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Abstract

We consider the linear, second-order, differential equation

y00 þ ðl� qðxÞÞy ¼ 0 on ½0;NÞ ð�Þ

with the boundary condition

yð0Þ cos aþ y0ð0Þ sin a ¼ 0 for some aA½0; pÞ: ð��Þ

We suppose that qðxÞ is real-valued, continuously differentiable and that qðxÞ-0 as x-N

with qeL1½0;NÞ: Our main object of study is the spectral function raðlÞ associated with (�)
and (��). We derive a series expansion for this function, valid for lXL0 where L0 is
computable and establish a L1; also computable, such that (�) and (��) with a ¼ 0; have no
points of spectral concentration for lXL1: We illustrate our results with examples. In
particular we consider the case of the Wigner–von Neumann potential.

r 2004 Elsevier Inc. All rights reserved.

1. Introduction

We consider the linear, second-order, differential equation

y00 þ ðl� qðxÞÞy ¼ 0 on ½0;NÞ ð1:1Þ
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with the boundary condition

yð0Þ cos aþ y0ð0Þ sin a ¼ 0 for some aA½0; pÞ: ð1:2Þ

We suppose that qðxÞ is real-valued, continuously differentiable and that qðxÞ-0
as x-N with qeL1½0;NÞ: In this case (1.1) is in the limit point case at infinity
and the essential spectrum is ½0;NÞ: Our main object of study is the spectral
function, raðlÞ; associated with (1.1) and (1.2). It is known that if qAL1½0;NÞ;
then the spectrum is purely absolutely continuous on (0;NÞ; r0aðlÞ exists, is
continuous in l and satisfies r0aðlÞ40 for l40 (see for example [8,15]). In [9] a
series representation was given for r0aðlÞ for l4L0 where L0 is computable under
general conditions which require little more than qAL1½0;NÞ: In [6] the question
of spectral concentration was also considered under the same circumstances.
In this case, points of spectral concentration are defined, roughly, as values of
lAð0;NÞ at which r0aðlÞ has a local maximum. A more precise definition is

given in Section 3 below. This question was also considered in [2] where the
physical interpretation of such points was discussed. The results of [6] lead to a
computable L1 which is such that r0ðlÞ has no points of spectral concentration for
lXL1:
Our object in the present paper is to investigate whether similar results can be

obtained when qðxÞ-0 as x-N; but qeL1½0;NÞ: This case is much less
straightforward, since it is no longer true in general that r0aðlÞ exists, is continuous
in l and satisfies r0aðlÞ40 for l40: Indeed, examples have been constructed [10]
where qðxÞ decays arbitrarily more slowly than a Coulomb potential, but for which
raðlÞ is discontinuous on a dense set of eigenvalues in ½0;NÞ; moreover, if
qeL2½0;NÞ then it is known that the absolutely continuous spectrum may be empty
[14], in which case r0aðlÞ does not exist as a finite limit on a dense set of points in
½0;NÞ: However, under even quite minimal smoothness conditions, there are classes
of decaying, but non-integrable, potentials for which the spectrum is purely
absolutely continuous on ð0;NÞ (see for example [4]) or on ðM;NÞ for some M40
(see [1]). In such cases, we seek a series representation of r00ðlÞ and L0;L1ARþ;
where the series representation is valid for l4L0 and there are no points of spectral
concentration for l4L1 . We develop a general method which builds on the results
of [6] and illustrate the method by the examples

(a) qðxÞ ¼ ð1þ xÞ�a; 2
3
oap1 for 0pxoN;

(b) qðxÞ ¼ sinðð1þxÞ1=2Þ
ð1þxÞ1=2

; for 0pxoN;

(c) qðxÞ ¼
PM

k¼�M hkðxÞe2ickx for 0pxoN where q is real-valued, ckAR and

hkðxÞ-0 as x-N for k ¼ �M;y;M: We also impose differentiability
conditions on the hkðxÞ:

Example (a) is amenable to the analysis of [4] where it is shown that r00ðlÞ40
for all l40 and that an upper bound exists for the points of spectral con-
centration.
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Example (b) is beyond the range of [4] but is amenable to the analysis of [1], from
which it may be inferred that the so-called resonance set is empty, and hence that the
spectrum is purely absolutely continuous on ð0;NÞ:
Potentials of type (c) are known as Wigner–von Neumann potentials and have

been widely discussed over the years, we mention in particular [1] and the recent
results of [11]. They too are beyond the scope of [4].
We work throughout with the special case a ¼ 0 of (1.2). Essentially the same

methods work for aa0; but the analysis is a bit more complicated. Relations
between spectral derivatives for different values of a may be found in [3,5], and we
mention the recent result in this direction contained in [12].

2. The main results

In [6] the following theorem was proved

Theorem 1. Let qAL1½0;NÞ and suppose that there exists L140 such that for xX0
and l4L1 Z

N

x

e2il
1=2tqðtÞ dt

����
����paðxÞZðlÞ;

where að	ÞAL1 is decreasing, ZðlÞ-0 as l-N and 32ZðlÞ
R
N

x
aðtÞ dtp1: Then for all

l4L1; r000ðlÞ exists and satisfies

r000ðlÞ �
1

2p
ffiffiffi
l

p
����

����p 4

p
ffiffiffi
l

p ZðlÞ
Z

N

0

aðtÞ dt

so that r000ðlÞ40 for l4L1 and, in particular, L1 is an upper bound for the points of

spectral concentration of r0ðlÞ:

The proof of the theorem involved the construction of a series representation for
r00ðlÞ; which was valid for 0oL0ol; where L0pL1 and L0;L1 were computable.
In this paper, we use a similar approach to establish the following analogous result

for slowly decaying potentials.

Theorem 2. Let qðxÞ be continuously differentiable and satisfy qðxÞ-0 as x-N;

qeL1½0;NÞ: Define

Qðx; lÞ :¼ qðxÞ � R0 � R2 � 2i
ffiffiffi
l

p
R

for Reflg40; ImflgX0; where R ¼ Rðx; lÞ is chosen so that Qð	; lÞAL1½0;NÞ; R0

denotes differentiation with respect to x; and Q; R; @Q
@l ;

@R
@l are continuous in x and l:

Suppose that there exists M40 so that

(a) for ReflgX0; ImflgX0; jlj4M:

ARTICLE IN PRESS
D.J. Gilbert et al. / J. Differential Equations 201 (2004) 139–159 141



(i) there exists KAR so that for 0pxot

Ref2il1=2ðt � xÞ þ 2
Z t

x

Rðs; lÞ dsgpK ;

(ii) for 0pxot Z
N

x

e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds

Qðt; lÞ dt

����
����paðxÞZðlÞ;

where aðxÞ; ZðlÞ are real valued functions with að	ÞAL1½0;NÞ and

decreasing, ZðlÞ-0 as jlj-N and 32ZðlÞeK
R
N

0
aðtÞ dtp1;

(iii)
@

@l

Z t

x

Rðs; lÞ ds

����
����pconstðt � xÞ for 0pxotoN;

(b) for ReðlÞ40; ImðlÞ ¼ 0; l4M; there exists a decreasing function bðxÞ such that

for xX0;

eK

Z
N

x

@Q

@l

����
����þ iffiffiffi

l
p þ 2 @R

@l

����
���� aðtÞZðlÞ dtp

ZðlÞffiffiffi
l

p bðxÞ:

Then r000ðlÞ exists for l4M and satisfies

r000ðlÞ �
1

2p
ffiffiffi
l

p � 1

p
@

@l
ImfRð0; lÞg

����
����p 3

p
ffiffiffi
l

p ZðlÞbð0Þ:

We remark that the overall purpose of both theorems is the same: to enable L140
to be determined such that r000ðlÞ exists and satisfies r000ðlÞ40 for l4L1; in which
case there are no local maxima of r00ðlÞ in ðL1;NÞ and hence no points of spectral
concentration in ðL1;NÞ: An added complexity in Theorem 2 is that consideration
of the size and sign of ImfRð0; lÞg is needed to determine L1:
We note that Theorem 2 reduces to a special case of Theorem 1 if Rðx; lÞ � 0;

Imflg ¼ 0; K ¼ 0; bðxÞ ¼ 4
3

R
N

x
aðtÞ dt; since in this case Qðx; lÞ ¼ qðxÞ and

conditions (a) (i) and (iii) are trivially satisfied. However, this special case is less
general than Theorem 1, where the differentiability condition on qðxÞ is not required.
It follows from the proof of Theorem 2 that if there exists MoN satisfying the

conditions of the theorem, then there also exists L0 with 0oL0pM so that r00ðlÞ
exists as a finite limit for l4L0; and we have the following corollary.

Corollary 1. Let q; Q and R be as in Theorem 2 and suppose that L040 exists such

that for Reflg40; ImflgX0; jlj4L0; conditions (a) (i) and (ii) of Theorem 2 are

satisfied. Then for l4L0; r00ðlÞ has an absolutely and uniformly convergent series

representation, so that r00ðlÞ exists and hence the spectrum of (1.1) with Dirichlet

boundary condition at x ¼ 0 is purely absolutely continuous on ðL0;NÞ:
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Note that the Corollary and Theorem 2 provide the means to investigate and
compute upper bounds L0 and L1; for embedded singular spectrum and points of
spectral concentration, respectively. However, if no finite values of L0 and L1 result
from application of the theorem and corollary, then it cannot be inferred that the
spectrum is not eventually purely absolutely continuous, respectively, eventually free
of points of spectral concentration, although this might well be the case. It is possible
to obtain an improved estimate of L0 in the corollary by replacing the inequality
32ZðlÞ

R
N

0 aðtÞ dtp1 by 9ZðlÞ
R
N

0 aðtÞ dtp1: The details are given in the proof of
Theorem 2, which is contained in the following section.

3. The method

In the present context we define spectral concentration as follows.

Definition. lcAR is said to be a point of spectral concentration of raðlÞ if:

(i) r0aðlÞ exists finitely and is continuous in a neighborhood of lc:
(ii) r0aðlÞ has a local maximum at lc:

It follows immediately from the definition that if r00aðlÞ exists and has one sign for
l4L1; then L1 is an upper bound for points of spectral concentration of raðlÞ; and
the associated spectrum is purely absolutely continuous on ðL1;NÞ (cf. [8,
Lemma 4]).
Let ya and fa denote the solutions of (1.1) which satisfy the initial conditions

yað0; lÞ ¼ cos a; y0að0; lÞ ¼ sin a;
fað0; lÞ ¼ � sin a; f0

að0; lÞ ¼ cos a;

�
: ð3:1Þ

The hypotheses on qðxÞ ensure that (1.1) is in the limit point case at infinity,
so for ImðlÞ40, the solution Caðx; lÞ ¼ yaðx; lÞ þ maðlÞfaðx; lÞ of (1.1)

belongs to L2½0;NÞ where maðlÞ is the Titchmarsh–Weyl m-function associated
with (1.1) and (1.2). Since Caðx; lÞ does not vanish for xX0; Imflg40 we may set
vðx; lÞ :¼ C0

aðx;lÞ
Caðx;lÞ and note that vðx; lÞ is independent of a and satisfies the Riccati

equation

v0 ¼ �lþ q � v2: ð3:2Þ

It follows that

C0
aðx; lÞ

Caðx; lÞ
¼ vðx; lÞ ¼ y0aðx; lÞ þ maðlÞf0

aðx; lÞ
yaðx; lÞ þ maðlÞfaðx; lÞ

ð3:3Þ
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and in particular

C0
að0; lÞ

Cað0; lÞ
¼ sin aþ maðlÞ cos a
cos a� maðlÞ sin a

:

Specializing to the case a ¼ 0 we see that

m0ðlÞ ¼
C0
0ð0; lÞ

C0ð0; lÞ
¼ vð0; lÞ: ð3:4Þ

We note that for xX0; Imflg40; the function vðx; lÞ satisfying (3.3) may be
identified with the Dirichlet m-function associated with (1.1) on ½x;NÞ (see for
example [7,13]).
It is known, see [5,8,15], that when the normal limit lime-0þ m0ðmþ ieÞ exists, the

derivative r00ðlÞ of the spectral function also exists and satisfies

r00ðmÞ ¼
1

p
lim
e-0þ

Im fm0ðmþ ieÞg ¼ 1
p
lim
e-0þ

Im fvð0; mþ ieÞg: ð3:5Þ

This relationship suggests that the behavior of the spectral function for large m can
be investigated by analyzing the asymptotic properties of the appropriate solutions
of the Riccati equation. We therefore proceed as follows. Guided by knowledge of
the asymptotic form of vðx; lÞ as defined in (3.3) for Imflg40 (see for example
[6,9,13]), we seek to determine conditions under which a series solution of (3.2) of the
form

vðx; lÞ ¼ il1=2 þ Rðx; lÞ þ
XN
n¼1

vnðx; lÞ ð3:6Þ

exists and is continuous in l on the region Reflg40; ImflgX0; jlj4L0; where
Rðx; lÞ is chosen so that

Qð	; lÞ ¼ q � R0 � R2 � 2il1=2RAL1½0;NÞ ð3:7Þ

and
P

N

n¼1 vnðx; lÞ satisfies

PN
n¼1

vnð	; lÞAL1½0;NÞ;

PN
n¼1

vnðx; lÞ-0 as x; jlj-N:

9>>=
>>;: ð3:8Þ

Substituting (3.6) into (3.2) and rearranging yields,

XN
n¼1

ðv0n þ 2ðil
1=2 þ RÞvnÞ ¼ Q � v21 �

XN
n¼3

v2n�1 þ 2vn�1
Xn�2
m¼1

vm

 !
ð3:9Þ
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which leads, in a similar way to that of [6], to the choices

v01 þ ð2il1=2 þ 2RÞv1 ¼ Q;

v02 þ ð2il1=2 þ 2RÞv2 ¼ �v21;

v0n þ ð2il1=2 þ 2RÞvn ¼ �v2n�1 � 2vn�1
Pn�2

m¼1
vm;

for n ¼ 3; 4; 5;y

9>>>>>>=
>>>>>>;

ð3:10Þ

and

v1ðx; lÞ ¼ �
R
N

x
e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds

Qðt; lÞ dt;

v2ðx; lÞ ¼
R
N

x
e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds

v1ðt; lÞ2 dt;

vnðx; lÞ ¼
R
N

x
e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds

v2n�1 þ 2vn�1
Pn�2

m¼1
vm

� �
dt;

for n ¼ 3; 4; 5;y

9>>>>>>>=
>>>>>>>;

ð3:11Þ

We suppose now the existence of a constant K so that

Ref2il1=2ðt � xÞ þ 2
Z t

x

Rðs; lÞ dsgpK for 0pxot; ImflgX0: ð3:12Þ

We further suppose that

@

@l

Z t

x

Rðs; lÞ dspconstðt � xÞ: ð3:13Þ

and that there exist functions aðxÞ and ZðlÞ so that

jv1ðx; lÞjpaðxÞZðlÞ ð3:14Þ

for 0pxoN; ImflgX0 where að	Þ is a decreasing member of L1½0;NÞ and ZðlÞ-0
as jlj-N: We then have

Lemma 1. If L0 is such that for jlj4L0; 9ZðlÞek
R
N

0
aðtÞ dtp1; then for

0pxoN jvnðx; lÞjpaðxÞZðlÞ
2n�1 for 0pxoN; jlj4L0:

Proof. This is very similar to the proof of Lemma 2 of [6]. &

It follows from Lemma 1 and (3.10) that
P

N

n¼1 vnðx; lÞ and
P

N

n¼1 v0nðx; lÞ are
uniformly, absolutely convergent for xX0 and jlj4L0; ImflgX0: Thus, the series of
(3.6) does indeed represent a solution of (3.2) on this region. In particular, we note
that each of the functions of (3.11) is such that for lAR; l4L0; lime-0þ vjðx; lþ ieÞ
exists. It follows then from the uniformity of the convergence that the analogous
limit exists for the function vðx; lÞ in (3.6), which represents a solution of (3.2), and
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hence from (3.5), that r00ðlÞ exists and

r00ðlÞ ¼
1

p
Im il1=2 þ

XN
n¼1

vnð0; lÞ þ Rð0; lÞ
( )

ð3:15Þ

is a continuous function of l on ðL0;NÞ: From known results relating r00ðlÞ to
spectral properties (see e.g. [8]), we may infer that, since the essential spectrum is
½0;NÞ and r00ðlÞ exists as a finite limit on ðL0;NÞ; the spectrum is purely absolutely
continuous on ðL0;NÞ; as stated in Corollary 1. A consequence of (3.15) is that we
may discuss points of spectral concentration of r0ðlÞ directly, that is, we seek
conditions under which onðx; lÞ :¼ @

@l vnðx; lÞ; n ¼ 1; 2; 3;y exists for lAR; l4L0
and which ensure that the series

P
N

n¼1 onðx; lÞ converges uniformly and absolutely.
In order to derive bounds for the terms of this series it is helpful to construct a
sequence of differential equations satisfied by the on functions for nX2: This
approach requires the equality of the mixed second-order partial derivatives of vn:

This equality follows if we show that @vn

@l ;
@vn

@x
; @2vn

@l@x
are continuous in x and l: For nX2

the continuity of those partial derivatives may be proved by induction on n: The

continuity of @vn

@x
follows from (3.10) and that of @2vn

@ldx
from (3.10) and the induction

hypothesis. It is sufficient for the continuity of @vn

@l to show that tv2kAL1 for k ¼
2; 3;y; which may be proved as in [6, Proof of Lemma 3], and also to require the

fact that @
@l

R t

x
Rðs; lÞpconstðt � xÞ which is part of the hypothesis of Theorem 2.

We derive a bound for o1 separately. Differentiation of the first equality of (3.11)
gives

@v1

@l
¼ �

Z
N

x

il�1=2ðt � xÞ þ 2
Z t

x

@R

@l
ðs; lÞ ds

� �
e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds

Qðt; lÞ dt

�
Z

N

x

e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds @

@l
Qðt; lÞ dt

¼: I1 þ I2:

I1 may be rewritten as

�
Z

N

x

il�1=2 þ 2 @R

@l
ðs; lÞ

� �
e
2il1=2ðs�xÞþ2

R s

x
Rðt;lÞ dt

�
Z

N

s

e
2il1=2ðt�sÞþ2

R t

s
Rðt;lÞ dt

Qðt; lÞ dt ds

and

jI1jpeK

Z
N

x

il�1=2 þ 2 @Rðs; lÞ
@l

����
����aðsÞZðlÞ ds:
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It may readily be seen that

jI2jpeK

Z
N

x

@Qðt; lÞ
@l

����
���� dt;

whence, by condition (b) of the hypothesis of Theorem 2

jo1ðx; lÞjp2l�1=2ZðlÞbðxÞ:

For nX2 we differentiate (3.10) with respect to l and, using the equality of the mixed
second-order derivatives, see that

o0
2 þ ½2il1=2 þ 2R�o2 ¼ �2v1o1 � il�1=2 þ 2 @R

@l

� �
v2;

o0
n þ ½2il1=2 þ 2R�on ¼ �2vn�1on�1 � 2on�1

Pn�2
m¼1

vm

�2vn�1
Pn�2

m¼1
om � il�1=2 þ 2 @R

@l

� �
vn:

9>>>>>>>>=
>>>>>>>>;

ð3:16Þ

It follows from (3.16) that

o2ðx; lÞ ¼
R
N

x
e
2il1=2ðt�xÞþ2

R t

x
R ds

2v1o1 þ il�1=2 þ 2@R

@l

� �
v2

� �
dt;

onðx; lÞ ¼
R
N

x
e
2il1=2ðt�xÞþ2

R t

x
R ds

2vn�1
Pn�2

m¼1
om

�

þ2on�1
Pn�1

m¼1
vm þ il�1=2 þ 2 @R

@l

� �
vn

�
dt

9>>>>>>>>=
>>>>>>>>;

ð3:17Þ

for n ¼ 3; 4;y .

Lemma 2. If M is such that for all l4M; 32ZðlÞeK
R
N

0
aðtÞ dtp1 then for l4M

jojðx; lÞjp
l�1=2ZðlÞbðxÞ

2 j�2 for 0pxoN and j ¼ 1; 2; 3;y:

Proof. The result has already been shown for j ¼ 1: Consider now the case j ¼ 2:

jo2ðx; lÞjp eK

Z
N

x

2jv1j jo1j þ il�1=2 þ 2 @R

@l

����
����jv2j dt

p eK

Z
N

x

4aðtÞbðtÞl�1=2ZðlÞ2 dt þ eK

2

Z
N

x

il�1=2 þ 2 @R

@l

����
����aðtÞZðlÞ dt

p l�1=2ZðlÞbðxÞ 4eKZðlÞ
Z

N

0

aðtÞ dt þ 1
2

� �

and the result follows.
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Suppose the result was true up to, and including, n � 1: Then

jonðx; lÞjp eK

Z
N

x

2jvn�1j
Xn�2
m¼1

jomj þ 2jon�1j
Xn�1
m¼1

jvmj dt

þ eK

Z
N

x

il�1=2 þ 2 @R

@l

����
����jvnj dt

p eKl�1=2ZðlÞ2
Z

N

x

2aðtÞbðtÞ
2n�2 1þ

XN
m¼2

1

2m�2

 !
þ 2aðtÞbðtÞ

2n�3

XN
m¼1

1

2m�1 dt

þ eKZðlÞ
2n�1

Z
N

x

il�1=2 þ 2 @R

@l

����
����aðtÞ dt

p
l�1=2ZðlÞbðxÞ

2n�2 14eKZðlÞ
Z

N

0

aðtÞ dt þ 1
2

� �

as required. &

We are now able to complete the proof of Theorem 2. It follows from Lemma 2

that, provided l is sufficiently large, the series
P

N

n¼1 vnðx; lÞ may be differentiated
term by term to give

@

@l

XN
n¼1

vnðx; lÞ ¼
XN
n¼1

onðx; lÞ:

Thus from (3.15) and Lemma 2 we have

r00ðlÞ ¼
1

p
l1=2 þ ImfRð0; lÞg þ

XN
n¼1

Imfvnð0; lÞg
( )

for lXL0;

r000ðlÞ ¼
1

p
1

2
l�1=2 þ @

@l
ImfRð0; lÞg þ

XN
n¼1

Imfonð0; lÞg
( )

for lXM ð3:18Þ

so

r000ðlÞ �
1

2pl1=2
� 1

p
@

@l
ImfRð0; lÞg

����
����p 1

p

XN
n¼1

jonð0; lÞj

p
l�1=2

p
ZðlÞbð0Þ

XN
n¼2

2�nþ2 þ 1
 !

p
3l�1=2

p
ZðlÞbð0Þ for l4M: ð3:19Þ

Depending on the behaviour of ImfRð0; lÞg for large l; it is often possible to use
(3.19) to compute an upper bound, L1; for points of spectral concentration of r0ðlÞ:
In the next sections we illustrate the method with examples.
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4. Application to slowly decaying potentials

Example 1. Let qðxÞ :¼ ð1þ xÞ�a; 2
3
oap1; 0pxoN and set Rðx; lÞ :¼ R1 þ R2 þ

R3; where

R1ðx; lÞ :¼
�iqðxÞ
2
ffiffiffi
l

p ; R2ðx; lÞ :¼
q0ðxÞ
4l

; R3ðx; lÞ :¼
�iqðxÞ2

8l3=2
:

Then,

Qðx; lÞ ¼ q � R0 � R2 � 2il1=2R

¼�q00

4l
� ðq0Þ2

16l2
þ q4

64l3
þ q3

8l2
þ iq2q0

16l5=2
þ iqq0

2l3=2
ð4:1Þ

so that
R
N

x
jQðt; lÞj dt ¼ Oðð1þ xÞð�3aþ1ÞÞAL1½0;NÞ:

It is straightforward to show that

Ref2il1=2ðt � xÞ þ 2
Z t

x

Rðs; lÞ dsgp0

for 0pxot; ImðlÞX0 where we take the branch of the square root with l1=2 ¼
aþ ib; a;bX0; so that condition (a)(i) of the hypothesis of Theorem 2 is satisfied
with K ¼ 0: We now have from (3.11) and (4.1) that

jv1ðx; lÞjpe0
Z

N

x

jQðt; lÞj dtp
3

4jljð1þ xÞ1�3a;

where we have supposed, in order to improve our final estimate for L1; that
ReflgX9 and ImflgX0: Then we set

aðxÞ :¼ ð1þ xÞ1�3a; 0pxoN;

ZðlÞ :¼ 3
4
jlj�1; ReðlÞX9:

It may readily be seen that the condition 32ZðlÞeK
R
N

0
aðtÞ dtp1 is satisfied provided

that jljX24ð3a� 2Þ�1; from which it follows that condition (a)(ii) of the hypothesis
holds for the same values of l: Condition (a)(iii) also holds for these values of l; since
Rðx; lÞ is bounded in x and l for xX0 and jljXconst:40:
We note that for 2

3
oap1; L0 is at least 24 so for the remaining estimates we

suppose that l is real and greater than 24.
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To determine bðxÞ satisfying the hypothesis of Theorem 2 we note first that

@R

@l

����
���� ¼ iq

4l3=2
� q0

4l2
þ 3iq2

16l5=2

����
����pð1þ xÞ�a

l3=2
1

4
þ 1

4l1=2
þ 3

16l

� �
p
5ð1þ xÞ�a

16l3=2

@Q

@l

����
���� ¼ q00

4l2
þ ðq0Þ2

8l3
� 3q4

64l4
� q3

4l3
� 5iq2q0

32l7=2
� 3iqq0

4l5=2

�����
�����p 9

16l2ð1þ xÞ3a

and

i

l1=2
þ 2@R

@l

����
����aðxÞp1716l�1=2ð1þ xÞ�3aþ1:

It follows that

e0
Z

N

x

@Q

@l

����
����þ i

l1=2
þ 2@R

@l

����
����aðtÞZðlÞ dt p

Z
N

x

9ð1þ tÞ�3a

16l2
þ 51ð1þ tÞ1�3a

64l3=2
dt

p
11

8

1

3a� 2

� �
l�3=2ð1þ xÞ�3aþ2 ¼ l�1=2

3

4l
11

6

1

ð3a� 2Þð1þ xÞ�3aþ2:

Hence, we may choose

bðxÞ :¼ 11
6

1

ð3a� 2Þð1þ xÞ�3aþ2:

We have now shown that the hypothesis of Theorem 2 is satisfied with Rðx; lÞ as
chosen above and M ¼ 24ð3a� 2Þ�1: Hence for l4M; r000ðlÞ exists and satisfies
(3.19), so that

r000ðlÞ �
1

2pl1=2
� 1

p
1

4
l�3=2 þ 3

16
l�5=2

� �����
����

p
1

p
3

l1=2
3

4l
11

6ð3a� 2Þ ¼
33

p8ð3a� 2Þl3=2
:

It follows that r000ðlÞ40 if l4max M;
33

4ð3a� 2Þ

� �
¼ 24

3a� 2 and so there are no

points of spectral concentration for l4L1; with L1 ¼ M ¼ 24ð3a� 2Þ�1:

Example 2. Let qðxÞ :¼ sinðð1þ xÞ1=2Þ
ð1þ xÞ1=2

; 0pxoN and for Reflg40 let Rðx; lÞ ¼

R1 þ R2 þ R3 be defined in terms of q as in Example 1. Then as before

Qðx; lÞ ¼ � q00

4l
� ðq0Þ2

16l2
þ q4

64l3
þ q3

8l2
þ iq2q0

16l5=2
þ iqq0

2l3=2
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so that, in this case,

Z
N

x

jQðt; lÞj dt ¼ Oðð1þ xÞ�1=2ÞeL1½0;NÞ:

However, we may assert that for ReflgX25

Re 2il1=2ðt � xÞ þ 2
Z t

x

Rðs; lÞ ds

� �
p

4

jlj1=2
þ 1

jljp
21

25
for 0pxotoN

since for all x; t

Z t

x

R1ðs; lÞ ds

����
���� ¼ i

l1=2
fcosðð1þ sÞ1=2Þg

����
����
t

x

����p2jlj1=2; :
Z t

x

R2ðs; lÞ ds

����
���� ¼ sinðð1þ sÞ1=2Þ

4lð1þ sÞ1=2

�����
�����
t

x

�����p12jlj�1

and

Re 2il1=2ðt � xÞ þ 2
Z t

x

R3ðs; lÞ ds

� �
p0 for Reflg40; ImflgX0:

Thus, condition (a)(i) of the hypothesis of Theorem 2 is satisfied with M ¼ 25;
K ¼ 21

25
: To satisfy condition (a)(ii), we need to identify suitable functions aðxÞ; ZðlÞ

such that jv1ðx; lÞjpaðxÞZðlÞ: Using (3.11) we first integrate by parts twice
to give

v1ðx; lÞ ¼ �
Z

N

x

e
2il1=2ðt�xÞþ2

R t

x
Rðs;lÞ ds

Qðt; lÞ dt

¼Qðx; lÞ
2il1=2

þ e2il
1=2ðt�xÞ

ð2il1=2Þ2
ð2RQ þ Q0Þe2

R t

x
Rðs;lÞ ds

�����
N

x

" #

�
Z

N

x

e2il
1=2ðt�xÞ

ð2il1=2Þ2
f2R0Q þ 4RQ0 þ Q00 þ 4R2Qge

2
R t

x
Rðs;lÞ ds

dt

¼:
Qðx; lÞ
2il1=2

� 2Rðx; lÞQðx; lÞ þ Q0ðx; lÞ
ð2il1=2Þ2

þ Iðx; lÞ; ð4:2Þ
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where, for ReflgX25

jIðx; lÞjp e
21
25

4jlj

Z
N

x

jQ00 þ 2R0Q þ 4RQ0 þ 4R2Qj dt ð4:3Þ

and

jRðx; lÞj p
3

5jlj1=2ð1þ xÞ1=2
; jR0ðx; lÞjp 3

5jlj1=2ð1þ xÞ
;

jQðx; lÞj p
3

5jljð1þ xÞ3=2
; jQ0ðx; lÞjp 7

5jljð1þ xÞ2
;

jQ00ðx; lÞj p
26

5jljð1þ xÞ5=2
:

9>>>>>>>>=
>>>>>>>>;

ð4:4Þ

Substitution of (4.4) into (4.3) gives

jIðx; lÞjp e
21
25

4jlj

Z
N

x

1

4
ð1þ tÞ�5=2 dtp

1

10
jlj�1ð1þ xÞ�3=2

and hence from (4.2) we have

jv1ðx; lÞjp1
5
jlj�1ð1þ xÞ�3=2

so we may choose

aðxÞ :¼ ð1þ xÞ�3=2; ZðlÞ :¼ 1
5
jlj�1:

It is now straightforward to check that the inequality

32ZðlÞe
21
25

Z
N

0

aðtÞ dtp1

holds for ReflgX30 and, proceeding as in Example 1, we see that condition (a)(iii)
of the hypothesis is also satisfied for such l:
To determine bðxÞ satisfying part (b) of the hypothesis of Theorem 2 we note that

in this case with l real and at least 25,

@R

@l

����
����p13l�3=2ð1þ xÞ�1=2;

@Q

@l

����
����p12l�2ð1þ xÞ�3=2
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and
i

l1=2
þ 2@R

@l

����
����aðxÞp1615l�1=2ð1þ xÞ�3=2 so that

e
21
25

Z
N

x

@Q

@l

����
����þ i

l1=2
þ 2@R

@l

����
����aðtÞZðlÞ dt

p
3

2
l�2 þ 16

25
l�3=2

� �Z
N

x

ð1þ tÞ�3=2 dt

p
1

l1=2
1

5l
47

5
ð1þ xÞ�1=2:

Hence, we may choose

bðxÞ ¼ 47

5ð1þ xÞ1=2

and to satisfy all the hypotheses of Theorem 2 we take M ¼ maxf25; 30g ¼ 30: We
now have that for l430; r000ðlÞ exists and satisfies (3.19), so that

r000ðlÞ �
1

2p
l�1=2 � 1

p
sinð1Þ
4l3=2

þ 3 sin
2ð1Þ

16l5=2

� �����
����

p
1

p
3

l1=2
1

5l
47

5
¼ 141

25pl3=2
:

Hence r000ðlÞ40 if l430 and
1

2p
l�1=24

141

25pl3=2
; that is if l4maxf12; 30g ¼ 30: Thus,

we may take L1 ¼ M ¼ 30 to be an upper bound for points of spectral
concentration.

5. The Wigner von–Neumann Case

We suppose now that

qðxÞ ¼
XM

k¼�M

hkðxÞe2ickx; ð5:1Þ

where ckAR; cka0; hkðxÞ-0 as x-N; hkð	ÞACL½0;NÞ for k ¼
�M;y;M; h

ðLþ1Þ
k AAC½0;NÞ and there exists pðxÞ with

jhðjÞ
k ðxÞjppðxÞ jþ1 for 0pxoN; j ¼ 0;y;L þ 1; ð5:2Þ

where

xpðxÞLþ2AL1½0;NÞ: ð5:3Þ
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We set Rðx; lÞ :¼
PLþ1

n¼1 Rnðx; lÞ and

Qðx; lÞ ¼ q �
XLþ1
n¼1

R0
n � 2il1=2

XLþ1
n¼1

Rn � R21 �
XLþ1
n¼2

R2n þ 2Rn

Xn�1
l¼1

Rl

 !

¼ðq � R0
1 � 2il

1=2R1Þ � ðR0
2 þ 2il

1=2R2 þ R21Þ

�
Xlþ1
k¼3

R0
k þ 2il

1=2Rk þ R2k þ 2Rk�1
Xk�2
l¼1

Rl

 !( )

� R2Lþ1 � 2RLþ1
XL

l¼1
Rl : ð5:4Þ

We choose the fRlg so that

q � R0
1 � 2il1=2R1 ¼ E1;

R0
2 þ 2il1=2R2 þ R21 ¼ E2;

R0
k þ 2il

1=2Rk þ R2k�1 þ 2Rk�1
Pk�2
l¼1

Rl

� �
¼ Ek;

for k ¼ 3;y;L þ 1;

9>>>>>>=
>>>>>>;

ð5:5Þ

where

xEjðx; lÞAL1½0;NÞ for j ¼ 1;y;L þ 1:

From (5.5) we may take

R1ðx; lÞ ¼ �e�2il
1=2x

Z
N

x

e2il
1=2tqðtÞ dt þ e�2il

1=2x

Z
N

x

e2il
1=2tE1ðt; lÞ dt;

R2ðx; lÞ ¼ e�2il
1=2x

Z
N

x

e2il
1=2tR1ðt; lÞ2 dt � e�2il

1=2x

Z
N

x

e2il
1=2tE2ðt; lÞ dt;

Rkðx; lÞ ¼ e�2il
1=2x

Z
N

x

e2il
1=2t R2k�1 þ 2Rk�1

Xk�2
l¼1

Rl

( )
dt

� e�2il
1=2x

Z
N

x

e2il
1=2tEkðt; lÞ dt

for k ¼ 3;y;L þ 1:
We set c� :¼ maxk¼�M;y;M jckj and suppose that l is such that jlj � 2Lc�40:
From (5.1)

e�2il
1=2x

Z
N

x

e2il
1=2tqðtÞ dt ¼

XM
k¼�M

e�2il
1=2x

Z
N

x

e2iðl
1=2þckÞthkðtÞ dt: ð5:6Þ
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Now, by integration by parts

e�2il
1=2x

Z
N

x

e2iðl
1=2þckÞth

ðjÞ
k ðtÞ dt

¼ � e2ickxh
ðjÞ
k ðxÞ

2iðl1=2 þ ckÞ
� e2il

1=2x

2iðl1=2 þ ckÞ

Z
N

x

e2iðl
1=2þckÞth

ðjþ1Þ
k ðtÞ dt

so from (5.6)

�e�2il
1=2x

Z
N

x

e2il
1=2tqðtÞ dt ¼

XM
k¼�M

e2ickx
XL

l¼0

ð�1Þl
h
ðlÞ
k ðxÞ

½2iðl1=2 þ ckÞ�Lþ1

(

þ ð�1ÞL
e�2il

1=2x

½2iðl1=2 þ ckÞ�Lþ1
Z

N

x

e2iðl
1=2þckÞtk

ðLþ1Þ
k ðtÞ dt

)

and we set

E1ðt; lÞ :¼ ð�1ÞLþ1 XM
k¼�M

e2ickth
ðLþ1Þ
k ðtÞ

ð2i½l1=2 þ ck�ÞðLþ1Þ
:

We then have

R1ðx; lÞ ¼
XM

k¼�M

e2ickx
XL

l¼0

ð�1Þl
h
ðlÞ
k ðxÞ

½2iðl1=2 þ ckÞ�lþ1
ð5:7Þ

and note from (5.2) and (5.3) that

jE1ðt; lÞjp
const pðtÞLþ2

ðjlj1=2 � c�ÞLþ1:

Consider now R2ðx; lÞ: From (5.7), R21ðt; lÞ is a sum of terms of the form

h
ðm1Þ
k1

ðtÞhðm2Þ
k2

ðtÞe2iðck1
þck2

Þt

ð2i½l1=2 þ ck1 �Þ
m1þ1ð2i½l1=2 þ ck2 �Þ

m2þ1
; ð5:8Þ

where 0pm1;m2pL; �Mpk1; k2pM: It follows from (5.8) that

R2ðx; lÞ ¼ e2il
1=2x

X
m1;m2;k1;k2

e2iðl
1=2þck1

þck2
Þt �

h
ðm1Þ
k1

ðtÞhðm2Þ
k2

ðtÞ dt

ð2i½l1=2 þ Ck1 �Þ
m1þ1ð2i½l1=2 þ Ck2 �Þ

m2þ1

� e2il
1=2x

Z
N

x

e2il
1=2tE2ðt; lÞ dt; ð5:9Þ

where E2 is to be chosen. If m1 þ m2XL then the terms of the sum in (5.9) are

bounded above by const pðtÞLþ2

ðjlj1=2�c�ÞLþ2 and may be absorbed into E2ðt; lÞ: If m1 þ m2 ¼
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lpL � 1; then such terms are differentiable and successive integrations by parts give
rise to a sum of integrated terms like

e2iðck1
þck2

Þxh
ðn1Þ
k1

ðxÞhðn2Þ
k2

ðxÞ
ð2i½l1=2 þ ck1 þ ck2 �Þ

pð2i½l1=2 þ ck1 �Þ
m1þ1ð2i½l1=2 þ ck2 �Þ

m2þ1
; ð5:10Þ

where n1 þ n2Xm1 þ m2; pX0: Each integration by parts increases p and
n1 þ n2 by 1. Eventually we reach a point where n1 þ n2 ¼ L � 1 and m1 þ m2 þ p ¼
L; where the integrated terms are less than or equal to

const pðtÞLþ2

ðjlj1=2�2c�ÞLþ2 and

may be absorbed into E2: Thus, E2ðx; lÞ and R2ðx; lÞ consist of sums of terms like
(5.10) and

jE2ðx; lÞjp
const pðxÞLþ2

ðjlj1=2 � 2c�ÞLþ2:

Similar considerations apply to R3;y;RLþ1 and E3;y;ELþ1: In general, Rjðx; lÞ is
a sum of products of the form

e2iðck1
þ?þckm Þh

ðn1Þ
k1

ðxÞ?h
ðnmÞ
km

ðxÞ
ð2iðl1=2 þ ck1ÞÞ

p1;1?ð2iðl1=2 þ ckmÞÞ
p1;mð2iðl1=2 þ ck1 þ ck2ÞÞ

p2;1?ð2iðl1=2 þ ck1 þ?þ ckmÞÞ
pm;n

ð5:11Þ

and

jEjðx; lÞjp
const pðxÞLþ2

ðjlj1=2 � 2 j�1c�ÞLþ2:

We turn now to the requirement that there exists a constant K with

2Re il1=2ðt � xÞ þ
Z t

x

Rðs; lÞ ds

� �
pK for 0pxotoN:

Consider first the contribution to the integral of R1ðs; lÞ: This is a sum of terms of
the form

Z t

x

e2icks ð�1Þl
h
ðlÞ
k ðsÞ ds

½2iðl1=2 þ ckÞ�lþ1
; where 0ploL:

Upon integration by parts this becomes

ð�1Þl

2ick½2iðl1=2 þ ckÞ�lþ1
e2ickth

ðlÞ
k ðtÞ � e2ickxh

ðlÞ
k ðxÞ �

Z t

x

e2icksh
ðlþ1Þ
k ðsÞ ds

� �
:
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The two integrated terms are bounded by (5.2) and the argument may be repeated

with the non-integrated term until we are left with an integral involving h
ðLþ1Þ
k ð	Þ

which belongs to L1½0;NÞ:
A similar argument applies to the Rjðs; lÞ terms for j ¼ 2;y;L þ 1: The only

difference is that they now involve products of the h
ðmÞ
k ð	Þ terms. This establishes the

existence of a real constant K such that condition (a)(i) of the hypothesis of Theorem
2 is satisfied.
From (5.4) and (5.5) we have that

Qðx; lÞ ¼
XLþ1
k¼1

Ekðx; lÞ � RLþ1ðx; lÞ2 � 2RLþ1ðx; lÞ
XL

l¼1
Rlðx; lÞ ð5:12Þ

and from (5.2) and (5.12):

jQðx; lÞjp cpðxÞLþ2

ðjlj1=2 � 2Lc�ÞLþ2: ð5:13Þ

It follows from (5.13) that, in the notation of Theorem 2, we may take

ZðlÞ :¼ Cðjlj1=2 � 2Lc�Þ�ðLþ2Þ and aðxÞ :¼
Z

N

x

pðtÞLþ2
dt

which have the required properties. We may now infer the following result from
Corollary 1 and (3.19); note that L0 is determined by the requirement that
9ZðlÞeK

R
N

0
aðtÞ dtp1 for l4L0 (see remarks following Corollary 1).

Theorem 3. If qðxÞ satisfies the conditions of (5.1)–(5.3) there exists L040 so that for

lAR with l4L0

r00ðlÞ ¼
1

p
fl1=2 þ ImðRð0; lÞÞ þ vð0; lÞg

¼ 1
p
fl1=2 þ ImðRð0; lÞÞg þ O jlj�

ðLþ2Þ
2

� �
:

We look now at the question of spectral concentration. In order to use Theorem 2
we need to show that condition (a)(iii) is satisfied and that there exists a decreasing
function, bðxÞ; with

eK

Z
N

x

@Q

@l

����
���� dt þ eK

Z
N

x

il�1=2 þ 2@R

@l

����
����aðtÞZðlÞ dt

¼ I1 þ I2pl�1=2ZðlÞbðxÞ: ð5:14Þ
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It is clear by direct differentiation and the choice

bðxÞ :¼
Z

N

x

aðtÞ dt ¼
Z

N

x

ðs � xÞpðsÞLþ2
ds

that I2 satisfies this condition. Consider now I1: Again differentiation of the last two
terms of (5.12) with respect to l show that this part of I1 satisfies (5.14) and we are
left with the term

eK

Z
N

x

XLþ1
k¼1

@

@l
Ekðt; lÞ

�����
����� dt: ð5:15Þ

Each term of the sum of Ek’s can be expressed as a sum of constant multiples of
terms like (5.11) where n1 þ?þ nmXL: Differentiation with respect to l yields the
required bounds. To see that condition (a)(iii) is satisfied, we note from (5.7), (5.9)

and (5.11) that @
@lRðx; lÞ is bounded in x on ½0;NÞ and in l on ½C;NÞ for any C40:

We now have the following result, where L1 is determined by the requirement that
32ZðlÞeK

R
N

0 aðtÞ dtp1:

Theorem 4. There exists L1 such that if q satisfies (5.1)–(5.3), r000ðlÞ40 for lAR with

l4L1: In particular there are no points of spectral concentration for l4L1:

Proof. By Theorem 2, there exists M40 such that r000ðlÞ exists and satisfies

r000ðlÞ �
1

2p
ffiffiffi
l

p � 1

p
ImfRð0; lÞg

����
����p 3

p
ffiffiffi
l

p ZðlÞbð0Þ

for l4M: Since Rð0; lÞ ¼ Oðl�1=2Þ and ZðlÞ-0 as l-N; there exists L1XM such
that r000ðlÞ has the required properties for l4L1: &

Corollary 2. There exists MAR such that L0oMpL1 and for which

(i) r00ðlÞ exists and is an absolutely continuous function on ðM;NÞ;
(ii) r00ðlÞ is strictly positive and strictly increasing on ðM;NÞ:

Note that Corollary 2 is a strengthening for large l of what is already known in the
Wigner–von Neumann case, viz, that the spectrum is purely absolutely continuous
on ð0;NÞ outside a set of resonances (see [1]).
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