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Torsion-Free Weakly Transitive Abelian

Groups

Brendan Goldsmith and Lutz Strüngmann ∗

School of Mathematics and Sciences, Dublin Institute of Technology,

Dublin, Ireland

Fachbereich 6, Mathematik, Universität Duisburg-Essen,

Germany

Abstract

We introduce the notion of weak transitivity for torsion-free abelian groups. A

torsion-free abelian group G is called weakly transitive if for any pair of elements

x, y ∈ G and endomorphisms ϕ, ψ ∈ End(G) such that xϕ = y, yψ = x there exists

an automorphism of G mapping x onto y. It is shown that every suitable ring can be

realized as the endomorphism ring of a weakly transitive torsion-free abelian group and

we characterize up to a number theoretical property the separable weakly transitive

torsion-free abelian groups.

INTRODUCTION

The notions of transitivity and full transitivity were introduced in 1954 by Kaplansky (1969)
in the context of his study of abelian p-groups or, equivalently, in the context of primary
modules over a complete discrete valuation ring. Since then the notions have been ex-
tensively studied and the concepts have been widened to include torsion-free and mixed
abelian groups and modules see e.g. Carroll and Goldsmith (1996), Corner (1976), Files and
Goldsmith (1998), Grinshpon (1982), Hennecke (1999), Hill (1969), Megibben (1966), Paras
and Strüngmann (2003) for the torsion case, Files (1996, 1997), Hennecke and Strüngmann
(2000) for the mixed case and Dobrusin (1985), Dugas and Shelah (1989), Grinshpon (1982),

Mathematics Subject Classification (2000): 20K01, 20K10, 20K30.
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Grinshpon and Misyakov (1986, 1991), Hausen (1987) and Krylov (1986, 1989) for the
torsion-free case. Recall that an abelian p-group G is said to be (fully) transitive if for any
x, y ∈ G with (UG(x) ≤ UG(y)) UG(x) = UG(y) there exists an (endomorphism) automor-
phism of G mapping x onto y. Here the Ulm sequence UG(z), for any z ∈ G, is the sequence
of heights htG(z), htG(pz), · · · and such sequences are ordered pointwise - see Kaplansky
(1969) for further details. A similar definition holds for a torsion-free abelian group G with
the Ulm sequences in the definition being replaced by the corresponding height sequences
htGp1

(z), htGp2
(z), · · · where {pn : n ∈ N} is the set of primes in their natural order. It will

be convenient to continue to denote the height sequence in this torsion-free case by UG(x).
Generalizing these transitivity concepts to arbitrary abelian groups is not easy since the
concepts are phrased in terms of elements and indicator sequences (height sequences); note
that Files (1996, 1997) has introduced some generalizations for local mixed groups. In the
present work we introduce a transitivity-type concept which avoids reference to indicator
sequences: we say that an abelian group G is weakly transitive if for any pair of elements
x, y ∈ G and endomorphisms ϕ,ψ of G such that xϕ = y and yψ = x there exists an auto-
morphism of G mapping x onto y. After some observations about mixed abelian groups we
focus on the torsion-free situation and show that the class of weakly transitive abelian groups
is extensive and coincides with neither the class of transitive nor the class of fully transitive
abelian groups. In particular we consider separable torsion-free abelian groups and among
those characterize the weakly transitive ones up to some number theoretical problem. In
addition to the advantage of having a concept of transitivity which is ”indicator-sequence
free”, the simple fact that a fully transitive group is transitive if and only if it is weakly
transitive makes this latter concept a natural object to study. Moreover, in the P -local case,
where P is a finite set of primes, transitivity implies full transitivity, hence weak transitivity
is exactly the missing property that distinguishes the P -local transitive torsion-free groups
from the fully transitive ones.
Henceforth all references to a “group” shall mean an additively written abelian group;
automorphism groups which will always be written multiplicatively may, of course, be non-
abelian. Our notation is standard and may be found in Fuchs (1970, 1973) which also
contains all the fundamental concepts used herein; an exception is that mappings are writ-
ten on the right. The monograph of Kaplansky (1969) provides a detailed discussion of the
fundamental concepts of transitivity and full transitivity (for p-groups).

1. GENERAL OBSERVATIONS

In this section we start by introducing the new concept of weak transitivity for abelian
groups.
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Definition 1.1 Let G be a group. Then G is called weakly transitive if for any pair of
elements x, y ∈ G there exists an automorphism φ of G mapping x onto y if and only if
there exist endomorphisms ϕ, ψ of G such that xϕ = y and yψ = x.

Our first aim is to show that it is necessary to understand the torsion-free weakly tran-
sitive groups in order to understand the weakly transitive groups in general. Later on we
shall deal with the torsion-free case while the torsion case is taken care of in Goldsmith and
Strüngmann (submitted).
Recall that a fully invariant (characteristic) subgroup H of a group G is a subgroup that is
invariant under all endomorphisms (automorphisms) of G.

Lemma 1.2 Let G be a weakly transitive group and H a characteristic summand of G, then
H is weakly transitive.

Proof. Let x, y ∈ H and ϕ,ψ ∈ End(H) such that xϕ = y and yψ = x. Since H is a
summand of G we can find ϕ′, ψ′ ∈ End(G) such that xϕ′ = y and yψ′ = x. Because G is
weakly transitive there is an automorphism α of G mapping x onto y. By the invariance of
H in G, α �H is an automorphism of H. Therefore H is weakly transitive. �

The following well-known result is an easy exercise:

Lemma 1.3 Let G = G1 ⊕ G2 be any group such that Hom(G1, G2) = 0. If α is an
automorphism of G and π1 and π2 are the canonical projections onto G1 and G2 respectively,
then (απ1) �G1 and (απ2) �G2 are automorphisms of G1 and G2 respectively.

Elementary results on weak transitivity can be summarized in:

Proposition 1.4 The following hold.

(i) Let G = G1 ⊕ G2 be any group such that Hom(G1, G2) = 0. If G is weakly transitive,
then G1 and G2 are weakly transitive. In particular if G is weakly transitive and
G = T ⊕ H with T torsion and H torsion-free, then T and H are weakly transitive.

(ii) Let {Gi : i ∈ I} be a family of weakly transitive groups with Hom(Gi, Gj) = 0 for
i �= j ∈ I. Then the direct sum

⊕
i∈I

Gi and the cartesian product
∏
i∈I

Gi are weakly

transitive.

Proof. Part (i) follows easily from Lemma 1.3. To show (ii) it suffices to observe that
mappings of a direct sum or cartesian product can be reduced to actions on the components
via a combination of canonical injections and projections. �
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2. TORSION-FREE GROUPS

As we have seen in the last section it is reasonable to study torsion-free weakly transitive
groups in order to get insight into the structure of weakly transitive groups.
Recall from the introduction that a torsion-free group G is (fully) transitive if for any x, y ∈ G

with (UG(x) ≤ UG(y)) UG(x) = UG(y) there exists an (endomorphism) automorphism of
G mapping x onto y. The group G is P -local for a set of primes P if G is divisible by all
primes not in P . Our next result is straight forward but nevertheless is fundamental to our
approach.

Lemma 2.5 A torsion-free fully transitive group is transitive if and only if G is weakly
transitive.

Lemma 2.6 Let P be a finite set of primes and G be a torsion-free P -local group. If G is
transitive, then G is fully transitive.

Proof. Let x, y ∈ G such that UG(x) ≤ UG(y). Since G is P -local and P is a finite set
there exists y′ ∈ G such that UG(x) = UG(y′) and y = ny′ for some natural number n. By
transitivity there is an automorphism α of G mapping x onto y′. Hence nα maps x onto y

and therefore G is fully transitive. �

Corollary 2.7 Let P be a finite set of primes and G be a torsion-free P -local group. Then
G is transitive if and only if it is fully transitive and weakly transitive.

Proof. Combine Lemma 2.5 and Lemma 2.6. �

After having clarified the relationship between (fully) transitive and weakly transitive
groups we show that torsion-free weakly transitive groups exist in abundance.

Proposition 2.8 Let G be an abelian group such that any non-trivial endomorphism of G

is monic. Then G is weakly transitive.

Proof. Let 0 �= x, y ∈ G and ϕ,ψ ∈ End(G) such that xϕ = y and yψ = x. Hence
xϕψ = x and therefore x(ϕψ − idG) = 0. By assumption we obtain ϕψ = idG and similarly
ψϕ = idG. Thus ϕ (and also ψ) is an automorphism of G mapping x onto y. �

Lemma 2.9 Let G be a torsion-free group such that G is cyclic over its endomorphism ring.
If End(G), the endomorphism ring of G, is a domain, then G is weakly transitive.
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Proof. Let R = End(G) and G = xR for some x ∈ G. We claim that every non-trivial
endomorphism of G is monic and hence Proposition 2.8 applies. Let 0 �= ϕ ∈ R and assume
that yϕ = 0 for some 0 �= y ∈ G. Write y = xψ with 0 �= ψ ∈ R. Then xψϕ = 0 but R

is commutative, hence (xγ)ψϕ = (xψϕ)γ = 0 for every γ ∈ R. Thus ψϕ = 0 and therefore
ϕ = 0 since R is a domain hence has no zero-divisors - contradiction. �

For the following examples recall that a commutative unital ring is an E-ring if all
endomorphisms of the additive group of R are multiplications by elements of R.

Example 2.10 Let G be a torsion-free group. Then G is weakly transitive if any of the
following conditions is satisfied:

(i) G is of finite rank and End(G) has no non-trivial zero-divisors;

(ii) G is of finite rank and Q ⊗ End(G) is a division algebra;

(iii) G is the additive group of an E-ring R which is a domain.

Proof. By Arnold (1980) Proposition 6.1 the assumptions in (i) and (ii) are equivalent
to the property that every non-trivial endomorphism of G is monic. Hence Proposition 2.8
implies that G is weakly transitive. To prove (iii) note that G is trivially cyclic over its
endomorphism ring and hence Lemma 2.9 gives the desired result. �

Note that E-rings which are domains exist in abundance; the construction of an E-ring
of arbitrary large cardinality given in Dugas, Mader and Vinsonhaler (1987) will yield a
domain provided the initial ring used is a domain.
For the last theorem of this section assume that R is an arbitrary ring with 1 and let S

be a countable multiplicatively closed subset of Z(R), the center of R consisting of non
zero-divisors. Hence S induces a Hausdorff topology on any S-reduced and S-torsion-free
R-module M by choosing Mqn as a basis of neighbourhoods of 0 where qn = s1 · · · sn for
n ∈ ω. Here we say that M is S-torsion-free if ms �= 0 for 0 �= m ∈ M and s ∈ S; and M is
S-reduced if

⋂
s∈S

Ms = 0. Finally, M is S-cotorsion-free if Hom(R̂, M) = 0, where R̂ is the

completion of R in the topology induced by S (see also Corner and Göbel (1985)). We shall
assume that R is S-reduced and S-torsion-free. Note that if R has no zero-divisors, then
S = Z or S = {pn : n ∈ ω} (p a prime) could be chosen.

Theorem 2.11 Let R have no zero-divisors. If R is S-reduced, S-torsion-free and S-
cotorsion-free, then R is the endomorphism ring of a weakly transitive torsion-free group
of arbitrarily large cardinality.
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Proof. It is well-known (see Corner and Göbel (1985)) that such a ring R can be realized
as the endomorphism ring of a torsion-free abelian group G of arbitrarily large cardinality.
We claim that all endomorphisms of G are monic, hence Proposition 2.8 implies that G is
weakly transitive. Let λ = |G|. By the standard construction G is the union of a smooth
increasing sequence of subgroups Gα (α < λ). Moreover, G is sandwiched between a free
R-module G0 = B =

⊕
α<λ

eαR and its completion B̂ in the S-topology on B. Since B is

R-torsion-free also its completion (and therefore G) is R-torsion-free. Thus each endomor-
phism of R is monic and hence G is weakly transitive. �

We would like to remark that one can weaken the assumption in the above theorem to
the property that R is right-cancelable which means that rr′ = 0 for r, r′ ∈ R implies r′ = 0.
Note that this shows the existence of weakly transitive groups with highly pathological
decompositions; by realizing an appropriate ring of Corner-Leavitt type - see e.g. Fuchs
(1973) Theorem 91.6 - there exists a weakly transitive torsion-free abelian group G such
that G ∼= G3 but G �∼= G2. Hence G and G3 are weakly transitive and it would be interesting
to know if also G2 is weakly transitive (see Theorem 3.33).

3. SEPARABLE TORSION-FREE GROUPS

In this section we shall consider separable torsion-free groups, in particular completely de-
composable groups. Recall that a completely decomposable group is a direct sum of subgroups
of the rationals Q. In the sequel we shall use notations as in Mader (2000). A rational group
R (a subgroup of Q) is uniquely determined by its type which will usually be denoted by
tp(R). The set of types form a lattice and a type τ is called idempotent if τ = tp(R) for some
subring R of Q. Since there is no loss of generality we will always assume that a rational
group R contains 1. If G is a torsion-free group, then the type tp(x) of an element x ∈ G

is tp(〈x〉∗), the type of the pure subgroup generated by x inside G. The height sequence or
characteristic (htp1(x), htp2(x), · · · ) of x is denoted by χ(x). Finally, the typeset Tst(G) of
a torsion-free group G is the set {tp(x) : x ∈ G} and if τ ∈ Tst(G), then the type subgroups
are defined by

G(τ) = {x ∈ G : tp(x) ≥ τ}
G�(τ) = 〈x ∈ G : tp(x) > τ〉∗ .

The critical typeset Tcr(G) is the set of all types τ ∈ Tst(G) such that G(τ)/G�(τ) is non-
trivial. For further results and details on completely decomposable groups we refer to Mader
(2000).
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The first two examples show that a completely decomposable group of finite rank need
be neither transitive nor fully transitive.

Example 3.12 Let R and S be two rational groups of incomparable idempotent type and
let p be a prime such that R is p-divisible but S is not. Then S ⊕R is not (fully) transitive.

Proof. Since R and S are of incomparable type it is clear that any (endomorphism)
automorphism of S ⊕ R is of the form α ⊕ β where α is an (endomorphism) automorphism
of R and β an (endomorphism) automorphism of S. Obviously, the elements (1, 1) and
(p, 1) have the same characteristic in S ⊕ R but can not be mapped onto each other by an
(endomorphism) automorphism of S ⊕ R. �

Even a completely decomposable group with linearly ordered critical typeset need not
be (fully) transitive.

Example 3.13 Let τ1 = Z, τ2 = Z(2), and let A = τ1v1 ⊕ τ2v2. Then Tcr(A) = {τ1, τ2} is
linearly ordered but A is not (fully) transitive.

Proof. Consider the element x = 3v1 + v2. Then tp(x) = Z = tp(v1). In particular,
Zx is pure in A, but it cannot be a direct summand as A = Zx ⊕ B would imply that
B = A�(τ1) = τ2v2 and further that A = τ1(3v1) ⊕ τ2v2. There cannot be an (endomor-
phism) automorphism α of A with xα = v1 since this would imply that A = Zx ⊕ τ2v2

( 1
3 �∈ End(Z)). �

Let us remark that generalizing the above examples one can show that the only (fully)
transitive completely decomposable groups of finite rank are in fact the homogeneous ones.

Lemma 3.14 A homogeneous completely decomposable group H is weakly transitive, tran-
sitive and fully transitive.

Proof. It suffices to prove that H is fully transitive and transitive since transitivity
implies weak transitivity. Let x, y ∈ H such that χ(x) = χ(y) (χ(x) ≤ χ(y)) By Fuchs
(1973) Lemma 86.8 we obtain H = 〈x〉∗ ⊕ H1 and H = 〈y〉∗ ⊕ H2. Clearly, H1 and H2 are
isomorphic, say α is an isomorphism. It is easy to see that we can construct an isomorphism
(endomorphism) β : 〈x〉∗ → 〈y〉∗ which maps x onto y. The sum α ⊕ β is as required. �

Corollary 3.15 If {Cτ : τ ∈ T} is a family of completely decomposable groups such that
each Cτ is τ -homogeneous and T is an antichain, then

⊕
τ∈T

Cτ and
∏

τ∈T

Cτ are weakly tran-

sitive.
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Proof. Follows by Proposition 1.4. �

We now intend to characterize the weakly transitive completely decomposable groups.
Therefore we need the following

Lemma 3.16 Let C be a completely decomposable group and let R be a rational group such
that τ ≤ tp(R) for all τ ∈ Tcr(C). If x ∈ C and y ∈ R are such that χC(x) ≤ χR(y), then
there is a mapping ϕ ∈ Hom(C, R) such that xϕ = y.

Proof. Since any element x ∈ C is contained in a finite rank summand of C we may as-
sume without loss of generality that C is of finite rank. We induct on the rank rk(C) = n of
C. If n = 1, then the claim is easily established. Therefore let n > 1 and write C = C ′ ⊕ S

with S ⊆ Q. Without loss of generality x = c′ + s with c′ ∈ C ′ and 0 �= s ∈ S. Now
htp(x) = min{htp(c′), htp(s)} for all primes p and by hypothethis tp(c′) ≤ tp(y) and
tp(s) ≤ tp(y). Let m and k be minimal with χ(c′) ≤ χ(my) and χ(s) ≤ χ(ky). We
claim that gcd(m, k) = 1. If p|m and p|k, then htp(c′) > htp(y) and htp(s) > htp(y),
hence htp(x) > htp(y), a contradiction. Therefore gcd(m, k) = 1 and there are l1, l2 such
that 1 = l1m + l2k, thus y = l1my + l2ky. By induction we can map c′ onto l1my with
ψ1 ∈ Hom(C ′, R) and s onto l2ky with ψ2 ∈ Hom(S, R). So ψ1 ⊕ ψ2 ∈ Hom(C, R) is as
required. �

For the next Theorem we need some further notation. Let R be a rational group. By
E(R) = {p ∈ Π| 1p ∈ End(R)} = {p ∈ Π|R is p − divisible} we denote the set of all primes p

such that multiplication by p is an automorphism of R. Moreover, we let U(R) = 〈E(R)〉
be the multiplicative group generated by E(R), i.e. any element r ∈ U(R) is of the form
r =

∏
i∈I

pni
i with I a finite index set and pi ∈ E(R), ni ∈ Z. Note that U(R) is isomorphic

to the automorphism group of R.

Theorem 3.17 Let C be a completely decomposable group of finite rank. If R is a rational
group of type strictly greater than all types in Tcr(C), then R⊕C is weakly transitive if and
only if

(i) C is weakly transitive;

(ii) for any pair of integers m, n such that gcd(m,n) = 1 and gcd(m, p) = gcd(n, p) = 1
for all p ∈ E(R) there is an element u ∈ U(R) and a rational number r ∈ R such that
um + rn = 1.

Condition (ii) is equivalent to 1 in the stable range of R.
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Proof. Assume that (i) and (ii) hold. Let x = (xR, x), y = (yR, y) ∈ R ⊕ C and ϕ,ψ ∈
End(R⊕C) such that (xR, x)ϕ = (yR, y) and (yR, y)ψ = (xR, x). Since Hom(R, C) = 0 it fol-
lows that there are endomorphisms of C mapping x onto y and conversely. By (i) there is an
automorphism γ of C mapping x onto y. Moreover, we have yR = xRα+xβ with α ∈ End(R)
and β ∈ Hom(C, R). Hence α = m

n with 1
n an automorphism of R and gcd(m, p) = 1 for all

p ∈ E(R). Clearly it suffices to assume that n = 1. So yR = mxR+xβ. By assumption there
is a minimal integer k such that χ(kxR) ≥ χ(x). Obviously gcd(k, p) = 1 for all p ∈ E(R)
can be chosen and we claim that also gcd(m, k) = 1. If p|k, then htp(xR) < htp(x), hence
htp(xR) = htp(yR). If also p|m, then htp(yR) ≥ min {htp(mxR), htp(xβ)} ≥ htp(xR) + 1 -
a contradiction. Thus gcd(m, k) = 1.
By (ii) there is u ∈ U(R) and r ∈ R such that 1 = um + kr. Hence uyR = umxR + uxβ =
xR − (krxR − uxβ). Now χ(krxR − uxβ) ≥ χ(x), hence Lemma 3.16 implies that there
is a map β : C → R such that xβ = krxR − uxβ. We define δ ∈ Aut(R ⊕ C) by
(s, c)δ = (s − cβ, cγ) and obtain (xR, x)δ = (uyR, y). Since u is an automorphism of R

there is an automorphism of R ⊕ C mapping (uyR, y) onto (yR, y) and we are finished.
Conversely, assume that R ⊕ C is weakly transitive. Then Lemma 1.4 implies that C is
weakly transitive as well. It remains to prove (ii). Let m,n be given such that gcd(m,n) =
1 = gcd(m, p) = gcd(n, p) for all p ∈ E(R). Hence there are integers l, k such that
km + ln = 1. Choose any summand S of C of rank 1, say C = S ⊕ C ′. Then the mapping
ϕ ∈ End(R⊕S⊕C ′) defined by (r, s, c)ϕ = (kr+ls, s, c) maps (m, n, 0) onto (1, n, 0) and con-
versely the mapping ψ defined by (r, s, c)ψ = (mr, s, c) maps (1, n, 0) onto (m,n, 0). By weak
transitivity there is an automorphism α of R⊕S⊕C ′ mapping (m,n, 0) onto (1, n, 0). Thus
1 = um + rn for some u ∈ End(R) and r ∈ Hom(S,R). Since Hom(R,C) = Hom(R, S) = 0
it follows that u is an automorphism of R by Lemma 1.3, hence u ∈ U(R). Clearly, r ∈ R and
this finishes the equivalence of (i) and (ii). For rational rings R condition (ii) of Theorem
3.17 is clearly equivalent to 1 being in the stable range of R. If R is a rational group, then
it has been observed by Meehan and Strüngmann (submitted) that R satisfies condition (ii)
of Theorem 3.17 if and only if 1 is in the stable range of End(R). This finishes the proof. �

For the next result recall that a set of primes P is cofinite if its complement Π\P is finite.

Lemma 3.18 Let R ∼= Z(P ) for some cofinite set of primes P . Then condition (ii) of
Theorem 3.17 holds.

Proof. Let Π\P = {p1, · · · , pt} and suppose that m,n are integers with gcd(m,n) = 1
and gcd(m, p) = gcd(n, p) = 1 for all p ∈ P . Put J = {p ∈ Π\P :p � |n, p � |m} and
n′ = n

∏
p∈J

p. We will show that there exist integers a, b such that am − bn′ = 1 and

gcd(a,m) = 1. Since obviously gcd(a, n′) = 1 we obtain that gcd(a, p) = 1 for all p ∈ P

which implies that a is a unit in R, hence a ∈ U(R) and therefore condition (ii) of Theorem
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3.17 holds.
Since (m,n′) = 1 there exist integers l1, l2 with 1 = l1m − l2n

′. If gcd(l1,m) = 1 we are
finished; suppose m = pr1 · · · prk

k p
rk+1
k+1 · · · prt

t where p1, · · · , pk|l1, but pk+1, · · · , pt � |l1. Then
1 = (l1 +pk+1 · · · ptn

′)m− (l2 +pk+1 · · · ptm)n′ = am− bn′. We claim that gcd(a, m) = 1. If
some pi(1 ≤ i ≤ k) divides a, then since pi|l1 we have pi|pk+1 · · · ptn

′, hence pi|n - a contra-
diction. So no pi(1 ≤ i ≤ k) divides a. On the other hand, if some pj(k + 1 ≤ j ≤ t) divides
a then pj |l1 - again a contradiction. So no pj(k+1 ≤ j ≤ t) divides a. Thus gcd(a,m) = 1. �

Recall that a torsion-free group G is separable if every finite set of elements of G is
contained in a finite rank completely decomposable summand of G.

Lemma 3.19 If G is a separable group, then G is weakly transitive if every finite rank
summand of G is weakly transitive.

Proof. Let x, y ∈ G and xϕ = y, yψ = x for some endomorphisms ϕ,ψ ∈ End(G). Since
G is separable there is a direct summand H of G which is completely decomposable of finite
rank and contains x and y. Let π be the projection onto H along a fixed complement of
H in G. Obviously, (ϕπ) �H and (ψπ) �H are endomorphisms of H mapping x onto y and
conversely. Since every automorphism of H extends to an automorphism of G and H is
weakly transitive it follows that G is weakly transitive. �

For the next theorem recall that a P -local group for some set of primes P is a group
which is divisible by all primes p �∈ P .

Theorem 3.20 Let C be a P -local separable group for some finite set of primes P . Then
C is weakly transitive.

Proof. Let x, y ∈ C and xϕ = y, yψ = x for some endomorphisms ϕ,ψ ∈ End(C). With-
out loss of generality we may assume that C is of finite rank and completely decomposable
by Lemma 3.19. We induct on the rank n = rk(C) of C. If n = 1, then C is homogeneous
and therefore weakly transitive by Lemma 3.14. Assume n > 1 and let R be an arbitrary
maximal type in Tcr(C) and let C = CR ⊕C ′ with CR a maximal tp(R)-homogeneous com-
pletely decomposable summand of C. Let x = xR + x′ and y = yR + y′ ∈ CR ⊕ C ′. Since
Hom(CR, C ′) = 0 it follows that there are endomorphisms of C ′ mapping x′ onto y′ and
conversely. By induction there is α ∈ Aut(C ′) such that x′α = y′ and so the automorphism
α ⊕ idC′ of C maps xR + x′ onto xR + y′. We now distinguish two cases:
a) If there are two maximal types R1, R2 in Tcr(C), then write x = xR1 + xR2 + x′′ and
y = yR1 +yR2 +y′ in a fixed decomposition C = CR1 ⊕CR2 ⊕C ′ of C where CRi are maximal
tp(Ri)-homogeneous completely decomposable summands of C for i = 1, 2. By the above
there is an automorphism α of C mapping xR2 + xR1 + x′′ onto xR2 + yR1 + y′. Again by
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the same argument there is an automorphism β of C ′ mapping xR2 + y′ onto yR2 + y′ which
extends to an automorphism of C mapping x onto y.
b) It remains to consider the case when there is just one maximal type in Tcr(C). By in-
duction C ′ is weakly transitive and by Lemma 3.18 condition (ii) of Theorem 3.17 holds.
Applying Theorem 3.17 shows that C is weakly transitive. �

Next we want to find completely decomposable groups which are not weakly transitive.
To do so we have to find rational groups violating condition (ii) of Theorem 3.17.

Lemma 3.21 Let R ⊆ Q be such that condition (ii) of Theorem 3.17 holds. Then for any
integer m there is r ∈ R such that rm is the sum of at most two units in R. In particular,
if R is a ring, then r can be chosen to be an integer.

Proof. Let m be any integer. If m ∈ U(R) we are finished. Hence assume m �∈ U(R).
Since (m, 1) = 1 there are r ∈ R and u ∈ U(R) sucht that rm + u = 1. Thus rm = 1 − u is
the sum of two units. If R is a ring, then r = n

k with 1
k ∈ U(R), hence nm = k − ku is a

sum of two units. �

Corollary 3.22 If R ⊆ Q and End(R) ∼= Z, then R does not satisfy condition (ii) of
Theorem 3.17.

Proof. Follows easily from Lemma 3.21. Alternatively, by Arnold (1980) Example 8.3.
1 is not in the stable range of Z. Thus R can not satisfy condition (ii) of Theorem 3.17. �

Unfortunately, rational groups R which are divisible by at least one prime may have the
property that a multiple of any integer is the sum of at most two units in R. Therefore,
different techniques are required in order to violate condition (ii) of Theorem 3.17 for those
groups.

Lemma 3.23 Let m be a rational and p1, · · · , pn odd primes. If N =
∏
i≤n

pi > 2m2m, then∏
i≤n

(pi − 1) > 2m.

Proof. We induct on n. If n = 1, then N = p, so p− 1 > 2m. If n > 1 we let n = n′ + 1,
and choose an integer k maximal subject to 2k < pn; then k ≥ 1 and 2k + 1 ≤ pn < 2k+1.
Hence

∏
i≤n′

pi > 2m−k2m−k because if
∏

i≤n′
pi ≤ 2m−k2m−k, then

∏
i≤n

pi ≤ 2m−k2m−kpn <

2m−k2m−k+k+1 < 2m−k+12m < 2m2m - a contradiction. Thus by induction
∏

i≤n′
(pi − 1) >

2m−k and so
∏
i≤n

(pi − 1) > 2m. �
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Lemma 3.24 If R ⊆ Q and End(R) ∼= Z(p) for some prime p, then condition (ii) of
Theorem 3.17 does not hold.

Proof. Let R ⊆ Q and assume that End(R) ∼= Z(p). Choose an integer m such that 2m >

4(2m + 1), hence −1 + p2m+1 > 22m = 2m2m > 4(2m + 1). Write (−1 + p2m+1) =
∏
i≤n

pi2l

with n, l ∈ N and pi odd primes , not necessarily distinct. Thus
∏
i≤n

pi > 22m−l and hence∏
i≤n

(pi − 1) > 2(m− l
2 ) by Lemma 3.23. Put a = (−1 + p2m+1) and let Ga be the multiplica-

tive group of all integers less than a which are relatively prime to a. The multiplication in
Ga is given by ordinary multiplication modulo a. It is well-known that Ga has cardinality
|Ga| ≥ 2l−1

∏
i≤n

(pi − 1) and hence |Ga| > 2l−12(m− l
2 ) ≥ 2m−1 > 2(2m + 1). Let H ⊆ Ga be

the subgroup of Ga generated by p. Note that gcd(a, p) = 1. Since p(2m+1) ≡ +1 modulo a

the size of H is at most 2m + 1, hence |Ga| > 2|H|. Thus the quotient group Ga/H has at
least three cosets and therefore there is t < a with gcd(t, a) = 1 and tH does not contain 1
or −1. Hence tps �≡ 1 for every s ∈ N. Put b = a + t, hence gcd(b, a) = 1. Write b = pib′

with i ∈ N and gcd(b′, p) = 1. Moreover, let v =
∏
q|a

qhtR
q (1) and put a′ = va. Then we still

have that gcd(b′, a′) = gcd(b′, p) = gcd(a′, p) = 1. Assume that condition (ii) of Theorem
3.17 holds. Then there is a unit u ∈ U(R) and an element r ∈ R such that ub′ + ra′ = 1,
thus ub′ + rva = up−ia + up−it + rva = 1. An easy calculation shows that rv ∈ Z by the
choice of v, hence ua+ut+pirva = pi and so ut ≡ pi modulo a. Let u = pz, then p(z−i)t ≡ 1
modulo a - a contradiction. Therefore condition (ii) of Theorem 3.17 does not hold. �

Obviously, if R is a rational group and End(R) satisfies condition (ii) from Theorem 3.17,
then also R satisfies it. As we have seen condition (ii) holds if R contains only finitely many
primes which are not units (Lemma 3.18). On the other hand, Corollary 3.22 and Lemma
3.24 show that it is plausible to conjecture that R does not satisfy condition (ii) of Theorem
3.17 if there are only finitely many primes which are units in R. However, we are unable to
establish this. The next examples show that in the case of an infinite and coinfinite set of
primes being units both situations can occur.1

Example 3.25 Let P = {p ∈ Π : p ≡ 11 modulo 120}. Then R = Z(P ) does not satisfy
condition (ii) of Theorem 3.17.

Proof. Choose a = 91 and b = 60, then gcd(a, b) = 1. Hence a ≡ 91 modulo 120 and
rb ≡ 60 or rb ≡ 0 modulo 120 for every r ∈ R. Easy calculations show that a unit u ∈ R

must satisfy u ≡ s modulo 120 for some s ∈ {−11,−1, 1, 11}. Hence a + rb �≡ u modulo

1We would like to thank Chris Meehan for suggesting the examples 3.25, 3.26 and 3.27.
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120 for every r ∈ R and any unit u ∈ R. Thus condition (ii) of Theorem 3.17 does not hold. �

In the above example we could also choose P = {p ∈ Π : p ≡ 13 modulo 168}, P = {p ∈
Π : p ≡ 7 modulo 48}, or P = {p ∈ Π : p ≡ 17 modulo 288}. However, not all congruence
classes work.

Example 3.26 Let P = {p ∈ Π : p �≡ 1 modulo 24}. Then R = Z(P ) satisfies condition (ii)
of Theorem 3.17.

Proof. Let a, b ∈ Z with gcd(a, b) = 1 and gcd(a, p) = gcd(b, p) = 1 for all p ∈ P .
Without loss of generality we may assume that a > b and that a, b are positive integers. By
Dirichlet’s Theorem Dedekind and Dirichlet (1968) Page 359 the set {2a + k(3b) : k ∈ N}
contains an infinite number of primes. Modulo 24 the possible congruences of these primes
are {2a + 3b, 2a + 9b, 2a + 15b, 2a + 21b}. Using that p ≡ 1 for all prime divisors p of either
a or b this set becomes {5, 11, 17, 23}. Thus if 2a + k(3b) = p ∈ Π, then p �≡ 1 modulo 24
and therefore p is a unit of R. Hence condition (ii) of Theorem 3.17 holds. �

For the last example recall that π(n) = |{p ∈ Π : p < n}| for any n ∈ N.

Example 3.27 Let R be a subring of Q and assume that for every integer n there exists
some qn ∈ Π with qn > n such that all p ∈ Π with qn ≤ p < q

π(qn)+1
n are elements of E(R).

Then condition (ii) of Theorem 3.17 holds.

Proof. Let 0 �= a, b ∈ Z such that gcd(a, b) = 1. Choose any qn ∈ Π with n ≥ max(|a|, |b|).
Put u = a +

(∏
p∈P p

)
b where P = {p ∈ Π : p �∈ E(R), p < qn, p �| a, p �| b}. We claim that

u < q
π(qn)+1
n and hence u ∈ U(R). Clearly,

(∏
p∈P p

)
b < q

|P |+1
n and therefore

u = a +

⎛
⎝∏

p∈P

p

⎞
⎠ b < q|P |+1

n + qn < q|P |+2
n ≤ qπ(qn)+1

n

�

It seems that characterizing those rational groups which satisfy condition (ii) of Theorem
3.17 is a difficult number theoretical problem which we were unable to solve. Therefore we
pose the following

Question 3.28 Which R ⊆ Q satisfy condition (ii) of Theorem 3.17?

Theorem 3.29 Let C be a completely decomposable group. If there exists a rational group
R such that τ = tp(R) ∈ Tcr(C) and
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(i) rk(C(τ)/C�(τ) = 1;

(ii) τ is not minimal in Tcr(C);

(iii) τ(p) = ∞ for at most one prime p,

then C is not weakly transitive.

Proof. Assume that C is weakly transitive. Let C =
⊕
i∈I

Ci with Ci ⊆ Q. Let

I ′ = {i ∈ I : tp(Ci) ≤ τ}, then C =
⊕
i∈I′

Ci ⊕
⊕

i∈I\I′
Ci and Hom(

⊕
i∈I\I′

Ci,
⊕
i∈I

Ci) = 0.

Hence Proposition 1.4 implies that
⊕
i∈I′

Ci = R ⊕ C̃ is weakly transitive. By Corollary 3.22

and Lemma 3.24 condition (ii) of Theorem 3.17 does not hold and therefore R ⊕ C̃ is not
weakly transitive, a contradiction. �

In contrast to the above results we obtain

Theorem 3.30 Let C be a completely decomposable, weakly transitive group of finite rank.
If R ⊆ Q and tp(R) > τ for all τ ∈ Tcr(C), then C ⊕ Rn is weakly transitive for all n > 1.

Proof. Let x, y ∈ C ⊕ Rn with n > 1 and xϕ = y, yψ = x for some endomorphisms
ϕ,ψ ∈ End(C ⊕ Rn). Let C =

⊕
i≤k

Ci for some k ∈ N and rational groups Ci ⊆ Q. Write

x = (c1, · · · , ck, r1, · · · , rn) with ci ∈ Ci and rj ∈ R for 1 ≤ i ≤ k, 1 ≤ j ≤ n. Similarly
let y = (c′1, · · · , c′k, r′1, · · · , r′n). Since the groups Ci and R are rational groups we can write
ci = c̄i

ĉi
, c′i = c̄′i

ĉ′i
and ri = r̄i

r̂i
, r′i = r̄′

i

r̂′
i

with (c̄i, ĉi) = (c̄′i, ĉ
′
i) = (r̄i, r̂i) = (r̄′i, r̂

′
i) = 1. Let

t = lcm(ĉi, ĉ
′
i, r̂j , r̂

′
j : 1 ≤ i ≤ k, 1 ≤ j ≤ n). If there exists an automorphism α of C ⊕ Rn

such that txα = ty, then xα = y, hence we may assume without loss of generality that all en-
tries ci, c

′
i, rj , r

′
j are integers. Moreover, writing ci = uic̄i, c

′
i = u′

ic̄
′
i, rj = ûj r̄j , r

′
j = ûj r̄

′
j with

(c̄i, p) = (c̄′i, p) = 1 for all p ∈ E(Ci) and 1 ≤ i ≤ k and (r̄j , p) = (r̄′j , p) = 1 for all p ∈ E(R)
and 1 ≤ j ≤ n and units ui, u

′
i ∈ U(Ci), ûj , û

′
j ∈ U(R) we obtain that the automorphisms

α1 = diag(u1, · · · , uk, û1, · · · , ûn) and α2 = diag(u′
1, · · · , u′

k, û′
1, · · · , û′

n) satisfy xα1 =
(c̄1, · · · , c̄k, r̄1, · · · , r̄n) and (c̄′1, · · · , c̄′k, r̄′1, · · · , r̄′n) = yα2. Hence we may assume without
loss of generality that gcd(ci, p) = gcd(c′i, p) = 1 for all p ∈ E(Ci)(1 ≤ i ≤ k) and gcd(rj , p) =
gcd(r′j , p) = 1 for all p ∈ E(R)(1 ≤ j ≤ n). Now let dx = gcd(c1, · · · , ck, r1, · · · , rn) and
dy = gcd(c′1, · · · , c′k, r′1, · · · , r′n), then dx = dy by what we have arranged so far and dividing
by dx = dy we may assume that gcd(c1, · · · , ck, r1, · · · , rn) = gcd(c′1, · · · , c′k, r′1, · · · , r′n) =
1. Let d = gcd(r1, · · · , rn) and e = gcd(r′1, · · · , r′n), then the elements (r1, · · · , rn) and
(d, · · · , d) have the same characteristic in Rn which is transitive by Lemma 3.14, hence
there is an automorphism αx of Rn such that (r1, · · · , rn)αx = (d, · · · , d). Similarly,
(r′1, · · · , r′n)αy = (e, · · · , e) for some automorphism αy of Rn. Thus idc⊕αx and idc⊕αy are
automorphisms of C⊕Rn sending x onto (c1, · · · , ck, d, · · · , d) and y onto (c′1, · · · , c′k, e, · · · , e)
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respectively. Therefore it remains to show that there exists an automorphism α of C ⊕ Rn

sending (c′1, · · · , c′k, e, · · · , e) onto (c1, · · · , ck, d, · · · , d). Since gcd(c1, · · · , ck, d) = 1 there
are integers l1, · · · , lk and ld such that

∑
i≤k

lici + ldd = 1. Then the mapping

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 l1 0 · · · · · · 0
0 1 0 · · · 0 l2 0 · · · · · · 0
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · 1 lk 0 · · · · · · 0
0 0 0 · · · 0 (ld − 1) 0 · · · · · · 1
0 · · · · · · · · · 0 0 · · · · · · 1 0
...

...
...

...
...

...
...

...
...

...
0 · · · · · · · · · 0 0 1 · · · · · · 0
0 · · · · · · · · · 0 1 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

sends (c1, · · · , ck, d, · · · , d) onto (c1, · · · , ck, 1, d, · · · , d). However, this matrix may be re-

duced by elementary row operations to a block diagonal form

(
I 0
0 D

)
where D is invert-

ible and so the mapping is an automorphism. Similarly (c′1, · · · , c′k, e, · · · , e) can be mapped
onto (c′1, · · · , c′k, 1, e, · · · , e) by an automorphism. But now (1, d, · · · , d) and (1, e, · · · , e)
have the same characteristic in Rn (which is transitive by Lemma 3.14), hence there is an
automorphism β of Rn mapping (1, d, · · · , d) onto (1, e, · · · , e). Moreover, by assumption
(using that Hom(Rn, C) = 0) there is an automorphism γ of C mapping (c1, · · · , ck) onto
(c′1, · · · , c′k) and so γ ⊕ β maps (c1, · · · , ck, 1, d, · · · , d) onto (c′1, · · · , c′k, 1, e, · · · , e) and this
finishes the proof. �

As a corollary we obtain

Theorem 3.31 If G is a separable group such that for any type τ ∈ Tcr(G) which is not
minimal we have rk(G(τ)/G�(τ)) ≥ 2, then G is weakly transitive.

Proof. It suffices to assume that G is completely decomposable of finite rank. We prove
the claim by induction on n = rk(G). If n = 1, then the claim is true by Lemma 3.14 since
G is homogeneous. Assume n ≥ 2. If there are two maximal types in Tcr(G) then we finish
as in the proof of Theorem 3.20 case (a). If there is just one maximal type we can apply
Theorem 3.30 since by hypothesis rk(G(τ)/G�(τ)) ≥ 2. �

Corollary 3.32 The class of weakly transitive completely decomposable groups is not closed
under taking direct summands.

Proof. Choose any weakly transitive completely decomposable group C and let R be a
rational group which does not satisfy condition (ii) of Theorem 3.17. Then D = C ⊕ R is

15



not weakly transitive by Theorem 3.29. However, its square D ⊕ D is weakly transitive by
Theorem 3.30. �

Our final theorem shows that in many cases the square of a weakly transitive groups is
again weakly transitive.

Theorem 3.33 Let G be a torsion-free abelian group with endomorphism ring R which is
a principal ideal domain. If all endomorphisms of G are monic, then G ⊕ G is weakly
transitive.

Proof. Assume that we are given 0 �= x, y ∈ G ⊕ G and xA = y, yB = x for some
endomorphisms A,B of G ⊕ G. We may regard A and B as two by two matrices over
R, hence by Grove (1983) Theorem 5.2 there are invertible matrices P, Q, P ′, Q′ ∈ M2(R)
and diagonal matrices D1 = diag(d1, d2), D2 = diag(d′1, d

′
2) such that d1|d2 and d′

1|d′
2 and

A = PD1Q and B = P ′D2Q
′. D1 and D2 are known as the Smith Normal Form of A and B

respectively. Let x̃ = xP and ỹ = yP ′, then it suffices to find an invertible matrix T1 such
that x̃T1 = ỹ since it then follows that xPT1P

′−1 = y and PT1P
′−1 is an automorphism of

G ⊕ G. By assumption we get x̃D1QP ′ = ỹ and ỹD2QP = x̃. Let S = QP ′ then S is an
automorphism of G ⊕ G, so it suffices to find an invertible matrix T2 such that x̃T2 = x̃D1

(then x̃T2S = ỹ and we are finished). Let x̃ = (x1, x2), hence x̃D1 = (x1d1, x2d2). Without
loss of generality we may assume that gcd(x1, x2) = 1. We have (x̃D1)SD2QP = x̃ hence
letting W = SD2QP it follows that x̃D1W = x̃. From now on we regard G ⊕ G as an
R-module and note that group-homomorphisms are the same as R-homomorphisms since
R is commutative. Therefore, since χ(x̃) = χ(x̃D1) (as elements of the R-module G) and
d1|d2 we obtain that d1 is a unit of R, without loss of generality d1 = 1. Let W = ( a b

c e )
with a, b, c, e ∈ R. We obtain the following equations:

x1a + x2d2c = x1 and x1b + x2d2e = x2.

Assume first that x1 and x2 are linearly independent elements in G viewed as an right
R- module. Then d2c = 0 = b and a = 1 = d2e, hence d2 is an invertible element in
R. Thus D1 is already an automorphism and we may choose T2 = D1. It remains to
consider the case when x1 and x2 are dependent over R, i.e. x1r1 − x2r2 = 0 for some
0 �= r1, r2 ∈ R with gcd(r1, r2) = 1. Since all endomorphisms of G are monic it suffices to find
an automorphism α sending (x1, x2)r1 onto (x1, x2d2)r1. Then (x1, x2) ∈ ker(r1α − r1D1)
and hence r1(α−D1) = 0 which implies that D1 = α is an automorphism. But (x1, x2)r1 =
(x1r1, x2r1) = (x2r2, x2r1) and similarly, (x1, x2d2)r1 = (x2r2, x2r1d2). Clearly χ((r2, r1)) =
χ((r2, r1d2)) since gcd(x1, x2) = gcd(r1, r2) = 1 and so there is an automorphism of R2

sending (r2, r1) onto (r2, r1d2). Note that R2 is transitive by an easy argument since pure
submodules of finite rank are direct summands. Clearly this automorphism induces an
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automorphism of G ⊕ G that sends (x1, x2)r1 onto (x1, x2d2)r1. �
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