emerge. Maynard (2007) concluded in 
the last review that we currently know enough to suggest that some engineered 
nanomaterials will present new and unusual risks, but there is very little information on 
how these risks can be identified, assessed and controlled. 

Dr. Frank Chen of Berkeley Lab has established biomarkers and specific gene 
expression patterns in response to various nanoparticles/nanomaterials in the biological 
pathways of inflammation, apoptosis, immune response, ubiquitination, cell 
proliferation, cell cycle regulation, cell differentiation, golgi vesicle transport, membrane 
fusion, secretory pathway, intracellular transport, nucleocytoplasmic transport, 
response to DNA damage, and response to stress and stimuli. His quantitative matrix 
includes the key factors that have been determined to contribute to nanomaterial-
related cytotoxicology such as concentration, size/mass, shape, surface charge, 
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surface functionalization, and surface coating 
(http://www.lbl.gov/tt/techs/lbnl2419.html). 

Recommendations / knowledge gaps: 

• research have to be continued on the biomarkers for detection the impact of 
nanoparticles on health.  

3.2 Exposure and detection in biological samples/fluids 
Author: Harald F. Krug, Aris Tsatsakis 

3.2.1 Detection limits (depending on technique used and on the material investigated) 
Many nanomaterials are made of non-essential metals or transition metals. Thus, 
traces of these elements can be easily detected by modern analytical methods ex vivo. 
A live or real time observation of these materials is more difficult but still manageable. 
This changes totally when materials are made of biologically more relevant materials 
like carbon or iron. Despite the fact that some carbon modifications have distinct 
physicochemical properties (CNT – Raman shift), others are hard to detect but 
sampling is possible when air borne with filter collectors (Kuhlbusch et al. 2004). An 
exposure event in cells is therefore still not proven. 

Tab. 10: Primary isotopes produced by nanopowder irradiation and detection limit estimate. 

 

3.2.2 Local exposure concentration lung, GIT, skin 
Local exposure levels and intracorporal distribution change dramatically with alteration 
of the surface characteristics of nanomaterials. Nanomaterials present in sun screens 
for example have certainly the highest dermal concentration, decreasing steeply to GIT 
and lung. Whereas no penetration through the skin could be measured (NanoDerm, 
2007) there might be some translocation from GIT or the lung into the body where they 
can later be found in other organs. Exposure at workplace will clearly not take place via 
the skin or GIT to a considerable amount. But inhalation and deposition in the lung 
does and is most likely to happen. Such exposure conditions must therefore be 
prevented and kept to a minimum. 

It was found that for some nanomaterials independent on the site of exposure a 
biodistribution can occur and high organ specific levels arise. 
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3.2.3 Identification and quantification 
As long as nanomaterials have a distinct appearance within an analytical system they 
can be identified (Kuhlbusch et al., 2004). But therefore a reference material is needed. 
Currently there is no model available to determine deposition levels and therefore to 
quantify the real dose that is or can be administered to cells or living animals. As 
nanomaterials tend to agglomerate it is always very difficult to distinguish between 
administered and achieved dosage. Hence models and experiments overcoming this 
obstacle are needed. 

3.2.4 Possible biomarkers 
Several inflammation markers, e.g. members of the interleukin family, have been 
described to appear upon treatment with nanomaterials. Among these IL-6, IL-8 and IL-
10 are the most prominent ones; but secondary inflammation markers like TNF-α and 
Iκb have also been reported (Brown et al., 2000a; Ernst et al., 2002; Nemmar et al., 
2003; Peters et al., 2004; Renwick et al., 2004; Tran et al., 2000). 

Coherent with the high catalytic surface, often described for nanomaterials it is 
reasonable that oxidative stress (Beck-Speier et al., 2005; Brown et al., 2001; Diabaté 
et al., 2004; Manna et al., 2005; Oberdörster et al., 2006; Stone et al., 2000) has also 
been reported. These free oxygen radicals produced by either nanomaterials 
themselves or induced in the biological samples are often related to DNA damage and 
the onset of cancer and tumours. On the other hand, nanomaterials can also have a 
more anti-oxidative nature (Lin et al., 1999). DNA damage (Gallagher et al., 2003; 
Greim et al., 2001; Schins, 2002; Schwerdtle et al., 2002) as mentioned before has not 
been directly linked to an interaction of DNA with nanomaterials but is rather a 
secondary effect from the earlier mentioned oxidative stress caused by many metallic 
or metal oxide materials. Investigations on direct interaction between nanoscale 
materials and DNA are still missing. 

Lack of knowledge: 

• There are no (standardised) methods to determine NPs within body fluids or 
tissue 

• The limited number of measurements at workplaces gave no reason for concern 
as no NP could be found in the air, but more measurements are needed 

• No thresholds are so far defined 

4 Environment 
Authors: Victoria Hand, David Vaughan 

Earth materials with at least one dimension in the nanoscale are essentially ubiquitous. 
They have been studied for several decades and more are being discovered all the 
time (Hochella, 2002a). Our ability to synthesize and manipulate engineered NPs, and 
the worldwide increase in investment in nanotechnology research and development, 
has brought NPs to our attention (Nowack and Bucheli, 2007). There is already a large 
body of information concerning the physical and biological properties of naturally 
occurring NPs, and analogies for potential exposure to pollutant “engineered” 
nanoparticles may be drawn from results of studies on naturally occurring NPs, for 
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example exposure to mineral dusts such as quartz or asbestos. In reality, we are 
already exposed to the ultrafine particles that are present in the environment on a daily 
basis; for example, particulates from diesel exhausts. Indeed, it has been suggested 
that we may have more to fear from the NPs we encounter on a daily basis than from 
new ones arising from the potentially cleaner nanotechnologies of the future 
(Oberdörster, 2004). 

4.1 Natural Nanoparticles in Geological Systems 
Recent work in the geosciences has shown that many geochemical processes are 
governed by phenomena at the nanometer scale, often involving nanoscale particles. 
Nearly all processes of weathering, soil formation and water/rock interaction are linked 
to nanoscience; at the Earth’s near-surface, materials are often in the nanoscale 
regime (Hochella, 2002b). Because processes are intrinsically molecular at the 
nanoscale, there is a diffuse boundary between geosciences and the fields of 
chemistry, physics, and materials science, and also life sciences as microbial 
processes often proceed by manipulating surface forces at the nanoscale. 
Consequently, geoscientists have unique skills in aqueous and solid state chemistry, 
particularly in multicomponent systems. 

Much of the chemistry in the shallow Earth occurs at disequilibrium and minerals form 
and dissolve in large solubility gradients. These gradients are caused by bacterial 
metabolism, by the transition from oxygen-rich to anoxic environments in sediments, by 
the large temperature and pressure changes found in hydrothermal environments and 
in settings where pollution causes sharp changes in pH and metal concentrations. 
Metal transport in the environment is often of great environmental concern especially 
when related to radioactive waste disposal, acid mine drainage and industrial pollution. 
A few scientists have realised the importance of the transport of species complexed in 
or on organic (biopolymers, humic substances, etc.) and inorganic (mineral) NPs and 
not as dissolved entities (e.g. Boult et al., 2006; Buffle and van Leeuwen 1992; 
Grolimund et al., 1996).  

Good examples of nanoparticle metal transport in the environment occur in acid mine 
drainage (AMD) systems. The weathering of metal sulfide minerals in hydrated, 
oxygenated surface environments results in a highly acidic effluent. At low pH metals 
can be transported in the aqueous phase, but AMD waters increase in pH the further 
they travel from the source. This is due to dilution with uncontaminated water and 
buffering reactions in the streambed or aquifer. Precipitating phases, such as iron-
dominated oxides, oxyhydroxides, and/or hydroxysulfates result in iron-rich sediments 
and mineral/rock coatings that may contain high concentrations of toxic metals trapped 
in their structures or attached to their surfaces. These toxic metals can be further 
transported over long distances in a relatively short space of time. Hochella et al. 
(1999) observed the process by which this occurs due to the formation of 
nanocrystalline Fe-oxyhydroxides with toxic metals sorbed to their surfaces, and also 
the formation of toxic metal-oxides directly in the nanometer size range (Hochella et al., 
1999). Suzuki et al. (2002) showed that direct microbial reduction of U6+ to U4+ can 
result in the formation of nanoparticulate uraninite (UO2). Such particles are potentially 
extremely mobile and are likely to have a much higher solubility than bulk uraninite. 
This has obvious implications for the mobility of uranium since its precipitation as 
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insoluble uraninite does not necessarily make it immobile. Furthermore, nanocrystals of 
uraninite (5-10 nm in diameter) encapsulated in carbonaceous matter with a structure 
similar to fullerene (about 50 nm in diameter) were identified in aerosols collected in 
Detroit (Utsunomiya et al. 2002). A further investigation by Utsunomiya et al.(2004) 
detected several heavy metals (including some that are toxic e.g. As, Cr, Pb, Se) in 
particles ranging down to a few nanometres in size. The inflammatory potential of these 
NPs in lung tissue is expected to be high. Their chemical toxicity may be 
underestimated if, due to their size, they show enhanced dissolution or exchange 
reactivity (Hochella and Madden, 2005). 

These fine-grained materials are very small and represent only a small fraction of the 
mass of the material on Earth. However, they do represent a large fraction of the 
particles in atmospheric and aqueous environments and account for most of the 
exposed surface area of Earth materials. It has become apparent that the kinetics and 
mechanisms of sorption of aqueous species onto nanocrystalline particles can be 
significantly different compared to the same sorbate attached to larger particles (Zhang 
et al., 1999). Because chemical reactions generally occur at surfaces and interfaces 
rather than in the bulk, chemical reactions in both natural and laboratory systems 
disproportionately involve NPs.  

The large surface-to-volume ratio of nanoscale particles ensures that surface forces 
exert considerable influence over the chemistry and structure of NPs and 
nanomaterials in general, to the point that they exhibit properties that are distinct from 
those of the macroscopic solid (NSF, 2002). The distortion of metal surfaces sites as 
particles get smaller has important implications for metal binding and electron transfer 
in associated redox reactions (Hochella and Madden, 2005). Valden et al. (1998) 
investigated the use of gold catalysts on titania substrates to oxidize CO to CO2. They 
demonstrated that the gold catalysts were most active at driving the oxidation reaction 
at 2-3 nm in diameter. At sizes larger than this, their reactivity drops off considerably. 

Hochella (2002a) provides an overview of how diversely nanoscience has impacted the 
geological sciences in the last few years. These examples range from minerals in the 
troposphere, including nanominerals, with implications for radiative forcing effects and 
consequently global heating/cooling (Buseck et al., 2000), to carbonaceous nanofilms 
in many crystalline rocks of deep crustal and mantle origin, with implications for the 
relatively high electrical conductivity of these rocks (Anastasio and Martin, 2001). An 
extensive discussion of NPs in the environment can be found in Banfield and Navrotsky 
(2001). The book centres primarily on the effects of particle size on particle properties 
and reactivity with detailed coverage of recent nanoparticle systems of interest such as 
TiO2, ZnS and also the mineralogical species  in AMD. 

The study of nanosized particles in geological systems continues to yield important 
results and contributing to developing fundamental principles and the experimental 
techniques used are becoming more sophisticated all the time. The use of techniques 
such as X-ray diffraction and X-ray absorption spectroscopy and electron and scanning 
probe microscopies (SEM, TEM, STM, AFM) provide a powerful combination of 
methods to observe and characterise nanoscale materials and processes. There is still 
a great need for additional tools with greater versatility and instrumental physicists are 
continually refining established techniques and inventing new ones that will become 
important in nanomaterial characterization (Hochella, 2002a).  
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It is only relatively recently that more detailed observations of natural atmospheric 
nanoparticulates and nanocrystals have been made. Carbon nanotubes and other 
fullerene-related nanocrystals have recently been reported as being ubiquitous in the 
Earth’s atmosphere, and have even been observed in a 10,000 year-old ice-core 
sample, indicating their occurrence in antiquity, probably as natural gas/methane 
combustion products (Murr et al., 2004b). The results from this study begin to establish 
an environmental context for considering the potential impact of engineered 
nanostructured particles on human health and the environment.  

4.2 Nanotechnology and the Environment 
The manufacture of engineered NPs is a rapidly expanding industry as their properties 
are exploited with the continuing development of nanotechnology. The novel properties 
of nanomaterials means they are likely to have distinctive transport and accumulation 
behaviour. As well as concerns about the negative impact these materials might have 
on health that have already been outlined, there are also concerns about the potential 
negative impact of engineered NPs on the natural environment.  

Many health and environmental concerns are related to exposure to NPs that are free, 
rather than fixed to or within a material. Manufactured NPs are mostly fixed in materials 
(e.g. composites) although these fixed particles may become free in the environment 
due to damage, recycling and degradation following disposal. Exposure to free 
manufactured NPs is mostly limited to workplaces of manufacture and research, and to 
a small number of cosmetic uses, such as in sunscreens. However, there has been no 
research into the life cycles of products containing engineered NPs and the possible 
exposure risk from their potential to release free NPs. Assessing the risks of ENP’s in 
the environment requires an understanding of their mobility, reactivity, ecotoxicity and 
persistency (Nowack and Bucheli, 2007). There is a requirement for life cycle analysis 
of products containing engineered NPs in order to determine the likelihood of this 
happening. This should consider the processes and materials used in manufacture, the 
likely interactions between the product and individuals or the environment during its 
manufacture and useful life, and the methods used in its eventual disposal (Royal 
Society Report, 2004).  

4.2.1 Binding of toxic elements and compounds to nanomaterials 
The high surface area of NPs maximizes any chemical interactions with the 
environment, and could make such particles less mobile in groundwater systems due to 
increased interaction with porous media, therefore slowing transport. On the other 
hand, like naturally occurring colloids, high surface area may lead to significant 
adsorption of molecular contaminants leading to concentration of contaminant 
molecules and an avenue for long-range contaminant migration (Colvin, 2004). Like 
naturally occurring colloids, engineered NPs may provide an avenue for rapid and long-
range transport of waste/contaminants in groundwater. Conversely, binding to 
engineered NPs might neutralise contaminants, reducing the harm they cause (Kleiner 
and Hogan, 2003). 

Probably the greatest potential source is from the proposed introduction of NPs into 
soils or waters for remediation, for soil stabilisation, or to deliver fertilisers. There are 
many sites that are contaminated with chemicals and heavy metals, and the potential 
for nanotechnologies to contribute to remediation is large. However, very little is known 



 

 IMPART 
 09.06.08 / Page 82/116 

about the behaviour of engineered NPs in air, water and soil and what impact the high 
surface reactivity of NPs might have on plants, animals, micro-organisms and 
ecosystem processes. Another potential source is the waste streams from factories and 
research laboratories. 

There are a wide variety of routes by which NPs may reach humans and other 
organisms; for example, organisms may ingest materials that have entered a water 
system or that have been deposited on vegetation. Once materials have been inhaled 
or ingested, they may enter the food chain, leading to the possibility of bioaccumulation 
and then ingestion by organisms further up the food chain. The bioaccumulation of NPs 
will depend on their surface properties, which will determine whether they are likely to 
be taken up by the fatty tissue, bone or proteins in the body. Low aqueous solubility 
generally favours the persistence of a chemical in the environment and its uptake by 
biological systems, where it can persist for long periods of time and even 
bioaccumulate, as has been shown for DDT or dioxins (Hoet et al., 2004b). 

4.2.2 Mobility of nanoparticles within the environment 
It is probable that environmental processes such as bioaccumulation, biodegradation, 
fate and transport will affect the concentration and form of engineered NPs that are 
exposed to the environment. It is not yet known whether engineered NPs can be 
converted to aerosol by routine handling of powders and liquids; however, rapid and 
irreversible aggregation of engineered NPs in air may significantly increase size and 
thus limit the possibilities of inhalation of isolated NPs (Colvin 2004). Research from the 
field of air pollution provides compelling evidence of the severe health effects of 
atmospheric NPs and it is well established that exposure to ultrafine particles (UFPs) 
should be avoided (Oberdörster et al. 1995). With cosmetic uses, dermal exposure is 
already occurring, and the range of NPs used in such applications is likely to increase.  

Fortner et al. (2005) are currently conducting studies on how C60 (fullerene) affects 
bacteria and simple organisms like worms. They are also exploring whether these 
fullerenes tend to move up the food chain. Initial results show that NPs accumulate in 
living cells over time, with ever-increasing concentrations in microbes, in the worms that 
eat those microbes, and in animals higher up the food chain. It is possible that these 
NPs reach humans (Fortner et al., 2005). NPs have been shown to inhibit the motility 
and phagocytosis of macrophages in the lungs, which suggests that similar effects 
might be expected in simple soil organisms (Lam et al., 2004). Lovern and Klaper 
(2006) recently found that exposure of Daphnia magna to filtered C60 and filtered TiO2 
caused an increase in mortality with increasing concentration.  

Surface modification of engineered NPs has succeeded in making them soluble in 
water, and thus of use in drug delivery and other biomedical applications. The absence 
or presence of surface coatings on nanomaterials complicates their toxicity. It is 
unknown how long surface coatings are retained on particles. The likelihood of coating 
breakdown has been studied in cell culture systems, where quantum dots were initially 
rendered non-toxic with coatings but, if the quantum dots were exposed either to air or 
UV radiation for as little as 30 minutes, they became very destructive to living cells 
(Derfus et al., 2004). The same effect has been seen with fullerenes, and generally, it is 
not known how long such coatings are retained on particles (Oberdörster, 2004). It is 
important to note that most NPs in technical applications are functionalised and 
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therefore studies using pristine nanoparticles may not be relevant for assessing the 
behaviour of the NPs actually used (Nowack and Bucheli, 2007). Considering that 
surface modification is the fastest growing area of nanoparticle technology, the effects 
of these modifications on the toxicology of NPs should be investigated (Donaldson 
et al., 2004b). 

There are several ongoing studies evaluating fullerene toxicity in aqueous systems. 
Due to the possibility of C60 solubilisation through colloid formation under environmental 
conditions, many studies have focused on the effects of n-C60 (highly stable colloidal 
aggregates of C60). The possibility of n-C60 formation following extended contact with 
water suggests that n-C60 could be a significant form of C60 if these fullerenes were 
introduced to aquatic systems. The first interest attracting published work on n-C60 
toxicity to organisms concluded that n-C60 produced oxidative damage in the brains of 
exposed largemouth bass (Oberdörster, 2004). Nevertheless, the same group has to 
correct these results as the tetrahydrofuran (THF) solubilised fullerenes are toxic 
through the peroxides coming from the solvent THF (Oberdörster et al., 2006; see 
comment page 38). 

The tendency of n-C60 to aggregate and deposit will play a key role in determining its 
longevity in aquatic systems and, therefore, provide key information on the exposure 
risk presented by these colloids. In one case, it was shown that hydrophobic 
contaminants can irreversibly interact with fullerene aggregates in water, and these 
species showed a high capacity for concentrating a model aromatic hydrocarbon 
(Cheng et al., 2004).  

The mobility of eight particulate products of nanochemistry in a well-defined porous 
medium were evaluated by Lecoanet et al. (2004) to assess their potential for migration 
in porous media, such as groundwater aquifers and water treatment plant filters. They 
found that the particles exhibited widely differing transport behaviour. Their results 
showed that nanomaterials exhibit widely differing transport behaviours. They suggest 
that the potential for exposure to n-C60 through groundwater transport may be less than 
that of other fullerenes. Observations made by Brant et al. (2005) suggest that, under 
some conditions present in natural aquatic systems, these materials have limited 
mobility as they form large aggregates that may settle out of suspension or deposit on 
surfaces. These phenomena may, at least partially, offset any risk presented by n-C60 
toxicity due to a reduced potential for exposure (Brant et al., 2005). Such investigations 
will increase understanding of the potential uses of such NPs to clean-up groundwater 
pollution, as well as aiding in the assessment of any environmental risks the materials 
may present. 

More recent data have shown for the first time how multiwalled carbon nanotubes might 
behave in natural aquatic environments (Hyung et al., 2007). This research suggests 
that natural organic matter (NOM) present in river water could aid the dispersion of 
carbon nanotubes by stabilizing the nanotubes and increasing their potential for 
dispersal dramatically. In fact, their experiments showed that natural organic matter 
stabilizes the model carbon nanotube in the aqueous phase more efficiently than a 
surfactant. They also found that the nanotubes remain as discrete units. However, the 
toxicity of the new materials in natural environments remains relatively unknown. The 
paper on the occurrence, behaviour and effects of NPs in the environment by Nowack 
and Bucheli (2007) is a comprehensive and useful review of this area. 
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4.3 Conclusions and Future Research 
NPs have different levels of interaction with biological systems and have different 
mobilities based on their size, shape and chemical composition. Therefore, it is not 
possible to address the hazards and risks of NPs in a general way as each type of 
nanoparticle needs to be evaluated as regards its toxicity. There is not enough 
research on engineered NPs to know whether they present a serious problem to human 
health and the environment. There is a strong need to prevent a backlash of negative 
public opinion, and a political and regulatory backlash, which may have an effect on the 
development of the field. The nanotechnology industry is keen to accumulate risk data 
so as to answer questions and address problems early, and so that nanotechnology 
can flourish responsibly and with public support. It is also important to remember the 
positive impacts of the improved environmental technologies that are developing from 
new nanotechnologies. There is considerable promise not only for removing persistent 
pollutants from soil and water supplies, but also for improving the efficiency of energy 
production using nanostructured catalysts and energy storage capabilities reducing 
waste production, which will benefit the environment and increase sustainability (Dror 
et al., 2005; Masciangioli and Zhang, 2003). 

More research into the hazards and exposure pathways of NPs and nanotubes is 
required to reduce the many uncertainties and knowledge gaps related to their potential 
impact on health, safety and the environment. Current funding and hence research is 
inadequate. Zhang (2003) suggests that more attention should be directed to the 
fundamentals of nanochemistry in the environment, such as the process of contaminant 
transformation at the nanoparticle-water interface. An interdisciplinary approach is 
necessary for an appropriate risk assessment. There are many opportunities for 
collaboration between the different centres of expertise in nanotechnology, 
environmental science, pharmaceutical science and toxicology within the European 
Community. It is important to appreciate that environmental scientists and engineers 
already investigate nanostructures and nanoscale systems, as in studies of the natural 
weathering of minerals or the production of nanoscale colloids by microorganisms that 
are important in the fate, transport and transformation of potentially toxic substances 
(Masciangioli and Zhang, 2003). 

The report produced by the Royal Society and Royal Academy of Engineering in 2004 
recommends that, until more is known about the environmental impact of NPs, their 
release into the environment should be avoided as far as possible. They also 
recommend that NPs should be treated as hazardous and be reduced in waste 
streams, and that the use of free NPs in environmental applications such as 
remediation of groundwater be prohibited (Royal Society Report, 2004). 

Knowledge gaps/recommendations 

• We need to understand what happens to nanomaterials during their journey from 
manufacture to waste disposal. This can help focus studies that can tell us about 
transport pathways, biogeochemical cycling and environmental fate. Ultimately, 
such work will help us to identify which, if any, environmental compartments are 
at risk of contamination by nanomaterials. 

• There is a paucity of information in a number of areas that are fundamental to 
the development of detailed guidelines on the risk assessment of nanoparticles. 
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These include nanoparticle characterisation, the detection and measurement of 
nanoparticles, the dose-response, fate, and persistence of nanoparticles in 
humans and in the environment, and all aspects of toxicology and environmental 
toxicology related to nanoparticles.  

• Significant efforts are required in order to collect the huge amount of data 
required in order to confirm the risk assessment of nanomaterials. 

• A standardised framework for the risk assessment of nanomaterials such as 
standard reference samples and toxicology protocols should be settled quickly. 

5 Law and Regulation 
Author: Jan Stetkiewicz 

Rules for marketing of dangerous substances and preparations are established within 
the framework of total harmonisation of national legislations. 

Up to now the system distinguished between «existing» substances i.e. substances 
declared to be on the European market prior to September 1981, and “new” 
substances i.e. those introduced since this date. Testing “new” substances and 
assessing their risks to human health and the environment, according to Council 
Directive 67/548/EEC (1967), Some general frameworks are the Existing Substances 
Regulation (Council Regulation (EEC) No. 793/93, 1993) on the evaluation and control 
of the risks of existing substances and the Dangerous Substances Directive (Council 
Directive 67/548/EEC, 1967), covering classification and labelling of substances in 
general and, through its amendments, providing for a pre-marketing notification system 
for New Chemicals. Risk management, including request for information and risk 
reduction measures, may be triggered by e.g. classification of substances and risk 
assessments. 

The Council Directive 67/548/EEC (1967) requires all new substances introduced on 
the market in a volume of 10 kg/year or more to be notified. The purpose is to provide 
information on chemicals, to allow for classification and labelling and safe handling and 
use. The Directive contains information requirements for different tonnage intervals 
(tiered testing) in the Annexes. Full notification dossiers are required for substances 
produced in volumes from 1 ton per year, and allow for risk assessment to be 
performed, followed by risk reduction strategies where necessary. 

Council Regulation (EEC) No 793/93 (1993) on the evaluation and control of the risks 
of existing substances  involves the data reporting, priority setting, risk evaluation and, 
where necessary, development of strategies for limiting the risks of existing 
substances. The regulation obliged industry to report data (for production volumes 
above 10 tons/year) and update information on significantly new uses. Priority lists 
have been published for substances to go through a Community risk assessment and 
risk reduction strategy are developed where appropriate. The regulation can also 
require industry to provide additional testing or information if data is lacking. A 
prerequisite is that the substance is on a priority list or for any other EINECS 
substance, that there is a valid reason for believing that the substance may present a 
serious risk to man or the environment. 
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Classification and labelling criteria have been laid down in Annex VI of Council 
Directive 67/548/EEC (1967). Guidance for risk assessment of new and existing 
substances as well as biocides has been provided in the Technical Guidance 
Documents (TGD), and a computerised risk assessment tool, the EU System for 
Evaluation of Substances (EUSES) is used. Furthermore guidance for development of 
Risk Reduction Strategies is available. It needs to be investigated if and how the 
current legislation and implementation tools for new and existing chemicals may be 
applied to ensure that possible risks of NPs are adequately addressed at an early 
stage. 

The current legislative framework has been now replaced by REACH, the Regulation 
concerning the Registration, Evaluation, Authorisation and Restrictions of Chemicals 
(Regulation No 1907, 2006). The provisions of REACH shall apply to the manufacture, 
import, placing on the market or use of substances on their own, in preparations or in 
articles, if so stated. REACH abolishes the distinction between «existing» and «new» 
substances and establishes a single legislative system for the marketing of chemical 
substances in Europe. It replaces Council Regulation 793/93 (1993) as well as Council 
Directive 76/769 (1976). The existing restrictions will remain in force and will be listed in 
an annex to the REACH Regulation. Council Directives 67/548/EEC (1967) and 
1999/45/EC (1999) (dangerous preparations) will be amended. The provisions related 
to the safety data sheets (Directive 91/155/EEC amended by Directive 93/112/EEC and 
Commission Directive 2001/58/EC, 2001) were incorporated into the REACH 
Regulation.  

Any substance that is produced or imported in annual volumes of at least 1 ton/year 
and manufacturer has to be registered. If the annual volume is > 10 tonnes, mandatory 
preparation of a chemical safety report (CSR) which contains chemical safety 
assessments (CSA) for each identified use is required. A CSR shall include the 
following steps in accordance with the respective sections of this Annex: human health 
hazard assessment, human health hazard assessment of physicochemical properties, 
environmental hazard assessment, PBT (Persistent, Bioaccumulative, Toxic) and vPvB 
(very Persistent and very Bioaccumulative) assessment. If as a result of these steps 
the manufacturer or importer concludes that the substance or the preparation meets 
the criteria for classification as dangerous according to Directive 67/548/EEC (1967) or 
Directive 1999/45/EC (1999) or is assessed to be a PBT or vPvB, the CSR shall also 
consider the following steps: exposure assessment and risk characterisation. The main 
element of the exposure part of the CSR is the description of the manufacturer's or 
importer's exposure scenario(s) and the exposure scenario(s) recommended by the 
manufacturer or importer to be implemented for the identified use(s). The exposure 
scenarios contain a description of the risk management measures which the 
manufacturer or importer has implemented and recommends to be implemented by 
downstream users. If the substance is placed on the market, these exposure scenarios 
including the risk management measures shall be summarised in an annex to the 
safety data sheet in accordance with Annex IA. NPs having different hazard properties 
than the "bulk" substance would require individual treatment under REACH.  

The European Commission has adopted a so-called “incremental approach”, which 
focuses on adapting existing laws to regulate nanotechnologies, and therefore this 
paper aims to test the effectiveness of the “incremental approach” (Franco et al., 2007) 
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[7]. The authors on the example of three commercially available products containing 
fullerenes (C60 and carbon nanotubes) were analysed in a life cycle perspective in 
order to (1) map current applicable regulations, (2) analyse their applicability to 
nanomaterials, (3) identify their gaps, and (4) suggest proper solutions.  

After mapping the life cycle of the three products, Franco et al. (2007) analysed 
applicable regulations in the order in which they became relevant in their life cycle, i.e.:  

• The Safety at Workplace Directives 

• Council Directive 96/61 (1996) on the Integrated Pollution Prevention and 
Control 

• The European Union’s Directive on the Registration, Evaluation, Authorization 
and Restriction of Chemicals (Regulation No 1907, 2006) 

• The Waste Management Directives: Council Directive 2006/12/EC (2006), 
Council Directive 91/689/EEC (1991), Council Directive 75/439/EEC (1975), 
Council Directive 2000/53/EC (2000). 

It was found that the applicability of environmental laws is limited due to difficulties in 
generating sufficient data on the nanomaterials residing in the products according to 
their life cycles. Authors pointed out that metrology tools are unavailable; thresholds are 
not tailored to the nanoscale; and toxicological data and occupational exposure limits 
cannot be established with existing methodologies. Conclusion of this paper is that the 
“incremental approach” can only be applicable with the implementation of due 
amendments. 

5.1 Protection of workers’ health and safety against risks due to chemicals  
European rules concerning the protection of workers’ health and safety aim at minimum 
harmonisation of the different Member States’ legislations; the Member States are 
therefore entitled to impose national rules more stringent than the European ones if 
they see fit to do so.  

The most important piece of legislation in the area of health and safety at work is the 
Framework Council Directive 89/391/EEC (1989) "on the introduction of measures to 
encourage improvements in the safety and health of workers" to ensure a higher 
degree of protection of workers at work. 

The model for health and safety management in the Framework Directive places 
prevention in a central position. Equally important are the provisions regulating the 
obligations of the employers for planning, organising and regulating the protection of 
workers at work. The employer is obliged to make an a priori overall risk assessment 
and to undertake measures to prevent occupational risks; in the first place to combat 
risks at source either by eliminating/avoiding or, if not possible, by taking the 
appropriate control measures in order to reduce them (e.g. selecting personal 
protective equipment (Council Directive 89/656/EEC,1989). 

In the case of nanotechnologies the risks are neither known nor predictable; further 
research should be carried out in order to evaluate the risks they could entail to the 
health and safety of the workers. Methods for risk assessment in relation to worker 
protection need to be developed and made available to the employers. In addition to 
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the Framework Council Directive 89/391/EEC (1989), there are two other Directives 
that could be applied:  

1) Council Directive 98/24/EC (1998) on the protection of the health and safety of 
workers from the risks related to chemical agents at work and  

2) in case any nanoparticle would be shown carcinogenic or mutagenic, Council 
Directive 2004/37/EC (2004) on the protection of workers from the risks related to 
exposure to carcinogens or mutagens at work, could be applicable. 

5.2 ISO Technical Committee 229 
Standard terminology and a standard nomenclature system are essential for the 
development of an effective regulatory framework.  Precise identification of 
nanomaterials is needed in order to determine the appropriate regulatory track and 
ensure any appropriate risk management. 

Technical Committee 229 (TC 229) of ISO was formed in 2005 to address 
standardization in the field of nanotechnologies. Within TC 229, three working groups 
are convened by different countries to address specific subject matters. 

 Terminology and Nomenclature 
 Measurement and Characterization 
 Health, Safety and Environment 

Under the TG 229 following standards are projected: 

• Nanotechnologies -- Outline of nanomaterials classification (Nano tree) 

• Terminology and definitions for carbon nanomaterials  

• Nanotechnologies - Terminology and definitions for nanoparticles  

• Nanotechnologies -- Endotoxin test on nanomaterial samples for in vitro systems 

• (EDXA) in the charaterization of single walled carbon nanotubes (SWCNTs) 

• Nanotechnologies -- Generation of silver nanoparticles for inhalation toxicity 
testing  

• Nanotechnologies -- Monitoring silver nanoparticles in inhalation exposure 
chambers for inhalation toxicity testing  

• Nanotechnologies -- Use of Raman spectroscopy in the characterization of 
single-walled carbon nanotubes (SWCNTs)  

• Nanotechnologies -- Use of evolved gas analysis-gas chromatograph mass 
spectrometry (EGA-GCMS) in the characterization of single-walled carbon 
nanotubes (SWCNTs) 

• Nanotechnologies -- Use of thermo gravimetric analysis (TGA) in the purity 
evaluation of  

• single-walled carbon nanotubes (SWCNT) 

• Nanotubes -- Use of transmission electron microscopy (TEM) in walled carbon 
nanotubes (SWCNTs)  
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• Measurement methods for the characterization of multi-walled carbon nanotubes 
(MWCNTs)  

• Nanotubes -- Scanning electron microscopy (SEM) and energy dispersive X-ray 
analysis 

• Nanotubes -- Use of NIR-Photoluminescence (NIR-PL) Spectroscopy in the 
characterization of single-walled carbon nanotubes (SWCNTs)  

• Nanotubes - Use of UV-Vis-NIR absorption spectroscopy in the characterization 
of single-walled carbon nanotubes (SWCNTs)  
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6 Knowledge gaps and recommendations 

We recommend the following physicochemical properties to be published together with 
toxicological data in series of importance: 

• Chemical composition – including spatially averaged (bulk) and spatially 
resolved heterogeneous composition (incl. contaminations) 

• Size and size distribution 
• Specific surface area 
• Shape / aspect ratio 
• Surface chemistry 
• Agglomeration state 

Additionally of importance in specific cases: 
• Crystal structure 
• Surface charge 
• Porosity 

The following knowledge gaps have been identified: 

1. Regarding nanocrystalline materials: 

• Particle size alone is not a good criteria for differentiating between more or 
less hazardous materials 

• Some specific characteristics of nanomaterials will necessitate new test 
strategies to determine the mechanisms of potential injury that they may 
cause 

• Integration of theory, modelling, and simulation into experimental design 

• Information about surface energy, reactivity and biological activity is needed 
• No or little information regarding the fundamental understanding of the 

reaction specificity of nanoparticles in solution is available 
• A deeper understanding of the differences between nano and bulk, based 

on experimental and theoretical work, including quantum, surface and size 
effects, is needed 

• The consequences of agglomeration and deagglomeration of the particles 
are unclear 

• An evaluation of current test methods for "normal" toxicity with respect to 
their applicability for nanotoxicological testing is required, if necessary new 
dedicated test methods must be developed 

2. Regarding dosing of nanomaterials or nanoparticles in biological experiments: 

• Which information is enough to clearly define a given dose or concentration 
within an experiment: 
Should we refer to mass, surface area or particle number? 

• Should sedimentation or deposition play a role for considerations regarding 
the actual dose which reaches the cells in an in vitro experiment? 

• Is information needed at the end of an in vitro experiment about the amount 
of material still measurable within the supernatant for better calculation of 
the reactivity of the investigated nanomaterial? 

• What is the minimum knowledge about dose or concentration for a reader of 
a study to interpret the data properly? 
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• Should we have guidelines for in vitro experiments for dosing nanomaterials 
(e.g. SOPs)? 

• What about in vivo experiments and dosing? 
• We (toxicologists) need a sensitive and cheap method to determine particle 

number and surface to include this information into the discussion of the 
results 

3. Need for techniques for the in vivo detection of nanomaterials: 

• Inexpensive real-time monitoring instruments and methods for aerosol mass 
concentration (low concentrations, nanoscale particles), surface area 
concentration and size distribution 

• Standardized, well characterized nanomaterial samples. 
• Radio-labelled nanomaterial samples or samples that can be tracked and 

detected through neutron-activation 
• More advanced surface chemistry characterization techniques, in particular 

techniques capable of detecting and speciating biological molecules on the 
surface of nanoparticles and nanomaterials 

• Electron microscopy techniques for biologically-relevant nanoscale analysis 

4. Regarding administration of nanomaterials to test systems: 

• There is a lack of international consensus on measurement techniques or 
standards for monitoring nanoparticles in the workplace (aerosol 
measurements) 

• There is a strong need for a measurement device that can differentiate 
between engineered nanoparticles and the background level of natural 
nanoparticles (species discrimination) 

• There is a need for the evaluation of nanoparticle formulations on a case-
by-case basis in order to choose the most appropriate metrics 

5. Regarding low-dose/low-concentration experiments: 

• Methods, combinations and strategies to provide knowledge about real-
world exposure to different classes of nanoparticles and/or nanoparticle 
aerosols 

• Methods to evaluate dermal and/or ingestion exposure 
• No or little information available on the biokinetics of NP in order to estimate 

appropriate doses at their target site (that even have to be identified) 

6. It is highly recommended to establish long-term strategies: 

• In vivo long-term toxicity assays for inhalation, oral, skin and injection 
exposure with the evaluation of markers for inflammation, oxidative stress, 
cell proliferation in portal-of-entry and selected remote organs, like liver, 
spleen, bone marrow, heart, kidney, CNS 

• Chronic nanotoxicity assays, especially the development and validation of 
non-animal test methods 

• Reproductive and immunotoxicity studies 
• Cardiovascular and coagulation tests mainly for those NPs for which 

translocation to the blood circulation, after e.g. inhalation, has been shown 
• Studies on deposition, translocation and biopersistence (degradation, 

metabolism) of NPs 
• Validation of results of high dose studies using order of magnitude lower 

concentrations resembling those realistic in vivo exposures, for quantum 
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dots, fullerenes, metal oxides and other NPs. For inhalation a 2 week 
exposure is recommended in multiple doses (1-10 µg/kg body weight), e.g. 
dosing daily for 4 weeks with 3 months follow up 

7. Knowledge gaps regarding the workplace scenario: 

• Information about production volume, occupational exposure potential of 
nano-sized material is urgently needed to determine potential risk of 
employees 

• The workplace represents a critical interface between people and 
nanotechnology, and an area where potential impact needs to be 
understood and managed. In the future, it is also likely that even wider 
distribution of these particles may have significant effects on organisms 

• The potential effects of engineered nanoparticles on the ecosystem must 
also be considered in order to assure the safety of humans and the 
environment from production emissions 

• Development of innovative technologies for effective health and safety 
management in workplaces 

• Studying the potential release of nanoparticles throughout the application 
life cycle including recycling process workplaces and emissions in 
environment 

8. Knowledge gaps regarding sampling and “real-life” measurements: 

• There is not one sampling method that can be used to characterize the 
traditional inhalation route of occupational exposure to NPs therefore 
research should be in progress to determine most appropriate of three 
exposure metrics (mass, surface and numbers) to be monitored as well as 
realistic and suitable sampling equipment 

• Generally accepted, realistic methods for exposure assessment are still 
lacking for workplaces; no commercially available personal samplers are 
designed to measure the particle number, surface area, or mass 
concentration of nanometre aerosols 

• There are lacks of the occupational exposure limits for nanoparticles 
(different type) and no standardized, well-characterized reference standards 
of nanoparticles are developed 

• Skin absorption of nanoparticles has to be evaluated as acceptable or 
unnecessary method for detection of summarized exposure 

• Research has to be continued on skin absorption of different compositions 
of nanoparticles (especially lipophilic ones) as way of occupational exposure 
and for development of safety measures 

9. It is recommended to improve and adapt measurement systems: 

• Investigation of lung function could be indirect measure for evaluation of 
health risk of nanoparticles but there still need wider research in this area to 
confirm air quality standards of nanoparticles and monitoring methods 

• Further studies are therefore needed to substantiate our current 
understanding of the pathophysiological links between NP exposure and 
adverse cardiovascular outcomes 

• Further epidemiological and experimental data collections are required to 
determine the critical physicochemical and toxicological properties of NP in 
humans 
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• Development of a model describing the dispersion and transformation of 
nanoparticles and their agglomerates in the working environment to assess 
location of maximum exposure and to develop safe workplaces 

• Research is needed to possibly establish biomarkers for detection of the 
impact of nanoparticles on health 

10. There is still a lack of knowledge on exposure limits and behaviour in biological 
systems: 

• There are no (standardised) methods to determine NPs within body fluids or 
tissue 

• The limited number of measurements at workplaces gave no reason for 
concern as no NP could be found in the air, but more measurements are 
needed 

• No thresholds are so far defined 

11. There are knowledge gaps regarding environmental aspects of NPs 

• We need to understand the behaviour of nanomaterials during their journey 
from manufacture to waste disposal. This can help to increase knowledge 
on transport pathways, biogeochemical cycling and environmental fate. 
Ultimately, such work will help us to identify which, if any, environmental 
compartments are at risk of contamination by nanomaterials. 

• There is a paucity of information in a number of areas that are fundamental 
to the development of detailed guidelines on the risk assessment of 
nanoparticles. These include nanoparticle characterisation, the detection 
and measurement of nanoparticles, the dose-response, fate, and 
persistence of nanoparticles in humans and in the environment, and all 
aspects of toxicology and ecotoxicology related to nanoparticles.  

• Significant efforts are required in order to collect the huge amount of data 
required in order to confirm the risk assessment of nanomaterials. 

• A standardised framework for the risk assessment of nanomaterials such as 
standard reference samples and (eco)toxicology protocols should be settled 
quickly. 
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