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Abstract

The theory of endomorphism rings of algebraic structures allows, in
a natural way, a systematic approach based on the notion of entropy
borrowed from dynamical systems. Here we study the algebraic entropy
of the endomorphisms of Abelian groups, introduced in 1965 by Adler,
Konheim and McAndrew. The so-called Addition Theorem is proved;
this expresses the algebraic entropy of an endomorphism φ of a torsion
group as the sum of the algebraic entropies of the restriction to a φ-
invariant subgroup and of the endomorphism induced on the quotient
group. Particular attention is paid to endomorphisms with zero algebraic
entropy as well as to groups all whose endomorphisms have zero algebraic
entropy. The significance of this class arises from the fact that any group
not in this class can be shown to have endomorphisms of infinite algebraic

∗2000 Mathematics Subject Classification. Primary: 20K30. Secondary: 20K10, 37A35.
Key words and phrases: algebraic entropy, endomorphism rings, Abelian groups. The research
of the Italian authors was supported by MIUR, PRIN 2005.
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entropy and we also investigate such groups. A uniqueness theorem for the
algebraic entropy of endomorphisms of torsion Abelian groups is proved.

Introduction.

In their pioneering paper [AKM] of 1965, Adler, Konheim, and McAndrew in-
troduced the notion of entropy for continuous self-maps of compact topological
spaces. In the conclusion of [AKM] the authors wrote: “The notion of entropy
has an abstract formulation which we have not dealt with here. It can be tailored
to fit mappings on other mathematical structures”. Actually, they sketched how
to define the entropy for endomorphisms of abstract Abelian groups, remarking
that “analogies to the general theorems can be established”.

In 1975 Weiss [W] reconsidered the definition of entropy for endomorphisms
of Abelian groups sketched in [AKM]. He called it “algebraic entropy”, and gave
detailed proofs of its basic properties. His main result was that the algebraic
entropy of an endomorphism φ of the Abelian group G is equal to the topological
entropy of the adjoint map Φ∗ of Φ, where Φ = φ�t(G) is the restriction of φ to
the torsion subgroup t(G) of G.

It is worth recalling that in 1979 Peters [P] gave a different definition of en-
tropy for automorphisms of a discrete Abelian group G. After proving the basic
properties, similar to those proved by Weiss, he generalized Weiss’s main result
to countable Abelian groups, relating the entropy of an automorphism of G to
the measure-theoretic Kolmogorov-Sinai entropy of the adjoint automorphism
of the dual of G. The definition of entropy of automorphisms given by Peters is
easily adaptable to endomorphisms of Abelian groups. A fundamental difference
in the two approaches is that Weiss bases his definition on the supremum, over
all finite subgroups, of a certain function, while Peters consider the supremum
over all finite subsets.

Comparing the two notions of entropy considered above, it can be seen im-
mediately that Weiss’s definition, based on [AKM], has the advantage of being
intrinsically “algebraic”. On the other hand, Weiss’s definition has the disad-
vantage of being trivial for torsion-free groups, whereas Peters’s definition gives
rise to interesting questions in that case. Actually, the two definitions produce
the same notion if one considers torsion groups, but for torsion-free and mixed
groups they produce two different notions. In this paper we will make use of
Weiss’s definition and consequently we shall focus mainly on torsion groups.
Thereby we take up the “challenge” in the conclusion of [AKM] quoted above,
tailoring the notion of entropy to the specific algebraic structure with which we
are dealing.

However in none of these cases was much progress made in actually deter-
mining the entropy of infinite Abelian groups, largely due to the fact that, at
that time, the complicated structure of such groups was poorly understood other
than by a small number of experts in algebra. Recent developments now make it
an opportune time to revisit this important topic. Indeed, very recently Alcaraz,
Dikranjan, and Sanchis [ADS] investigated the generalization given by Bowen
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[B] of the notion of entropy introduced in [AKM] for uniformly continuous self-
maps of uniform spaces. They showed the failure of the so-called “Completion
Theorem” for endomorphisms of totally bounded groups. They also studied the
class of topological groups without endomorphisms of infinite entropy, as well as
the class of groups all of whose endomorphisms have zero entropy. This paper
originated from some open questions posed for these classes in [ADS].

After giving in Section 1 the definition of the algebraic entropy of an en-
domorphism of an Abelian group, we recall Weiss’s results and develop the
basic facts; we furnish examples of endomorphisms of zero, positive and infinite
algebraic entropy. A general result is also proved, which states that every infi-
nite direct sum of non-zero Abelian groups admits an endomorphism of infinite
algebraic entropy.

The “local” case of the study of a single endomorphism φ of an Abelian
group G can also be considered as another facet of the theory of modules over
the polynomial ring Z[X] (or Jp[X], if G is a p-group). Thus in Section 2
we investigate the Jp[φ]-module structure of a p-group G, in connection with
various questions related to the algebraic entropy of a fixed endomorphism φ
of G. We characterize the endomorphisms with zero algebraic entropy as being
point-wise integral over Jp in an appropriate sense. This allows us to dispense
with the usual technically involved definition of the algebraic entropy. In the
final subsection we borrow ideas from dynamical systems theory and show that
a strong analogue of the Poincaré - Birkhoff Recurrence Theorem in ergodic
theory holds for monomorphisms.

Section 3 is devoted to proving the so-called Addition Theorem, relating the
algebraic entropy of an endomorphism φ of a torsion group G to the algebraic
entropy of its restriction to a φ-invariant subgroup and to that of the induced
endomorphism on the factor group. This theorem is crucial in the development
of the whole theory, and allows us to calculate explicitly the algebraic entropy of
an endomorphism φ of a bounded p-group G, using its structure as Jp[φ]-module.

Both Section 4 and Section 5 make use of the fundamental results on en-
domorphism rings of p-groups obtained in the ’60’s and ’70’s by Pierce [Pi]
and Corner [C1, 2]. In Section 4 it is shown that p-groups without endomor-
phisms of infinite algebraic entropy are necessarily semi-standard (i.e., their
Ulm-Kaplansky invariants are finite) and essentially finitely indecomposabble.
It is also proved that infinite bounded p-groups and many unbounded p-groups,
including totally projective groups, torsion-complete groups and pω+1-projective
groups, have endomorphisms of infinite algebraic entropy. We also provide an
example of a standard essentially indecomposable p-group admitting an endo-
morphism of infinite algebraic entropy.

Section 5 is devoted to the investigation of p-groups with zero algebraic en-
tropy. We show that certain strictly quasi-complete p-groups (see [F, XI.74]
and [S, Section 49]), investigated by Hill and Megibben [HM], [M] under the
name of quasi-closed groups, and first constructed by Pierce [Pi], have zero al-
gebraic entropy. The crucial point, which may be of some independent interest,
is the result (Theorem 5.2) that small endomorphisms of semi-standard p-groups
have zero algebraic entropy. We also show that even the endomorphisms which
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are integral over Jp modulo the ideal of the small endomorphisms have zero
algebraic entropy. Using Corner’s [C2] notion of thin endomorphisms, a gener-
alization of the concept of small endomorphisms, we construct p-groups of any
length strictly smaller than ω2 with zero algebraic entropy. For both separable
and non-separable groups of length < ω2, we derive from Corner’s realization
theorems in [C1, 2] the existence of a family of 22ℵ0 groups, each with zero alge-
braic entropy, and having the property that homomorphisms between different
members are small (respectively thin).

In Section 6 we prove a uniqueness theorem for the algebraic entropy of en-
domorphisms of torsion Abelian groups, stating that the algebraic entropy is the
unique nonnegative real numerical invariant associated to the endomorphisms,
that satisfies certain properties. Thus we obtain an axiomatic characterization
of the algebraic entropy of endomorphisms for torsion groups, similar to that
given by Stojanov in [St] for the topological entropy of compact groups.

We finish this introduction by noting that our terminology and notations
are standard and any undefined term may be found in the texts [F] and [S].
In particular all groups are additively written and Abelian, so that if A,B are
subgroups of the group G, A + B will denote the subgroup of G generated by
A and B. Finally the authors would like to express their thanks to the Referee
for a number of useful suggestions which have been incorporated into the final
text.

1 Algebraic entropy of endomorphisms and of
groups.

1.1 The definition.

Let G be an Abelian group and denote by F(G) the family of its finite subgroups.
If φ : G → G is an endomorphism of G, for every positive integer n and every
F ∈ F(G) we set

Tn(φ, F ) = F + φF + φ2F + . . . + φn−1F.

For every n > 0, we have Tn+1(φ, F ) = Tn(φ, F ) + φnF , so

Tn+1(φ, F )
Tn(φ, F )

∼= φnF

Tn(φ, F ) ∩ φnF
.

The subgroup of G, T (φ, F ) =
∑

n>0 Tn(φ, F ) =
∑

n>0 φnF will be called the
φ-trajectory of F . The φ-trajectory of an element x is just the φ-trajectory of
the cyclic subgroup Zx, i.e., the smallest φ-invariant subgroup of G containing
x, simply denoted by T (φ, x). It is clear that the φ-trajectory of the finite group
F is finite if and only if the φ-trajectory of each x ∈ F is such.

For each n ≥ 1 set τn = |Tn(φ, F )|, so that

0 < τ1 ≤ τ2 ≤ . . . ≤ τn ≤ . . .

4



is an increasing sequence of positive integers, each one dividing the next one.
For each n ≥ 1 we set:

αn+1 =
τn+1

τn
=

∣∣∣∣Tn+1(φ, F )
Tn(φ, F )

∣∣∣∣ =
∣∣∣∣ φnF

Tn(φ, F ) ∩ φnF

∣∣∣∣ .

Lemma 1.1. For each n > 1, αn+1 divides αn in N.

Proof. Since φ and F remain unchanged during the proof, we write Tn in place
of Tn(φ, F ). The group φnF/(Tn ∩ φnF ) is a quotient of the group Bn =
φnF/(φTn−1 ∩ φnF ), since φTn−1 ∩ φnF is contained in Tn ∩ φnF . So αn+1

divides βn+1 = |Bn|. From φTn = φTn−1 + φnF we conclude that

Bn
∼= φTn

φTn−1

∼= Tn

Tn−1 + (Tn ∩ Kerφ)
.

Since the latter group is a quotient of Tn/Tn−1, we conclude that βn+1 divides
αn. Therefore αn+1 divides αn.

From the preceding lemma we immediately derive the following

Corollary 1.2. Either the sequence 0 < τ1 ≤ τ2 ≤ . . . is stationary, or τn+1 =
τnα for some integer α > 1, for all n large enough. In particular, |Tn(φ, F )| =
a0α

n−k for all sufficiently large n, where a0 and k depend only on F , not on n.

Proof. The sequence of positive integers α2, α3, . . . is decreasing, hence it is
eventually equal to some α ≥ 1. The first case happens when α = 1, the latter
when α > 1.

Given the finite subgroup F and the endomorphism φ of G, for each n ≥ 1
we define the real number:

Hn(φ, F ) = log |Tn(φ, F )|.

Clearly we have the increasing sequence of real numbers

0 < H1(φ, F ) ≤ H2(φ, F ) ≤ H3(φ, F ) ≤ . . . .

Now define

H(φ, F ) = limn→∞
Hn(φ, F )

n
.

In the next Proposition we show that this is a good definition, namely, the limit
exists and it is finite. We calculate its exact value.

Proposition 1.3. Given the endomorphism φ : G → G and a finite subgroup
F of G, either

(i) H(φ, F ) = 0, which happens exactly if the φ-trajectory T (φ, F ) of F is
finite; or

5



(ii) H(φ, F ) = log(α), where α =
∣∣∣Tn+1(φ,F )

Tn(φ,F )

∣∣∣ for all n large enough, which
happens exactly if the φ-trajectory T (φ, F ) of F is infinite.

Proof. By Corollary 1.2, there exist integers n0 and α ≥ 1 such that τn+1 = τnα
for all n ≥ n0. Case (i) happens when α = 1, namely, the sequence 0 < τ1 ≤
τ2 ≤ . . . is stationary, since in this case Hn0+k(φ, F ) = Hn0(φ, F ) for all k. The
second case happens when α > 1. In fact, using the equalities:

Hn0+k(φ, F ) = log(τn0+k) = log(τn0α
k) =

= log τn0 + k log α = Hn0(φ, F ) + k log α

we have:

H(φ, F ) = lim
k→∞

Hn0+k(φ, F )
n0 + k

= lim
k→∞

Hn0(φ, F ) + k log α

n0 + k
= log α.

Observe that for any endomorphism φ and finite subgroup F , one has the
equality H(φ, F ) = H(φ, φF ) since Tn(φ, F ) ≤ F + Tn(φ, φF ) and Tn(φ, φF ) ≤
Tn+1(φ, F ).

Following Weiss, we define the algebraic entropy of an endomorphism φ of
G as

ent(φ) = supF∈F(G)H(φ, F )

and the algebraic entropy of G as

ent(G) = supφ∈End(G)ent(φ).

Henceforth the term “entropy” will always mean “algebraic entropy”, unless
explicitly stated to the contrary.

Of course, Proposition 1.3 (i) implies that ent(G) = 0 whenever G is finite.
Moreover, by Proposition 1.3, both the algebraic entropy of φ and the algebraic
entropy of G are either the logarithm of a positive integer, or the symbol ∞. In
particular, when G is a p-group, the entropies of G and of its endomorphisms
are either ∞ or an integral multiple of log p.

The following three results will be very useful.

Lemma 1.4. For every finite subgroup F of the Abelian group G, let GF =
T (φ, F ) be the φ-trajectory of F . Then ent(φ) = supF∈F(G) ent(φ�GF

).
Furthermore, if ent(φ) is finite, then ent(φ) = H(φ, F0) = ent(φ�GF0

), for a
suitable finite subgroup F0 of G.

Proof. From ent(φ) = supF H(φ, F ) and

ent(φ�GF ) = supF ′ H(φ�GF , F ′) ≥ H(φ, F ),

where F ′ ranges over the finite subgroups of GF , we deduce that ent(φ) ≤
supF ent(φ�GF ). The converse inequality is obvious, hence we have equality.
The final claim of the lemma is clear since the supremum must be attained in
this situation.
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Lemma 1.5. Let φ : G → G be an endomorphism of a torsion group G, H a
φ-invariant subgroup of G, and φ̄ : G/H → G/H the induced endomorphism. If
ent(φ̄) = 0, then ent(φ) = ent(φ�H).

Proof. The definition of entropy easily yields ent(φ) ≥ ent(φ�H) - this is recorded
as property (g) in §1.2. Then it suffices to show that ent(φ) ≤ ent(φ�H), when-
ever ent(φ̄) = 0. To this end it suffices to check that H(φ, F ) ≤ ent(φ�H) for an
arbitrary finite subgroup F of G.

Let π : G → G/H be the canonical homomorphism and let F1 = π(F ).
Since φ̄ has zero entropy, there exists m > 0 such that the subgroup Tm(φ̄, F1)
of G/H is φ̄-invariant (see Proposition 1.3). As F is finite, there exists a finite
subgroup F2 of H such that φmF ≤ Tm(φ, F ) + F2. This gives

φ Tm(φ, F ) ≤ Tm(φ, F ) + F2,

from which, by induction on k > 0, we get

φkTm(φ, F ) ≤ Tm(φ, F ) + Tk(φ, F2).

Now let n > m, say n = m + k for some k > 0. Then Tn(φ, F ) ≤ Tm(φ, F ) +
Tk(φ, F2), whence we readily get Hn(φ, F ) ≤ Hm(φ, F ) + Hk(φ, F2). Since m
is fixed, dividing by n and letting n → ∞ (so k → ∞ as well), we deduce that
H(φ, F ) ≤ H(φ, F2) ≤ ent(φ�H), as desired.

As a consequence of Lemma 1.4 we obtain a main property of the entropy
function.

Proposition 1.6. Let the Abelian group G be the direct limit of φ-invariant
subgroups {Gi : i ∈ I}, where φ ∈ End(G). Then

ent(φ) = sup ent(φ�Gi
). (1)

Moreover, if ent(φ) < ∞, then ent(φ) = ent(φ�Gi
) for some i ∈ I.

The proof follows immediately from the definition, from Lemma 1.4 and
from the fact that, for every finite subgroup F of G, the φ-trajectory of F is
contained in some of the subgroups Gi.

This property is useful when the torsion group G is presented as the union
of its fully invariant subgroups G[n!], so that (1) has the form

ent(φ) = supn ent(φ�G[n!]). (2)

The next result allows us to get rid of finite φ-invariant subgroups.

Proposition 1.7. Let G be an Abelian group, φ ∈ End(G) and K a φ-invariant
finite subgroup of G. Then ent(φ) = ent(φ̄), where φ̄ is the induced endomor-
phism of G/K.
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Proof. It suffices to prove that H(φ, F ) = H(φ̄, F1) for each finite subgroup F
of G, where F1 = π(F ) and π : G → G/K is the canonical surjection. An easy
computation show that, for each n ≥ 1,

Tn(φ̄, F1) ∼= Tn(φ, F )/(Tn(φ, F ) ∩ K)

hence
Hn(φ, F ) = log |Tn(φ, F ) ∩ K| + Hn(φ̄, F1).

Since K is finite, log |Tn(φ, F ) ∩ K|/n tends to 0 when n → ∞. Consequently
H(φ, F ) = H(φ̄, F1), as required.

1.2 Examples and elementary properties.

We start with some examples of endomorphisms with zero, positive, and infinite
algebraic entropy, respectively.

Example 1.8. Given an arbitrary group G, the endomorphism induced by the
multiplication by an integer n has zero algebraic entropy, as nH ≤ H for every
subgroup H of G; a similar result holds for multiplication by a p-adic integer π
when G is a p-group.

Example 1.9. (a) Let K be a finite group and G =
⊕

i≥1 Ki, where Ki
∼= K

for all i. Let σK : G → G be the classical Bernoulli shift endomorphism,
defined by setting σ(k1, k2, . . .) = (0, k1, k2, . . .), (ki ∈ Ki). We claim that

ent(σK) = log|K|.

Indeed, if F = K1, then for each n ≥ 1 we have Hn(σK , F ) = log|⊕i≤n Ki| =
log|K|n = n · log|K|, consequently H(σK , F ) = log|K|, thus ent(σK) ≥
log|K|. On the other hand, one readily sees that T (σK ,K1) = G, hence
H(σK ,K1) = log |K| coincides with ent(σK).

(b) The above equality makes sense also in the case when K is an infinite
torsion group if one adopts the usual convention that log |K| = ∞.

(c) One can easily verify that the left shift
←
σK defined by

←
σK (k1, k2, . . .) =

(k2, k3, . . .) has always zero entropy, irrespective of the size of K, since all
the trajectories of

←
σK are finite.

Example 1.10. Let B be the standard basic p-group, i.e., B =
⊕

n≥1〈bn〉,
where 〈bn〉 = Z/pn

Z for all n and let σ : B → B be the endomorphism defined
by setting σ(bn) = pbn+1 for all n. We claim that

ent(σ) = ∞.

Fix a positive integer r; for each n ≥ 1 an easy calculation shows that Hn(σ, 〈br〉) =
log prn = n · log pr and so H(σ, 〈br〉) = log pr. Hence it follows that ent(σ) ≥
supr log pr = ∞.
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We recall now some elementary properties of the algebraic entropy proved by
Weiss [W] and we add to the list a further obvious property (namely (g)); note
that Weiss’s notation for ent(φ) was h(φ). The proofs of these facts are straight-
forward and are omitted. Let φ : G → G and ψ : G′ → G′ be endomorphisms
of the groups G and G′, respectively; then:

(a) If φ : G → G and ψ : G′ → G′ are conjugate endomorphisms of isomorphic
groups G and G′ (i.e., there exists an isomorphism θ : G → G′ such that
θ · φ = ψ · θ), then ent(φ) = ent(ψ).

(b) For every nonnegative integer k, ent(φk) = k · ent(φ). If φ is an automor-
phism, ent(φk) = |k| · ent(φ) for every integer k.

(c) If φ ⊕ ψ denotes the endomorphism of G ⊕ G′ which is the direct sum of
φ and ψ, then ent(φ ⊕ ψ) = ent(φ) + ent(ψ).

(d) If t(G) denotes the torsion subgroup of G, then ent(φ) = ent(φ�t(G)); in
particular, ent(G) = 0 if G is torsion-free.

(e) Let G =
⊕

p Gp be a torsion group with p-components Gp: then ent(φ) =∑
p ent(φp), where φp is the restriction of φ to Gp and the summation is

taken over all primes p.

(f) If G is a torsion group and H is a φ-invariant subgroup of G, then ent(φ) ≥
ent(φ̄), where φ̄ : G/H → G/H is the induced endomorphism.

(g) If H is a φ-invariant subgroup of G, then ent(φ) ≥ ent(φ�H).

Note that a property analogous to (e) remains true also when φ is an en-
domorphism of a torsion group G =

⊕∞
n=1 Gn such that every subgroup Gn is

φ-invariant.
A further consequence of (e) is that, as usual, the study of torsion groups

may be reduced to that of p-groups; this will be done without further comment
in the remainder of the paper.

It is also worth noting that property (f) does not hold if we drop the torsion
hypothesis on G, as the next Example shows.

Example 1.11. Let G be any p-group admitting an endomorphism φ : G → G
of positive entropy. Let

0 → H → P → G → 0

be a free presentation of G. Then, by the projectivity of P , φ lifts to an en-
domorphism ψ of P . One easily deduces that H is ψ-invariant in P , and φ is
induced by ψ. As P is torsion-free, we have 0 = ent(ψ) = ent(ψ�H) < ent(φ).

Property (d) shows that the notion of algebraic entropy of endomorphisms,
defined by the function ent, is vacuous for torsion-free groups.
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1.3 Preliminary Results.

The following result provides sufficient conditions for ensuring the existence of
endomorphisms of infinite entropy.

Theorem 1.12. Let G =
⊕

n≥1 Gn be a countable direct sum of non-zero tor-
sion groups Gn such that there is an embedding φn : Gn → Gn+1 for every n.
Then there exists an endomorphism φ of G such that ent(φ) = ∞.

Proof. Let σ : G → G be the Bernoulli shift relative to the embeddings φn:

σ(x1, x2, . . . , xn, . . .) = (0, φ1(x1), φ2(x2), . . . , φn(xn), . . .),

where the xn ∈ Gn are almost all zero.
Let

⋃̇
k≥1Ik = N be a partition of N, where, for each k ≥ 1, Ik = {ik1 <

ik2 < . . . < ikn < . . .} is an infinite increasing sequence of positive integers.
For each k ≥ 1, set Ak =

⊕
n∈Ik

Gn, so that G =
⊕

k≥1 Ak; note that each Ak

has a right shifting endomorphism σk : Ak → Ak induced by the embeddings
ψkn : Gikn

→ Gik,n+1 obtained by composing the maps φn. Let φ : G → G be
the endomorphism

φ = (σk)k :
⊕

k

Ak →
⊕

k

Ak.

For each k ≥ 1, pick an element 0 = xk ∈ Ak; by a similar argument to that
used for the shift endomorphisms in Example 1.9 (a), we see that H(σk, xk) =
log |Zxk|. Now define, for each n ≥ 1, the following finite subgroup of G

Fn =
⊕
k≤n

xkZ.

Obviously H(φ, Fn) =
∑

k≤n H(σk, xkZ) ≥ n · log 2, and we conclude that

ent(φ) = supF∈F(G)H(φ, F ) ≥ supn≥1H(φ, Fn) = ∞.

Theorem 1.12 has two immediate consequences.

Corollary 1.13. Let A = M ⊕N be a group such that its direct summand M is
an infinite direct sum of non-zero p-groups. Then there exists an endomorphism
of A of infinite algebraic entropy.

Corollary 1.14. Let G be a p-group whose divisible part d(G) is isomorphic to
an infinite direct sum of quasi-cyclic groups Z(p∞). Then G has an endomor-
phism of infinite algebraic entropy.

Our next result is technical but will prove very useful in the sequel.

Proposition 1.15. Let φ be an endomorphism of the p-group G such that G =
T (φ, F ) for an F ∈ F(G). Then ent(φ) ≤ log |F |. In particular, ent(φ) < ∞.
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Proof. If G is finite the claim is trivial, so assume G infinite. As G =
⋃

n Tn(φ, F ),
it follows that for every finite subgroup F0 of G there exists an index n0 such that
F0 ≤ Tn0(φ, F ). Then for every k ∈ N we have that Tk(φ, F0) ≤ Tn0+k−1(φ, F ),
hence, as in the proof of Proposition 1.3, we get

H(φ, F0) = limk→∞
Hk(φ, F0)

k
≤ limk→∞

Hn0+k−1(φ, F )
n0 + k − 1

·n0 + k − 1
k

= H(φ, F ).

But H(φ, F ) = log | φnF
φnF∩Tn(φ,F ) | for n large enough, and the result then follows

by observing that

log| φnF

φnF ∩ Tn(φ, F )
| ≤ log|φnF | ≤ log|F |.

However the equality ent(φ) = log |F | may fail even when F is cyclic.

Example 1.16. Let k > 1 and let G =
⊕

n≥0〈an〉, where a0 has order pk

and an has order p for all n ≥ 1. Take F = 〈a0〉 and define φ(an) = an+1 for
all n ≥ 0. Arguing as in Example 1.9 (a), we see that ent(φ) = log p, while
log |F | = k log p.

The next result reduces the investigation of the entropy of endomorphisms
of torsion groups to endomorphisms of reduced groups.

Proposition 1.17. Let G be a torsion group with divisible part d(G) = D.
If a p-component Dp of D is an infinite direct sum of quasi-cyclic groups for
some p, then G has an endomorphism of infinite entropy. Otherwise, given any
endomorphism φ : G → G, ent(φ) = ent(φ̄), where φ̄ : G/D → G/D is the
induced endomorphism.

Proof. In the first case the conclusion follows from Corollary 1.14. In the latter
case, it suffices to prove that, for a suitable finite subgroup F of G, we have
H(φ, F ) = H(φ̄, F1), where F1 = π(F ) and π : G → G/D is the canonical
surjection. Arguing as in the proof of Proposition 1.7, we get

Hn(φ, F ) = log |Tn(φ, F ) ∩ D| + Hn(φ̄, F1),

for all n > 0. If mF = 0, then Tn(φ, F )∩D = Tn(φ, F )∩D[m]; as our hypothesis
on D ensures that D[m] is finite, it follows that log |Tn(φ, F )∩D|/n tends to 0
when n → ∞, and therefore H(φ, F ) = H(φ̄, F1), as required.

Our next result shows that an endomorphism having strictly positive entropy
already reveals this property on the socle.

Proposition 1.18. Let G be a p-group and let G[p] be its socle. If φ ∈ End(G)
is such that ent(φ) > 0, then ent(φ�G[p]) > 0.
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Proof. Without loss of generality we can assume that the group G is pk-bounded
for some k (take a finite subgroup F whose trajectory is infinite and pk-bounded,
instead of G). We argue by induction on k, the case k = 1 being obvious. Let
k > 1 and consider two cases.

(1) If ent(φ�pG) = 0, then Lemma 1.5 applied to the φ-invariant subgroup
G[p] of G yields ent(φ�G[p]) = ent(φ) > 0 (the induced endomorphism φ̄ :
G/G[p] → G/G[p] is conjugate to the restrictions φ�pG via the isomorphism
G/G[p] ∼= pG, so ent(φ̄) = 0).

(2) If ent(φ�pG) > 0, applying the inductive hypothesis to the endomorphism
φ�pG of the subgroup pG of exponent pk−1, one gets that ent(φ�pG[p]) > 0 and
so ent(φ�G[p]) > 0 as well.

Here and several times henceforth we will use the notion of Ulm-Kaplansky
invariants (of finite index) of a p-group G. For each integer n ≥ 0, the n-th
Ulm-Kaplansky invariant αn(G) of G is the dimension of the Z/pZ-vector space
pnG[p]/pn+1G[p], where, as usual, we set pnG[p] = pnG ∩ G[p]. We recall a
crucial property of the Ulm-Kaplansky invariants: for each n ≥ 0, G contains a
direct summand isomorphic to a direct sum of αn(G) copies of Z/pn

Z.

Theorem 1.19. Let φ : G → G be an endomorphism of the reduced p-group G
such that 0 < ent(φ) < ∞. Then G has an infinite bounded summand.

Proof. By Proposition 1.18, ent(φ�G[p]) > 0. Hence there exists an element
x ∈ G[p] with infinite φ-trajectory T (φ, x); it is readily seen that T (φ, x) =⊕

n〈φn(x)〉 and φ acts as the Bernoulli shift on it. T (φ, x) is a valued vector
space with the valuation induced by the height function hG on G.

CLAIM. The heights of the non-zero elements in T (φ, x) have as upper bound
a positive integer N .

Assume, for a contradiction, that for every positive integer k there exists
y ∈ G such that 0 = pky = z ∈ T (φ, x). Then T (φ, y) =

⊕
n〈φn(y)〉 and

ent(φ�T (φ,y)) = k log p. But k was arbitrary, hence we get a contradiction with
the hypothesis ent(φ) < ∞.

Since T (φ, x) is countable, it is a free valued vector space (see [F2] or [S,
Cor. 9.5, p. 43]). By the CLAIM, it has values ≤ N , so it is a valued direct sum
of homogeneous summands of finite value. Since T (φ, x) is infinite, one of the
homogeneous direct summands, say that of value n, has infinite dimension; but
this dimension is ≤ αn(G), the n-th Ulm-Kaplansky invariant of G. Therefore G
has a bounded infinite summand isomorphic to

⊕
αn(G) Z/pn+1

Z, as claimed.

From Proposition 1.17 and Theorem 1.19 we obtain the following result
which is somewhat surprising, since its analogue does not hold for topological
entropy (see [ADS]).

Corollary 1.20. If ent(G) = 0 for a torsion Abelian group G, then G admits
endomorphisms of infinite algebraic entropy. In particular, ent(G) = ∞.
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2 The Rφ-module structure of p-groups.

The discussion in Section 1.2, and specifically the elementary properties (d) and
(e), allow us to confine our investigation to the case of p-groups. Thus from now
on we will focus our attention to Abelian p-groups, for a fixed prime number p.

Let G be a p-group and let φ : G → G be an endomorphism. The algebraic
entropy of φ is strongly related to certain properties of the subring of End(G)
generated by φ.

It is well known (e.g., see [F, Th. 108.3]) that, given a p-group G, the centre
of End(G) is isomorphic either to the ring Jp of the p-adic integers, or to Z/pn

Z,
respectively when G is unbounded or pn-bounded (i.e., n is the minimal positive
integer such that pnG = 0). We denote by Rφ the (commutative) subring of
End(G) generated by the single endomorphism φ; hence Rφ = Jp[φ] if G is
unbounded, and Rφ = (Z/pn

Z)[φ], when G is pn-bounded.
Obviously, G is an Rφ-module, and, for a fixed element x ∈ G, the cyclic

Rφ-submodule Rφx generated by x is nothing else than the φ-trajectory T (φ, x)
of x with respect to φ.

The next result is well known; its proof is as in [FS, I.3.1].

Lemma 2.1. Let G be a p-group and φ an endomorphism of G. The following
conditions are equivalent:

1) there exists a monic polynomial g(X) ∈ Jp[X] such that g(φ) = 0;
2) the ring Rφ is a finitely generated Jp-module;
3) there exists a Jp-subalgebra of End(G) containing φ which is a finitely

generated Jp-module.
If G is pn-bounded, then Jp can be replaced by Z/pn

Z.

If φ ∈ End(G) satisfies one of the equivalent conditions above, we simply say
that φ is integral. The connection with the algebraic entropy is shown by the
following

Lemma 2.2. Let G be a p-group and φ an integral endomorphism of G. Then
ent(φ) = 0.

Proof. If g(X) is a monic Jp-polynomial of degree m such that g(φ) = 0, then
the trajectory T (φ, x) of every element x ∈ G equals Tm(φ, x) and hence it is
finite. Then Proposition 1.3 ensures that ent(φ) = 0.

We will see in Proposition 5.13 that the condition that the endomorphism φ
is integral is not necessary in order that ent(φ) = 0.

We introduce now two new notions. The first one, which characterizes the
endomorphisms with zero algebraic entropy, is furnished by the following weaker
version of integrality. An endomorphism φ of the p-group G is said to be point-
wise integral if, for every x ∈ G, there exists a monic polynomial g(X) ∈ Jp[X]
(depending on x), such that g(φ)(x) = 0. Obviously every integral endomor-
phism of G is point-wise integral.
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The second notion is the φ-torsion subgroup of G, denoted by tφ(G): it is
the subset of G consisting of the elements x ∈ G such that Rφx is finite. It is
readily seen that tφ(G) is a φ-invariant subgroup of G.

Consider the induced endomorphism φ̄ : G/tφ(G) → G/tφ(G); in this nota-
tion we have

Lemma 2.3. (1) The φ̄-torsion subgroup of G/tφ(G) is zero.
(2) tφ(G) contains the subgroup K∞ =

⋃
n Ker(φn).

Proof. (1) The φ̄-trajectory of an element x + tφ(G) ∈ G/tφ(G) is finite if and
only if the φ-trajectory of x is finite.

(2) If x ∈ K∞, then φn(x) = 0 for some n. Then the φ-trajectory of x is
finite, hence x ∈ tφ(G).

The converse containment in Lemma 2.3 (2) does not hold, in general, as
the trivial example of the identity map of any non-zero group shows.

We collect in the next quite obvious result the different ways in which we
can express the fact that the algebraic entropy of φ vanishes.

Proposition 2.4. Let φ be an endomorphism of the p-group G. The following
conditions are equivalent:

(1) φ is point-wise integral;
(2) the φ-trajectory of every x ∈ G is finite;
(3) ent(φ) = 0;
(4) G coincides with its φ-torsion subgroup tφ(G);
(5) for every x ∈ G there exist 0 < m < n such that φm(x) = φn(x).

Proof. Assume (1) and let x ∈ G. If g(X) ∈ Jp[X] is a monic polynomial
such that g(φ) = 0, and if n is its degree, then φn(x) ∈ Tn(φ, x). Hence we
have T (φ, x) = Tn(φ, x), so (2) follows. The equivalence of (2), (3) and (4)
immediately follows from Proposition 1.3. Assume (2). Then two different
powers of φ must coincide on x, hence (5) holds true. Finally, (5) trivially
implies (1).

For convenience, we introduce the following notation:

Ent0(G) = {φ ∈ End(G) : ent(φ) = 0}.

Lemma 2.5. Let G be a p-group. If φ, ψ ∈ Ent0(G) commute, then φψ ∈
Ent0(G) and aφ + bψ ∈ Ent0(G) for any a, b ∈ Jp. Consequently, for any
polynomial f(X, Y ) ∈ Jp[X, Y ], we have ent(f(φ, ψ)) = 0.

Proof. Let F be any finite subgroup of G. If φ, ψ commute, it is easy to ver-
ify that T (φψ, F ) ≤ T (φ, T (ψ, F )) and T (aφ + bψ, F ) ≤ T (φ, F ) + T (ψ,F ) +
T (φ, T (ψ, F )), hence they are both finite, since ent(φ) = 0 = ent(ψ). The state-
ment on f(X,Y ) follows, since the elements of Jp have zero entropy and are
central in End(G).
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Example 2.6. We give an example of φ, ψ ∈ Ent0(G) such that both φψ
and φ + ψ are not in Ent0(G). Clearly, such a pair of endomorphisms cannot
commute.

Take G =
⊕

n∈Z
Kn, where all Kn coincide with a fixed torsion group K.

Obviously, every permutation of Z defines an automorphism of G via the change
of coordinates assigned by the permutation. In particular, to the translation
n �→ n + 1 corresponds the two-sided Bernoulli shift σ : G → G with ent(σ) =
log |K|. Let s : Z → Z be the symmetry defined by s(n) = −n. Clearly, s gives
rise to an involution ψ : G → G. Then also φ = σψ is an involution of G, so
ent(ψ) = ent(φ) = 0. On the other hand we have φψ = (σψ)ψ = σ, whence
ent(φψ) = log |K| > 0.

To verify that φ+ψ /∈ Ent0(G), it is enough to show that ent((φ+ψ)2) = 0.
Let us fix 0 = z ∈ K; for all j ∈ Z we consider the element gj = (an)n∈Z ∈ G,
where aj = z and an = 0 for n = j. A direct check shows that (φ + ψ)2(gj) =
gj−1 + 2gj + gj+1. It readily follows that the (φ + ψ)2-trajectories of the gj are
infinite, whence ent((φ + ψ)2) = 0, as desired.

The fact that the product of two commuting endomorphisms of zero entropy
has again zero entropy can be slightly generalized as follows: if φψ = ψφ and
ent(φ) = 0, then ent(φψ) = ent(ψ).

When G is a p-bounded group, hence a vector space over the field with
p elements Fp = Z/pZ, then the ring Rφ is either finite, when φ is integral,
or it is an Euclidean domain, when φ is not integral, being isomorphic to the
polynomial ring Fp[X]. In the first case ent(φ) = 0. In the latter case, if G is
a finitely generated Rφ-module (equivalently, if G is the φ-trajectory of a finite
subset F ), then G is a direct sum of cyclic Rφ-modules: G =

⊕
i≤n T (φ, xi).

As every φ-trajectory is a φ-invariant submodule, the elementary property (c)
shows that

ent(φ) =
∑
i≤n

ent(φ�T (φ,xi)).

Hence the computation of ent(φ) reduces to the case when G is the φ-trajectory
of a single element, i.e., a cyclic Rφ-module. In this case we have the following
result, whose straightforward proof is left to the reader.

Proposition 2.7. Let G be a p-bounded group and φ an endomorphism of
G such that G = T (φ, x) for a suitable element x ∈ G. Then the following
conditions are equivalent:

(1) G is infinite;
(2) G =

⊕
n≥0〈φn(x)〉 and φ acts as the Bernoulli shift.

In such a case, ent(φ) = log p; otherwise ent(φ) = 0.

The nice behavior of p-bounded groups described above is not inherited by
pn-bounded p-groups, for n > 1, as the next example shows.

Example 2.8. There exists a p2-bounded homogeneous group G with an en-
domorphism φ such that G is a 2-generated indecomposable Rφ-module.
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Let R = (Z/p2
Z)[φ], where φ is an indeterminate, and consider the maximal

ideal G of R generated by p and φ. Regarded to as a p-group, G is p2-bounded,
and the multiplication by φ can be identified with a group endomorphism. A
direct verification shows that G is not a principal ideal, that is, it is not a cyclic
R-module. Moreover G is an indecomposable R-module, since we can directly
prove that G is not a direct sum of two nonzero ideals of R. (We will prove this
fact, using the Addition Theorem, in the next Example 3.9.)

2.1 The Poincaré - Birkhoff Recurrence Theorem.

The notion of recurrence is a standard concept in ergodic theory - see for example
[Pet]. Here we develop the concept in the context of Abelian p-groups endowed
with the p-adic topology: a mapping φ : G → G is said to be recurrent on a
subset X ⊆ G if for all x ∈ X and all N > 0, there is an n > 0, depending on
x,N , such that x−φn(x) ∈ pNG i.e. for all x ∈ G, there exists n > 0 such that
φn(x) is in any given neighbourhood of x. The mapping is strongly recurrent
on X if for all x ∈ X, there is an n > 0, depending on x, such that φn(x) = x;
when X = G we simply say recurrent or strongly recurrent.

Recall that G is Hausdorff in the p-adic topology if and only if it is separable,
i.e., pωG =

⋂
n>0 pnG = 0. For G separable, the notions of recurrence and

strong recurrence are significant only when φ ∈ End(G) is a monomorphism,
since any nonzero element of the kernel of φ makes it impossible for φ to be
recurrent.

The most basic result in ergodic theory is the so-called Poincaré Recur-
rence Theorem or its topological analogue the Birkhoff Recurrence Theorem -
see Theorems 2.3.2 and 4.2.2 respectively in [Pet]; these classical results derive
recurrence properties for measure-preserving transformations (resp. homeomor-
phisms), but do not explicitly involve the entropy of the transformation. A
surprising, partly analogous result, directly characterizing zero entropy map-
pings, holds in a strong form for monomorphisms of a p-group, even without
assuming that the group G is separable.

Proposition 2.9. Let G be an Abelian p-group and φ ∈ End(G) a monomor-
phism. Then φ is strongly recurrent if, and only if ent(φ) = 0.

Proof. Suppose that ent(φ) = 0, then the φ-trajectory T (φ, x) of any element
x ∈ G is finite. In particular, there exist m > n such that φn(x) = φm(x).
Since φ is a monomorphism, we get φm−n(x) = x; since the element x ∈ G was
arbitrary, we conclude that φ is strongly recurrent.

Conversely suppose that φ is strongly recurrent. For each x ∈ F , there is
an nx such that φnx(x) = x. It follows that φ is point-wise integral, hence
ent(φ) = 0, by virtue of Proposition 2.4.

Note. It is an easy consequence of Proposition 2.9 that a group with zero en-
tropy is necessarily co-Hopfian (i.e. every monomorphism is an automorphism);
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it would be interesting to know if there was any connection between zero en-
tropy and the Hopfian property, where a group is said to be Hopfian if every
epimorphism is an automorphism.

Example 2.10. If the entropy of a monomorphism φ is not zero, we may not
even get recurrence. Consider the group G =

⊕∞
n=1 Kn where each Kn is

isomorphic to a fixed separable p-group K. Then the shift mapping σ sending
Kn isomorphically to Kn+1 is monic and has nonzero entropy (actually infinite
when K is infinite). However, for any x ∈ K1 \ pK1, it is immediate that
x − σn(x) /∈ pG and so σ is not recurrent.

Of course, it is crucial to show that the notions of recurrence and strong
recurrence do not coincide for separable p-groups. We need the following simple
lemma:

Lemma 2.11. Let G be a p-group, φ an injective endomorphism of G, and let ψ
be the unique extension of φ to the torsion completion G of G. If φ is recurrent,
then also ψ is recurrent.

Proof. We want to show that, for any x ∈ G and N > 0, there exists n > 0
such that x − ψn(x) ∈ pNG. Since G is dense in G with respect to the p-adic
topology, there exists y ∈ G such that y − x ∈ pNG. Since φ is recurrent, there
exists n > 0 such that φn(y) = ψn(y) ≡ y modulo pNG. Then we get

x − ψn(x) ≡ y − ψn(x) ≡ ψn(y) − ψn(x) ≡ ψn(y − x) ≡ 0 mod pNG,

as desired.

Proposition 2.12. There exists a separable p-group G which admits recurrent
endomorphisms which are not strongly recurrent.

Proof. We consider the separable group G and its endomorphism φ as con-
structed in the forthcoming Subsection 5.3. Then φ is monic and in Proposition
5.13 we show that ent(φ) = 0, hence φ is strongly recurrent, by virtue of Proposi-
tion 2.9. By the preceding lemma, the extension ψ of φ to the torsion completion
G of G is recurrent. However, in Proposition 5.14 we prove that ent(ψ) = ∞,
hence ψ cannot be strongly recurrent, again by Proposition 2.9. The desired
conclusion follows.

The case when the p-group G is not separable is irksome from a topological
point of view. Nevertheless, in the present circumstances we can get some
information even for non-separable groups.

Example 2.13. If the p-group G has non-trivial elements of infinite height,
then the full invariance of pωG gives that any endomorphism φ is recurrent on
pωG. An important class of endomorphism is recurrent on precisely pωG: they
are the locally nilpotent endomorphisms. For suppose that φ is locally nilpotent
and is recurrent on the element x ∈ G. Then there is an integer k such that
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φk(x) = 0 and, for any integer N , an integer n such that x − φn(x) ∈ pNG. If
n ≥ k, then x ∈ pNG and, since N was arbitrary x ∈ pωG. If n < k, then there
is an integer r such that rn ≥ k. As φ is locally nilpotent, the map 1G − φn is
locally invertible:

(1G + φn + φ2n + · · · + φ(r−1)n)(1G − φn)(x) = (1G − φrn)(x) = x.

Since (1G − φn)(x) ∈ pNG, it follows by full invariance that x ∈ pNG and so
x ∈ pωG as required.

However the converse is not true. If G = D⊕H, where H =
⊕

ω Z(p) and D
is a copy of Z(p∞), then pωG = D. Now if ψ = 1D ⊕σ, where σ is the Bernoulli
shift on H, then it is easy to see that ψ is recurrent on exactly D = pωG but
clearly ψ is not locally nilpotent.

The example above gives a simple characterization of divisible groups, a
special case of which we record as:

Corollary 2.14. A p-group G is divisible if, and only if each locally nilpotent
endomorphism φ of G is recurrent.

3 The Addition Theorem.

The present section is devoted to the proof of the so-called “Addition Theorem”,
which relates the entropy of a mapping to the entropy of its restriction to an
invariant subgroup and the entropy of the induced map. We also consider some
of the consequences of this result.

Theorem 3.1. (Addition Theorem) Let G be a torsion group, φ ∈ End(G)
and H a φ-invariant subgroup of G. If φ̄ : G/H → G/H is the induced endo-
morphism, we have

ent(φ) = ent(φ�H) + ent(φ̄). (∗)

For brevity, we will say that AT holds for (G,H, φ) if the above formula (∗)
is satisfied.

We remark that, in view of Example 1.11, the restriction to torsion groups
is unavoidable.

The proof of this important result will be made via a number of reductions
and a series of partial results, before finally proving the result in full generality.

Without loss of generality, we assume that G is a p-group, for a fixed prime
number p.

3.1 Preliminary results.

We observe a first important fact: Lemma 1.5 shows that ent(φ) = ent(φ�H)
when ent(φ̄) = 0; therefore, the formula (∗) holds if ent(φ̄) = 0.
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It is worth noting that Example 1.11 shows that the following counterpart
of Lemma 1.5 is not true for arbitrary groups: if ent(φ�H) = 0, then ent(φ) =
ent(φ̄).

The next reduction shows that it suffices to consider only the case when
ent(φ) is finite.

Lemma 3.2. In the above notation, if the Addition Theorem holds whenever
ent(φ) < ∞, then it also holds when ent(φ) = ∞.

Proof. We have to show that ent(φ) = ∞ implies that either ent(φ�H) = ∞ or
ent(φ̄) = ∞.

Assume for a contradiction that both ent(φ�H) and ent(φ̄) are finite. Let F
be an arbitrary finite subgroup of G, and set GF = T (φ, F ), HF = H ∩ GF , (a
φ-invariant subgroup of GF ) and GF = (GF +H)/H. Then ent(φ�GF

) is finite,
by Proposition 1.15. By our assumption, AT holds for (GF , φ�GF

,HF ), and we
get

ent(φ�GF
) = ent(φ� HF ) + ent(φ̄�GF

),

since φ̄�GF
corresponds to the endomorphism induced by φ�GF

on GF /HF under
the canonical isomorphism (GF +H)/H ∼= GF /HF . But ent(φ�HF

) ≤ ent(φ�H)
and ent(φ̄�GF

) ≤ ent(φ̄) by the elementary property (g). Hence we derive

ent(φ�GF
) ≤ ent(φ�H) + ent(φ̄).

Since the choice of F was arbitrary, from Lemma 1.4 we can conclude that

ent(φ) ≤ ent(φ�H) + ent(φ̄).

This proves that ent(φ) < ∞. The resulting contradiction yields the desired
conclusion.

In view of the preceding result, we will assume henceforth that all entropies
under discussion are finite.

Our next step is to show that the inequality “≥” holds in the formula (∗) of
the Addition Theorem.

In the next Lemma 3.3 we shall denote an arbitrary φ-invariant subgroup of
G by K, rather than the more usual H, as we wish to avoid the possibility of
confusion with the symbol H(φ,−) used in the proof.

Lemma 3.3. Let G be a p-group, φ ∈ End(G), K a φ-invariant subgroup of G,
and let φ̄ ∈ End(G/K) be induced by φ. Then we have

ent(φ) ≥ ent(φ�K) + ent(φ̄).

Proof. Since ent(φ̄) and ent(φ�K) are assumed to be finite, there exist finite
subgroups F ′ of G/K and F0 of K such that ent(φ̄) = H(φ̄, F ′) and ent(φ�K) =
H(φ�K , F0). Then F ′ = (F1 + K)/K for a finite subgroup F1 of G. Let F =

19



F0 + F1. Note that (F + K)/K = F ′, whence H(φ̄, (F + K)/K) = ent(φ̄).
Moreover H(φ�K , F0) = H(φ�K , F ∩K), since H(φ�K , F0) is the maximum and
F0 ≤ F ∩ K. Since ent(φ) ≥ H(φ, F ), our conclusion will follow, once we show
that

H(φ, F ) ≥ H(φ̄, (F + K)/K) + H(φ�K , F ∩ K).

For each n > 0 consider the exact sequence

0 → Tn(φ, F ) ∩ K → Tn(φ, F ) → (Tn(φ, F ) + K)/K → 0

which, since (Tn(φ, F ) + K)/K = Tn(φ̄, (F + K)/K), gives

|Tn(φ, F )| = |Tn(φ̄, (F + K)/K)| · |Tn(φ, F ) ∩ K|.

Note that Tn(φ�K , F ∩ K) is a subgroup of Tn(φ, F ) ∩ K and so, taking logs,
dividing by n and passing to the limit we get the desired inequality.

Using the above inequality we get the following crucial result, which implies
a weak form of the Addition Theorem, valid for cyclic Rφ-modules. The final
step in our proof will be to deduce the full Addition Theorem from this result.

Theorem 3.4. Let G be an infinite p-group such that G = T (φ, x) for suitable
φ ∈ End(G) and x ∈ G. Then ent(φ) = k · log p, where k is the largest positive
integer such that the Ulm-Kaplansky invariant αk−1(G) is infinite.

In particular, if φ̄ : G/pG → G/pG is the induced map, we have

ent(φ) = ent(φ�pG) + ent(φ̄) = ent(φ�pG) + log p. (†)

Proof. If pn is the order of x, then G is pn-bounded and hence is a direct sum
of cyclic groups of orders ≤ pn. We induct on n. If n = 1, then α0(G) is infinite
and the proof follows from Proposition 2.7. So assume n > 1 and that claim is
true for n − 1. Consider the exact sequence

0 → pn−1G → G → G/pn−1G → 0

where pn−1G is a Fp-vector space of dimension αn−1(G). If k < n, αn−1(G)
is finite, and so pn−1G is also finite. From Proposition 1.7 we get ent(φ) =
ent(φ̄), where φ̄ : G/pn−1G → G/pn−1G is the induced endomorphism. But
now G/pn−1G = T (φ̄, x+pn−1G), and its Ulm-Kaplansky invariants satisfy the
equalities αi(G/pn−1G) = αi(G) for all i ≤ n − 2, hence the claim follows by
induction. So it remains only to examine the case when k = n; we know that

ent(φ) ≥ ent(φ̄) + ent(φ�pn−1G).

The inductive hypothesis implies that ent(φ̄) = (n − 1) log p, since G/pn−1G
is a cyclic Rφ̄-module and αn−2(G/pn−1G) is infinite since k = n. Moreover,
Proposition 2.7 gives ent(φ�pn−1G) = log p, and therefore we get

ent(φ) ≥ n log p.
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The converse inequality follows from Proposition 1.15 and so we have established
the main result.

The formula (†) follows easily since pG = T (φ, px) and G/pG = T (φ̄, x̄)
(where x̄ = x + pG) are both infinite groups (except in the trivial case when
pG = 0).

3.2 Proof of the Addition Theorem.

The following lemma is a main tool to prove the Addition Theorem.

Lemma 3.5. Let G be a p-group, φ an endomorphism, H a φ-invariant sub-
group of G, and φ̄ : G/H → G/H the induced endomorphism. If ent(φ̄) > 0,
then there exists an element x ∈ G such that:

(a) px ∈ H;
(b) the trajectory T (φ̄, x + H) is an infinite subgroup of G/H (so x ∈ H).
In such case, the trajectory L = T (φ, x) in G satisfies L ∩ H = pL.

Proof. By Lemma 1.18, the hypothesis ent(φ̄) > 0 implies that the restriction of
φ̄ to the socle (G/H)[p] of G/H still has positive entropy. Therefore there exists
an element x̄ ∈ (G/H)[p] such that T (φ̄, x̄) is an infinite subgroup of G/H. If
x̄ = x + H, then the element x ∈ G obviously satisfies (a) and (b).

In order to prove that L satisfies L∩H = pL, first note that pL ≤ L∩H, by
(a). Let z ∈ Tn(φ, x)∩H. Then z = k0x+ k1φ(x)+ . . .+ kn−1φ

n−1(x) for some
k0, k1, . . . , kn−1 ∈ Z. If now p does not divide some ki, then, since px ∈ H,
we conclude that φ̄ ∈ End(G/H) is point-wise integral at x̄: this would lead
to the finiteness of the trajectory T (φ̄, x̄) (see Proposition 2.4), contrary to (b).
Thus, necessarily, p divides all coefficients ki, whence z ∈ pL. We conclude that
L ∩ H = pL.

Remark 3.6. In the notation of the preceding lemma, if H is a direct summand
of G, then x can be chosen in the socle of G. Indeed, let G = H⊕K, and choose
an element x satisfying the requirements of Lemma 3.5. Then x has the form
x = h + y, where h ∈ H and y ∈ K[p] (since px ∈ H). Now T (φ, y) cannot be
finite modulo H, since T (φ, x) ≤ T (φ, h) + T (φ, y) ≤ H + T (φ, y). Hence y lies
in the socle of G and satisfies the requirements of Lemma 3.5.

The next lemma is the final step needed for the proof of the Addition Theo-
rem. It reveals a property of the entropy that does not involve quotient groups.
The full symmetry between the subgroups H and K is noteworthy (cf the state-
ment of the Addition Theorem). Note also that, as a consequence of the Addi-
tion Theorem, it is possible to show that equality actually holds in the formula
(∗∗).

Lemma 3.7. Let G be a torsion Abelian group and let φ ∈ End(G). If H,K
are φ-invariant subgroups of G such that G = H + K, then

ent(φ) ≤ ent(φ�H) + ent(φ�K) − ent(φ�H∩K). (∗∗)
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Proof. Define f : G ⊕ G → G by the evaluation map f(x, y) = x + y and let
Φ : H ⊕ K → H ⊕ K be the restriction of the map φ ⊕ φ : G ⊕ G → G ⊕ G
to H ⊕ K. Finally, let f ′ = f�H⊕K and D = {(x,−x) : x ∈ H ∩ K}. Then
f ′(H ⊕ K) = G and ker f ′ = D. Denoting by i : D ↪→ H ⊕ K the inclusion
map, we get the following commutative diagram:

H ∩ K ∼= D
i−−−−→ H ⊕ K

f ′
−−−−→ G

φ�H∩K

⏐⏐

⏐⏐
Φ

⏐⏐
φ

H ∩ K ∼= D
i−−−−→ H ⊕ K

f ′
−−−−→ G

The subgroup D of H⊕K is Φ-invariant and the induced endomorphism Φ̄ :
(H⊕K)/D → (H⊕K)/D ∼= G can be identified with φ : G → G. Moreover, Φ�D

can be identified with φ�H∩K . Applying Lemma 3.3 to the triple (H ⊕K, Φ, D)
we get ent(Φ) ≥ ent(φ) + ent(Φ�D). Since ent(Φ) = ent(φ�H) + ent(φ�K) and
ent(Φ�D) = ent(φ�H∩K), we conclude that ent(φ�H) + ent(φ�K) ≥ ent(φ) +
ent(φ�H∩K).

Now we are in the position to complete the proof of the Addition Theorem.

Proof of the Addition Theorem. Recall that we may assume that ent(φ) <
∞. Since the values of the entropy have the form m log p, for a suitable non-
negative integer m, we will argue by induction on m = ent(φ̄)(log p)−1. Lemma
1.5 takes care of the case m = 0. Thus we can assume m > 0 (equivalently,
ent(φ̄) > 0). Pick a φ-invariant subgroup L = T (φ, x) of G as in Lemma 3.5.
Then L ∩ H = pL. Let H1 = H + L; then H1 is also φ-invariant and we may
consider the φ̄-invariant subgroup L̄ = H1/H ∼= L/pL of G/H. Since L̄ is an
infinite Fp-vector space, in view of Proposition 2.7 we can identify φ̄�L̄ with the
Bernoulli shift, and so we get ent(φ̄�L̄) = log p. Applying the formula (†) of
Theorem 3.4 to L we get ent(φ�L) = ent(φ�pL) + log p, so that

ent(φ�L) − ent(φ�pL) = log p. (1)

Let ψ be the endomorphism of G/H1 induced by φ; note that, since G/H1
∼=

(G/H)/(H1/H), we may also regard at ψ as being induced by φ̄. Let us apply
Lemma 3.3 to the triple (G/H, φ̄, L̄); since ent(φ̄�L̄) > 0 we get ent(ψ) < ent(φ̄).

Hence our inductive hypothesis implies that AT holds for both (G,φ, H1)
and (G/H, φ̄, H1/H). Thus we get

ent(φ) = ent(φ�H1) + ent(ψ) ; ent(φ̄) = ent(φ̄�L̄) + ent(ψ). (2)

Subtracting the equalities in (2) and recalling that ent(φ̄�L̄) = log p, we obtain

ent(φ) − ent(φ̄) = ent(φ�H1) − log p. (3)

To compute ent(φ�H1) we use Lemma 3.7 to get

ent(φ�H1) ≤ ent(φ�H) + ent(φ�L) − ent(φ�pL). (4)
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From (1), (3) and (4) we readily obtain

ent(φ) ≤ ent(φ�H) + ent(φ̄).

Since the converse inequality holds by Lemma 3.3, the desired conclusion
follows.

3.3 Consequences of the Addition Theorem

In this section we prove some consequences of the Addition Theorem.
Firstly we show that the inequality (∗∗) in Lemma 3.7 is in fact an equality.

Corollary 3.8. Let G be a torsion Abelian group and let φ ∈ End(G). If H,K
are φ-invariant subgroups of G such that G = H + K, then

ent(φ) = ent(φ�H) + ent(φ�K) − ent(φ�H∩K). (∗ ∗ ∗)

Proof. We adopt the notation of Lemma 3.7. In its proof, an application of the
Addition Theorem to the triple (H ⊕ K, Φ, D) yields

ent(Φ) = ent(φ) + ent(Φ�D),

which equals (∗ ∗ ∗).

Example 3.9. Here we reconsider the Example 2.8. Making use of the entropy
of φ, we give an indirect proof of the fact that G is an indecomposable 2-
generated R-module.

Recall that R = (Z/p2
Z)[φ] and G is the maximal ideal of R generated by

p and φ. We can write G =
⊕

n≥0〈bn〉, where 〈b0〉 ∼= Z/pZ, and 〈bn〉 ∼= Z/p2
Z

for all n ≥ 1. Then φ ∈ End(G) acts as follows:

φ(b0) = pb1 , φ(bn) = bn+1 (n ≥ 1).

Since φ acts as the Bernoulli shift on
⊕

n≥1〈bn〉 ∼= G/〈b0〉, and 〈b0〉 is finite, by
Proposition 1.7 we get

ent(φ) = 2 · log p.

We want to show that G is indecomposable as an R-module. Assume, for a
contradiction, that G = H1 ⊕ H2, with the Hi non-zero R-submodules. Since
no element in G has finite φ-trajectory, each Hi must contain an infinite cyclic
R-module, so ent(φ�Hi) ≥ log p. Moreover, at least one of the Ulm-Kaplansky
invariants α1(Hj) is infinite. Then, using Theorem 3.4, we see that the corre-
sponding ent(φ�Hj ) is at least 2 · log p, whence ent(φ) ≥ 3 · log p, a contradiction.

Using the same group G, we now give an example of computation using the
formula (∗ ∗ ∗).

We can write G = φR+(φ−p)R. It is easy to check that φG = φR∩(φ−p)R.
Since φ induces the Bernoulli shift on φR, we have

ent(φ�φR) = 2 · log p.
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In a similar way we prove that ent(φ�(φ−p)R) = 2 · log p. From the formula (∗∗∗)
we get

ent(φ�φR∩(φ−p)R) = ent(φ�φR) + ent(φ�(φ−p)R) − ent(φ) = 2 · log p,

in accordance with the fact that φR ∩ (φ − p)R = φG is isomorphic to G as an
R-module.

Using the Addition Theorem we get further information on the values of the
entropy of endomorphisms of bounded groups.

Corollary 3.10. Let φ : G → G be an endomorphism of the pn-bounded
group G. Consider, for 1 ≤ i ≤ n, the endomorphism φi : pi−1G[p]/piG[p] →
pi−1G[p]/piG[p] induced by φ. Then

ent(φ) = ent(φ1) + 2 ent(φ2) + 3 ent(φ3) + ... + n ent(φn).

In particular, if G is a direct sum of copies of Z/pn
Z, then ent(φ) = nk log p,

for a suitable integer k ≥ 0.

Proof. By induction on n. If n = 1 the claim is trivial. Assume n > 1 and set
H = G[pn−1]. Then piG[p] = piH[p] for i ≤ n− 2, and pn−1G[p] > pn−1H[p] =
0. Let ψ : H → H be the restriction of φ to H, and, for 1 ≤ i ≤ n − 1, let
ψi : pi−1H[p]/piH[p] → pi−1H[p]/piH[p] be the map induced by ψ. Then the
inductive hypothesis, applied to H, yields

ent(ψ) = ent(ψ1) + 2 ent(ψ2) + 3 ent(ψ3) + ... + (n − 1) ent(ψn−1).

By the Addition Theorem, since φn = φ�pn−1G, we get

ent(φ) = ent(ψ) + ent(φn).

Now, for i ≤ n − 2, we have φi = ψi. Hence, to conclude, it is enough to
prove that

ent(ψn−1) = ent(φn−1) + ent(φn).

This equality follows from the Addition Theorem applied to the exact sequence

0 → pn−1G → pn−2G[p] = pn−2H[p] → pn−2G[p]/pn−1G → 0

and the three endomorphisms: φn : pn−1G → pn−1G, ψn−1; pn−2H[p] →
pn−2H[p] and φn−1 : pn−2G[p]/pn−1G[p] → pn−2G[p]/pn−1G[p].

The final assertion is clear, since ent(φ) is always equal to log p times a
nonnegative integer.

From the preceding corollary and Theorem 3.4 we derive
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Corollary 3.11. Let G be an infinite p-group such that G = T (φ, x) for suitable
φ ∈ End(G) and x ∈ G, and let k be the largest integer such that the Ulm-
Kaplansky invariant αk−1 is infinite. Then, in the above notation, we have

(a) ent(φk) = log p, ent(φ) = k ent(φk), and ent(φi) = 0 for every i = k;
(b) for every i = k and every z ∈ pi−1G[p], there exists a monic polynomial

g(X) in Jp[X] such that g(φ)(z) ∈ piG[p].

Proof. (a) From Theorem 3.4 we know that ent(φ) = k log p, where k is the
largest positive integer such that αk−1(G) = ℵ0. Then pk−1G/pkG is a cyclic
Rφ̄-module, where φ̄ is the endomorphism of pk−1G/pkG induced by φ. Since
V = pk−1G[p]/pkG[p] ∼= (pk−1G[p] + pkG))/pkG is an Rφ̄-submodule and φ̄
restricted to V coincides with φk, we have that V is also a cyclic Rφk

-module;
this fact shows that φk acts as the Bernoulli shift on V , hence ent(φk) = log p
by Proposition 2.7. Therefore we deduce that ent(φ) = k ent(φk) and, from
Corollary 3.10, we get ent(φi) = 0 for all i = k.

(b) is an immediate consequence of Proposition 2.4 and the fact that ent(φi) =
0 for i = k.

Assuming that a group G is a finitely generated Rφ-module, for a suitable
φ ∈ End(G), we get a connection between the vanishing of ent(φi), where the
endomorphisms φi are defined as in Corollary 3.10, and the finiteness of the
Ulm-Kaplansky invariant αi−1(G).

Corollary 3.12. Let φ be an endomorphism of the p-group G and assume that
G is a finitely generated Rφ-module. Then, in the notation of Corollary 3.10,
ent(φi) = 0 if and only if αi−1(G) is finite.

Proof. The sufficiency is obvious; so, let us assume that ent(φi) = 0. In the
same way as in the proof of Corollary 3.11, one can show that pi−1G[p]/piG[p]
is a finitely generated Rφi

-module; this implies that it is a finite sum of finite
subspaces, hence its dimension is finite, as desired.

We have a subgroup canonically related to an endomorphism φ, namely the
largest φ-invariant subgroup of G where φ has zero entropy. This subgroup
coincides with the φ-torsion subgroup tφ(G) of G.

Proposition 3.13. For an Abelian group G and an endomorphism φ of G,
the φ-torsion subgroup tφ(G) is the largest φ-invariant subgroup of G such that
ent(φ�tφ(G)) = 0. Moreover, ent(φ) = ent(φ̄), where φ̄ : G/tφ(G)(φ) → G/tφ(G)
is the induced endomorphism.

Proof. We may regard at tφ(G) as the sum of all finite φ-invariant subgroups of
G; thus the first assertion follows. In view of Lemma 3.3, to prove the second
assertion it suffices to show that ent(φ) ≤ ent(φ̄). This follows from the Addition
Theorem.
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3.4 An alternative proof using Topological Entropy

In the preceding discussion we gave a direct and purely algebraic proof of the
Addition Theorem. In the present subsection we sketch an alternative and
indirect proof, which makes use of the Addition Theorem for the topological
entropy, proved by Bowen [B, Theorem 19], and of the main result in Weiss’s
paper [W]. Note that this proof also needs the preceding Lemma 3.3.

We remark that for an Abelian group G and an endomorphism φ : G →
G of G there exists a countable φ-invariant subgroup Sφ such that ent(φ) =
ent(φ�Sφ

). Moreover, if ent(φ) < ∞, then Sφ can be chosen of the form T (φ, F )
for some finite subgroup F of G and ent(φ̄) = 0, where φ̄ : G/Sφ → G/Sφ is the
induced endomorphism.

In fact, every finite subgroup F of G is contained in the countable φ-invariant
subgroup GF = T (φ, F ). Moreover, from Lemma 1.4 we know that

ent(φ) = sup
F∈F(G)

ent(φ�GF
).

Either in case of finite or infinite entropy, the above sup may be attained by a
sequence {Fn}n contained in F(G). Then the countable φ-invariant subgroup
Sφ generated by all GFn does the job, since ent(φ�Sφ

) ≥ ent(φ�GFn
) for every

n, so ent(φ�Sφ
) ≥ supn ent(φ�GFn

) = ent(φ).
When ent(φ) < ∞, Lemma 1.4 shows that ent(φ) = H(F0, φ) for a suitable

finite subgroup F0 of G, hence we can take the Fn constantly equal to F0 and
Sφ = T (φ, F ). Finally, ent(φ̄) = 0 follows from Lemma 3.3.

We observe that the subgroup Sφ is not uniquely determined by φ, but if
some other countable φ-invariant subgroup S′

φ ≤ G has the same property (i.e.,
ent(φ) = ent(φ �S′

φ
)), then the subgroup Sφ ∩ S′

φ keeps the same property. It is
tempting to call these subgroups of G φ-large.

The family Bφ of all φ-large subgroups of G is a filter-base if ent(φ) is finite.
This gives rise to a group topology τφ on G such that φ is τφ-continuous.

Lemma 3.14. If the Addition Theorem holds for all countable groups and their
endomorphisms, then it holds in the general case.

Proof. Assume the Addition Theorem holds for all countable groups. By Lemma
3.3 we need to prove

ent(φ) ≤ ent(φ�H) + ent(φ̄)

for an arbitrary Abelian group G, an endomorphism φ : G → G of G and φ-
invariant subgroup H of G. If G′ is a countable φ-invariant subgroup, then
H ′ = G′ ∩ H is a φ-invariant subgroup of G′, hence by our hypothesis applied
to φ′ = φ�G′ , ent(φ′) ≤ ent(φ′�H′) + ent(φ̄′), where φ̄′ is the endomorphism
induced by φ′ on G′/H ′. But φ̄′ = φ̄�G′/H′ as well when we consider G′/H ′ ∼=
(G′ + H)/H as a subgroup of G/H. Hence, ent(φ̄′) ≤ ent(φ̄). Obviously,
ent(φ�H′) ≤ ent(φ�H). Therefore, ent(φ�G′) ≤ ent(φ�H) + ent(φ̄) for every
countable φ-invariant subgroup G′ of G. By the above discussion we get the
desired conclusion.
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We can now give the following

Alternative proof of the Addition Theorem. The preceding lemma shows
that we may confine ourselves to the case when G is countable.

Now we can make use of Bowen’s Addition theorem for the entropy of con-
tinuous endomorphisms of compact metrizable topological groups. To be able to
use this theorem we apply Weiss’s theorem transferring the properties of topo-
logical entropy of continuous endomorphisms of compact totally disconnected
Abelian groups to those of the algebraic entropy of endomorphisms of discrete
torsion Abelian groups. Since the duals of compact metrizable Abelian groups
are countable discrete groups, we get the result for G countable, as desired.

4 Endomorphisms of infinite algebraic entropy.

In this section we investigate the class of p-groups which admit endomorphisms
of infinite entropy.

A major role in the structure of the endomorphism rings of Abelian p-groups
is played by small endomorphisms, introduced by Pierce in his seminal paper
[Pi]. Recall that an endomorphism φ of the p-group G is small if, given an
arbitrary positive integer k, there exists an integer n ≥ 0 such that φ(pnG[pk]) =
0. An obvious example of small endomorphism is furnished by the bounded
endomorphism, i.e., those φ ∈ End(G) such that pnφ(G) = 0 for some n. Small
homomorphisms between two p-groups A and B are defined similarly, and form
a group denoted by Homs(A,B).

Pierce proved that the small endomorphisms of G form a two-sided ideal
Es(G) of the ring End(G), and that End(G) is an extension of Es(G) by a ring
which is a torsion-free complete module over the ring Jp of the p-adic integers.
If G is unbounded, then the center ZG of End(G) is isomorphic to the ring
Jp (acting as local multiplications by their partial sums) and intersects Es(G)
trivially. Furthermore, End(G) contains, as a Jp-direct summand, the sub-Jp-
algebra

Jp · 1 ⊕ Es(G)

generated by Es(G).
Recall that we always have the following Jp-module decomposition

End(G) = A ⊕ Es(G),

where A is the completion of a free Jp-module containing the center Jp (see [Pi,
Theorem 7.5]). This result, however, says nothing on the ring structure of the
factor ring End(G)/Es(G), which is indeed the crucial point with respect to the
behavior of the entropy.

Firstly we look at some necessary conditions for the non-existence of endo-
morphisms of infinite entropy.

Recall that a p-group G is called semi-standard (see [C1, p. 287]) if its Ulm-
Kaplansky invariants of finite index are all finite. A semi-standard group is

27



essentially finitely indecomposable (e.f.i. for short) if it does not admit a direct
summand that is an infinite direct sum of cyclic subgroups.

The next result shows that to be semi-standard and e.f.i. is a necessary
condition for a p-group to have no endomorphisms of infinite entropy.

Proposition 4.1. A reduced p-group G with no endomorphisms of infinite alge-
braic entropy is semi-standard, essentially finitely indecomposable and has zero
entropy. Consequently such a group has cardinality not exceeding 2ℵ0 and, if it
is bounded, then it is finite.

Proof. It is well known that αn(G) ≥ ℵ0 implies that G has a summand isomor-
phic to an infinite direct sum of cyclic groups Z(pn+1), so G is semi-standard and
essentially finitely indecomposable, in view of Corollary 1.13. Moreover, from
Theorem 1.19 it follows that G has zero entropy. The last assertion follows from
an observation of Kulikov (see [F, Corollary 34.4]): if G is semi-standard, then
a basic subgroup B is countable and so |G| ≤ |B|ℵ0 = 2ℵ0 .

In view of the above proposition, a natural question is to ask, conversely,
whether a semi-standard e.f.i. group necessarily has entropy zero.

This is not the case, as shown by Theorem 4.4 below, where the standard
group G we will exhibit is even essentially indecomposable, that is, whenever
G = G1 ⊕ G2 one of the Gi must be finite.

The proof of the following lemma is essentially contained in that of Propo-
sition 5.1 of [C1]. We prove it here for the sake of completeness.

Lemma 4.2. Let G be a semi-standard group such that End(G) = A ⊕ Es(G),
where A is a Jp-algebra without nontrivial idempotents. Then G is essentially
indecomposable.

Proof. We may assume that G is unbounded, since it is semi-standard. Let us
assume, for a contradiction, that G = G1 ⊕ G2, where both G1 and G2 are
infinite. This implies that the Gi are both unbounded. Let πi be the projection
onto Gi (i = 1, 2). Then the πi are not small endomorphisms, since the identity
of an unbounded group cannot be small. Thus π1 /∈ Es(G), whence π1 = f + θ,
where f ∈ A, θ ∈ Es(G), and f = 0. We get π1 = f + θ = π2

1 = f2 + θ′,
with θ′ ∈ Es(G); this yields f = f2, whence f = 1, since A has only trivial
idempotents and f = 0. But then π2 = 1 − π1 = −θ is small, a contradiction.

We recall an important result proved by Corner [C1, Theorem 2.1].

Theorem 4.3. (Corner) Let B̄ be a torsion-complete p-group with an un-
bounded basic subgroup B of cardinal ≤ 2ℵ0 , and let Φ be a separable closed
subring of End(B̄) that leaves B invariant and satisfies the condition

(C) if φ ∈ Φ and φ(pnB̄[p]) = 0 for some n, then φ ∈ pΦ.
Then there exits a family Gρ (ρ ∈ P ) of 22ℵ0 pure subgroups of B̄ containing

B such that
(a) for each ρ ∈ P , End(Gρ) = Φ ⊕ Es(Gρ).
(b) for distinct ρ, σ ∈ P , every homomorphism Gρ → Gσ is small.
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Corner’s theorem allows us to prove the following

Theorem 4.4. There exists a standard essentially indecomposable group G
which admits an endomorphism of infinite entropy.

Proof. Let B =
⊕

n>0 Bn be the standard group, where Bn = 〈bn〉 is cyclic of
order pn, for all n > 0, and let B̄ be its torsion completion. We denote by σ the
endomorphism of B determined by the assignments bn �→ pbn+1; it has a unique
extension to B̄, which we continue to denote by σ. Now consider the subring
Jp[σ] = Rσ of End(B̄) generated by 1, σ. We have already seen in Section 2
that Rσ is isomorphic to the ring of polynomials with coefficients in Jp; denote
by Φ its p-adic completion, still contained in End(B̄). We remark that, since
Φ = Rσ + pΦ, it easily follows that pΦ is a prime ideal of Φ and that Φ is an
integral domain. We show that the hypotheses of the above Corner’s theorem
are satisfied in our situation. Clearly Φ leaves B invariant, since σ(B) ⊆ B and
Φ = Rσ + pnΦ for all n > 0. It remains to show that the Jp-algebra Φ satisfies
the Crawley’s condition (C) of the preceding statement.

It suffices to show that, whenever φ /∈ pΦ, we have φ(pnB[p]) = 0 for all
n ≥ 0. Since Φ = Rσ +pΦ, we can write φ = f +pψ, where f ∈ Jp[σ] and all the
coefficients of f are not divisible by p. Then we have φ(pnB[p]) = f(pnB[p]).
For all n > 0 we have 0 = pnbn+1 ∈ pnB[p]. Let now akσk be the monomial
of f of highest degree, where ak ∈ Jp; then akσk(pnbn+1) = akpn+kbn+k+1 is
a nonzero element of Bn+k+1 (recall that p does not divide ak). Since for each
other monomial aiσ

i of f , with i < k, we have aiσ
i(pnbn+1) ∈ Bn+i+1, it readily

follows that f(pnbn+1) = 0. We have proved that (C) is satisfied.
Thus we have seen that we are in a position to apply the preceding theorem

of Corner. Then there exists a group G, pure in B̄ and containing B, such
that End(G) = Φ ⊕ Es(G). Then G is trivially semi-standard and, of course,
σ is an endomorphism of G of infinite entropy, since it has infinite entropy
when restricted to B. Finally G is essentially indecomposable by virtue of the
preceding lemma, since Φ is an integral domain.

We now show that unbounded groups belonging to some important classes
of p-groups admit endomorphisms of infinite algebraic entropy. Of course, by
Proposition 4.1, the next result is significant only when the groups are semi-
standard.

Theorem 4.5. The reduced unbounded p-groups belonging to any of the follow-
ing classes of p-groups, admit endomorphisms of infinite algebraic entropy:

(1) totally projective groups;
(2) pω+1-projective groups;
(3) torsion-complete groups.

Proof. (1) By Corollary 1.13, it suffices to show that an unbounded reduced
totally projective group G has a direct summand which is an infinite direct sum
of cyclic groups. Assume first that the length l(G) of G is at most ω1 (the first
uncountable ordinal). Then G is a direct sum of countable groups, by a well
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known result of Nunke (see [F, Theorem 82.4]), and at least one summand is
unbounded, hence infinite. As countably infinite reduced p-groups decompose
into the direct sum of infinitely many nontrivial groups (see [F, Proposition
77.3]), the claim easily follows. Assume now that τ = l(G) > ω1. By [F,
Theorem 83.6], the Ulm invariants fσ(G) (σ < τ) give rise to a τ -admissible
function; this means that τ = sup{σ + 1 : fσ(G) = 0} and, for all σ such that
σ + ω < τ , the following inequality holds

∑
n<ω

fσ+n(G) ≥
∑

ρ≥σ+ω

fρ(G).

In particular, we have that
∑
n<ω

fn(G) ≥
∑
ρ≥ω

fρ(G).

But τ > ω1 implies that
∑

ρ≥ω fρ(G) ≥ ℵ1, hence at least one invariant fn(G),
for some n < ω, must be infinite (actually, infinitely many are ≥ ℵ1). It follows
that G has a summand which is an infinite direct sum of cyclic groups, as
desired.

(2) The results on pω+1-projective groups we invoke here may be found in
the paper by Fuchs and Irwin [FI]. A pω+1-projective group G decomposes as
G = A ⊕ T , where A is pω+1-projective separable and T is totally projective.
By Corollary 1.13 and point (1), it is enough to consider the case of G = A,
and in this case G has a direct summand which is an unbounded direct sum of
cyclics, by [FI, Corollary 2], so we are done again by Corollary 1.13.

(3) A basic subgroup of an unbounded torsion-complete group G is un-
bounded, hence it admits an endomorphism φ of infinite algebraic entropy. Now
φ extends, by continuity and the torsion-completeness of G, to an endomorphism
of G, which necessarily also has infinite algebraic entropy.

5 Groups with zero algebraic entropy.

5.1 Small endomorphisms and entropy.

In this Section we focus our attention on p-groups with zero algebraic entropy.
The next results show the relevant role played by small endomorphisms and

by the subring Jp · 1 ⊕ Es(G) in our investigation.

Lemma 5.1. Let G be a p-group with the first e Ulm-Kaplansky invariants
α0(G), . . . , αe−1(G) finite, and φ an endomorphism of G. Then, for each x ∈
G[pe] and for each N ∈ N, there exists a monic polynomial f(φ) in φ, with
integer coefficients of degree ≤ N · ∑0≤i≤e−1 αi(G), such that f(φ)(x) ∈ pNG.

Proof. By induction on N . So, let us assume first that N = 1.
If x ∈ pG the claim is trivial. So let x /∈ pG and let B be a basic subgroup of

G. Denote by π : G → B/pB the composition of canonical surjection G → G/pG
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followed by the canonical isomorphism G/pG ∼= B/pB. Let B = ⊕n≥1Bn, where
Bn is isomorphic to αn−1(G) copies of Z(pn):

Bn =
⊕

1≤i≤αn−1(G)

〈bni〉.

Then B/pB =
⊕

n,i〈bni + pB〉. We claim that π(x) ∈ ⊕
n≤e〈bni + pB〉.

Since G = B+pG, x =
∑

knibni +pw where the sum is finite and w ∈ G. So
0 = pex implies that

∑
knip

ebni = −pe+1w ∈ pe+1G∩B = pe+1B, consequently,
for all n > e, p divides the coefficients kni. Therefore π(x) =

∑
n≤e knibni +pB,

as claimed.
It follows that, setting k =

∑
0≤i≤e−1 αi(G), the elements

π(x), π(φ(x)), π(φ2(x)), . . . , π(φk(x))

are linearly dependent, since
⊕

n≤e〈bni + pB〉 has dimension k over the field
with p elements. Thus for some h ≤ k we have

r0π(x) + r1π(φ(x)) + . . . + rh−1π(φh−1(x)) + π(φh(x)) = 0

for certain ri ∈ {0, 1, . . . , p−1}. This implies that π(r0x+r1φ(x)+. . .+φh(x)) =
0, hence r0x + r1φ(x) + . . . + φh(x) = (r0 + r1φ + . . . + φh)(x) ∈ pG, as desired.

Assume now that N > 1. By the inductive hypothesis, there exists a monic
polynomial g(φ) of degree ≤ (N−1)·∑0≤i≤e−1 αi(G) with coefficients in Zp such
that g(φ)(x) = pN−1y for some y ∈ G. If y ∈ pG we are done, otherwise, by the
case N = 1, there exists a monic polynomial g′(φ) of degree ≤ ∑

0≤i≤e−1 αi(G)
such that g′(φ)(y) = py′ for some y′ ∈ G. Thus we have:

pNy′ = pN−1g′(φ)(y) = g′(φ)(pN−1y) = g′(φ)(g(φ)(x)) = (g′(φ)g(φ))(x)

where the product g′(φ)g(φ) is still a monic polynomial in φ, of degree ≤ N ·∑
0≤i≤e−1 αi(G).

One can easily derive from Lemma 5.1 the following theorem on small endo-
morphisms; recall that, by Proposition 4.1, a necessary condition for a p-group
G to have zero algebraic entropy is that G is semi-standard.

Theorem 5.2. Let G be a semi-standard p-group. If φ is a small endomor-
phism, then φ is point-wise integral, so ent(φ) = 0.

Proof. Let F be a finite subgroup of G. Fix an element x ∈ F ; if x ∈ G[pn],
choose N ∈ N such that φ(pNG[pn]) = 0. By Lemma 5.1, there exists a monic
polynomial f(φ) such that f(φ)(x) = z ∈ pNG. If K is the degree of f , then
φK(x) = z + g(φ)(x), where the polynomial g has degree < K. Therefore
φK+1(x) = φ(z) + φ(g(φ)(x)), where φ(z) = 0, as z ∈ pNG[pn]. Since the
polynomial φ(g(φ)) has degree ≤ K, we deduce that φK+1(x) ∈ ∑

i≤K φi(x)Z.
Therefore, φ is point-wise integral, and so ent(φ) = 0.
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Obviously, if φ ∈ End(G) is the sum of a p-adic integer and a point-wise
integral endomorphism, then φ is point-wise integral, too, hence ent(φ) = 0.
Therefore, from Theorem 5.2 we get

Corollary 5.3. Let G be a semi-standard p-group. Then every endomorphism
in the subring Jp · 1 ⊕ Es(G) of End(G) has zero entropy.

From Corollary 5.3 we obtain plenty of reduced unbounded p-groups with
zero entropy.

We can get examples as follows. Recall that, given a p-group G, Ḡ denotes
the torsion part of its p-adic completion, and that a quasi-complete p-group
G is a p-group such that the closure of a pure subgroup is again pure; it is
characterized by the property that every subsocle S of G is the socle of a pure
subgroup of G containing a pre-assigned pure subgroup H of G such that H[p]
is contained in S (see [F, 74] and [S, p. 49]). These groups have been studied
by Hill and Megibben in [HM] and [M]. Torsion complete groups are quasi-
complete, and quasi complete groups which are not torsion complete are called
proper. Megibben proved in [M, Theorem 3.7] that a proper quasi-complete
group G such that Ḡ/G ∼= Z(p∞) satisfies End(G) = Jp · 1 ⊕ Es(G). An
example of a semi-standard group of this form was first constructed by Pierce
[Pi]. Corollary 5.3 shows that ent(G) = 0.

However, using Corner’s results in [C1] we obtain much more.

Theorem 5.4. There exists a family of 22ℵ0 semi-standard p-groups G of length
ω with zero algebraic entropy and only small homomorphisms between the dif-
ferent members of the family.

Proof. The desired family of groups may be obtained from a realization theorem
proved by Corner [C1, Theorem 1.1] (or also from the slightly stronger Theorem
2.1 [C1] recorded above).

Looking at Corollary 5.3, one could ask whether the condition End(G) =
Jp ·1⊕Es(G) is not only sufficient, but also necessary, in order that ent(G) = 0,
at least for separable p-groups. This is not the case, as we will see in the next
subsection.

In this section and in the preceding two, we restricted our attention to tor-
sion groups. This is a significant limitation, since a mixed group can have zero
algebraic entropy while its torsion subgroup admits endomorphisms of infinite
algebraic entropy. The obvious explanation of this phenomenon, illustrated in
the next Example 5.5, is that very few endomorphisms of the torsion subgroup
can be extended to the whole group. It is easy to see that when all endomor-
phisms of the torsion subgroup extend to the whole group, the entropies are
equal; this is the situation when the torsion subgroup splits or when one takes
the cotorsion hull of a torsion group.

Example 5.5. There exists a non-splitting mixed group G with ent(G) = 0,
such that t(G) admits endomorphisms of infinite algebraic entropy.
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Let B =
⊕

n≥1 Z(pn) and B̂ its p-adic completion. We have seen in Example
1.10 that B admits an endomorphism of infinite algebraic entropy. By [CG],
there exists a pure Jp-submodule G of B̂ such that t(G) = B and End(G) = ZG⊕
Eb(G), where ZG is the center of End(G) consisting of the multiplications by
the p-adic integers, and Eb(G) denotes the two-sided ideal of End(G) consisting
of the bounded endomorphisms. As bounded endomorphisms are trivially small
when restricted to the torsion subgroup, Corollary 5.3 implies that ent(G) = 0.

5.2 Further results relating zero entropy and integrality.

In order to get some stronger results we need first the following definition and
theorem:

Cl(Es) = {φ ∈ End(G) : φ̄ = φ + Es(G) is integral over Jp in End(G)/Es(G)}.

In general, Cl(Es) is closed neither under sums nor under products, although
Cl(Es) is closed under sums and products of commuting endomorphisms. Fur-
thermore, Cl(Es) contains Jp · 1 ⊕ Es(G).

Recall that we denote by Ent0(G) the set of all endomorphisms of G with zero
entropy: by Proposition 2.4 above, these are precisely the point-wise integral
ones.

Theorem 5.6. Let G be an unbounded reduced semi-standard p-group, then
Ent0(G) contains Cl(Es).

Proof. Let φ ∈ End(G) be an endomorphism such that φ̄ = φ + Es(G) is an
element integral over Jp of the factor algebra End(G)/Es(G). We have to prove
that ent(φ) = 0. By hypothesis we have that φ̄n+rn−1φ̄

n−1+ . . .+r1φ̄+r01̄ = 0̄
for suitable n ≥ 1 and ri ∈ Jp, equivalently:

φn + rn−1φ
n−1 + . . . + r1φ + r0 = θ

where θ ∈ Es(G) is a small endomorphism. Now, Theorem 5.2 ensures that θ is
point-wise integral. A monic polynomial in θ gives rise to a monic polynomial
in φ, and so φ is also point-wise integral, and hence ent(φ) = 0, by Proposition
2.4.

From the above theorem we immediately derive an important corollary,
which is a main tool in the discussion that follows.

Corollary 5.7. Let G be an unbounded reduced semi-standard p-group G such
that the Jp-algebra End(G)/Es(G) is integral over Jp. Then ent(G) = 0.

Note that the hypothesis of Corollary 5.7 is always satisfied when End(G)/Es(G)
has finite rank, since then it is a finitely generated free Jp-module.

The following two results show the existence of plenty of groups G such that
ent(G) = 0 and End(G) = Jp · 1 ⊕ Es(G),
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Corollary 5.8. Let G = G1 ⊕ G2 ⊕ . . . ⊕ Gn be a finite direct sum of semi-
standard p-groups such that Hom(Gi, Gj) = Homs(Gi, Gj) for i = j, and
End(Gi)/Es(Gi) is integral over Jp for all i. Then ent(G) = 0.

Proof. A = End(G)/Es(G) is a block diagonal matrix Diag(A1, . . . , An), where
each Ai

∼= End(Gi)/Es(Gi) is integral over Jp for each i. Clearly A is also
integral over Jp, and the result follows from Corollary 5.7.

Corollary 5.9. Let G be an unbounded reduced semi-standard p-group G such
that the Jp-algebra End(G)/Es(G) is integral over Jp. Then ent(Gn) = 0 for
all n.

Proof. End(Gn)/Es(Gn) is the Jp-algebra Mn(A) of the n × n matrices with
entries in A = End(G)/Es(G). Clearly Mn(A) is also integral over Jp, hence
the conclusion comes from Corollary 5.7.

It follows from Theorem 5.6 that Ent0(G) contains Cl(Es). However the
containment may be strict: in the next subsection we will give an example of
an endomorphism in Ent0(G) that is not in Cl(Es).

Recall that Corner proved in [C1, Theorem 4.1] the following

Theorem 5.10. (Corner) Let A be a Jp-algebra which is the completion of a
free Jp-module of countable rank. If A satisfies the following condition:

(*) there exists a descending sequence of right ideals A ≥ A1 ≥ A2 ≥ . . . ≥
An ≥ . . . such that Ai/Ai+1 is a free Jp-module of finite rank for each i
and pA =

⋂
i(pA + Ai),

then there exists a separable semi-standard p-group G such that End(G) = A ⊕
Es(G).

Using Corollary 5.7 and the above theorem we get

Corollary 5.11. If A is an integral Jp-algebra satisfying the hypotheses of Cor-
ner’s Theorem 5.10, then there exists a separable p-group G such that End(G) =
A ⊕ Es(G), and, consequently, ent(G) = 0.

We want to show that the preceding corollary is useful in situations other
than the simple case when the Jp-algebra has finite rank. Accordingly we give
an example of a Jp-algebra of infinite rank satisfying the hypotheses of Corollary
5.11.

Example 5.12. Recall the notion of Nagata’s idealization, first introduced in
the classical book [N]. Let R be a ring and B an R-module. The idealization D
of B, denoted by

D = R(+)B
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is additively the direct sum of R and B, but with multiplication defined by

(r, b)(r′, b′) = (rr′, rb′ + r′b).

These operations make D a ring with identity element (1, 0), containing R. Note
that the definition of the multiplication yields B2 = 0.

Our aim is to construct a Jp-algebra A of infinite rank satisfying the hy-
potheses of Corollary 5.11. Namely, we look for a Jp-algebra A such that

(i) as a Jp-module, A is the completion of a free Jp-module of countable
rank;

(ii) every element of A is integral over Jp;
(iii) the technical condition (*) from Corner’s Theorem 5.10 holds true.

Now consider the free Jp-module B =
⊕

i≥1 Bi, where Bi
∼= Jp for all i ≥ 1.

Let B̂ be its completion in the p-adic topology and form the idealization

A = Jp(+)B̂.

We show that A is the required example.
Of course, A is the completion of a free Jp-algebra of countable rank, thus

(i) holds.
To see that (ii) holds, first observe that any element b ∈ B̂ is integral, since

b2 = 0. Now an arbitrary element η ∈ A has the form η = r + b, where r ∈ Jp

and b ∈ B̂. Therefore we have (η−r)2 = 0, which implies that η is also integral.
Finally, let us define the ideals Ai satisfying (iii). We must have A0 = A.

For i ≥ 1, we define Ai to be the completion of
⊕

j≥i Bj in the p-adic topology.
Note that Ai = Bi ⊕ Ai+1, for i ≥ 1, and A0/A1 = A/B ∼= Jp, and therefore
all the quotients are free of rank one, as desired. It remains to show that if
η ∈ ⋂

i<ω(Ai + pA) then η ∈ pA. Since A is a submodule of Jp ⊕ ∏
i≥1 Bi,

we may regard at η as a sequence η = (ri)i<ω. It suffices to show that for
every j ≥ 0, the j-th component rj of η lies in pJp. Pick an index i > j; since
η ∈ Ai + pA, we have η = ai + pzi, for suitable ai ∈ Ai and zi ∈ A. Since
i > j, the j-th component of ai is zero, and so the rj coincides with the j-th
component of pzi, whence rj ∈ pJp, as desired.

It is interesting to observe that the preceding example of a complete torsion-
free Jp-algebra A that has infinite rank and is integral over Jp, cannot be im-
proved by requiring that A is also a commutative domain. In fact one can show
that a complete Jp-algebra A of infinite rank cannot be integral over Jp, when-
ever A is a commutative domain. We will not give a proof of this fact here,
since it is not relevance for the present discussion.

5.3 Example of non-integrality and failure of the Comple-
tion Theorem.

We give an example of an endomorphism with zero entropy which is not integral
over Jp modulo the small endomorphisms (hence the converse of Corollary 5.7
does not hold).
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The interest of this example is three-fold, since it also leads to a counterex-
ample of the so-called “Completion Theorem” for our setting, and to examples
of recurrent endomorphisms which are not strongly recurrent, as required in the
proof of Proposition 2.12.

We define a suitable semi-standard group. For every n > 0 and 1 ≤ i ≤ n,
let 〈bni〉 be a cyclic group isomorphic to Z/pn

Z. For n > 0 let

Bn =
n⊕

i=1

〈bni〉.

and set G =
⊕

n>0 Bn.
For each n > 0, consider the endomorphism φn : Bn → Bn that extends the

assignments
bni �→ bn,i+1, (i < n) ; bnn �→ bn1.

Then we get the endomorphism φ : G → G, where φ = (φn)n>0.

Our aim is to show that φ provides the required example.

Proposition 5.13. In the above notation we have:
(i) φ has zero entropy;
(ii) φ is not integral over Jp modulo the small endomorphisms (in particular

φ is not small).

Proof. (i) Pick any z ∈ G. Then z ∈ B1 ⊕ · · · ⊕ Bk, for a suitable k > 0, and
φ(z) = φ1(z) + · · · + φk(z) ∈ B1 ⊕ · · · ⊕ Bk. If follows at once that z has finite
trajectory with respect to φ.

(ii) Assume, for a contradiction, that there exist a0, a1, . . . , am−1 ∈ Jp such that

φm + am−1φ
m−1 + · · · + a1φ + a0 = ϑ,

where ϑ is a small endomorphism. Then, by the definition of smallness, there ex-
ist N > 0 such that ϑ(pNG[p]) = 0. Let us choose k > N +m. For convenience,
for 1 ≤ i ≤ k we set zi = pk−1bki ∈ Bk; then, by construction, 0 = zi ∈ pNG[p],
hence, in particular, ϑ(zi) = 0. Now, since k > m, we have

φm(z1) = zm+1; ajφ
j(z1) = ajzj+1,

for j = 0, . . . ,m − 1.
It follows that ϑ(z1) = a0z1 + a1z2 + · · ·+ am−1zm + zm+1, and this element

in nonzero, since the bki are independent and zm+1 = 0.
We have thus reached the required contradiction, and our conclusion follows.

Note that the endomorphism φ is not integral, but it is point-wise integral,
since ent(φ) = 0.

Now denote by Ḡ the torsion completion of G, and by ψ the endomorphism
of Ḡ which uniquely extends φ.
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Proposition 5.14. In the above notation, ψ ∈ End(Ḡ) has infinite entropy. In
particular, the entropy of an endomorphism need not be preserved when we pass
to the extensions to torsion completions.

Proof. For any fixed k ≥ 0 we define an element η = (en)n>0 ∈ Ḡ, where
en ∈ Bn is chosen as follows: en = pn−kbn1 if n ≥ k, and en = 0 otherwise.
Let F = Zη; note that η has order pk. Take any m > 0; it is easy to verify
that ψmF ∩ (F + ψF + · · · + ψm−1F ) = 0. In fact, as soon as n > m, the n-th
component of ψm(η) is 0 = pn−kbn,m+1 ∈ 〈bn,m+1〉, while the n-th component
of any element of Tn = F + ψF + · · · + ψm−1F never lies in 〈bn,m+1〉, when
n > m.

We conclude that

αm+1 = |ψmF/(Tn ∩ ψmF )| = |ψmF | = pk.

Therefore an application of Proposition 1.3 (ii) yields

H(ψ, F ) = log(pk).

In particular, we get ent(ψ) ≥ k log p. Since k > 0 was arbitrary, we conclude
that ent(ψ) = ∞, as desired.

The preceding proposition says that a “Completion Theorem” is not valid
for algebraic entropy.

We also remark that Ḡ is separable and its endomorphism ψ is recurrent,
but not strongly recurrent (cf. Proposition 2.12).

5.4 p-groups of length > ω.

A generalization of small endomorphisms, useful for non-separable p-groups,
was introduced by Corner [C2], who called an endomorphism φ : G → G thin if,
for every positive integer k there exists an integer n ≥ 0 such that φ(pnG[pk]) ⊆
pωG. Trivially, small endomorphisms are thin, and the converse is true for
separable p-groups. The thin endomorphisms form a two-sided ideal of End(G)
as well, usually denoted by Eθ(G), which also intersects the centre ZG trivially.

We now consider the existence of p-groups of length strictly larger than
ω with zero algebraic entropy. We start with two technical lemmas on thin
endomorphisms.

Lemma 5.15. If a p-group G satisfies End(G/pωG) = Jp ⊕ Es(G/pωG), then
End(G) = Jp ⊕ Eθ(G).

Proof. Let φ : G → G be an endomorphism. Then φ induces an endomorphism
φ̄ : G/pωG → G/pωG. By hypothesis, there exists a π ∈ Jp such that φ̄ − π is
small. Since φ̄−π is induced by φ−π, from [C2, Lemma 7.1] we get that φ−π
is thin, hence φ ∈ Jp ⊕ Eθ(G).
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Lemma 5.16. Let G be a semi-standard p-group of length λ < ω2. Then every
thin endomorphism of G has zero entropy, hence, in particular, it is point-wise
integral.

Proof. By hypothesis there exists n > 0 such that pωnG = 0. Since φ is thin,
it follows from Lemma 7.2 of [C2] that φn is small, hence ent(φn) = 0, which is
equivalent to ent(φ) = 0.

An immediate consequence of the two preceding lemmas is

Corollary 5.17. Let G be a semi-standard p-group of length λ < ω2, such that
End(G/pωG) = Jp ⊕ Es(G/pωG). Then ent(G) = 0.

Proof. From Lemma 5.15 we have that End(G) = Jp ⊕ Eθ(G). From Lemma
5.16 we derive that every endomorphism of G has zero algebraic entropy.

Corollary 5.17 shows that, for semi-standard p-groups G of length < ω2, what
is relevant in order to get zero algebraic entropy, is the quotient group G/pωG,
and it does not matter what the subgroup pωG is. Furthermore, note that, under
the hypotheses of Corollary 5.17, no endomorphism of positive algebraic entropy
of pωG can be extended to an endomorphism φ of G, since ent(φ) ≥ ent(φ�pωG).

The next result provides plenty of p-groups of arbitrary length λ < ω2 with
zero algebraic entropy. Recall that the same limitation to groups of length < ω2

was assumed also in [C2, Theorem 10.2].

Theorem 5.18. Given an ordinal λ < ω2, there exists a family of 22ℵ0
p-

groups, each of length λ and with zero entropy, such that there are only thin
homomorphisms between the different members of the family.

Proof. By Corollary 5.17, it is enough to prove the existence of a p-group X of
length λ such that X/pωX ∼= G, where G is a semi-standard p-group considered
in Theorem 5.4. Since we have a family of 22ℵ0

p-groups G of this form with
only small homomorphisms between the different members of the family, we
have that the corresponding family of p-groups X has the desired property, by
[C2, Lemma 7.1 (ii)].

Let B be basic in G and T a countable p-group of length λ such that T/pωT ∼=
B. Such a group T exists by Zippin’s result (see [F, Corollary 76.2]). Since we
have the exact sequence

Ext(G, pωT ) → Ext(B, pωT ) → 0
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we have the commutative diagram

0 0⏐⏐

⏐⏐


0 → pωT → T → B → 0
‖

⏐⏐

⏐⏐


0 → pωT → X → G → 0⏐⏐

⏐⏐


D = D⏐⏐

⏐⏐


0 0

where D ∼=
⊕

2ℵ0 Z(p∞). Then pωG = 0 implies pωX ≤ pωT , whence pωT =
pωX ∩ T , so that pωT = pωX. Thus l(X) = l(T ) and we are done.

6 The uniqueness of the algebraic entropy func-
tion.

This final section is inspired by Stojanov’s [St] axiomatic characterization of
the topological entropy for endomorphisms of compact groups. In the sequel we
denote by T the class of all torsion Abelian groups and by Tp the class of all
Abelian p-groups.

Theorem 6.1. The algebraic entropy of the endomorphisms of the groups in
T is characterized as the unique collection h = {hG : G ∈ T } of functions
hG : End(G) → R

+ such that:
(i) the Addition Theorem holds for h;
(ii) hG is invariant under conjugation for every G ∈ T ;
(iii) hG(φk) = k · hG(φ) for every G ∈ T ;
(iv) if φ : G → G and G is the direct limit of φ-invariant subgroups Gi,

hG(φ) = sup hGi(φ�Gi);
(v) (normalization) hG(σK) = log |K|, where G = ⊕ℵ0K, σK : G → G is

the Bernoulli shift, and K is any non-zero finite group.

Proof. We have to show that hG(φ) = ent(φ), for every G ∈ T and every
φ ∈ End(G). We proceed by steps.

Step 1. If h = {hG : G ∈ T } is a collection of functions with (iii) and (iv),
then hG(φ) = 0 for every point-wise integral φ ∈ End(G).

Indeed, note firstly that (iii) yields hF = 0 for every finite group F . In fact,
every φ ∈ End(F ) satisfies φm = φn for some m < n, so m hF (φ) = nhF (φ)
and consequently hF (φ) = 0. It follows that, if φ ∈ End(G) is point-wise
integral, then hG(φ) = 0 = ent(G) by (iv), since G is the direct limit of its finite
φ-invariant subgroups.
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Let us fix now a prime p.

Step 2. Let Tp,1 be the class of all p-groups of exponent p; let G be such a
group and φ : G → G an endomorphism. If φ is integral, then it is point-wise
integral, so hG(φ) = 0 = ent(φ) by Step 1. Assume that φ is not integral, so
Rφ = Fp[φ] is an Euclidean domain. Let tφ(G) be the φ-torsion subgroup of G;
then φ�tφ(G) is point-wise integral on tφ(G). Then Step 1 gives htφ(G)(φ�tφ(G)) =
0. By (i), setting Ḡ = G/tφ(G) and φ̄ the induced endomorphism, we get
hG(φ) = hḠ(φ̄). In other words, we can assume that the φ-torsion subgroup of
G vanishes; so the φ-trajectories of all the elements of G are infinite. If G is
a finitely generated Rφ-module, then it is a direct sum of finitely many, say k,
trajectories. Each one is isomorphic to

⊕
n>0 Fp, and φ acts as the Bernoulli

shift on it. By (i), (ii), and (v) we have hG(φ) = k · log p = ent(φ). If G is
not a finitely generated Rφ-module, then, using (iv), one can easily prove that
hG(φ) = ∞ = ent(φ). This establishes the uniqueness of the entropy function
on the class Tp,1.

Step 3. Using Step 2, (i) and the induction one can establish the uniqueness
of the algebraic entropy function on the class Tp,n of all p-groups of exponent
pn. Then (iv) allows us to extend it to the whole class Tp.

Step 4. The general case for T easily follows from Step 3, (i) and (iv).
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