
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics 

1991 

On Separable Torsion- Free Modules of Countable Density On Separable Torsion- Free Modules of Countable Density 

Character Character 

R. Gobel 
Fachbereich 6, Mathematik, Universitiit Essen GHS, 04300 Essen 1, Germany 

Brendan Goldsmith 
Technological University Dublin, brendan.goldsmith@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Gobel, R. & Goldsmith, B. (1991). On Separable Torsion-Free Modules of Countable Density Character. 
Journal of Algebra, vol. 144, no. 1, pg. 79-87. doi:10.1016/0021-8693(91)90128-U 

This Article is brought to you for free and open access by 
the School of Mathematics at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Arrow@dit

https://core.ac.uk/display/301312885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


JOURNAL OF ALGEBRA 14, 79-87 (1991) 

On Separable Torsion-Free Modules of 
Countable Density Character* 

R. G~BEL 

Fachbereich 6, Mathematik, Universitiit Essen GHS, 
04300 Essen 1, Germany 

AND 

B. GOLDSMITH 

Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland; and 
Dublin Institute of Advanced Studies, Dublin 4, Ireland 

Communicated by Barbara Osofsky 

Received October 24, 1989 

The endomorphism algebras of modules of large cardinalities have been 
extensively studied in recent years using the combinatorial set-theoretic 
techniques of Shelah-the so-called black-box methods (see, e.g., [4, 5, 
151). Despite the spectacular success of these methods, they are not 
suitable for realization theorems at small carinalities. Of course at the level 
of countability (or rather more generally for cardinals ~2’~) there are in 
some cases the original dramatic results of A. L. S. Corner [ 1, 2, 31 and the 
more recent generalizations of Gobel and May [ 111. Very recently the 
study of realization problems at cardinalities <2@’ has been relooked at in 
[S, 131 in relation to separable torsion-free abelian groups (and some 
generalizations to modules). In the latter paper a new type of support argu- 
ment (which has roots in a much earlier work [12]) was introduced in an 
effort to circumvent the lack of a “black box.” It is this technique, which 
we exploit in the present paper to derive a basic realization result (Proposi- 
tion 4), which can be readily adopted to, e.g., separable torsion-free abelian 
groups or modules over a complete discrete valuation ring. Among others 
we derive the following simple result, which appears to be new. 

THEOREM 8. If A is a torsion-free algebra over a complete discrete valua- 
tion ring R and A is generated by <2 N0 elements as an R-module, then there 

*This work was written under Contract S-Z/014/88 from Eolas, the Irish Science and 
Technology Agency. 
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exists a free R-module F of countable rank and a pure s&module G off 
containing F such that E(G) = A @ E,(G). 

Here, as throughout, p refers to a suitable completion (in this case 
p-adic) of F and E,(G) denotes the ideal of all finite rank endomorphisms 
of G. 

Note that the module G has countable “basic rank” and that this is 
typical of all our results: all realizations are, in the usual terminology of 
topology, of “countable density character.” 

However, it should be pointed out that, unlike in the situation for cotor- 
sion-free algebras [ 111, the module G always has rank 2a”. This, however, 
is no mere coincidence for modules with our “separability-like” properties; 
this must always hold as we now show. Suppose that F= ei<,, eiR is a 
free R-module for some commutative ring R and G is a pure submodule of 
p, where Adenotes completion in some suitable adic-like topology. Then 
we have 

PROPOSITION 1. If F < G < p, where G is pure in P and rank G < 2 X0 then 
rk(E(G)/E,-,(G)) 2 2% 

Proof: Suppose that E(G)/E,(G) has rank < 2’O. Let X denote a family 
of 2Ko almost-disjoint subsets of o and let zX (XE 2) denote the projection 
P-+ GieX (eiR) 1 If each xx /’ G is an endomorphism of G for all X in 
some &” c 2 of size 2%, then the family zX + E,(G) (XE Z’) is a family 
of 2’O elements of E(G)/E,(G) and moreover they are independent by the 
almost-disjoint property of %. Thus we conclude that there exist 2”’ 
subsets X such that n, r G is not an endomorphism of G. Hence there exist 
elements gXE G such that g,n, is not in G. But it follows from a simple 
support argument (remember that the x’s are almost disjoint) that the 
elements g, are independent elements of G and rank G = 2%, a contra- 
diction. 

We remark that of course there are situations in which E(G)/E,(G) has 
rank 2’O, e.g., take G = F. Since Cartesian products may be regarded as 
submodules of suitable completions, the above result clearly holds for 
separable abelian groups. 

It is of course, quite standard to apply such realization theorems to 
obtain various pathological decomposition properties. For torsion-free 
separable abelian groups these have been discussed in, e.g., [6] while the 
situation in relation to modules over complete discrete valuation rings is 
discussed in [7]. 

We close this introduction by noting that standard algebraic terms may 
be found in Fuchs [9], our terminology and notations largely agree with 
those in [9] with the exception that we write maps on the right. The book 
[ 143 contains all the necessary references for matters relating to set theory. 
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Let R be a commutative Noetherian ring and we always assume 1 #O. 
Under this assumption, the set E,(G) becomes a two-sided ideal of E(G) 
for any R-module G and hence E(G)/E,(G) is an R-algebra as desired. Let 
S < R be a countable multiplicatively closed subset consisting of non-zero 
divisors (and 1 E S) such that n sR = 0. The S-topology on an R-module A4 
has the submodules (A4 : s E S} as a basis of neighbourhoods of zero. Such 
a topology is of course Hausdorff precisely if nSES sM= 0 or, in a more 
algebraic spirit, if and only if M is S-reduced. We denote the completion 
of such an S-reduced module M by A?. In a similar fashion we have the 
notions of S-pure, S-dense, S-divisible, and S-torsion free (see, e.g., [3, 4, 
5, 10, 111, where such notions have been extensively used previously). 
Since there is no possibility of ambiguity we drop the prefix S when 
referring to the above notions. 

Finally we note that there is no loss in generality in labelling the 
elements of S as sr, . . . . s,,, . . . . where we require that s, 1 s, + r, which means 
s, + r E s, R and then it follows that if s E S then s 1 s, for almost all n. 

Let F= @ isw eiR be a free R-module of countable rank. Set 
B= On<, B,, where each B, is isomorphic to l? We make B into an E(F)- 
module as follows: If x = C b,, b, E B,, is an element of B, then we define, 
for 0 in E(F), x0* = C, (b,8) (cf. [8]). We normally identify 8* with 8. In 
a similar fashion we can define an action of E(E) on R. 

We always work within the module (B n n,,, B,) and accordingly we 
define supports of such elements in the normal way: 

if x~(knnB,) then [x]={n~~(b,#O, where x=C,.,b, is 
in (firm B,)). 

In an attempt to mirror some constructions normally carried out in 
larger cardinalities via black-box combinatorics, we introduce an addi- 
tional notion of *-support: Choose any family X’ E S(o) which satisfies 

(a) all XE 2 are infinite 
(b) if X, YE X and IXn YI is infinite, then X= Y 
(c) pe”) =2xo 

(d) X is maximal with respect to (a)-(c). 

It is well known that such “almost-disjoint” families exist. They have 
been used already in [S, 12, 131. We now choose one such H and keep it 
fixed throughout the remainder of the paper. By analogy with the tree 
wpo, we call the elements of Z branches. Let B denote the submodule of 
(8 n n B,) defined by 
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If E E Z, then we write BE to denote the submodule obtained by replacing 
2 with E above. If u E 8, define the *-support [u]* of u to be 

[u]*={Y~~::u~,,.,(,i). 

The following observation follows immediately and is similar to [4, p. 4561 
(cf. [ 13, Lemma 4.31). 

RECOGNITION LEMMA. (a) Zf u E B, then [u]* is finite. 
(b) u~i?, if and only if [u]* E E and [u]* is finite. 

Given a branch XE &‘, we define an X-element b as follows: Take any 
bijection z: X-t o; then using the definition of F as 0 ic (o e,R, erCnl E F for 
each nE X. Then the X-element b, which we also denote vx, is given by 
vX=CnEX 6, with b, = ercnl.s,, if n E X and 0 otherwise. Clearly [ox] =X 
and [v,]* = {X}. 

If X is not specified, we call vx an Z-element. 
We also have a simple but useful finite recognition lemma. Observe that 

B is an E(F)-module under the identification 19 = 19* from above. 

LEMMA 2. If X is a branch and 0~ E(F) and [vxe] is finite then 
0 E E,,(E). 

Proof Observe that F= eieo e,R and hence it suffices to show that 
e, 8 = 0 for almost all n E o. By definition of the action of E(p) we have that 
u,0 = v,8* = C,, x (b,8), where vx = C b, with 6, = ercnlS,. But then 
[v.J3] finite implies b,8 = 0 for almost all n. Hence ercnJO = 0 for almost all 
n and so 0 E E,,(E). 

For technical reasons we need the following property (P) of a ring R 
related to homomorphisms from E,(B). The concept has clear connections 
with the notion of slenderness and N,-cotorsion freedom (See, e.g., [4].) 

(P) If G is any torsion-free, reduced R-module which is generated by 
~2’~ elements then every homomorphism z: B-, G has finite rank. 

Property (P) is established in Lemma 7 for a complete discrete valuation 
ring and is a familiar fact for R = Z; this has been extended recently for the 
more general rings discussed in Theorem 5 in [ 131. 

The following simple lemma collects together some useful consequences 
of the action of E(E) on B. 

LEMMA 3. (a) E(P)n E,(B)= {O}. 
(b) If A is a pure submodule of E(p) and BA < B then A is pure in 

E(B) and A @ E,(B) is pure in E(B). 
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Proof. (a) Suppose 6 E B(E) and 6 # 0. Then there exists e, E F such 
that e,6 is a non-zero element, e,6 =x, say. Choose any branch X in 2 
and without loss identify X with o. Set b, = x E B, for each n E X. Then the 
e1ements yk = cn s k, n E x b, are linearly independent elements of B and 
y, = tk6 for a suitable tk E B. This contradicts 6 E E,(B) and so we conclude 
that 6 = 0. 

(b) If z E A n sE(B) then since any component B,, of B is left 
invariant by the action of A, r f 8, is a multiple of s and so purity in E(k) 
gives the first result immediately. Clearly from (a), A n E,(B) = (0) and so 
A @E,(B) < E(B). However, if 8 E E(B) and s9 = a + q, where a EA, 
q E E,(B), then if x E B\ & then xs6’ = xa + a~, and so s ( a, say, a = sa’. But 
then s(0 - a’) E E,(B) and since this is certainly pure in E(B) the result 
follows. 

Notation. Let A*=((s,a)~s~Su(O}, UE A} and let A denote the 
subset of A* obtained by restricting the first component to S. 

PROPOSITION 4. Let A be a subalgebra of E(p) satisfying: 

(a) A is generated by ~2’~ elements as an R-module 
(b) A is pure in E(P); 

then provided the module B satisfies property (P), there exists a pure 
submodule G of i? containing B such that 

E(G) = A 0 E,(G). 

Proof. We construct the desired R-module G by induction, eliminating 
unwanted homomorphisms one at a time. Since Hom(B, B) d 
Hom(B, B) E (6)” and lBl= 2Ko we conclude that Hom(B, 8) has car- 
dinality at most 2K0. Enumerate the elements of Hom(B, B)\ A + E,(B) as 
{ 4, : a E 2%). Now construct inductively a sequence of pure submodules G, 
of B and elements g, as follows: Set G, = (BA ), and if G, (y < a) has been 
constructedthenweset G,+,=(G,,g,A),<BorG,=U,,,G,if1isa 
limit. 

The elements g, are required to satisfy 

(1) gA4 (GE, g,A), and (II,) g&p 4: G, for all /? < y. 

Accepting for the moment the existence of such elements {g, : u E 2%}, 
set G = U G,. It follows immediately (making the usual identification of 
functions and their extensions) that E(G) < A + E,(B). However, G is 
clearly A-invariant and so it follows from the modular law that 
E(G)=A+ (E(G)nE,(@}. M oreover since {E(G) n E,(B)} = E,,(G) it 
follows from Lemma 3(b) that E(G) = A 0 E,(G). Thus it only remains to 
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establish the existence of suitable elements (g,} satisfying (I) and (II,) for 
y G u. 

So assume that the submodules G, (y < cz) and elements gB (fl< a) have 
been constructed and satisfy (I) and (II,) for y 6 ~1. It clearly suffices to find 
g,EBsuch that (1) gd,$ (G,, g,A), and (IL+l) gpbp$ CC,, gJ), for 
b< CI. Observe that the inductive construction shows that each G, is 
generated by <2 no elements as an R-module. 

Since 4, $A +,5’,,(B), it follows from (b) and Lemma 3 that 
$4, -a $ E,,(B) for all (s, a) EA. Then since G, is generated by <2’O 
elements and B satisfies property (P) by assumption (b), we conclude that 
there exists an element u,, E i? such that ~,,(sq4~ -a) +! G, for all (s, a) E A. 
Now consider the submodule 

T, = G, + Bn (~,A@, - 61, g&A-a), g&al B < ~9 

(s, ~1, (f, b)EA*). 

Since T, is generated by ~2’~ elements as an R-module, it follows that the 
family T,* = ((U [u]* : UE T,)} has cardinality less than 2”‘. So there 
exists a branch XE 2 such that X$ T,. Now consider the X-element 
b,= v,. If bad,+ (G,, b,A)* choose g,= b,. Otherwise we can find 
(s, a) E A with b,(sd, - a) E G,. In this case set g, = b, + v,,. Claim that (I) 
holds for either choice of g,. We need only to check the second type of 
choice of g,. If (I) does not hold then (b, + u,,)( ~5, -b) E G, for some (t, b) 
in A. As noted earlier we may assume, without loss, that sJ t and write 
t = qs. Then on subtracting we get 

x=b,(b-qu)-v,,t+,+u,,bizG,<TT,. 

But b,(b-qu) is thus an element of T, since u,(@~ - b)E T,. But this 
implies [b,(b - qu)]* E T,* and since b was an X-element for some X# T*, 
this can only happen if [b,(b - qa)] is finite. Since b, is an X-element, this 
implies, by Lemma 2, that b - qu E EO(p) n A = 0. But then the element x 
above reduces to qvs,(sb, - a) and XE G,. Purity now forces 
u~J.s~~ - a) E G,, a contradiction. So we conclude that (I) holds for g,. 

Finally suppose gp4,E <G,, g,A), for some p < CL. Then 
tgpq5p -g, b E G, < T, for some (t, b) E A. If g, was an &“-element b, then 
clearly b,b E T, ; if, however, g, was given by g, = b, + u,, then 
b,b + u,,b + ‘gads E T, and again b,b E T, since both other terms belong to 
T, by definition. So in either case [b,b]* E T,* and as above this forces 
b = 0. But then gs#s E G,, contrary to the induction hypothesis. So (II, + i) 
holds and the proof is completed by the observation that G is generated by 
<2”O elements since the chain G, has length 2%. 

With the aid of some results established in [13] we can easily deduce the 
principal result in that work: 
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THEOREM 5. Let R be a commutative Noetherian ring of cardinality 
<2X0 (in the case (RI = 2u” we demand that R be slender) which is torsion- 

free and reduced as an R-module. Then tf A is a subalgebra of E(P), where 
P = R”, satisfying: 

(a) A is generated by <2u” elements as an R-module 

(b) DA < D for the S-adic closure D of C = R(“) in P 

(c) A is a pure R-submodule of P 

then there exists a pure submodule G of P” (g P) containing B = C’“’ such 
that E(G) = A 0 E,(G). 

Remark. We require the restriction that R be Noetherian in order to 
conclude that E(G)/E,(G) is an R-algebra (cf. introductory information). 

Proof. We deduce this result from Proposition 4: Identify P d B, for 
each n and then P” < n B,. Note also that this identification gives B < P” 
and the inclusion is pure. Since B < G and G is pure in B, we deduce that 
G is a pure submodule of P” containing the corresponding direct sum B. 
It only remains to show that B satisfies the property (P). This, however, 
follows from (b), Lemma 3.4, and Corollary 4.5 of [13]. 

In the case R = H and IAl = HO (i.e., for Abelian groups), the above is a 
realization theorem on separable torsion-free abelian groups which extends 
results in [8]. 

Rather surprisingly for modules over a complete discrete valuation ring 
R (taking S = { pk : p prime in R, k < w } as usual) we easily derive a result 
which appears to be new: 

THEOREM 6. Let R be a complete discrete valuation ring and suppose A 
is any R-algebra which satisfies: 

(i) A is a pure subalgebra of E(F), where F is a free R-module of 
countable rank. 

(ii) A is generated by <2 us elements as an R-module. 

Then there exists a free R-module C of countable rank and an R-module G 
with C < * G < * C such that E(G) = A 0 E,(G). 

Proof We apply Proposition 4 to this situation as follows: 
B=B+C,,, ((0..xBn)An17 neX B,) is clearly pure in 8 and so if we 
set C = B then it oly remains to check that B satisfies property (P). Since 
this follows from Lemma 7 below, the result follows immediately from 
Proposition 4. 
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LEMMA 7. Let R be a complete discrete valuation ring and let G be an 
R-module which is generated by <2’O elements. Then every homomorphism 
4: B -+ G has finite rank. 

Proof Since R is a complete discrete valuation ring, the module B we 
are using is given by B= B+C,,, (QnEx Bh): where B= @,,,,, B, and 
B, = E with F a free R-module of countable rank. 

Let E= (~EUJ: B,d#O}. If XE% is a branch then 4 j’(@..xB,)^ 
maps into G. However, since G is generated by ~2”’ elements it must be 
K,-cotorsion free (since a completion of a countable rank module must 
have rank NF = 2”‘) and so B,,$ = 0 for almost all n in X. Thus Xn E is 
finite for all branches XE 3’. Since # was a maximal almost disjoint 
family we conclude E is finite and then 4 has finite rank as required. 

It is possible to derive abstract realization theorems from Theorems 5 
and 6 by imposing suitable restrictions on the algebra A. In the case of 
separable torsion-free Abelian groups such conditions are stated in [6]: 
The algebra A has free additive group A + = @ ia I eZ, and if A^ is the Z-adic 
completion of A + then A = 2 n nis I e,Z is an A-submodule of 2. 

For modules over a complete discrete valuation ring R we have the 
following: 

THEOREM 8. If A is an algebra over a complete discrete valuation ring R 
and A is generated by ~2’~ elements as an R-module then there exists a free 
R-module F of countable rank and a pure submodule G of F containing F 
such that E(G) = A 0 E,(G). 

Proof The proof follows from the proof of Theorem 6, and it will suf- 
lice to exhibit a free R-module F of countable rank such that A <* E(F) 
and A n E,(F) = 0. This can be easily achieved by setting H = a,,, e,A 
and choosing a basic submodule C of A; the restriction on A ensures that 
C can be chosen to be of at most countable rank. Then F= @ e, C < H < F 
and F is free of countable rank. Let A act by scalar mutliplication on H 
and extend this to k Then if follows immediately that A n E,(F) = 0 and 
A is pure in E(F). 
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