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Abstract 

The existence of non-free, K-free Abelian groups and modules (over some non-left perfect 
rings R) having prescribed endomorphism algebra is established within ZFC + 0 set theory. 
The principal technique used exploits free resolutions of non-free R-modules X and is similar to 
that used previously by Griffith and Eklof; much stronger results than have been obtained 
heretofore are obtained by coding additional information into the module X. As a consequence 
we can show, inter alia, that the Kaplansky Test Problems have negative answers for strongly 
K,-free Abelian groups of cardinality K1 in ZFC and assuming the weak Continuum 
Hypothesis. 

1. Introduction 

In problem 10 of [I 11, Fuchs asked for which cardinals K are there Abelian groups 

which are K-free but not free. This problem has attracted considerable interest and 
much insight has been obtained by a number of authors working in both ZFC set 
theory and other stronger formulations such as ZFC + (V = L) (see e.g. [6, 8, 9, 11, 
15, 193). Surprisingly from the viewpoint of an algebraist, few additional algebraic 
properties have been obtained for these “almost-free’ groups when working in ZFC set 
theory; in [S] the additional algebraic property of having trivial dual was obtained for 
K,-free groups. The present work is based on an idea of Griffith [15] which also has 
been exploited by Eklof in [9]. The central idea in [15] and [9] is to use free 
resolutions of a non-free group X to code this non-freeness into an almost-free group. 
In this paper we use the same idea for modules but code additional information into 
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the module X (e.g. prescribing its endomorphism algebra) and see how this is reflected 
in the outcoming almost-free module. The success of such an approach depends on 
how much additional set theory one wants to assume but it is worth noting that in 
ZFC + CH we are able to show that the Kaplansky Test Problems [18, p. 123 fail for 
strongly N,-free groups of cardinality K1. Recall that the notions of K-freeness and 
strong K-freeness of a module M are defined in terms of properties of certain subsets of 
the power set of M; see [lo, Chapter IV]. Since we shall always be dealing with these 
notions in a context where IC is a regular infinite cardinal and the module M is 
generated by a set of cardinality at most K, it is convenient to use the following known 
equivalents [lo, IV 1.5, 1.111 of the usual definitions: if A is any ring, then a I K- 

generated A-module M is K-free if and only if M has a K-filtration {M, 1 v < K} 

consisting of free modules. Similarly M is strongly K-free if it has a filtration 
{M,~~~~}suchthatforall~~v,M,+,,andM,+,/M,+,arefree;ifk-~~A~,then 
this condition is also necessary. It is worth remarking that we shall always construct 
modules M which are simultaneously K-free and strongly K-free. In the situation where 
A = Z, the ring of integers, the above notions reduced to the familiar: M is K-free if 
every subgroup of cardinality < K is free and M is strongly K-free if it is K-free and 
every subgroup of cardinality < K is contained in a free subgroup U, of cardinality 
< K, with G/U K-free. 

In order to give a precise statement of our main results we fix some terminology and 
notation. Let R be a fixed commutative ring having a fixed multiplicatively closed 
countable subset S of non-zero divisors such that 0 # 1 E S and nseS sR = 0. An 
R-module M is S-reduced if nssS MS = 0 and M is S-torsion-free if ms = 0 implies 
m = 0 for m E M, s E S. We enumerate the non-units in S as sl, s2, . . . and define qn E S 

bYqn=ni<, si. Since S is fixed we shall normally omit the prefix S. In particular we 
shall always assume that R viewed as an R-module RR is reduced and torsion-free. We 
remark that over a field, or more generally any Artinian ring, a non-zero R-module 
cannot be both reduced and torsion-free for any S. In particular our results are 
vacuous if R is a left perfect ring (see [lo, p. 891). We normally attribute properties to 
an R-algebra A if the corresponding R-module AR possesses them. The word group 
shall always denote an additively written Abelian group. 

In ZFC + CH the most striking and simplest to state of our results is a special case 
of Theorem 5.1. 

Corollary 5.2. For any positive integer r, there exists a strongly K1-free group G of 

cardinality N1 such that G(“‘) E G(“) if and only ijm = n mod r. 

By making additional set-theoretic assumptions we can strengthen such a result 
and so we also derive, under the Weak Continuum Hypothesis 2Ko < 2K1, a result 
most easily stated for groups as follows: 

It follows that the usual pathologies of direct decomposition, which defeat the 
Kaplansky Test Problems for torsion-free groups, persist in this class of strongly 
N,-free groups of power K,. 
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It seems worthwhile to make some remarks about another novel feature of our 
construction: the use of radicals. Similar algebraic results in V = L are obtained as 
a consequence of algebraic step-lemmas involving countable chains of summands and 
exploit the “room” between a free module and its natural (adic) completion. They are 
heavily dependent on the validity of the axiom E(rc) (see [lo, p. 154]), for IC not weakly 
compact, in the universe V = L. Since we have not made this assumption, we are 
forced to deal with chains of summands of uncountable length. However, the reader 
can easily convince herself that the topological arguments used to handle this 
situation will breakdown. To circumvent this, we have resorted to homological 
methods and in particular have exploited the so-called free radical: recall that, if H is 
an R-module and $5” is any class of R-modules, then the X-radical of H is given by 
Rr(H) = n {U s H ( H/U E .!Z”}. In particular if !Z is the class of free R-modules, then 
we obtain a radical which we denote R,(H). It is easy to see that this is equivalent to 
R,(H) = n {Ker r~ 1 q E Hom,(H, R)} for PIDs R. 

We note that such a radical is a subfunctor of the identity and if cp : H + H is an 
R-homomorphism, then (R,(H))(p I R,(H). 

Further details of such radicals may be found in [7]. Our construction of a K-free, 
strongly K-free R-module F exhibits F = u, <K F, in such a way that F,, 1 is 
“frequently” the radical closure of F,: RR(Fp/Fa) = F,, ,/F, for all B > tl. 

We close this introduction by noting that standard algebraic terminology may be 
found in [l l] while [17] and [lo] provide the necessary set-theoretical background. 
Our terminology and notation are largely in accord with these references but we note 
that maps are written here on the right and the symbol c is used to denote a direct 
summand. Finally we note that appending a set-theoretical statement (e.g. 2’0 < 2’1) 
to a theorem, lemma, etc., indicates that we are assuming that this statement holds in 
the proof of the result. 

2. Preliminaries 

A subset C of an ordinal c1 is called a cub in c( if C is closed and unbounded in c( (in 
the order topology on a). A subset E of a is said to be stationary in o! if E n C # 0 for all 
cubs C in a; a subset E of CI is non-reflecting in a if for all limit ordinals p < a, with 
cf p > w, there is a cub C in ~1 with E A C = 8. We shall make use of the following 
observation of R. Solovay which is proved in [9, p. 751 (see also [lo, p. 371). 

Lemma 2.1. Let K be a regular cardinal, 2 = IC+ and A0 = {p < I 1 cf p = K}. Then ,I0 
is stationary and non-rejecting in ,I. 0 

The following proposition is presumably well known. 

Proposition 2.2. Let A be any ring and K a regular uncountable cardinal. If 

x=u a < tc X, is the union of a smooth chain of A-modules X,, each free of rank < K, 
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then there exists a free A-module resolution 0 + K -+ F + X + 0 (i.e. K, F are free 
A-modules). 

Proof. Let {X,i 1 i < 1, < IC} be a system of generators of X,. Set 

F=@,<.@i<A@ eaiA so that F is a free A-module of rank K. Then the mapping 
0 : (e,i --+ X,i) induces an exact sequence F + X + 0 of A-modules. Let K be the kernel 
of this epimorphism, so that 0 + K + F + X -+ 0 is exact. For each b < K, set 

Fb=@a<B@i<n. eaiA and set K, = F, n K. Then FB/KP = FB/(K A F,) is isomor- 
phic to the image of 8 restricted to F, and so FP/KB z X,, which is free. Thus we 
conclude K, c Fs and so K, is projective. 

Moreover, if c > /I, a E C, then F,/KB/K,/K, g F,,IK, E X,, is free and so KU/K, 
is also projective. Thus K, c K, and since K = UP < K K,, it follows that K is a direct 
sum of projectives and hence projective. However, it follows from Lemma 2.3 below 
that there exists a free A-module L such that K 0 L is free of rank K. Set Z? = K 0 L, 
P = F @ L and observe that 0 + Z? -+ P + X -+ 0 is exact and K, F are free A- 

modules. q 

Lemma 2.3. If K is a direct summand of a free A-module F of infinite rank 1, then there 
exists a free A-module L such that K 0 L is free of rank 2. 

Proof. By assumption K @ N = F. Set L = &, F; clearly L is a free A-module of 
rank 1. Moreover, K 0 L = K @ OK, (K @ N) E L which is free of rank L. 0 

Lemma 2.4. Let A be any ring and tc be a regular uncountable cardinal. Let 
0 + B + H +X -+ 0 be a free resolution of the A-module X, where B -+ H denotes the 
identity map, and suppose X has a k-filtration by free A-modules X,. Then if 

H= @ A,, A,zA, H,= @ A, and B,=BnH,, 
Y<K Y<d( 

there exists a cub C in IC such that HJB, is free and B, is a free summand of B with B/B, 

free for all a E C. 

Proof. H/B, = HJB, @ @ t a A, and so if we show H,/B, is free, then HIBoI is also 
free. Now HE/B, = H,/(H,nB) z (H, + B)/B. Then, as observed in the proof of 
Proposition 2.2, there is a cub C,, in K with (H, + B)IB = X, for all a E Co. Thus 
H,/B, and H/B= are free for all a E Cc,. However B is also free, B = 0” < K A:, Ai z A 
and so B has its own natural filtration by free modules via this decomposition. In 
addition B = u B, is a K-filtration of B and so there is a cub Ci with B, a free 
canonical summand for each CI E Ci . Set C = Con C1; C is then a cub and H/B= is free 
and B, is a free canonical (i.e. B/B, is free) summand of B, for each a E C. 0 

Lemma 2.5. Suppose A is a unital R-algebra with AR free and X = U,, <w X, is 
a countable A-module with X, a free A-module for each n c co. Then there exists a free 
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A-module resolution 0 + B --) H +X + 0 and A-submodules B, of B such that 
B = u B,, B, is A-free, B,+ 1 /B, is ffee for all n and H/B,, is free. 

Proof. Our proof is based on Lemma 1.4(X11) in [lo]. Choose a free resolution 

0 + K,, --) F0 2 X1 + 0; this is trivial since X1 is free. Suppose F,_ 1, K,_ 1, and 

(P”_ 1 have been defined so that (Pi is an extension of qj if j < i I n - 1 and we have 

n-1 n-l 

0 + F0 Ki + @ Fi + X, + 0 with Ki, Fi free. 
i=O 

Now choose F. isomorphic to X, + 1 ; F, is free since by assumption X, + I is free. Let I,G, 
be the isomorphism. Define cp,, : @y= o Fi + X, + 1 by (P,, lo;;; Fi = cp,, _ 1, qn IF, = t,bn. 

Let {bi 1 i E I} be a set of free generators of X.ll/; 1 in F,, and choose (1;: 1 i E I} c 

2::: Fi such that bill/” =fi cpn. Set K, = ((bi - fi) ( i E I ), a free A-module. Clearly we 

O-~Ki~~Fi~X.+,~O 
i=O i=O 

and cp. extends cp.- 1. 
Set B, = @‘=o Ki SO that B = @i <o Ki = u B, and set H = @i i w Fi. Clearly 

B,, B, H and B,+ l/B, are free A-modules and H/B, = @i <w Filei 5 ,, Ki z 

X,+1 O@izn Fi is a free A-module. 0 

The following simple observations shall be of use in the sequel. 

Observation 2.6. Suppose A is a free R-module and 0 # L is a direct summand of a free 
A-module, then L* = Hom,(L, R) # 0. 

Proof. Since L @ C = @ist eiA for some A-module C, we find a projection 
rc : L 0 C + ei A with q = ~1~ # 0. However A = 8 R is a free R-module and so q can 
be extended to an R-homomorphism q’ : L -P R which is non-trivial. 0 

Observation 2.7. Let Y be an R-module having endomorphism algebra EndR Y = A, and 
suppose A is free as an R-module. If 

(i) A = R and Y contains a copy of R 0 R or 
(ii) A has R-rank at least 2 and Y contains a copy of A, 

then Y * = HomR( Y, R) = 0. 

Proof. In either case Y contains a free R-submodule e. R 0 eI R; in case (ii) we may 
further assume that eoR 0 e, R I eoA. Any 4 E Hom,(Y, R) can be viewed as an 
endomorphism $ of Y by y$ = eo( y4) for all y E Y. Thus 6 is scalar multiplication by 
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some a E A. Thus 

eoa = e,f$ = eo(eofj) E e,R 

and so a E R since Ann,e,, = 0 in either case. Moreover, 

eIa=e,~=eo(eI~)~eIRneoR=O, 

which forces a = 0. But then 4 = 0 follows immediately. 0 

The following definition will simplify our terminology. 

Definition. A subset D E u v < a F, is called unbounded in u y < 1 F, if D $ F, for all 
v < CC. 

Lemma 2.8. Suppose A is an R-algebra which is free as an R-module and 1 Al < IC, an 

injinite cardinal. If F, = BiCa ei A and F = UOI._ F, is a free A-module of rank K and 

h: F -+ R is an R-homomorphism, then there exists a free A-summand D of F with 

Dh = 0, F/D A-free and D unbounded in UN< K F,. 

Proof. Since A is R-free, F is a free R-module and so h vanishes on an R-summand 
K of corank 1; F = xR @ K, where Kh = 0. Then for each a E A, i < IC we have that 
eia = xr6 + k6 with ri E R and kb E K. Let J, denote the set of all i E K for which 

r6 # r-6; clearly 1 J, 1 I 1 R 1. Set J = UaeA J, and observe that I J 1 5 I Al < K. Hence, if 

I = K\J, then I is cofinal in K. Moreover if i,j E I, then eia - eja E K for all a E A and 

~~(ei-ej)Ah=Oforalli,j~Z.Fixi~ZandsetD=O~~,(e~-ej)Awhichisthe 

desired summand. 0 

3. Free resolutions of modules with trivial duals 

If X is an R-module, then we define the dual of X, X* to be Hom,(X, R). We say 
that X has trivial dual if X* = 0. Suppose that A is a unital R-algebra. In the sequel 
we shall often need to refer to A-modules having some special properties and so we 
separate out the following condition: 

An A-module X of cardinality K satisfies condition ( *) provided: 

X has trivial dual and there is a free A-module resolution. 

0 + B -+ H + X -+ 0 where B + H is the identity map, 

B = U Bi and Bi+ 1/Bi is free for all i. 
i-zx 

We remark that condition (*) is a strengthening of the condition F(K) of Eklof and 
Mekler [lo, p. 1881. 
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Observation 3.0. Observe that a n-free A-module X of cardinality IC satisfies ( * ) if K is 
uncountable and EndRX = A. Moreover, ( *) also holds for countable A-modules 

X= ull<*, X, where each X, is free and End,X = A. 

(Apply Lemma 2.4 and Observation 2.7 if K is uncountable; in the countable case 
apply Lemma 2.5 and Observation 2.7.) 

The following lemma plays a role analogous to a step-lemma in V = L (see e.g. 
[13]) and will be a vital ingredient in our construction in Section 4. We state it in 
a slightly more general form than will be needed for the purposes of this paper. 

Step-Lemma 3.1. Let K be a regular uncountable cardinal and X an A-module satisfying 
(*) and having a free A-submodule G’ with X and XJG’ K-free A-modules. Let 

F= U”<, F, be a free A-module of rank K with a K-filtration by a chain of A-summands 
F, such that FB/F,, is free for /I > v. Zf F = G @ D where G is isomorphic to G’ and 

D & F, for any v < K, then there exists a free A-module H > F such that 
(i) H/D z X, H/F 2 X/G’, 

(ii) H/F, is free for all v < K, 
(iii) if M is a summand of H containing D then M = H. 

Proof. Since X satisfies ( * ), there is a free A-module resolution 0 -+ K + H -+ X + 0 

with H, K free of rank K. 
Since G’ I X z H/K, we can write G’ = HI/K; moreover, H’ = K @ G for some 

6 I H with G g G’ as G’ is free. Note that 
(a) H/K and H/(K 0 G) are both K-free 

since the former is isomorphic to X while the latter is isomorphic to X/G’. 
Since H is free, we can write H = @i < K eiA and set H, = & < V eiA; clearly H/Hy 

is free. Now set (K 0 G), = (K 0 G) n H,, K, = K n H, and 6, = ~?n H,. We claim 
there is a cub C’ in K such that 

(b) (K 0 G), = K, 0 5, and 
(c) H/(K @ c”),, H/KY are free for all v E C’. 
To see this consider the following filtrations: K = IJ, < K K,, G = U, < K G,, 

K@G=U ,,.(KO~),andKO~=uU,,K K, 0 G,. Thus we have two K-filtra- 
tions of the module K 0 G and since K is regular uncountable, it follows from [lo, 
Lemma IV 1.41 that there is a cub C” such that (b) holds. A similar argument shows 
that G”, is free for all v in some cub E C”; we continue to call this C”. 

To establish (c) note firstly that it follows from condition ( *) that H/K, is free. 
Moreover, H/(K, 0 G,) = H,/(K, @ G,) 0 @i t V eiA. However H,/(K, 0 G,) = 

H,/(KO~)nH,rH,+(KO~)/(KO~)and U,,JH~+(KOG)/(KOG)] is 
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a K-filtration of the k--free module H/(K @ G) ( z X/G’). Since X/G’ has a K-filtration 
by free modules, there exists a cub Co for which H, + (K @ G)/(K @ G) is free for all 
v E Co. But then H,/(K, @ G,) is free for all v E Co and so H/(Ky @ c,) is free also. Set 
C’ = Con C”, a cub in K; clearly (b) and (c) hold for all v E C’. 

Now set G, = GnF,, D, = Dn F, so that G = u G,, D = u D,. Then by a similar 
argument to the one used above, there is a cub C1 such that F, = G, 0 D,, for all 
v E C1. Set Co = C’n Cr which is again a cub and F, = G, @ D,, K, 0 G, = (K @ G), 
for all v E Co. Since 1 GI = 1 cl, by passing to a suitable cub C in Co, we may assume 
G, is free, rk G, = rk G, and rk K, = rk D, for all v E C. 

Now for v E C we identify G, ++ G,, K, CID, which gives identifications G ++ c”, 
KcrD since C is a cub. Hence GOD = F c H and we show (i)-(iii) in the lemma 
hold. 

(i) H/D = HjK z X and H/F = H/(G 0 D) = H/(G 0 K) z H/K/(6 0 K/K) E 
X/G’. 

(ii) Consider any Fy. Since C is unbounded, there is a v E C with v 2 y and so FJF, 
is free by hypothesis on the chain Fy. Since v E C, F, = G, 0 D, = G, @ K, which is 
a summand of H by (c) above. Hence F, c H as required. 

(iii) Suppose M 2 D and M @ L = H. Then X z H/D = (M 0 L)/D = M/D 0 
(L @ D)/D z X’ @ L for some X’ I X. If L # 0, then by Observation 2.6, L* # 0 
which contradicts X* = 0. This forces M = H as claimed. 0 

Corollary 3.2. Suppose X and G 0 D = F = u y iK F, c H are as in Lemma 3.1 
and EndsX = A. If cp is an R-endomorphism of F which leaves D invariant and 
extends to an endomorphism cp of H, then there is an a E A such that x(cp - a) E D for all 
x E H. 

Proof. If cp E End F is as above and cp extends to an endomorphism of H then it 
induces a homomorphism (p : H/D -+ H/D. Since H/D g X and End,X = A, there 
exists a E A such that (p - a = 0 and so cp - a : H -+ D as required. 0 

4. The main theorem and radicals 

Throughout this section K is a regular cardinal and X is a fixed K-free A-module of 
cardinality K with EndsX = A and X * = 0. 

Let I = K+ and recall from Lemma 2.1 that 1’ = {a E 1 (cfcl = K) is a stationary, 
non-reflecting subset of 1. We remark that for the rest of this section, it would be 
possible to work with any stationary subset of 1’; in particular, by suitable choices of 
such subsets, it would be possible to construct 2” non-isomorphic modules in our 
main theorem. It would be possible also to achieve a similar result by varying the 
module X over a rigid family. However, in the interest of clarity of presentation we 
restrict our attention to the set 1’. 
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Our principal interest here is in the construction of almost-free counter-examples to 
Kaplansky’s Test Problems without assuming V = L. It is well known that, for this 
purpose, it suffices to realize suitable algebras as endomorphism algebras modulo 
a two-sided ideal (cf. [S]). With this in mind we now define a suitable ideal in EndR F, 

where F is a strongly l-free A-module having a filtration F = Uy < I F, by free 

A-modules F, with F, + l/Fy = X, E X for all v E 1’. We shall call such a filtration, the 
X-filtration of F. 

While we are able to replace this ideal by 0 under 0 in this paper, we suspect that it 
will be needed for a result in ZFC. Because of results under 1 CH we know that some 
ideal # 0 is definitely necessary. 

Before we give the appropriate definition, we derive a simple result which, nonethe- 
less, plays a crucial role in our determination of endomorphism algebras. Recall that 
the free radical of an R-module Y is RR( Y ) = n {U I Y I Y/U is a free R-module}. 

Lemma 4.1. If F is an A-module with a given X-filtration and v E ,I’, then ifA isfree as 
an R-module, RB(FB/F,) = F,,, ,/Fy for all fl > v and R,(FB/FV) is fully invariant under 
R-homomorphisms of F,/F,. 

Proof. Since FP/FV/FV+ 1/FV z FB/F,,+ 1 and v + 1 is a successor, it follows that 

Fp/Fv+ I is a free A-module and hence a free R-module since A is free as an R-module. 
It follows easily that R,(FB/FV) I F,, ,/F,. Moreover we may write F, = F,,, i @ C, 
where C is a free R-module and so, if V/Fy I F,+ l/Fy, then F&J z F,, i/U 0 C. 
However, F, + 1 /U is an epimorphic image of X, = F, + 1 /F, and so has trivial dual. But 
now if V/F, = R,(FB/F,), it follows from the definition of R,(FB/FV) as an intersection 
that FB/V is isomorphic to a Cartesian product of free modules. Hence F,/V will have 
non-trivial dual. Moreover by a simple modification of Observation 2.6 the same is 
true of any non-trivial summand of it. However, if I/ I F,,, then as shown above 
taking U = I/, we have that F,, I/V is a direct summand of F,/V having trivial dual. 
This can happen only if F,+ I/V = 0 as required. Finally the invariance of R,(FB/FV) 
follows from the fact that such a radical is a subfunctor of the identity. 0 

Definition 4.2. Suppose F is a I-free, strongly A-free A-module with an X-filtration 

F=Uv<l F,. An R-endomorphism 0 of F is said to be inessential if the set 

S, = {u E 1’ 1 F,o I F, and the induced map 8 : F/Fa + F/F, is zero on X,} 

is a cub in 2’. 

We denote the set of inessential endomorphisms of F by Ines F. The second half of 
the following proposition is crucial. 

Proposition 4.3. Let F be as in Definition 4.2. Then the following hold: 
(i) Ines F is filtration independent, 

(ii) Ines F is an ideal in EndRF. 
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Proof. (i) Suppose S, as above is a cub in 1’ and F = u, < 1 FI is another X- 
filtration, then FI = F, for all v E C’ for some cub C’ in 1. Let SL = {p E 1’ 1 Fia 5 FI, 
and aSIx; = 0} as in Definition 4.2, replacing c( by B. 

Smce C’n S, is a cub and co1 Ix; = 0 for all c( E C’ n S,, we have a cub in lo contained 
in S:. Hence Sb is a cub and 0 is inessential with respect to {Fk}. 

(ii) Since the sum of two mappings which act as zero on cubs again acts as zero on 
a cub, it is immediate that Ines F is closed under addition. Suppose cp E EndRF and 
0 E Ines F. Then F,rp = F, for all CI in some cub C’ in 2 and so (~0)” = cpa# for all 
aE C’nS,. Since 1 is regular, we can find p > a such that (FP/F&p” I F,fF, and 
(P’/~#,~, is then an endomorphism of FJF,. Since X, is the radical of F,/F, by 
Proposition 4.1, X,(p’ I X,. Hence X,(cpo)” = (Xa(pa)cV = 0 for all a E C’nS,. But 
C' n S, is a cub in lo, so S,, is a cub in A. Thus cpa E Ines F. Moreover, if 
a E C’nCnl’, then X,(ocp)” = Xa#qb = (O)@ = 0 and ocp is also inessential. 0 

Remark. Since we usually will show that our modules F have EndR F = A 0 Ines F us 

modules, it would have sufficed to show that Ines F is a right ideal which does not 
require the above radical argument. However, the radical argument used above is 
essential for showing End F = A @ Ines F as a ring-split extension. 

Let O(1’) denote the diamond principle [lo, p. 1391 for 1’ and recall that I/ = L 
implies O(1’). 

Main Theorem 4.4. (O(1’)) Let 1 = K+, where K is either countable or a regular 
uncountable cardial and let X be a tc-free A-module of cardinality K satisfying (*) in 

Section 3 and having endomorphism algebra EndRX = A, which is a free R-module with 
I Al I tc. Then there exists a I-free, strongly I-j?ee A-module (and hence l-free, strongly 

l-free R-module) F such that 

0) IFI = 4 
(ii) EndRF = A, 

(iii) TF = 1’. 

Remark. The invariant TF is defined in [lo, pp. 85-861. 

The construction. 
Case 1: K is uncountable. The module F is constructed by induction as the union of 

a I-filtration {F, I a < A} subject to the following conditions: 
(a) F, is a free A-module for all a < 2, 
(b) if a < /3, a#l’, then F,/F, is a free A-module, 
(c) if /I is a limit ordinal F, = u oL < B F,, 
(d) if /I E lo, F, + 1/F, = X, r X, provided fl is not in case (e) or (f). 
Suppose we have constructed F, for a < j?. 
If cf /? = o, then we can find an ascending sequence p. $ A’, with sup fin = /?. Since 

FIR+, = Fs. @ C,, where C, is a free A-module, it is easy to see that F, = U, < w Fs. = 

FsoO@n<w C,, which is free so that (a) holds. 
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If cf fl > w, then there is a cub C in /3 such that Cn;l” = 8, since 1’ is non-reflecting 
by Lemma 2.1. So there is an ascending sequence a* E /I (a < cf /I) such that a * $ A’, 

supa*=B. A similar argument for the case cf #I = o shows that F, is a free 
A-module. 

If /I = a + 1 and a $ A’, then we choose F,, = F, @ C, where C, is a free A-module of 
rank rc. Observe that conditions (a)-(d) have been satisfied in all of these cases. The 
core of the construction is the remaining case where /I = a + 1 and a E 1’. 

If a E 1’ then cf a = K and we can choose an ascending, continuous sequence 
{fl*Ea(fi<x} with b*$n” and suppiK fl* = a. From conditions (a)-(c) we note 
that the free module F, is the union of an ascending chain of free summands Fp with 
Fge, F,*/Fp* free of rank IC for all fi < v I a. Now apply Step-Lemma 3.1 taking 
identifying Fp* with F, (fl < K) so that F, = F in the Step-Lemma as follows. From 
0 (1’) we have Jensen functions {h, : F, + F,, a E lo} such that for any map h : F + F 

the set {a E lo, hjFd = h,} is stationary in 1. Suppose we can find F, = G, 0 D, with 

D, unbounded in u,<, F,, then we say a E I, if D,h, s D, and a E II if 

0 # h,: F, -P R c F, and D,h, = 0. Decompose 1’ into two stationary sets E, E’. 
(e) If a E En I and h, is a homomorphism which does not induce scalar multiplica- 

tion by an a E A on F,/D,, then choose F,+ 1 = H by (3.1) (identifying F = F,, 
D = D, and G = G,). 

(f) If a E E’nII apply the same construction for the appropriate D, F, G and note 
that induction proceeds as desired. Thus there exists a free A-module H > F, 
such that 

(b’) H/Fp is a free A-module for all /I < IC and H/F, = X, E X/G,. 

Set F,+, = H. Clearly conditions (a) and (d) remain satisfied since H is free and 
H/F, z X. In order to show (b) remains satisfied (which is all that is left to establish 
since (c) is vacuous here), take any y < a with y # 1’ and observe that there is a b < K 
with y < /I * < a; hence Fp/F, is free by induction and F, + 1 /Fgs is free by (b’). Thus (b) 
holds again. 

This completes the construction in Case 1. 

Case 2: K = Ko. The construction in the case K = K. is a simplification of the 
preceding argument. The construction is identical except that in the critical case, 
a E Lo, cf a = K we identify the summands Fp with B, in the simpler Lemma 2.5. No 
further modifications are required. 

Proof of the Main Theorem. For the moment suppose that we know 

(+) F* = Hom(F, R) = 0. 

The module F is a I-free, strongly I-free A-module by construction, so it remains to 
show that (ii) and (iii) hold. Condition (iii) follows immediately from the definition of 
the r-invariant since X is not even projective. 
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Since each F, is an A-module, A acts faithfully on F by scalar multiplication and so 
we have a natural identification of A I End,F. 

Conversely consider any cp E EndR F \ A. We find a cub C” such that F, cp < F, for all 
c1 E C”. Since 1 X,1 = K < 1, regular, we can find p’ > a such that F,+ 1 cp < FBs. Enlarg- 
ing Fpp if necessary, we can find /? 2 /?’ such that FBcp I Fp. Now it follows that 
q induces an endomorphism cp” of F/F, which leaves Fs/Fdl invariant. However it 
follows from Lemma 4.1 that X, is a fully invariant R-submodule of F@/F, and so 
cp”lx. E EndRX,. Thus cpalxz = ua for some ua E A I End,X and this holds for all 
c1 E C”nl’, a set of cardinality 2 > K 2 IAl. 

We now distinguish two cases: 
Case (i): There is a a E C” n 1’ such that the induced map cp” is scalar multiplication 

by some a E A. It follows that cp - a: F -+ F, and by hypothesis on cp, this is 
a non-trivial R-homomorphism. Since F, is a free A-module and A is free qua 
R-module, this gives rise to a non-trivial R-homomorphism from F to R, contrary to 
F* = 0. So this case does not arise. 

Case (ii): For all a E C”n ;1’ the induced map cp” is not scalar multiplication by some 
cc~A.Ifa~C”n1~,choosek,~F,+~suchthatk,Ar=F,+,andk,AnF,=O;thisis 
possible since F,, 1 is a free A-module and F, + ,/F, contains an A-cyclic submodule. 
As seen above, for each x E k,A we find ua E A and f$ E F, such that xcp = xu’ + ft. 
However 1 k,A ( < IC = cf(a) and since K is a regular cardinal, we can find a* < tx such 
that {fax: x E k,A} c F,.. But the map . *. A0 n C” + 1 is a regressive function on 
a stationary set and it follows from Fodor’s Lemma [12, p. 591 that there is 
a stationary set S in lo n C” on which * is constant. There is a fl < 2 such that fax E Ffl 

forallxEk,AandccES.LetD=&.a,B k,A@ F, and set D, = DnF,. The set 

C = {U E /I: D, is unbounded in U,<, FY} is a cub in ;1 and it follows that Dcp E D, 

D,cp s D, for all c1 E C. If the induced map on F/D is scalar multiplication by a E A, 
then cp - a maps F into D and cp = a follows exactly as in Case (i). If the induced map 
is not scalar multiplication, then there exists a E E’n C” n C such that cp IF, = h, and 
cp does not induce scalar multiplication of F,/D,. However the module D, is 

unbounded in u, <d F, since a E C. Moreover, if /? < y < a, then k, A c F, + 1 F, and so 

F, = D, @ G, can be established, thus CI E InE’ and by (e) and Corollary 3.2 h, 
cannot extend to F,+ 1, a contradiction. 

It remains to show ( + ): Suppose 0 # cp E F* and we may assume F* c End F. 

Then the set (cz E E’: 0 # cp IF, = h,} is stationary in ;1. Choose a fixed CI in this set. 
Since cf(a) = IC we can choose an unbounded, strictly increasing continuous sequence 

ofordinals(~*Ea\1~:v < ~c)andf,~FwithF,.Of,AcF~,+~,..SetF:,=O~,~f~A; 

then FL is a free A-module and the quotient F,/Fi is free as well. Now apply Lemma 
2.8 to FL and h, ( F,. . we obtain an unbounded free A-module D, c ker(h,lFh) in F, and 
FL/D, is A-free. Since a E E’n II, the construction followed (f), which gives a contradi- 
tion. 0 
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5. Applications 

Our first application of the Main Theorem in Section 4 can be used to show that the 
Kaplansky Test Problems have a negative answer for strongly K1 -free groups of 
cardinality K1, in ZFC + CH set theory. 

Theorem 5.1. If A is any countable, S-reduced, S-torsion-free R-algebra with AR free, 
then there exists an K1-free, strongly HI-free R-module G of cardinality K1, such that 
EndRG = A. 

Proof. The result will follow immediately from the case K = K0 of our Main Theorem 
(Theorem 4.4), if we can exhibit an R-module X satisfying condition ( * ) of Section 
3 with EndRX = A. Now it follows from a well-known result of Corner [l] (which has 
been extended to our present “(R, S) context” by Corner in an unpublished paper [4]) 
that any such algebra A is the full endomorphism algebra of a countable, S-reduced, 
S-torsion-free R-module X where X is a pure submodule of A^ containing A. Corner’s 
result appears as a special case in [14], where R is not necessarily countable. 
Moreover it follows from these constructions that X contains a free A-module Y with 
A 5 Y I A^ such that X = (Y )* I A^. Suppose Y = @iel eiA, see Section 1 for our 
terminology. 

Choose independent elements ef E A\A such that q2e? = ei; this is possible since 
A is dense in A. Set X1 = Y, Xz = @ ,EI e:A. Continue in this fashion defining 
independent elements el’ ’ E A\ A such that qn+ 1 el+’ = el and let X,+ 1 = 

@i el+‘A@ X,. 
Then each X, is a free A-module and clearly X = u n < w X,. However, as noted in 

Observation 3.0, such a module X automatically satisfies condition ( e). 

There are, of course, many consequences of such a theorem describing pathological 
behaviour of module theory; see [S] for details. We restrict here to one example, 
phrased for Abelian groups but which obviously holds in a more general setting, 
which simultaneously defeats the Kaplansky Test Problems. Note that, as observed in 
the Introduction, strongly K-free Abelian groups are necessarily x-free. 

Corollary 5.2. For any positive integer r, there exists a strongly K, -free Abelian group 
G of cardinal&y K1 such that GCm) E G(“) if and only if m = n mod r. 

Proof. Take A to be the ring ZA constructed by Corner in [2]; see [ll, The- 
orem 9.161. Then AZ is free and the result follows from Theorem 5.1 by an argument 
similar to that of Corner [3]. 0 

A curious consequence of the above examples is that whereas a single 
cardinal number (the rank) suffices to classify free modules, no additive cardinal 
invariants can hope to classify strongly K,-free modules. 
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