

Technological University Dublin ARROW@TU Dublin

Articles

School of Mathematics

2006-01-01

Classifying E-algebras over Dedekind domains

Brendan Goldsmith *Technological University Dublin*, brendan.goldsmith@tudublin.ie

R. Gobel Universitat Duisberg Essen

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart

Part of the Mathematics Commons

Recommended Citation

Goldsmith, Brendan and R. Gobel:Classifying E-algebras over Dedekind domains. Journal of Algebra, 206 (2006), pp.566-575.

This Article is brought to you for free and open access by the School of Mathematics at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,

brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 306 (2006) 566-575

www.elsevier.com/locate/jalgebra

Classifying E-algebras over Dedekind domains

R. Göbel^{a,1}, B. Goldsmith^{b,*}

^a FB6, Mathematik, Universität Duisburg Essen, 45117 Essen, Germany ^b School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Received 15 November 2005

Available online 24 February 2006

Communicated by Kent R. Fuller

Abstract

An *R*-algebra *A* is said to be a generalized E-algebra if *A* is isomorphic to the algebra $\operatorname{End}_R(A)$. Generalized E-algebras have been extensively investigated. In this work they are classified 'modulo cotorsion-free modules' when the underlying ring *R* is a Dedekind domain. © 2006 Elsevier Inc. All rights reserved.

1. Introduction

The notion of an E-ring goes back to a seminal paper of Schultz [20] written in response to Problem 45 in the well-known book 'Abelian Groups' by Laszlo Fuchs [11]. In this paper Schultz distinguished between two possibly different approaches, the first we will continue to call an E-ring, while the second we shall refer to as a *generalized* E-ring. Thus a ring R is said to be an E-ring if R is isomorphic to the endomorphism ring of its underlying additive group, R^+ , via the mapping sending an element $r \in R$ to the endomorphism given by left multiplication by r, whilst R is a generalized E-ring if some isomorphism, not necessarily left multiplication, exists between R and its endomorphism ring End (R^+) .

^{*} Corresponding author.

E-mail addresses: r.goebel@uni-essen.de (R. Göbel), brendan.goldsmith@dit.ie (B. Goldsmith).

¹ Supported by the project No. I-706-54.6/2001 of the German–Israeli Foundation for Scientific Research & Development.

^{0021-8693/}\$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.01.036

Since right multiplication is always an endomorphism, it is not difficult to see that E-rings are necessarily commutative. The existence of a non-commutative generalized E-ring has recently been established [15], and so it follows that the class of generalized E-rings is strictly larger than the class of E-rings.

Since Schultz's original paper there has been a great deal of interest in E-rings and some natural generalizations, see e.g. [1,2,4,6,8-10,17,19,21]. A notable feature of much of this recent work has been the use of so-called realization theorems, whereby a cotorsion-free ring is realized, using combinatorial ideas derived from Shelah's Black Box—see e.g. [7] for details of this technique—as the endomorphism ring of an Abelian group. This present work arose from an observation of the second author in response to a question from the first about the existence of generalized E-algebras over the ring J_p of p-adic integers; see [16] for further details. A natural question which arises, is to what extent is it necessary for a ring to be cotorsion-free in order to be a generalized E-ring and the principal objective of this work is to characterize generalized E-rings 'modulo cotorsion-free groups.' The characterization is quite elementary but seems to have been overlooked heretofore. It should be noted that Bowshell and Schultz showed in [2] that a reduced cotorsion E-ring has the form $\prod_{p \in U} \mathbb{Z}(p^{k_p}) \oplus \prod_{p \in V} J_p$ where U, V are disjoint sets of primes.

It will be just as convenient to study generalized E(R)-algebras; if R is a commutative ring and M is an R-algebra, then M is said to be a generalized E(R)-algebra if M is isomorphic, as an algebra, to its own endomorphism algebra, $End_R(M)$. Indeed many of our results could be stated in terms of the module structure only, i.e. we could restrict our attention to R-modules M with the property that the endomorphism *module* $Endo_R(M)$ is isomorphic, as a module, to M. There is little to be gained from this distinction so we will refer in general to generalized E(R)-algebras hereafter, or simply generalized E-algebras if there is no possibility of confusion.

We finish this introduction by establishing some notation which will remain fixed throughout the sequel. So let *R* be a Dedekind domain with quotient field *Q* and let *S* be the set of prime ideals of *R*. A module *M* is said to be *S*-divisible if M = PM for all $P \in S$, while it is said to be *S*-reduced if it has no non-trivial *S*-divisible submodules. A submodule *N* of *M* is said to be *S*-pure in *M*, denoted $N \leq_S M$, if $IN = N \cap IM$ for all ideals *I* of *R* which are products of prime ideals in the set *S*. By analogy with the standard notation used in Abelian group theory, we shall write $R(P^{\infty})$ for the direct limit of the cyclic modules $R/P^n R$, or equivalently the injective hull of R/PR; similarly J_P will denote the completion in the *P*-adic topology of the discrete valuation ring R_P , the localization of *R* at *P*. Finally we note that if *R* is field then it is immediate that only *R* itself can be a generalized E-algebra and so we shall always assume that the ring *R* is not a field. At some points we shall also need to assume that *R* has a localization at a prime ideals $P \in S$ which is not a complete discrete valuation ring; we note that this is equivalent to saying that *R* itself is not a complete discrete valuation domain—see e.g. [18, Proposition 4].

2. E(R)-algebras with cotorsion submodules

Suppose then that A is a generalized E(R)-algebra but that A is not cotorsion-free. It follows from an easy extension of the well-known classification of cotorsion-free groups—

see e.g. [7, V, Theorem 2.9]—that A is either (i) not reduced, (ii) not torsion-free or (iii) it is torsion-free reduced but contains a submodule isomorphic to J_P the algebra of P-adic integers. It is easy to handle case (i) and the possibility in case (ii) that A is torsion. We record this as

Proposition 2.1.

- (i) If A is not reduced, then A is a generalized E-algebra if and only if $A \cong Q \oplus C$ where C is a cyclic torsion R-module.
- (ii) If A is torsion, then A is a generalized E-algebra if and only if A is cyclic.

Proof. See Theorems 1 and 3 in [20] or see [3] for a discussion in the context of Dedekind domains. \Box

The remaining part of case (ii) can now be dealt with. So assume that *A* is a reduced generalized E-algebra which is mixed and let *T* denote the torsion submodule of *A*. It follows from Lemma 2 of Schultz [20], that $T = \bigoplus_{P \in \mathbb{P}'} R/P^{k_P} R$ for some set of primes $\mathbb{P}' \subseteq S$ and integers k_P ; let *V* denote the corresponding direct product $V = \prod_{P \in \mathbb{P}'} R/P^{k_P} R$. Also it follows from [20, Lemma 4] that *A* is an extension of an ideal *I* by a pure subalgebra of *V* which contains *T*; the ideal *I* consists of the elements in *A* which have infinite *P*-height for all $P \in \mathbb{P}'$.

It is well known—see e.g. [12, Section 58]—that A can be embedded as a pure submodule in its cotorsion completion $A^{\bullet} = \text{Ext}(Q/R, A)$ and that this latter splits as $T^{\bullet} \oplus F^{\bullet}$ where, as before, T is the torsion submodule of A and F is the torsion-free quotient A/T—see e.g. [12, Lemma 55.2]. Since F is torsion-free, we know from Theorem 52.3 in [12] that $\text{Ext}(Q/R, F) \cong \text{Hom}(Q/R, D/F)$ where D is the injective hull of F. Moreover, $\text{Hom}(Q/R, D/F) \cong \prod_P \text{Hom}(R(P^{\infty}), D/F) \cong \prod_P \text{Hom}(R(P^{\infty}), \bigoplus_m R(P^{\infty}))$ where m is the torsion-free rank of F. From Proposition 44.3 in [12], we conclude that $\text{Hom}(Q/R, D/F) \cong \prod_P \bigoplus_m J_P$, a torsion-free pure injective module.

Lemma 2.2. The cotorsion completion of T is isomorphic to a direct summand of the cotorsion completion of V, $V^{\bullet} \cong T^{\bullet} \oplus Y$ for some Y. Moreover, $V^{\bullet} \cong V$.

Proof. It is easy to see that V/T is torsion-free and so if we consider the short exact sequence

$$0 \rightarrow T \rightarrow V \rightarrow X \rightarrow 0$$
,

where X = V/T, we get an induced sequence

$$0 \to T^{\bullet} \to V^{\bullet} \to \operatorname{Ext}(Q/R, X) \to 0.$$

Since X is torsion-free, $\text{Ext}(Q/R, X) \cong \text{Hom}(Q/R, D/X)$ where D is the injective hull of X. But it follows easily from [12, Proposition 44.3] that this latter is isomorphic to a direct product of completions of direct sums of modules J_P , for various primes P. In particular it is torsion-free and since T^{\bullet} is cotorsion, the extension $0 \to T^{\bullet} \to V^{\bullet} \to$ Ext $(Q/R, X) \to 0$ splits, i.e. T^{\bullet} is a direct summand of V^{\bullet} as required. Furthermore since $V = \prod_{P \in \mathbb{P}'} R/P^{k_P} R$, we have $V^{\bullet} = \text{Ext}(Q/R, V) \cong \prod_{P \in \mathbb{P}'} \text{Ext}(Q/R, R/P^{k_P} R) \cong$ $\prod_{P \in \mathbb{P}'} \text{Ext}(R/P^{k_P} R, R/P^{k_P} R) \cong V. \square$

It is now possible to shed some light on the structure of the ideal *I* of elements of infinite *P*-height ($P \in \mathbb{P}'$).

Now A is a pure submodule of $A^{\bullet} = T^{\bullet} \oplus F^{\bullet}$, which by Lemma 2.2 and the discussion immediately preceding it, is a pure submodule of

$$V \oplus \prod_{P} \widehat{\bigoplus_{m} J_{P}} = \left[V \oplus \prod_{P \in \mathbb{P}'} \widehat{\bigoplus_{m} J_{P}} \right] \bigoplus \prod_{P \in S \setminus \mathbb{P}'} \widehat{\bigoplus_{m} J_{P}}.$$

Let U denote the radical defined by $U(X) = \bigcap_{P \in \mathbb{P}'} P^{\omega}X$ for any module X. Then U(A) is the set of elements in A which have infinite P-height for all $P \in \mathbb{P}'$. It follows from elementary properties of radicals that

$$U(A) \leq U\left(\left[V \oplus \prod_{P \in \mathbb{P}'} \widehat{\bigoplus_{m} J_P}\right]\right) \oplus U\left(\prod_{P \in S \setminus \mathbb{P}'} \widehat{\bigoplus_{m} J_P}\right).$$

The former term however is clearly zero and so we have established a slight extension of [3, Theorem 1.1]:

Proposition 2.3. If A is a reduced generalized E-algebra which is a mixed algebra and the P-primary component of the torsion submodule $t_P(A) \neq 0$ for each prime $P \in \mathbb{P}'$, then A is an extension of an ideal I by a P-pure (for each $P \in \mathbb{P}'$) subalgebra with identity of the algebra $\prod_{P \in \mathbb{P}'} R/P^{k_P} R$ containing $\bigoplus_{P \in \mathbb{P}'} R/P^{k_P} R$. Moreover, I is contained in $\prod_{P \in S \setminus \mathbb{P}'} \bigoplus_m J_P$ for a suitable cardinal m.

The final case to be considered is when the generalized E-algebra A is torsion-free, reduced and contains a submodule isomorphic to the module J_P of P-adic integers. Since E-algebras of arbitrary large rank with many additional properties have been constructed—see e.g. [4–6]—there is no possibility of obtaining a characterization in this case. We can, however, obtain a complete characterization 'modulo cotorsion-free modules.'

Suppose that A is a generalized E-algebra which is torsion-free, reduced but not cotorsion-free. Then the set $\{P \in S \mid A \text{ has a pure submodule isomorphic to } J_P\} \neq \emptyset$. Let \mathbb{P}' denote those primes P for which A has a submodule isomorphic to J_P ; we refer to \mathbb{P}' as the set of *relevant* primes.

Lemma 2.4. A does not contain a pure submodule of the form $\bigoplus_{\otimes_0} J_P$ for any $P \in \mathbb{P}'$.

Proof. Suppose for a contradiction that *A* did contain such a pure submodule, *B* say. Then we have a short exact sequence

$$0 \to A \to A \to D \to 0,$$

where \hat{A} is the completion of A in the natural topology. Since A is torsion-free reduced, the quotient $\hat{A}/A = D$ is torsion-free and divisible (possibly = 0)—see e.g. [13, Chapter VIII, Theorem 2.1]. Thus we get an induced sequence

$$0 \rightarrow \operatorname{Hom}(\hat{A}, A) \rightarrow \operatorname{Hom}(A, A) \rightarrow \operatorname{Ext}(D, A)$$

and note that the final term is torsion-free, divisible since D is. (Since modules over a Dedekind domain have projective dimension at most 1, the standard argument for Abelian groups [12, 52(J)] carries over to this situation.) Hence $A \cong \text{Hom}(A, A)$ contains a pure submodule isomorphic to $\text{Hom}(\hat{A}, A)$. Now it follows from the standard classification of pure injective modules, which also carries over in this situation—see e.g. [13, Chapter XIII, Proposition 4.5]—that \hat{A} has the form $\hat{A} = \bigoplus_{\kappa} J_P \oplus Y$, for some Y with $\text{Hom}(J_P, Y) = 0$. Note that κ is an invariant of \hat{A} and, since the closure of B in \hat{A} is again pure and thus a summand, $\kappa \ge \aleph_0$. Since A has a summand isomorphic to $\text{Hom}(\bigoplus_{\kappa} J_P, J_P)$. But now $\text{Hom}(\bigoplus_{\kappa} J_P, J_P) \cong \text{Hom}(\bigoplus_{\kappa} J_P, J_P) \cong \prod_{\kappa} J_P$ and this latter is isomorphic to $\bigoplus_{2^{\kappa}} J_P$ —see Fuchs [12, §40, Example 1]. Thus A has a pure submodule isomorphic to $\bigoplus_{2^{\kappa}} J_P$ and hence, so also has \hat{A} . Since $\bigoplus_{2^{\kappa}} J_P$ is pure injective, this would mean that \hat{A} has a direct summand which is the completion of a direct sum of strictly more than κ copies of J_P —contradiction. \Box

Recall that the P-cotorsion radical of an R-module G is defined by

$$\mathcal{R}(G) = \bigcap_{\phi: G \to J_P} \operatorname{Ker} \phi.$$

Lemma 2.5. For each relevant prime $P \in \mathbb{P}'$, $A = J_P \oplus X_{n_P}$, where X_{n_P} is *P*-cotorsion-free and fully invariant.

Proof. Firstly we show that A cannot have a sequence of summands A_i where $A_i \cong J_P^{(n_i)}$ with $n_1 < n_2 < \cdots$. Suppose such a sequence exists $A = A_i \oplus X_i$, say, where each X_i is *P*-cotorsion-free. Then taking *P*-cotorsion radicals we get $\mathcal{R}(A) = X_i = X_j$ for all *i*, *j*. This is impossible since it would imply that $A_i \cong A_j$ and this is not so. Hence we can construct inductively a sequence $B_1 = A_1, B_2, \ldots$ of summands of *A* with $B_1 < B_2 < \cdots$ and each B_i is a direct sum of a finite number of copies of J_P . The union of this sequence would then be a pure submodule of *A* isomorphic to $\bigoplus_{\aleph_0} J_P$; this last conclusion coming from the fact that successive terms in the sequence of submodules B_i split with factors isomorphic to direct sums of copies of J_P . This, however, is impossible since, by the previous lemma, *A* has no pure submodule isomorphic to $\bigoplus_{\aleph_0} J_P$ and so $A = J_P^{(n_P)} \oplus X_{n_P}$ for some X_{n_P} and finite integer n_P . However as $A \cong \text{Hom}(A, A)$, it is immediate that $n_P = 1$. Clearly then, the complement X_{n_P} is *P*-cotorsion-free. If $\text{Hom}(X_{n_P}, J_P) = 0$, then X_{n_P} is fully invariant. If not, there exists a non-zero mapping σ say: $X_{n_P} \to J_P$ and then the composition $\sigma \pi$ is a mapping: $X_{n_P} \to J_P$ for all *P*-adic integers π , i.e. $\text{Hom}(X_{n_P}, J_P)$ contains a

copy of J_P and so A has a summand with at least two copies of J_P —contradiction. Thus X_{n_P} is fully invariant as claimed. \Box

Theorem 2.6. If A is a generalized E-algebra, then for each relevant prime $P \in \mathbb{P}'$, A has the form $A = A_P \oplus X_P$, where $A_P = J_P$ and the complement X_P , which is P-cotorsion-free is unique. Moreover, X_P is itself a generalized E-algebra.

Proof. The complement X_P is unique since it is fully invariant—see e.g. [12, Corollary 9.7]. Since X_P is *P*-cotorsion-free, $\operatorname{Hom}(A_P, X_P) = 0$ and since X_P is fully invariant, $\operatorname{Hom}(X_P, A_P) = 0$. Thus $A_P \oplus X_P = A \cong \operatorname{Hom}(A, A) \cong J_P \oplus \operatorname{Hom}(X_P, X_P)$, and then, taking *P*-cotorsion radicals, we get that $X_P \cong \operatorname{Hom}(X_P, X_P)$. Thus X_P is a generalized E-algebra as claimed. \Box

Corollary 2.7. If A is a generalized E-algebra with a finite set \mathbb{P}' of relevant primes, then A is an extension of a cotorsion-free ideal C, which is itself an E-algebra, by the algebra $\prod_{P \in \mathbb{P}'} J_P$.

Proof. The result follows immediately by finite repetition from Theorem 2.6. \Box

We can also recover the result noted in the introduction, that over a complete discrete valuation ring, generalized E-algebras exist in only the trivial way—see [16] for extensions of this result.

Corollary 2.8. If A is a reduced torsion-free module over a complete discrete valuation ring R, then A is a generalized E-algebra if, and only if $A \cong R$.

Proof. In one direction the proof is immediate. Conversely suppose that *A* is an *R*-algebra. Then the set of relevant primes has exactly one member. Moreover, the only cotorsion-free *R*-module is the trivial module 0. The result follows immediately from Corollary 2.7. \Box

Lemma 2.9. A contains a submodule of the form $B = \bigoplus_{P \in \mathbb{P}'} J_P$.

Proof. Clearly the submodule *B* generated by the A_P will have this form if we can show that the sum is direct, or equivalently that $A_P \cap \sum_{I \neq P} A_I = \{0\}$. However if $x \in A_P$ and $x = x_1 + \cdots + x_k$, where $x_i \in A_{I_i}$ with $I_i \neq P$, then as each x_i is *P*-divisible, $x \in P^{\omega}A \cap A_P = P^{\omega}A_P = 0$. \Box

Theorem 2.10. If A is a reduced, torsion-free generalized E-algebra and $\mathbb{P}' \subseteq S$ denotes the set of primes P for which A contains a submodule isomorphic to J_P , then A is an extension of a cotorsion-free ideal X by a subalgebra C of $\prod_{P \in \mathbb{P}'} J_P$ and C contains an isomorphic copy of $B = \bigoplus_{P \in \mathbb{P}'} J_P$. Moreover,

- (i) *X* is the intersection of a family of generalized *E*-algebras.
- (ii) *C* contains the identity of $\prod_{P \in \mathbb{P}'} J_P$ and is hence an *E*-algebra.

Proof. It follows from Theorem 2.6 that for $P \in \mathbb{P}'$, each element *a* of *A* can be expressed uniquely as $a = j_P + x_P$, where $j_P \in A_P$, $x_P \in X_P$, and so the mapping sending *a* to the vector (\ldots, j_P, \ldots) , is a well-defined homomorphism ϕ of *A* into $\prod_{P \in \mathbb{P}'} J_P$. The kernel of this mapping ϕ is precisely $X = \bigcap_{P \in \mathbb{P}'} X_P$. Since each X_P is *P*-cotorsion-free, the intersection *X* is \mathbb{P}' -cotorsion-free and hence, as no other primes are relevant, is cotorsionfree. Note that $\phi \upharpoonright B$ acts as the identity, since an element of the form j_P when expressed as $j_I + x_I$, must have $j_I = 0$ because $j_I = j_P - x_I$ is *I*-divisible. Thus we have $B \cong B\phi \leq$ $C = A/\operatorname{Ker} \phi \leq \prod_{P \in \mathbb{P}'} J_P$. Since ϕ is an algebra homomorphism, *X* is an ideal which is clearly the intersection of a family of generalized E-algebras, and *C* is a subalgebra. The final claim that *C* is an E-algebra follows from the general fact proved in Proposition 2.11 below. \Box

Proposition 2.11. If X is a subalgebra with 1 of the direct product $\prod_{P \in \mathbb{P}'} J_P$ and X contains the corresponding direct sum $\bigoplus_{P \in \mathbb{P}'} J_P$, then X is an E-algebra.

Proof. If $\phi \in \text{End}(X)$ then $1\phi = x_0 \in X$. Now x_0 acts by multiplication componentwise on X and the difference $\phi - x_0$ acts as the zero map on $\bigoplus_{P \in \mathbb{P}'} J_P$. But this direct sum is dense in the product, and since maps are continuous, ϕ acts as multiplication by x_0 on X. \Box

If the ideal X actually splits then we can deduce a good deal more:

Corollary 2.12. If the ideal X splits then A is the split extension of a cotorsion-free generalized E-algebra X by an E-algebra C where $\bigoplus_{P \in \mathbb{P}'} J_P \leq C \leq \prod_{P \in \mathbb{P}'} J_P$.

Proof. If $A = X \oplus C$ then Hom(C, X) = 0 since X is cotorsion-free. Moreover, Hom(X, C) is a direct summand of A and if it is not zero it would be isomorphic to a product of copies of J_P , some $P \in \mathbb{P}'$. This is impossible and so we have $X \oplus C = A \cong$ Hom $(A, A) = \text{Hom}(X, X) \oplus \text{Hom}(C, C)$. By applying each of the *P*-cotorsion radicals $(P \in \mathbb{P}')$ and noting that $C \cong \text{Hom}(C, C)$, we conclude, as in the proof of Theorem 2.6, that $X \cong \text{Hom}(X, X)$ as required. \Box

Our final result is a partial converse to Theorem 2.10; we show the existence of many non-splitting E-algebras.

Theorem 2.13. Let *R* be a Dedekind domain with prime spectrum *S* and let \mathbb{P}' be an infinite proper subset of *S*, $P_0 \in S \setminus \mathbb{P}'$ and λ a cardinal with $\lambda^{\aleph_0} = \lambda$. Then, provided that R_{P_0} is not a complete discrete valuation domain, there exists a generalized *E*-algebra *A* of cardinality λ such that *A* is an extension of a cotorsion-free ideal *D* by a subalgebra *B*, where $T = \bigoplus_{P \in \mathbb{P}'} J_P \leq B \leq \prod_{P \in \mathbb{P}'} J_P$.

We note that in this situation where \mathbb{P}' is an infinite set, A does not split.

The proof is similar to that used by Braun and the first author in [3]. First we need a lemma:

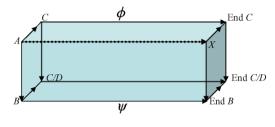
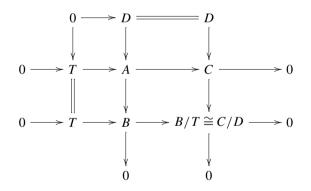


Fig. 1.

Lemma 2.14. Let $T = \bigoplus_{P \in \mathbb{P}'} J_P \leq B \leq \prod_{P \in \mathbb{P}'} J_P = \Pi$, where B is a \mathbb{P}' -pure subalgebra with 1 of Π and suppose that C is a \mathbb{P}' -divisible, cotorsion-free generalized E-algebra with a fixed isomorphism $\phi : C \to \text{Hom}(C, C)$ satisfying:

- (i) there is a fully invariant ideal D of C and $C/D \cong B/T$,
- (ii) the induced map $C \cong \text{Hom}(C, C) \to \text{Hom}(C/D, C/D)$ maps each $c \in C$ to multiplication by the residue class of c.

Then the pullback A below is a generalized E-ring.



Proof. Note that *B* is automatically an E-algebra so that there exists an isomorphism $\psi: B \to \text{End}(B)$ and that *T* is fully invariant in *B*. By hypothesis every endomorphism of *C* induces an endomorphism on *C/D*; similarly for *B* and *B/T*. Hence we may form another pullback, *X* say, of End(*C*) and End(*B*) and we have a composite diagram—see Fig. 1—where the mapping from $C/D \to \text{End}(C/D)$ is the induced map and the map from *A* to *X* is the mapping coming from the universal property of pullbacks.

A straightforward check using the pullback definition shows that X may be identified with those endomorphisms of A which induce endomorphisms on both C and B. Moreover, our hypotheses ensure that the composite diagram in Fig. 1 is commutative and so, by the pullback property, A is isomorphic to X and so may be identified with the same set of endomorphisms of A. As can be seen from the first diagram, $A/D \cong B$ and $A/T \cong C$, and so the set of endomorphisms of A inducing endomorphisms on C, B is precisely the set of endomorphisms of A leaving D and T invariant. Now B/T is torsion-free and isomorphic to C/D, thus we may conclude that D is pure in the \mathbb{P}' -divisible module C. Since $A/D \cong$ *B*, and *B* is \mathbb{P}' -reduced, we conclude that *D* is the maximal \mathbb{P}' -divisible submodule of *A* and hence is invariant under all endomorphisms of *A*. Moreover, $A/T \cong C$, and *C* is cotorsion-free. We claim that *T* must be fully invariant. To see this recall the notion of the hyper-cotorsion radical of a module: a module *M* is said to be hyper-cotorsion if every non-trivial epimorphic image contains a non-trivial cotorsion submodule and the submodule hM is the hyper-cotorsion radical of *M* if hM is hyper-cotorsion and the quotient M/hM is cotorsion-free. (Further details of this notion may be found in [14].) Hence we see that *T* is the hyper-cotorsion radical of *A* and, as a radical, is fully invariant in *A*.

Hence every endomorphism of A leaves D and T invariant and so A is identified with the full endomorphism algebra of A, i.e. A is a generalized E-algebra. \Box

Proof of Theorem 2.13. Since \mathbb{P}' is an infinite set, $T \neq \Pi$ and so we may choose $0 \neq E := B_0/T \cong R_{P_0}$ where $P_0 \notin \mathbb{P}'$. Then, since the localization at P_0 is not a complete discrete valuation ring, E is P_0 -cotorsion-free and so we can apply the realization theorems for cotorsion-free E-algebras—see e.g. [6]. Thus we may obtain an E-algebra C with $C \subseteq E[Y]_{P_0} = E_{P_0}[Y]$, a polynomial ring over the set Y of cardinal λ with coefficients from the localization of E at the prime P_0 . If D is taken as the polynomials with constant term equal to zero, then $E \subseteq C/D \subseteq E_{P_0}$. Since Π/T is divisible, torsion-free we can identify E_{P_0} , and hence C/D as a subalgebra B/T of P/T for some B. With this choice of B, T, C and D, apply Lemma 2.14. This yields the desired generalized E-ring A.

Finally observe that A does not split over D for if it did, the corresponding projection onto D would be multiplication by a non-zero idempotent in A. However the image of 1 under this idempotent must lie in D and so there would exist a non-zero idempotent polynomial with zero constant term; this is clearly impossible and so we conclude that A does not split, as required. \Box

References

- D. Arnold, Finite Rank Torsion-Free Abelian Groups and Rings, Lecture Notes in Math., vol. 931, Springer-Verlag, 1982.
- [2] R.A. Bowshell, P. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann. 228 (1987) 197–214.
- [3] G. Braun, R. Göbel, E-algebras whose torsion part is not cyclic, Proc. Amer. Math. Soc. 133 (2005) 2251– 2258.
- [4] M. Dugas, Large E-modules exist, J. Algebra 142 (1991) 405-413.
- [5] M. Dugas, R. Göbel, Torsion-free nilpotent groups and E-modules, Arch. Math. 54 (1990) 340–351.
- [6] M. Dugas, A. Mader, C. Vinsonhaler, Large E-rings exist, J. Algebra 108 (1987) 88-101.
- [7] P. Eklof, A. Mekler, Almost Free Modules, Set-Theoretic Methods, revised ed., North-Holland, Amsterdam, 2002.
- [8] E.D. Farjoun, Cellular Spaces, Null Spaces and Homotopy Localizations, Lecture Notes in Math., vol. 1622, Springer-Verlag, Berlin, 1996.
- [9] T.G. Faticoni, Each countable torsion-free reduced ring is a pure subring of an E-ring, Comm. Algebra 15 (1987) 2245–2564.
- S. Feigelstock, Additive Groups of Rings, vol. I, Res. Notes Math., vol. 83, Pitman, London, 1971;
 S. Feigelstock, Additive Groups of Rings, vol. II, Res. Notes Math., vol. 169, Pitman, London, 1988.
- [11] L. Fuchs, Abelian Groups, Publ. House of the Hungar. Acad. Sci., Budapest, 1958.
- [12] L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, 1970.

- [13] L. Fuchs, L. Salce, Modules over Non-Noetherian Domains, Math. Surveys Monogr., vol. 84, Amer. Math. Soc., Providence, RI, 2001.
- [14] R. Göbel, Radicals in abelian groups, in: Theory of Radicals, in: Colloq. Math. Soc. János Bolyai, vol. 61, Szekszárd, Hungary, 1991.
- [15] R. Göbel, S. Shelah, Generalized E-algebras via λ-calculus, Fund. Math., in press.
- [16] B. Goldsmith, P. Zanardo, E-algebras over maximal valuation domains, Forum. Math., in press.
- [17] A. Libman, Localization of groups, G-modules and chain-complexes, PhD thesis, Hebrew University, 1997.
- [18] W. May, P. Zanardo, Modules over domains large in a complete discrete valuation ring, Rocky Mountain J. Math. 30 (2000) 1421–1436.
- [19] R.S. Pierce, E-modules, in: Contemp. Math., vol. 87, Amer. Math. Soc., Providence, RI, 1989, pp. 221-240.
- [20] P. Schultz, The endomorphism ring of the additive group of a ring, J. Aust. Math. Soc. 15 (1973) 60-69.
- [21] C. Vinsonhaler, E-rings and related structures, in: Non-Noetherian Commutative Ring Theory, in: Math. Appl., Kluwer, Dordrecht, 2000, pp. 387–402.