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The notion of a Crawley p-group is well known in Abelian group theory. In this

present work a corresponding concept is introduced for torsion-free groups. The

principal result, which uses the set-theoretic notions of Diamond and Martin’s Ax-

iom, establishes an independence result for ℵ1-free Crawley groups.

Introduction.

The notion of a Crawley group in the theory of separable Abelian p-groups is well

known; recall that a p-group is said to be separable if pωG = 0 and G is a Crawley

group if it has the property that all p-groups A with pωA ∼= Z(p), the cyclic group

of order p, and A/pωA ∼= G are isomorphic. In the 1960’s Crawley raised the

question of whether every such group is necessarily a direct sum of cyclic groups.

Megibben, in an elegant and surprising paper [9] in 1983, showed that the answer

to Crawley’s question is independent of the usual Zermelo-Fraenkel set theory with

the Axiom of Choice (ZFC); specifically he showed that in Gödel’s Constructible

Universe (V=L) (but in fact using only Jensen’s diamond principle ♦) Crawley’s

question has an affirmative answer while this is not so if one assumes Martin’s Axiom

and the negation of the Continuum Hypothesis (MA + ¬ CH). A surprising feature

of Megibben’s work was that while the Crawley problem was about extensions, it

was not, unlike the Whitehead Problem, equivalent to the vanishing of some group

of extensions Ext(A, B). Further details and more recent developments on Crawley

p-groups may be found in the papers of Mekler and Shelah [10], [11].

If we attempt to generalize the notion of a Crawley p-group to the category of

torsion-free groups, it is clear that there are several possibilities including inter

alia, the difficult question of determining for a given torsion-free group G, when all

extensions of Z by G are isomorphic. Our choice of generalization is made easier

by an observation of Megibben in [9] on earlier work of Richman [12]: a separable

p-group G is a Crawley group if and only if the automorphism group of G acts

transitively on the dense subsocles of codimension one of G. Accordingly we make
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the following definition.

Definition: A torsion-free Abelian group G is said to be a Crawley group if, given

any pair of pure, dense subgroups of corank 1 in G, there is an automorphism of G

mapping one onto the other.

It is clear that an entirely analogous definition of a torsion-free Crawley module can

be made for modules over an integral domain. Indeed this type of generalization

and a conjecture similar to our main results (Theorems 1 and 2) has been made

by Luigi Salce. Salce’s conjecture cannot be answered fully by our results, since we

are unable to use Martin’s Axiom in its usual form when working over uncountable

rings.

The class of all Crawley groups is shown to be extensive with many possibilities

arising from the fact that there are 2ℵ0 non-isomorphic rank 1 groups, all of which

are Crawley groups. To make the investigation of Crawley groups of infinite rank

more tractable, we ‘remove’ the problems associated with the varying types of rank 1

groups by restricting to groups which are almost free in the sense of Eklof and Mekler

[3].

Our principal results for almost free Crawley groups (Theorems 1 and 2) show that

a situation analogous to that for separable p-groups holds: we show, inter alia, that

assuming the diamond principle ♦, every ℵ1-free Crawley group of size ℵ1 is free

but assuming (MA + ¬ CH) there exists a non-free, but strongly ℵ1-free group of

size ℵ1 which is a Crawley group. It is, perhaps, worth remarking that our proofs

are much more transparent than the corresponding ones for torsion groups.

Our notation is largely in accord with the standard works of Fuchs [6], [7]. Details

of concepts such as ℵ1-freeness etc. may be found in the work of Eklof and Mekler

[3].

Preliminary Results.

Our primary focus in this paper is groups of infinite rank but there is, of course,

nothing in the definition of a Crawley group which requires it to be of infinite rank;
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indeed all reduced torsion-free groups of rank 1 are trivially Crawley groups since

they have no pure dense subgroups of corank 1 while it is immediate from the fact

that Q is pure simple, that it too is a Crawley group. Our first result gives us an

elementary way to ‘build up’ larger Crawley groups.

Proposition 1. If G is a Crawley group then the direct sum K = G ⊕ F , where

F is free of finite rank, is again a Crawley group and so there exist completely

decomposable Crawley groups of any finite rank.

Proof. Suppose that M is maximal pure dense in K. We claim that G � M , for

if not M/G = M + G/G ≤ K/G and K/G/M/G ∼= K/M ∼= Q. But K/G ∼= F is

finitely generated whereas Q is not — contradiction. Thus G � M and then we have

that G/G ∩ M ∼= G + M/M = K/M ∼= Q where the equality G + M = K follows

since the quotient K/G + M is simultaneously divisible and finitely generated, and

hence is zero. Thus G ∩ M is maximal pure dense in G. Moreover M/G ∩ M ∼=
M + G/G ∼= K/G ∼= F and so M splits as M = (G ∩ M) ⊕ FM , where FM

∼= F .

Notice that K = G + FM since the quotient K/G + FM is again both divisible and

finitely generated. Thus K = G + FM = G ⊕ FM . Now if N is a second maximal

pure dense subgroup we also get that N = (G∩N)⊕FN and K = G⊕FN . Since G

is a Crawley group there is an automorphism θ of G with (G∩M)θ = G∩N ; adding

this (directly) to an isomorphism FM
∼= FN gives the required automorphism of K

sending M onto N .

The final assertion is immediate since any rank one group is a Crawley group.

Example 1. For each positive integer n, there are indecomposable homogeneous

groups C and N , of type Z and of rank n, such that C is a Crawley group but N is

not.

Proof: Let C be the so-called Pontryagin group of rank n - see [7, Example 5

p.125] - is homogeneous of type Z and is indecomposable since it has endomorphism

ring isomorphic to Z. But the group is trivially a Crawley group since it has no

epimorphic images equal to Q - see Exercise 6, p.128 in [7].

The construction of N is based on the well-known realization theorem in [2]. Let
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P be the pure subring of Ẑ constructed in Lemma 1.5 of that paper and choose

n algebraically independent elements πi(i = 1, 2, ...n) of P . Now take N to be

the pure subgroup of P (n) generated by Z(n) and the element (π1, π2, ...πn). It is

easy to see that N is homogeneous of type Z and that N/Z(n) ∼= Q. A standard

argument using algebraic independence shows that the endomorphism ring of N is

Z. However any maximal pure subgroup isomorphic to Z(n) will also be dense; this

follows from Corner’s observation described in Exercise 13 of [7]. Since N has only

±1 as automorphisms, it is clearly not a Crawley group.

Note: A group which is vacuously a Crawley group i.e. it does not have Q as an

epimorphic image, is necessarily of finite rank: this follows immediately from the

fact that Q is injective and the fact that a free group of infinite rank has Q as an

epimorphic image.

Example 2. The completely decomposable group Z(p) ⊕ Q(p) is a Crawley group.

Proof: A routine calculation shows that the only mappings from Z(p)⊕Q(p) onto Q

have the form (x, y) 	→ αx+βy where 0 �= α ∈ Z(p) and 0 �= β ∈ Q(p). Hence the only

maximal pure dense subgroups correspond to kernels of such maps. But now it fol-

lows by direct calculation that any such kernel has the form

{(x, y) | αx = −βy} = (α−1, β−1)Z, where α, β are units in the appropriate groups.

To show that the group is a Crawley group, it suffices to show that we can find an

automorphism mapping (1, 1)Z to (α−1, β−1)Z. This however is immediate since we

can express the automorphism group as matrices in the usual way .

In fact the argument in the proof of Example 2 carries over mutatis mutandis to

give the following, once we recall that groups which do not have Q as an epimorphic

image are trivially Crawley groups:

Proposition 2. If A,B are rank 1 groups with Hom(A,B) = 0 = Hom(B,A), then

A ⊕ B is a Crawley group.

It is now rather easy to describe completely the situation for completely decompos-

able groups of rank 2.
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Proposition 3. If G = A ⊕ B is a completely decomposable group of rank 2, then

G is a Crawley group.

Proof: We give a sketch of the proof by looking briefly at the various possibilities:

Case(i) B = Q. In this case we can show, as in Example 2, that the only maximal

pure dense subgroups occur as kernels of maps of the form αx + βy where α, β are

in Q. However since the automorphism group contains Hom(A, Q) it is now easy to

construct the desired automorphism.

Case(ii) t(A) ≤ t(B). In this case it is immediate that A⊕B has Q as an epimorphic

image if, and only if B = Q. Hence either G is trivially a Crawley group or the

result follows from case(i).

Case(iii) t(A), t(B) are incomparable. In this case the result follows immediately

from Proposition 2.

Even for completely decomposable groups the situation becomes quite complex once

we exceed rank 2.

Example 3. There is a completely decomposable group of rank 3 which is not a

Crawley group.

Proof: For i = 1, 2, 3, let Ri be the rank 1 group whose type consists entirely of

symbols ∞, except in the ith-place where it is 0. Set G = R1 ⊕ R2 ⊕ R3. Then the

direct sum of R3 and the kernel of the map: R1⊕R2 → Q given by (x, y) 	→ x+y is

a maximal pure dense subgroup of G which is not even isomorphic to the maximal

pure dense subgroup of G obtained as the direct sum of R1 and the kernel of the

corresponding map from R2 ⊕ R3 → Q.

Infinite Rank Crawley Groups.

If we now turn our attention to groups of infinite rank, we can exhibit many groups

which are Crawley groups. Our starting point is, inevitably, based on a well-known

result of J.Erdös [4](or see [5, §51]).

Example 4. If G is free of arbitrary rank, then G is a Crawley group.

Proof: If G has finite rank then the result follows from Proposition 1. If rkG is

infinite and M ,N are pure,dense subgroups of corank 1 in G, then G/M ∼= G/N ∼=

6



Q. Hence rkM = rkN = rkG and so by a theorem of J.Erdös [4], there is an

automorphism θ of G with Mθ = N.

This example is, in fact, a particular case of the following proposition which uses a

generalization of Erdös’s Theorem to completely decomposable homogeneous groups.

We are grateful to the referee for suggesting the more natural approach below which

replaces our original ad hoc one.

Proposition 4. If G is a homogeneous completely decomposable group, then G is

a Crawley group.

Proof: Since a pure subgroup of a finite rank homogeneous completely decompos-

able group is necessarily a direct summand [7, Lemma 86.8], all finite rank homoge-

neous completely decomposable groups are trivially Crawley groups. Furthermore if

G is divisible then the result follows from elementary arguments for vector spaces.

So we may assume G is reduced and of infinite rank. Clearly it will suffice to show

that Erdös’s Theorem holds for completely decomposable homogeneous groups.

It is well known and easy to show that Erdös’s Theorem generalizes to homogeneous

completely decomposable modules of reduced (or in the terminology of [1], non-nil)

type since the role of the ring Z is taken by the so-called nucleus of G which is

then a principal ideal domain. So suppose that G =
⊕
i∈I

Ai, where each Ai = A,

is completely decomposable of type A and that R = End (A) is the reduced type

of A. Now if H1, H2 are pure subgroups of G satisfying the conditions of Erdös’s

Theorem, then we have the exact sequences

0 → Hom (A,Hi) → Hom (A,G) → Hom (A,G/Hi) → 0

since by an easy extension of Baer’s Lemma, [7, Lemma 86.4], maps may be lifted

from Hom (A,G/Hi) to Hom (A,G); note that Hom (A,G) is a free R-module

and that Hom (A,G/Hi) ∼= G/Hi. Everything is now an R-module and so, by

the module version of Erdös’s Theorem, we get an equivalence of Hom (A,H1)

and Hom (A, H2). However in this situation – see e.g.[1, §5] –we have a natural

equivalence θG : Hom (A,G) ⊗R A → G and applying this to the commutative
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diagrams associated to the above, we get the desired automorphism of G mapping

H1 onto H2.

It is, however, not too difficult to exhibit Crawley groups which are completely

decomposable but not homogeneous: if C =
⊕

ℵ0
R, where R is any rank one group

with type t(R) > t(Z), then C is a Crawley group and hence, by Proposition 1, so

also is the completely decomposable, non-homogeneous group C ⊕ Z.

In Proposition 1 we showed that the class of Crawley groups is closed under the

(direct) addition of free groups of finite rank. On the surface this seems a rather

weak result but our next example shows that it is the best result of this type that

we can achieve. In fact it is possible to give a simpler example by constructing

a group of the form C ⊕ F , where C is a Crawley group and F is free of infinite

rank but C ⊕ F has non-isomorphic maximal pure, dense subgroups e.g. take C as

in Example 2 above. However, even if the maximal pure, dense subgroups are all

isomorphic, the sum of a Crawley group and F need not be Crawley.

Example 5. If G = F ⊕ V , where F is free of countable rank and V is a countable

dimension Q-vector space, then G is not a Crawley group.

Proof: The automorphism group of G may be regarded as 2× 2 matrices in which

the first column has the form (θ, 0)T where θ is an automorphism of F . If M is

a maximal pure dense subgroup of G of the form F ⊕ W , where W is a subspace

of codimension 1 of V , it follows that any image of M under an automorphism of

G must have a first component equal to F . However if we choose H ≤ F with

F/H ∼= Q, then N = H ⊕ V is a maximal pure dense subgroup of G which is not

the image of M under any automorphism of G.

Notice that it follows from Proposition 1, that the group G of Example 5 is the

union of an ascending chain of summands, each of which is a Crawley group, but G

itself is not a Crawley group.

In fact it is possible to extend the arguments used in Example 5 to get a great deal

more information about direct sums and summands of Crawley groups.
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We begin with:

Proposition 5. A characteristic summand of a Crawley group is a Crawley group.

Proof: Let G = H ⊕ K be a Crawley group where K is a characteristic subgroup.

Let ϕ1, ϕ2 : K → Q be surjections. Clearly it suffices to show that there is an

automorphism α of K mapping Kerϕ1 onto Kerϕ2. The homomorphisms ϕi of K

extend to surjections ψi : G → Q vanishing on H. Since G is a Crawley group, there

is an automorphism θ of G mapping Kerψ1 onto Kerψ2. However K is invariant

under both θ and θ−1 and so the restriction α = θ � K is an automorphism of K, and

since Kerϕi ≤ K, we have K∩Kerψi = K∩(Kerϕi⊕H) = Kerϕi⊕(K∩H) = Kerϕi.

But then (Kerϕ1)α = (Kerϕ1)θ = Kθ∩(Kerψ1)θ = K∩Kerψ2 = Kerϕ2 as required.

Proposition 6. If G = F ⊕ N where F is free of infinite rank and N has trivial

dual, then G is a Crawley group if, and only if N = 0.

Proof: The sufficiency is immediate so suppose G is a Crawley group. If N has

infinite rank then, as noted earlier, there is a surjection from N onto Q. Moreover

the automorphism group of G can be represented as 2×2 upper triangular matrices

and then an identical argument to that used in Example 5, shows that G is not

a Crawley group — contradiction. So it suffices to consider the case where N has

finite rank.

Suppose then, for a contradiction, that N �= 0. Let ϕ : F → Q be any surjection

with kernel F ′. Then F ′ ⊕ N is a maximal pure dense subgroup of G. Now choose

any maximal pure subgroup M of N (note that M need not be dense); then N/M

is of rank 1, rkM < rkN and M is the kernel of a non-zero homomorphism ν from

N into Q. Now define θ : G → Q to be the surjection which agrees with ϕ on F

and ν on N . Write H = Kerθ so that H is a maximal pure dense subgroup of G.

Now H ∩ N = Kerν = M and so it follows readily that H = F1 ⊕ M where F1

is free. Since G is a Crawley group, H must be isomorphic (indeed equivalent) to

F ′ ⊕ N . This implies N is isomorphic to a subgroup of F1 ⊕ M and so as before,

N = F2 ⊕ (N ∩ M) = F2 ⊕ M . Since M has rank strictly less than N , F2 is

necessarily non-zero which contradicts the hypothesis that N has trivial dual. Thus
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we conclude that N = 0.

A corresponding result for the situation where the free group F is of finite rank is

easily established.

Proposition 7. If G = F ⊕N where F is free of finite rank and N has trivial dual,

then G is a Crawley group if, and only if N is a Crawley group.

Proof: If N is a Crawley group the result follows immediately from Proposition 1.

The converse follows directly from Proposition 5 since in this case N is even fully

invariant.

Propositions 6 and 7 give us some insight into countable torsion-free Crawley groups

since we have, by Stein’s Theorem, that every such countable group G has the form

G = F ⊕N where F is free and N has trivial dual; we refer to F and N as the free

and trivial-dual parts of G respectively. Thus we have

Corollary 8. If G is a countable torsion-free group then

(i) if the free part of G is of infinite rank, G is a Crawley group if, and only if the

trivial-dual part of G is zero.

(ii) if the free part of G is of finite rank, G is a Crawley group if, and only if the

trivial-dual part of G is a Crawley group.

Note that if a countable torsion-free group has a free summand of infinite rank, then

it is a Crawley group if, and only if it is free. We shall see shortly that the situation

is much more complicated for uncountable groups.

Almost Free Crawley Groups.

We have seen in the previous section that Crawley groups exist in abundance but

note that we have not given any example of an ℵ1-free Crawley group other than

a free group. (We shall see shortly in Theorem 1 why this is so.) By restricting

to ℵ1-free groups we obtain a significant simplification in the structure of Crawley

groups.
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Example 6. There exist separable ℵ1-free groups which are not Crawley groups.

Proof: Let G =
∏

ℵ0
Z be the Baer-Specker group which is well known to be ℵ1-free.

However the automorphism group of G cannot act transitively on the dense maximal

pure subgroups: there are 22ℵ0 such subgroups but the full endomorphism ring, and

hence, a fortiori, the automorphism group, has power at most the continuum since

the integers are a slender group.

Our next result is technical and follows from a well-known fact about countable

extensions of free groups.

Proposition 9. Suppose that G is an ℵ1-free group of arbitrary cardinality and M

is a free subgroup of G with G/M ∼= Q, then G is free also.

Proof: The result follows immediately from the more general fact that if G is

an arbitrary group having a free subgroup M with countable quotient G/M , then

G = M1 ⊕ N where M1 is a summand of M and N is countable: for if A is the

subgroup generated by the pre-images of G/M , then G = A + M . Moreover since

A ∩ M is countable, there is a decomposition M = M0 ⊕ M1 with A ∩ M ≤ M0.

Set N = A + M0, a countable group and note that G = N + M1 while N ∩M1 = 0.

Thus G = N ⊕ M1 as required.

Suppose now that G is κ-free of cardinality κ but not free, where κ is a regular

cardinal; choose a continuous filtration G =
⋃

α<κ Gα where each Gα is free; we

may assume without loss that rk(Gα+1/Gα) = 1 for each α. If M is a fixed dense

maximal pure subgroup of G then we get an induced filtration M =
⋃

α<κ Mα, where

Mα = Gα ∩ M .

Let E = {α < κ | Mα+1/Mα is not free}; we claim E is stationary in κ. For if

not, there is a cub C in κ with C ∩ E = ∅. Since C is closed and unbounded we

obtain a continuous filtration M =
⋃

α∈C Mα. But α ∈ C implies α /∈ E and so

Mα+1/Mα is free for each α ∈ C. Since Mα is also free this implies that
⋃

α∈C Mα is

a continuous chain of free groups with successive quotients being free groups, and

so by [3, IV, Prop.1.7] M is free and hence by Proposition 9 above, G would also
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be free — contradiction. Thus E is stationary. Hence we may partition E into two

disjoint stationary subsets E = E1 ∪E2; notice that E1 is now a stationary set with

unbounded complement in κ.

Theorem 1. (♦κ) If G is a κ-free Crawley group of cardinality κ, then G is free.

Proof: If κ = ℵ0 then G is free by the Pontryagin Criterion, while if κ is singular

the result follows from the Singular Compactness Theorem, see [3]. Now let κ be

regular and assume for a contradiction that G is not free and fix a dense maximal

pure subgroup M ≤ G. Choose filtrations as above with associated stationary sets

E, E1 of κ. Fix z ∈ G \ M so that G = 〈M, z〉∗.
Since we are assuming ♦κ, we have that ♦E1 holds and so we can find Jensen func-

tions fα : Gα → Gα such that for every function g : G → G, the set {α | g � Gα = fα}
is stationary.

We now construct a new maximal pure dense subgroup N of G such that Mθ �= N

for every automorphism θ of G; the resulting contradiction will show that G is free

as required.

We obtain N as the union of an ascending sequence of free subgroups (Nα)α<κ such

that:

(0) z /∈ Nα

(1) N0 = 〈M0, n!zn − z(n ∈ ω)〉∗
where zn ∈ G is chosen so that n!zn ≡ z mod M — note that such elements exist

since G/M is divisible

(2) Nμ =
⋃

α<μ Nα if μ is a limit ordinal

(3) assuming Nα has been constructed, lift back a maximal linearly independent

subset of the quotient (Mα+1 + Nα)/Nα to a family of elements {xi} in Mα+1 and

set Nα+1 = 〈Nα, {xi − z}〉∗
UNLESS

(3(a)) α ∈ E1,Mαfα = Nα and fα = ϕ � Gα for some ϕ ∈ Aut(G) with z /∈ Mϕ,

in which case we choose xα ∈ M with xα ∈ Mα+1 \ Mα, write yα = xαϕ and set

Nα+1 = 〈Nα, yα − z〉∗.
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The only condition needed for consistency of this construction is that z /∈ Nα for

any α. Trivially z /∈ N0 while z ∈ Nα+1 in condition (3(a)) would violate the hy-

pothesis z /∈ Mϕ. The remaining case (3) is disposed of by an elementary argument

on linear independence. Set N =
⋃

α<κ Nα.

Note that as E2 is unbounded either version of (3) guarantees that 〈N, z〉∗ ≥ M ;

since z /∈ N it follows that N has corank 1 in G, and our choice of N0 ensures that

N is dense in G.

Now suppose that there exists an automorphism θ of G such that Mθ = N . Then

the set C = {α | Mαθ = Nα} is a cub and, since the set X = {α ∈ E1 | θ � Gα = fα}
is stationary in κ, there exists β such that θ � Gβ = fβ and Mβθ = Nβ. Note also

that z /∈ Mθ can be assumed: the intersection of the cub C and the stationary

set X is, in fact, stationary so that z ∈ Mθ would imply z ∈ Mγθ for some γ and

hence z ∈ Mβθ for all β ≥ γ. But now any β ∈ C ∩ X with β ≥ γ would imply

z ∈ Mβθ = Nβ — contradiction.

Hence the construction of Nβ+1 must have taken place as in condition (3(a)); so

yβ = xβϕ where ϕ in Aut(G) agrees with θ on Mβ since both are equal to fβ on Mβ.

Thus (ϕ−θ) � Mβ is zero and so (ϕ−θ) induces a map: Mβ+1/Mβ → Nβ+1, which in

turn must be zero since β ∈ E1 implies Mβ+1/Mβ is a rank 1 group not isomorphic

to Z and Nβ+1 is free. So we have yβ = xβθ ∈ Mθ = N . However yβ − z ∈ N and

this forces z ∈ N — contradiction. Thus G is free as required.

We are now in a position to establish the independence result discussed in the

introduction.

We begin with a simple but crucial observation concerning ℵ1-coseparable groups;

recall that a group G is said to be ℵ1-coseparable if it is ℵ1-free and if H is a subgroup

of G with G/H countable, then there is a direct summand K of G, with K ≤ H

and G/K countable. It is well known that this is equivalent to Ext(G, Z(ω)) = 0.

Note that this next result holds in ZFC.

Proposition 10. If G is an ℵ1-coseparable group then G is a Crawley group.

13



Proof: Suppose M , N are maximal pure dense in G. Then G/M ∩N is isomorphic

to a subgroup of G/M ⊕ G/N ∼= Q ⊕ Q and so | G/M ∩ N |= ℵ0. Hence there is a

summand K of G with K ≤ M ∩ N and G/K is countable. Let G = K ⊕ F where

F , being countable, is free. But now M = K ⊕ (F ∩M), N = K ⊕ (F ∩N) and the

quotients are both isomorphic to Q. Thus rk(F ∩M) = rk(F ∩N) = ℵ0 and so, by

the result of Erdös [4] already cited, there is an isomorphism θ : F → F such that

(F ∩M)θ = F ∩N. But then the map 1K ⊕ θ is an automorphism of G mapping M

onto N . Thus G is a Crawley group as required.

Theorem 2. (MA + ¬ CH) For any uncountable cardinal κ < 2ℵ0 , there exists an

ℵ1-free Crawley group G of cardinality κ which is not free.

Proof: Let G be any strongly ℵ1-free group of power κ which is not free; such

groups exist, since by [3, VII, 1.3], there is a strongly ℵ1-free group of cardinality

ℵ1, and hence the direct sum of this group and a free group of rank κ has the desired

properties. But G is then a Shelah group — see e.g. [3, XII, 2.4]. However, since

we are assuming (MA + ¬ CH), it follows from [3, XII, 2.5] that Ext(G, Z(ω)) = 0

and so G is in fact ℵ1-coseparable. This, of course, means by Proposition 10 above,

that G is a Crawley group.

Remark. An examination of the proof of Theorem 1 shows that it will hold for

modules over an arbitrary domain R provided that

(i) the quotient ring of R is countably generated

(ii) the notion of ℵ1-freeness for such modules is in accord with the approach in

[3, IV, 1.1]

(iii) Hom(I, R) = 0 for all rank 1 modules I not isomorphic to R.

In particular the result holds for modules over uncountable rings such as Ẑp, the ring

of p-adic integers or complete discrete valuation domains. However, we cannot use

Theorem 2 to resolve the situation for modules over a complete discrete valuation

domain since such domains are necessarily uncountable; see however the forthcoming

paper of Göbel and Shelah [8]. Theorem 2 will, of course, hold for modules over any

domain which is not left perfect and has cardinality < 2ℵ0 .
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