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Unit Sum Numbers of Rings and Modules

B.Goldsmith, S.Pabst, and A.Scott

Department of Mathematics, Statistics and Computer Science,

Dublin Institute of Technology, Kevin Street,

Dublin 8, Ireland

Dedicated to Graham Higman on his 80th Birthday

§0 Introduction

The relationship between the endomorphisms and automorphisms of algebraic objects

has long been a subject of interest. In 1963 Fuchs [3] raised the question of when the

automorphism group of an abelian group (additively) generates the endomorphism group.

Further interest in a different direction on the relationship between automorphisms and

endomorphisms of an abelian group was raised by Kaplansky’s introduction [8] of the

notions of transitivity and full transitivity. The problem of Fuchs and related generaliza-

tions have produced ongoing interest and there is an existing literature of which [1], [2],

[6], [7], [11] are the principal results.

The primary focus of attention in this paper is the representation of arbitrary endomor-

phisms of a module as the sum of a fixed number of automorphisms. Our first focus is on

linear transformations of vector spaces of arbitrary dimension. The result (Theorem 2.5)

that, with one exception, every such transformation is the sum of two automorphisms

can hardly be new but we have been unable to find any reference to it in the literature.

It is worth remarking that the proof is constructive with an explicit algorithm for the

construction of the automorphisms being given. In the remainder of the paper we exploit

this result on vector spaces to derive similar results for a wider class of modules.

Our terminology is standard and may be found in the texts [4], [5] or [8]; an exception

being that we write mappings on the right. It will also be useful to distinguish rings from

groups or modules and to this end we adopt the notation of using bold face characters

for rings; as usual Z, Zk, Jp will denote the ring of integers, of integers modulo k and

1



of p–adic integers while GF(q) and Q will denote the Galois field of q elements and the

field of rational integers respectively.

§1 Unit sum numbers of rings

An associative unital ring R is said to have the n–sum property if every element of R can

be written as the sum of exactly n units of R. It is immediate that if R has the n–sum

property then it has the k–sum property for every k ≥ n. (It might seem more useful

at first sight to confine the n–sum property to the non–zero elements of R. However, by

considering for example the field GF(2) which would have the 1–sum property in this new

sense, one sees that the k–sum property for k ≥ 1 does not hold.) Thus it makes sense to

define the unit sum number of R by usn(R) = min{n | R has the n−sum property}. If

there is an element of R which cannot be written as a sum of units we write usn(R) = ∞;

if every element of R is a sum of units but R does not have the n–sum property for any

integer n, we write usn(R) = ω.

Example 1.1

(a) The ring R has usn(R) = 1 if and only if R is the trivial ring with 0 = 1.

(b) The rings GF(2) and Z have unit sum number equal to ω.

(c) If R = Q[x] the ring of rational polynomials, it is well known that the only units

of R are the non–zero constant polynomials and so usn(R) = ∞ in this case.

(d) The ring R = Q has usn(R) = 2.

(e) If R = Zq, the ring of integers modulo the prime q, then direct calculation gives

usn(R) = 2; see example 1.4 for a generalization of this result.

The n–sum property is inherited in a number of simple ways:

Proposition 1.2

(a) If the rings Ri (i ∈ I) each have the n-sum property then so also has the ring

direct product
∏

i∈I Ri.

(b) If I is an ideal of the ring R which has the n–sum property then so also has the

quotient ring R/I.
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(c) If the ring R has the n-sum property then so also does the ring Mk(R) of k × k

matrices over R, for any finite k.

Proof: (a), (b) are straightforward. To establish (c) we proceed by induction on k. By

hypothesis the result is true for k=1. Suppose A = (aij) is a (k + 1) × (k + 1) matrix

over R and the result is true for k × k matrices. Then

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1k+1

a21

... B

ak+11

⎞⎟⎟⎟⎟⎟⎟⎠
and we may write a11 =

∑n
i=1 ui where each ui is a unit of R. Since B is a k × k matrix

it can be expressed as a sum of invertible k × k matrices, B = B1 + · · · + Bn. But then

A =

⎛⎜⎜⎜⎜⎜⎜⎝
u1 a12 . . . a1k+1

0
... B1

0

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝
u2 0 . . . 0

a21

... B2

ak+11

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝
u3 0 . . . 0

0
... B3

0

⎞⎟⎟⎟⎟⎟⎟⎠ + · · · +

⎛⎜⎜⎜⎜⎜⎜⎝
un 0 . . . 0

0
... Bn

0

⎞⎟⎟⎟⎟⎟⎟⎠

and it is easy to see that each of the above matrices is a unit in Mk+1(R). �

There is a particularly useful partial converse to Proposition 1.2(b); we include the well–

known proof for completeness.

Proposition 1.3 If R is a ring with Jacobson radical J(R) and R/J(R) has the n–sum

property, then R has the n–sum property.

Proof: We show that units “lift” modulo the Jacobson radical. If y + J(R) is a unit in

R/J(R) then there exists z ∈ R such that
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zy + J(R) = 1 + J(R) = yz + J(R).

The first equality gives zy = 1−r for some r ∈ J(R) and so, by the standard properties

of the Jacobson radical, zy is a unit of R. Thus ((zy)−1z)y = 1 implying y has a left

inverse in R. But a similar argument using the second equality above shows that y also

has a right inverse in R and hence y is a unit in R. Since units “lift” from R/J(R) to

R, it is immediate that the n–sum property “lifts” also. �

We conclude this section by investigating the unit sum numbers of some well–known rings.

Example 1.4

(a) Let R = Zk, the ring of integers modulo k. If k is even then all units in R are

necessarily odd and so a simple parity argument shows that R cannot have the n–

sum property for any n. However it is immediate that every element of R is a sum

of units. If k is odd we consider firstly the case in which k is a prime power. In

this situation 2 is a unit of R so every unit can be expressed as a sum of two units.

Moreover nonunits are precisely those integers divisible by the prime and so adding

and subtracting 1 expresses each nonunit as a sum of two units. Returning to the

general case of k odd we may express R as a direct product of rings of prime power

order, and it follows from Proposition 1.2(a) that R has the 2–sum property in this

case. In summary then usn(Zk) =

⎧⎨⎩ 2 : k odd

ω : k even.

(b) If R is a field (not necessarily commutative) then usn(R) = 2 unless R = GF(2)

in which case usn(R) = ω. To see this consider separately the cases where the

characteristic of R = 2 and �= 2.

The latter case is easily handled: since 2 is a unit we have x = 1
2
x+ 1

2
x (x �= 0) and

0 = 1 − 1, in each case a sum of two units. If char(R) = 2 but |R| > 2, consider

any x ∈ R \ {0, 1}. Then x− 1 is again a unit and x = (x− 1) + 1, a sum of two

units. However we also have 0 = 1+1 and 1 = (1−a)+a for any a ∈ R\{0, 1};
in each case we have a sum of two units. Finally note that usn(GF(2)) = ω as

observed in Example 1.1(b).
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(c) If R = Jp, the ring of p–adic integers, then usn(R) = 2 unless p = 2 in which case

usn(R) = ω. This can be seen by direct or alternatively by noting that J(R) = pR

and R/J(R) ∼= GF(p), the field of p elements.

For p �= 2 the result then follows from Proposition 1.3 and example (b) above.

For p = 2 all units are congruent to 1 modulo 2 and a simple parity argument

establishes the impossibility of having a finite unit sum number. However every

2–adic integer is the sum of at most two units so we deduce usn(J2) = ω.

(d) If R = Qp, the ring of rationals with denominators prime to the given prime p,

then usn(R) = 2. To see this observe that a rational a
b

is a unit in Qp if, and

only if, (a, p) = 1 = (b, p). If x ∈ Qp then x = pr(a
b
), where a

b
is a unit and so

x = (pr − 1)(a
b
) + (a

b
), a sum of two units.

§2 Unit sum numbers of modules

If M is a module over the ring R, then the set of R–endomorphisms of M form a ring

ER(M). We shall say that the module M has the n–sum property or has the unit sum

number k if the ring ER(M) has the corresponding property.

It follows immediately from Proposition 1.2(c) that a free R–module of finite rank has

the n–sum property if R has; in particular a finite dimensional vector space over a field

F �= GF(2) has unit sum number equal to 2. Indeed finite dimensional vector spaces

over GF(2) have the same property, with one exception, as established below.

Proposition 2.1 If V is a vector space of finite dimension n > 1 over the field GF(2),

then usn(V ) = 2.

Proof: We prove the result by induction on the dimension n of V . First consider

dim(V ) = 2. Then V = b0F + b1F where F = GF(2). Therefore any endomorphism of V

may be described by a 2× 2 – matrix with entries 0 or 1. An easy calculation shows that

any of these 16 matrices can be written as a sum of two matrices whose determinants are

units, i.e. a sum of two automorphisms of V , e.g.(
1 0

0 0

)
=

(
1 1

1 0

)
+

(
0 1

1 0

)
,

(
0 1

1 1

)
=

(
1 1

1 0

)
+

(
1 0

0 1

)
.
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Now assume inductively that the result is true for all vector spaces over GF(2) of di-

mension less than or equal to n. Let V have dimension n + 1 and let φ be an arbitrary

endomorphism of V .

First we consider the case kerφ �= 0. Then V = kerφ⊕V1 where dim(Imφ) = dimV1 ≤ n. So

there exists an isomorphism θ : Imφ −→ V1. But the composite φ�V1 θ is an endomorphism

of V1 and hence φ�V1 θ = α′ +β′ where α′ and β′ are automorphisms of V1. Now we define

α, β : V −→ V with respect to the decomposition V = kerφ ⊕ V1 by α = Ikerφ ⊕ α′θ−1

and β = −Ikerφ⊕β′θ−1 where I denotes the identity. Clearly, α and β are automorphisms

of V and α + β = 0 ⊕ (α′ + β′)θ−1 = 0 ⊕ (φ�V1 θ)θ−1 = 0 ⊕ φ�V1= φ. Therefore α and β

are the required automorphisms of V .

It remains to consider the case kerφ = 0. In this case φ is an automorphism of V since V

is finite dimensional. Let {b0, b1, . . . , bn} be a basis of V . We define α : V −→ V by

b0α = b0 − bn, biα = bi−1 for i > 0 and β : V −→ V by b0β = bn, biβ = bi − bi−1 for i > 0.

Then α, β are automorphisms whose sum is the identity. Thus αφ + βφ = (α + β)φ = φ

and so αφ, βφ are the required automorphisms of V , each being a composition of auto-

morphisms of V . �

Indeed the above proposition remains true if V is replaced by a finite rank (> 1) free

module over any PID R; see [11] for details using the Smith Normal Form.

The question naturally arises as to whether or not such results extend to the infinite

dimensional/rank situation. We focus initially on vector spaces where we can give a

complete answer to the problem. The proof of our next result Theorem 2.2 closely follows

an argument outlined by Graham Higman to the first author and greatly simplifies our

original proof.

Theorem 2.2 If V is a vector space of countably infinite dimension over an arbitrary

field F, then usn(V ) = 2.

Proof: Let V =
⊕

i∈ω biF be a countable dimensional vector space over the field F and

let φ be an endomorphism of V .

First we assume that the image of φ is finite dimensional. Then V = Imφ ⊕ W =

kerφ ⊕ U for some subspaces U, W where dimU = dim(Imφ) and hence U ∼= Imφ. Let
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{w0, w1, . . . , wn, . . .} be a basis of W , {x0, x1 . . . , xn, . . .} a basis of kerφ, {u0, u1, . . . , un}
a basis of U and {y0, y1, . . . , yn} a basis of Imφ. The set {xn+1, xn+2, . . .} ∪ {u0, . . . , un}
is countably infinite as is {w0, w1, . . .}, so there exists a bijection

f : {w0, w1, . . .} −→ {xn+1, xn+2, . . .} ∪ {u0, u1, . . . , un}.
We define f̃ : {y0, . . . , yn}∪{w0, w1, . . .} −→ {x0, x1, . . .}∪{u0, u1, . . . , un} by yif̃ = xi for

0 ≤ i ≤ n and wif̃ = wif for all i ∈ ω; f̃ is a bijection from one basis of V onto another.

Thus f̃ extends to an automorphism α of V . Also (Imφ)α ⊆ kerφ and so η2 = φαφα = 0

for η = φα. Hence (I + η)(I − η) = I = (I − η)(I + η) where I denotes the identity.

Therefore I + η = I + φα is an automorphism of V .

Finally, α−1 + φ is an automorphism of V since I + αφ = α−1α + φα = (α−1 + φ)α. Thus

φ = (α−1 + φ) + (−α−1) is a sum of two automorphisms.

Now let Imφ be of countably infinite dimension. We construct inductively automorphisms

α and β with φ = α + β along the given basis {bi | i ∈ ω} of V .

Assume that α and β have been defined on {bi | i ∈ I0} for some finite set I0 ⊆ ω such

that {biα | i ∈ I0} and {biβ | i ∈ I0} are linearly independent sets and also bi(α+β) = biφ

for all i ∈ I0. (I0 = ∅ may be taken as a staring point for the induction.)

We extend α, β enlarging the domains (Step 1) and images (Step 2/3) as follows:

Step 1: First pick the smallest integer m ∈ ω \ I0. Then pick the smallest integer n ∈ ω

such that bn �∈ ⊕
i∈I0

(biα)F and (bmφ − bn) �∈ ⊕
i∈I0

(biβ)F .

We define bmα = bn and bmβ = bmφ− bn, i.e. bm now belongs to the domains of α and β.

Let I1 = I0 ∪ {m}, then {biα | i ∈ I1} and {biβ | i ∈ I1} are again linearly independent

sets and bi(α + β) = biφ for all i ∈ I1 where I1 is finite.

Step 2: First pick the smallest integer q such that bq �∈ ⊕
i∈I1

(biα)F . Then pick the

smallest integer p ∈ ω \ I1 such that bpφ − bq �∈
⊕

i∈I1
(biβ)F .

We define bpα = bq and bpβ = bpφ − bq, i.e. bq now belongs to the image of α.

Let I2 = I1 ∪ {p}, then {biα | i ∈ I2} and {biβ | i ∈ I2} are again linearly independent

sets and bi(α + β) = biφ for all i ∈ I2 where I2 is finite.

Step 3: First pick the smallest integer r such that br �∈ ⊕
i∈I2

(biβ)F . Then pick the
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smallest integer t ∈ ω \ I2 such that btφ − br �∈
⊕

i∈I2
(biα)F .

We define btβ = br and btα = btφ − br, i.e. br now belongs to the image of β.

Finally let I3 = I2 ∪ {t}, then {biα | i ∈ I3} and {biβ | i ∈ I3} are linearly independent

sets and bi(α + β) = biφ for all i ∈ I3 where I3 is finite, i.e. we have the same conditions

as at the beginning.

Note that, in each step, we can always choose such integers since the vector space V

and also the image of the given endomorphism φ are of infinite dimension. Now we can

repeat the three steps above taking I3 as the new I0. We continue this process as often

as possible, i.e. a countably infinite number of times.

Now let α, β be the union of all these extensions constructed above. We show that α and

β are the required automorphisms whose sum is φ.

It follows immediately, by our construction, that domα = domβ = V and Imα = Imβ = V .

Thus it remains to show that α, β are injective.

Consider any basis element b = bs of the given basis. On some stage s must have been

the smallest integer not belonging to the finite set Ik (k ∈ {0, 1, 2}) since s ∈ ω. Hence s

was choosen in of the three steps.

If s was chosen in step 1 then b = bm and so bα = bn �= 0 and bβ = bφ− bn �= 0 where the

latter is true by the choice of n.

If s was chosen in step 2 then b = bp and so bα = bq �= 0 and bβ = bφ − bq �= 0 where the

latter is true by the choice of q.

If s was chosen in step 3 then b = bt and so bβ = br �= 0 and bα = bφ − br �= 0 where the

latter is true by the choice of r.

So, in either case, bα �= 0 and bβ �= 0 and thus all basis elements are mapped onto

non–zero elements under α and β. But also {biα | i < ω} and {biβ | i < ω} are linearly

independent sets. Therefore, kerα = kerβ = {0} and hence α and β are automorphisms .

Moreover φ = α + β by our construction.

So any endomorphism φ is a sum of two automorphisms α, β, i.e. usn(V ) = 2. �

The restriction of countable dimension can be easily removed by using an essentially set–
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theoretic trick of Castagna [1], which we state more generally than is required for vector

spaces.

Lemma 2.3 Let M be a free R–module of rank κ, an infinite cardinal, and φ an endo-

morphism of M . Then M can be written as M =
⋃

α<κ Mα such that

(i) Mα ⊆ Mα+1 for all α < κ,

(ii) Mα =
⋃

β<α Mβ if α is a limit ordinal,

(iii) Mα+1 = Mα ⊕Cα where Cα is of countable rank (Cα can be choosen to be of rank

at least two), and

(iv) Mαφ ⊆ Mα for each α < κ.

Proof: See Theorem 2.2. in [1]. �

We can now easily deduce the result we were seeking:

Corollary 2.4 If V is a vector space of arbitrary infinite dimension, then every linear

transformation of V is a sum of two invertible transformations.

Proof: Let V be a vector space of arbitrary infinite dimension and ψ an endomorphism

of V . Then we may write V =
⋃

β∈κ Vβ as in Lemma 2.3. We define automorphisms θβ

and θ′β of Vβ inductively such that , for each β < κ,

ψ �Vβ
= θβ + θ′β and θβ �Vα= θα, θ′β �Vα= θ′α for α < β. (*)

For β = 0 we may assume V0 = 0 and so property (*) is satisfied taking θ0 = 0 = θ′0.

Now suppose that θα, θ′α have been defined satisfying (*) for all α < β.

First assume that β is a limit ordinal. Then Vβ =
⋃

α<β Vα and so we may define

θβ =
⋃

α<β θα and θ′β =
⋃

α<β θ′α. Obviously, θβ and θ′β satisfy property (*) since the

θα, θ′α do so by assumption.

Next let β = α+1 be a successor ordinal. Then, by Lemma 2.3, Vα+1 = Vα ⊕Cα for some

subspace Cα of countable dimension. Let π1 and π2 be the projections of Vα+1 onto Vα and

Cα respectively. Then (ψ �Cα)π2 is an endomorphism of Cα. Thus, by Lemma 2.2, there

exist automorphisms φ and φ′, of Cα such that (ψ �Cα)π2 = φ + φ′. Note that there is no

restriction for V being a vector space over GF(2) since we may assume 2 ≤ dimCα ≤ ℵ0.
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For each c ∈ Cα choose νc in Vα such that νc = (cψ)π1. Note that (ψ �Cα)π1 is a mapping

from Cα to Vα. Now we define θα+1 and θ′α+1 on Vα+1 = Vα ⊕ Cα by (x + c)θα+1 =

xθα + cφ + νc and (x + c)θ′α+1 = xθ′α + cφ′ for any x + c ∈ Vα+1 where x, c are the unique

components in Vα and Cα respectively.

It follows immediately from the definition that θα+1 and θ′α+1 are homomorphisms and

also that θα+1, θ′α+1 are extensions of θα, θ′α respectively since νc = 0 for c = 0.

Next we show that θα+1 is an automorphism. First consider an element x+c ∈ ker(θα+1).

Then 0 = (x + c)θα+1 = xθα + cφ + νc = (xθα + νc) + cφ where xθα + νc ∈ Vα and

cφ ∈ Cα. Hence xθα + νc = 0 and cφ = 0. Since φ is an automorphism of Cα we get

c = 0 and thus νc = cψπ1 = 0. Therefore xθα = 0 which, by assumption, gives x = 0.

So we have ker(θα+1) = 0, i.e θα+1 is injective. Also θα+1 is surjective since, for any

a+ b ∈ Vα+1 (a ∈ Vα, b ∈ Cα), a+ b = (x+ c)θα+1 = xθα + cφ+νc for c = bφ−1, x = yθ−1
α

where y = a − νc. Therefore θα+1 is an automorphism.

Now we show that θ′α+1 is an automorphism of Vα+1. Let x+c ∈ ker(θ′α+1) (x ∈ Vα, c ∈ Cα).

Then xθ′α + cφ′ = 0 which implies xθ′α = −cφ′ ∈ Vα ∩ Cα = 0. Thus x = 0 = c as θ′α and

φ′ are automorphisms of Vα and Cα respectively. Hence θ′α+1 is injective.

Also, for any a + b ∈ Vα+1 (a ∈ Vα, b ∈ Cα), defining c = b(φ′)−1 and x = a(θ′α)−1 gives

(x + c)θ′α+1 = a + b and so θ′α+1 is surjective.

We now have automorphisms θα+1 and θ′α+1 of V and all that remains to show is that

their sum is ψ. Let x+c ∈ Vα⊕Cα, then (x+c)(θα+1+θ′α+1) = x(θα+θ′α)+c(φ+φ′)+νc =

x(ψ �Vα) + (cψ)π2 + (cψ)π1 = xψ + (cψ)(π1 + π2) = xψ + cψ = (x + c)ψ.

Finally we get ψ = θ + θ′ taking θ =
⋃

β<κ θβ and θ′ =
⋃

β<κ θ′β which are automorphisms

of V =
⋃

β<κ Vβ. �

Collecting the above results and noting Example 1.1(b) we can give a complete solution

to the problem of determining the unit sum number of a vector space :

Theorem 2.5 If V is a vector space of arbitrary dimension over a field F then

usn(V ) = 2 unless V is one dimensional and F = GF(2); in this case usn(V ) = ω. �

For the remainder of this section we focus our attention on torsion–free modules over the
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ring Jp of p–adic integers. (It is worth noting that the arguments hold more generally

for torsion–free modules over a complete discrete valuation ring.) The situation for free

modules of finite rank is entirely analagous to the finite dimensional vector space situation.

This result can be obtained by a direct argument as for vector spaces or it can be deduced

as an easy consequence of our next result and Proposition 1.3 since free p–adic modules

of finite rank are necessarily complete.

Proposition 2.6

(a) If M is a complete torsion–free Jp–module, then J(E(M)) = pE(M).

(b) If M is a free Jp–module (of arbitrary rank), then E(M)/pE(M) ∼= E(M/pM).

Proof: For part (a) see (2.3) Theorem in [10].

To prove (b) define Δ : E(M) −→ E(M/pM) by ψΔ = ψ where ψ is the induced

endomorphism. Obviously, Δ is a ring homomorphism.

For M =
⊕

i∈I xiJp and θ ∈ E(M/pM) we define ψ ∈ E(M) by xiψ =
∑

j∈I rijxj

(rij = 0 for almost all j) where the rij ∈ Jp are chosen corresponding to (xi + pM)θ =∑
j∈I rij(xj + pM). Hence ψΔ = ψ = θ and so Δ is surjective.

Finally, kerΔ = {ψ ∈ E(M) | ψ = 0} = {ψ ∈ E(M) | Mψ ⊆ pM} = pE(M) and thus

E(M)/pE(M) ∼= E(M/pM). �

Theorem 2.7 If M is a free Jp–module of finite rank n then usn(M) = 2 unless n = 1

and p = 2; in this case usn(M) = ω.

Proof: By Proposition 2.6 (b), E(M)/pE(M) ∼= E(M/pM). But M/pM is a vec-

tor space and hence, by Theorem 2.5 every endomorphism of M/pM can be written

as a sum of two automorphisms unless p = 2 and dim(M/pM) = 1; in this case

usn(M/pM) = ω. Therefore usn(E(M)/pE(M) = 2 unless p = 2 and rk(E(M)) = 1;

in this case usn(E(M)/pE(M)) = ω. But pE(M) = J(E(M)), the Jacobson radical

of E(M), by Proposition 2.6(a) since a free p–adic of finite rank is obviously complete.

Hence, by Proposition 1.3, the unit sum number of E(M) and hence of M is 2 unless

p = 2 and rk(E(M)) = 1 which implies rk(M) = 1; in this case usn(M) = ω. �
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There is not, however, an easy transition to even countably infinite rank using the above

arguments since unfortunately the Jacobson radical of a free p–adic module is much more

complicated than that of a complete module as illustrated by our next result.

Proposition 2.8 If M is a free Jp–module of infinite rank then J(E(M)) is properly

contained in pE(M).

Proof: See (2.4) Proposition in [10].

Nor indeed is it immediately clear how to modify the algorithm used for countable di-

mensional vector spaces. The essence of the problem is that at each step of the process

purity needs to be preserved and unfortunately preserving p–heights is not, in this sit-

uation, adequate to ensure purity. Consequently we adopt an approach reminiscent of

arguments used by Goldsmith [6], which in turn are based on Castagna [1]. In [6] it was

established that if M is a free p–adic module then usn(M) ≤ 4. In light of our results

on vector spaces it seems likely that usn(M) = 2 but the best we can achieve at present

is usn(M) ≤ 3 if p �= 2.

Suppose M =
⊕

i<ω xiR, with R = Jp, is a free p–adic module of countably infinte rank

and η ∈ ER(M). Then, extending some terminology introduced by Freedman [2], we say

(i) η is locally nilpotent if, for any x ∈ M , there is some k < ω such that xηk = 0.

(ii) η is an α–endomorphism if xiη ∈ ⊕
k>i

xkR for all i < ω.

(iii) η is a β–endomorphism if xiη ∈
i−1⊕
k=0

xkR for all i < ω.

(iv) η is a d–endomorphism if xiη ∈ xiR for all i < ω.

Theorem 2.9 Let R = Jp with p �= 2 and let M be a free R–module of countably infinite

rank; M =
⊕

i<ω xiR. Then every endomorphism of M can be expressed as a sum of

three automorphisms.

Proof: Let ψ be an endomorphism of M . Obviously we can write ψ as a sum of a

d–endomorphism δ, a β–endomorphism φ and an α–endomorphism η.

12



Since we may write any p–adic integer as a sum of two and hence also of three units

we can express δ as a sum of three d–automorphisms τ, θ1, and θ2, i.e. τ, θ1, θ2 are

automorphisms as well as d–endomorphism .

First we show that τ +φ is an automorphism of M . Certainly τ +φ = τ(I + τ−1φ). Since

τ and therefore τ−1 are d–automorphisms and φ is a β–endomorphism we get, for each

basis element xi, xi(τ
−1φ) ∈ (xiR)φ ⊆

i−1⊕
j=0

xjR, so xi(τ
−1φ)2 ∈ (

i−1⊕
j=0

)τ−1φ ⊆
i−2⊕
j=0

xjR . . .

and finally xi(τ
−1φ)i+1 = 0, i.e. τ−1φ is locally nilpotent. Thus the expression

X = I − τ−1φ + (τ−1φ)2 − . . . + (−1)n(τ−1φ)n . . . has a well–defined meaning considered

as an endomorphism of M . In fact X is the inverse of (I + τ−1φ) and so (I + τ−1φ), and

hence the product τ(I + τ−1φ), are automorphisms of M , i.e. τ + φ is an automorphism

of M .

Next we consider the α–endomorphism . Since, for any i < ω, there is a minimal m < ω

such that xiη ∈
m⊕

j=i+1

xjR there exists a strictly ascending sequence 0 = r0 < r1 < r2 < . . .

of integers having the property that xiη ∈
rs+2−1⊕
j=i+1

xjR whenever rs ≤ i < rs+1. We define

the mappings η1 and η2 by

xiη1 =

⎧⎨⎩ xiη for r2t ≤ i < r2t+1

0 for r2t+1 ≤ i < r2t+2

and xiη2 =

⎧⎨⎩ 0 for r2t ≤ i < r2t+1

xiη for r2t+1 ≤ i < r2t+2

where t = 0, 1, 2, . . .. It follows immediately that η1 and η2 are again α–endomorphisms

and that their sum is η. Moreover, an easy calculation shows, using the definition and

the sequence r0 < r1 < . . . above, that η1 and η2 are locally nilpotent. (See Lemma 2

in [2].) Thus we can write the α-endomorphism η as a sum of two locally nilpotent

α–endomorphisms .

Next we show that δ1 + η1 is an automorphism . We investigate δ−1
1 η1 for local nilpo-

tence and clearly need only consider xi(δ
−1
1 η1) for r2t ≤ i < r2t+1. Since δ−1

1 is a d–

automorphism it only affects coefficients of xi and so xi(δ
−1
1 η1) ∈

r2t+2−1⊕
j=i+1

xjR. Thus

xi(δ
−1
1 η1)

m ∈
r2t+2−1⊕
j=r2t+1

xjR for some m and hence xi(δ
−1
1 η1)

m+1 = 0. So δ−1
1 η1 is lo-

cally nilpotent. By arguments similar to those above we get that I + δ−1
1 η1, and hence

13



δ1 + η1 = δ1(I + δ−1
1 η1), are automorphisms of M .

In the same manner, by considering the interval r2t+1 ≤ i < r2t+2 we get that δ−1
2 η2 is

locally nilpotent and so δ2 + η2 = δ2(I + δ−1
2 η2) is also an automorphism of M.

Finally ψ = (τ + φ) + (δ1 + η1) + (δ2 + η2), a sum of three automorphisms of M. �

We can extend this result to free modules of arbitrary rank by the same arguments as in

Corollary 2.4.

Corollary 2.10 If M is a reduced torsion–free p–adic module of infinite rank (p �= 2)

then each endomorphism of M is a sum of three automorphisms of M. �

We remark that an analagous result has been obtained by Wans [11] with R = Z. Rather

surprisingly if M is a complete torsion–free p–adic module then one can show that with

one exception usn(M) = 2. This was observed in [6] but only a sketch of the proof was

given. We present here the detailed argument. First we need:

Lemma 2.11 If M is the completion of the free Jp–module B then E(M)/pE(M) is

ring isomorphic to E(B)/pE(B).

Proof: Note first that we may consider E(B) as a subset of E(M) identifying an endo-

morphism of B with its unique extension to an endomorphism of M .

An easy argument gives E(M)/E(B) is torsion–free and divisible using that M/B is

torsion–free and divisible. Thus, for any ψ ∈ E(M), there exist ψ′ ∈ E(M) and θψ ∈ E(B)

such that ψ = pψ′+θψ where ψ′ and θψ are unique modulo pE(M) and pE(B) respectively

since E(B) is pure in E(M).

We define χ : E(M) −→ E(B)/pE(B) by ψχ = θψ + pE(B). Clearly χ is a ring homo-

morphism and it is surjective. Furthermore kerχ = {ψ ∈ E(M) | θψ ∈ pE(B)}. But

θψ ∈ pE(B) implies θψ = pθ′ and so ψ = pψ′ + pθ′ = p(ψ′ + θ′) ∈ pE(M),

i.e. kerχ = pE(M). Therefore E(M)/pE(M) ∼= E(B)/pE(B) by the isomorphism theo-

rem. �

Theorem 2.12 If M is a complete torsion–free p–adic module of infinite rank then

usn(M) = 2.
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Proof: Since M is complete it is the completion of any its basic submodules, M = B̂

say where B is a free p–adic module of infinite rank. Now it follows from Lemma 2.11

that E(M)/pE(M) is ring isomorphic to E(B)/pE(B) and since the latter is, by

Proposition 2.6 (b), isomorphic to E(B/pB), we can deduce from Proposition 2.6 (a)

that E(M)/J(E(M)) is isomorphic to the endomorphism ring of the vector space B/pB.

The desired result follows from Proposition 1.3 and Theorem 2.5. �

Corollary 2.13 If M is a complete torsion–free Jp–module then usn(M) = 2 unless M

is Jp itself and p = 2; in this case usn(M) = ω. �

§3 Unit sum numbers of p–groups

In this final section we focus on the unit sum number of p–groups, particularly direct sums

of cyclic groups and the torsion completions (=torsion subgroup of the p–adic completion)

of such groups; see [5] for further details of torsion completions. The unit sum numbers

of direct sums of countable p–groups and of totally projective p–groups, with p �= 2,

have been obtained by Castagna [1] and Hill [7] respectively. Their methods are based

on extensions of the proof of Ulm’s theorem for such classes and use difficult techniques.

Our approach is based more on the arguments we have developed for vector spaces and is

considerably more elementary. The price to be paid for this simplification is that we do

not obtain sharp results.

For completeness let us record

Theorem 3.1 If G is a totally projective p–group (p �= 2) then usn(G) = 2.

Proof: See Theorem 4.1 in [7]. �

Note that the class of direct sums of reduced countable p–groups is contained in the class

of totally projective p–groups.

Before developing our result let us remark that the restriction p �= 2 is, in some senses,

unavoidable here. There exist finite abelian 2–groups which even have unit sum number

∞as demonstrated below.
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Example 3.2

Let G =< a > ⊕ < b > such that o(a) = 2, o(b) = 8. Then the elements a ± 2b have

the same Ulm sequence (0, 2,∞,∞, . . .) and they are the only elements of G with an Ulm

sequences of this form. Thus (a ± 2b)θ ∈ {a ± 2b} for any automorphism θ of G. In fact,

for θi ∈ Aut(G) (i ≤ k), we get (a± 2b)
k∑

i=1

θi ∈ 〈a± 2b〉 = {0, a + 2b, a− 2b, 4b} = H, the

subgroup of G generated by a ± 2b.

We define φ : G −→ G by aφ = 0 and bφ = b. If φ were a sum of automorphisms then

(a ± 2b)φ = ±2b would be an element of H contradicting 2b �∈ H. Therefore E(G) is not

even generated by Aut(G), i.e. usn(G) = ∞.

Our first result closely mirrors the corresponding one for free p–adic modules.

Theorem 3.3 If G is a direct sum of countably many cyclic p–groups (p �= 2) then every

endomorphism of G can be expressed as a sum of three automorphisms , i.e. usn(G) ≤ 3.

Proof: Let G =
⊕
i<ω

〈xi〉 with o(xi) = pni (ni ∈ ω). The proof follows that of The-

orem 2.9 with only the d–endomorphism δ needing particular attention. Since δ is a

d–endomorphism xiδ = dixi for some di ∈ Z.

If (di, p) = 1 then di = di + 1 − 1, while if p divides di then di = (2 + di) − 1 − 1 where

(p, 2 + di) = 1 since p �= 2. So in either case we can express di as a sum of three units (in

the ring Zpni ) and hence δ can be written as a sum of three d–automorphisms of G. �

In light of our results for complete p–adic modules it is no surprise that we can achieve

a finer result for torsion–complete groups; a similar result has been obtained by different

methods by Castagna [1].

Lemma 3.4 Let B =
⊕
n∈I

Bn be a direct sum of cyclic groups, where each Bn is a direct

sum of cyclic groups of order pn+1 and I ⊆ ω such that Bn �= 0 for n ∈ I, and let B be

the torsion completion of B. Then E(B)/J(E(B)) ∼= ∏
n∈I E(Bn[p]).

Proof: See Theorem 3.4 in [1]. �

Since each Bn[p] is a vector space we have, except where p = 2 and dim(Bn[p]) = 1,

that every element of E(Bn[p]) is a sum of two units (Theorem 2.5) and thus the ring
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direct product
∏

n∈I E(Bn[p]) has this property by Proposition 1.2. Hence the quotient

ring E(B)/J(E(B)) has this property and so also does E(B) as observed in Proposition

1.3. The exceptional case where p = 2 is easily handled and we now separate the cases

p = 2 and p �= 2 for clarity of presentation. Thus we have established the following result:

Theorem 3.5 If G is a torsion–complete p–group (p �= 2) then usn(G) = 2. �

For p = 2 we have the following characterization which could not be obtained by Castagna’s

methods:

Theorem 3.6 If G is a torsion–complete 2–group then every endomorphism of G is a

sum of two automorphisms if and only if every non–zero Ulm invariant of G, fn(G), is

at least 2.

Proof: We note that fn(G) = fn(B) for any basic subgroup B of G and so fn(G) = k if

and only if in the decomposition B =
⊕

n∈I Bn, Bn is a direct sum of k cyclic groups of

order 2n+1.

Suppose now that fn(G) ≥ 2 if it is not zero, i.e. fn(G) ≥ 2 for n ∈ I. Then by

Lemma 3.4, E(G)/J(E(G) ∼= ∏
n∈I E(Bn[2]) and each vector space Bn[2] has dimension

at least 2. Thus every endomorphism of Bn[2] is a sum of two automorphisms (Theorem

2.5) and a similar argument to that in Theorem 3.5 completes the proof.

Conversely, if E(G) has the property that every endomorphism is a sum of two automor-

phisms then so also has every (ring) homomorphic image of E(G). In particular it follows

from Lemma 3.4 that E(Bn[2]) is such an image and so E(Bn[2]), the endomorphism ring

of a vector space over GF(2)(2) has the property. We have already seen that this forces

dim(Bn[2]) ≥ 2 and consequently fn(G) ≥ 2 for n ∈ J . �

Concluding Remarks: It would be interesting to know the range of the unit sum

number function; in particular for each finite integer n does there exist a p-group with

usn(G) = n? In this context it is worth noting that although every separable p–group

G occurs as a pure subgroup of the torsion completion B of any of its basic, and hence
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direct sum of cyclics, subgroup, it is easy to use a realization theorem (see e.g. [2], [6]) to

exhibit a separable p–group G (p �= 2) of cardinality 2ℵ0 for which usn(G) = ∞.
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