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Abstract

We consider the linear, second-order, differential equation
V' 4 (= q(x)y=0 on [0,c0) (+)
with the boundary condition
y(0)cosa+ ) (0)sina =0 for some ae0,n). (*x)

We suppose that g(x) is real-valued, continuously differentiable and that g(x)—0 as x— o0
with ¢¢ L'[0, c0). Our main object of study is the spectral function p,(2) associated with (x)
and (xx). We derive a series expansion for this function, valid for A>A4y, where Ag is
computable and establish a A;, also computable, such that (x) and (xx) with o = 0, have no
points of spectral concentration for 21>A4,. We illustrate our results with examples. In
particular we consider the case of the Wigner—von Neumann potential.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction
We consider the linear, second-order, differential equation
V' +(A—q(x))y=0 on [0, ) (1.1)

*Corresponding author. Fax: +1-815-753-1112.
E-mail address: harris@math.niu.edu (B.J. Harris).
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with the boundary condition

y(0)cosa+ )/ (0)sina =0 for some a€|0, ). (1.2)

We suppose that ¢(x) is real-valued, continuously differentiable and that ¢(x)—0
as x— oo with g¢ L'[0, oo). In this case (1.1) is in the limit point case at infinity
and the essential spectrum is [0, c0). Our main object of study is the spectral
function, p,(4), associated with (1.1) and (1.2). It is known that if geL'[0, o),
then the spectrum is purely absolutely continuous on (0, o0), p)(4) exists, is
continuous in A and satisfies p;,(1)>0 for A>0 (see for example [8,15]). In [9] a
series representation was given for p) (1) for 1> Ay where A, is computable under
general conditions which require little more than ge L'[0, o). In [6] the question
of spectral concentration was also considered under the same circumstances.
In this case, points of spectral concentration are defined, roughly, as values of
A€(0,00) at which p/ (1) has a local maximum. A more precise definition is
given in Section 3 below. This question was also considered in [2] where the
physical interpretation of such points was discussed. The results of [6] lead to a
computable A; which is such that p,(1) has no points of spectral concentration for
A=A

Our object in the present paper is to investigate whether similar results can be
obtained when ¢(x)—0 as x— oo, but g¢L'[0, ). This case is much less
straightforward, since it is no longer true in general that p/ (1) exists, is continuous
in A and satisfies p}(1)>0 for A>0. Indeed, examples have been constructed [10]
where g(x) decays arbitrarily more slowly than a Coulomb potential, but for which
p,(4) is discontinuous on a dense set of eigenvalues in [0, o0); moreover, if
q¢L*[0, o0) then it is known that the absolutely continuous spectrum may be empty
[14], in which case p] (1) does not exist as a finite limit on a dense set of points in
[0, 00 ). However, under even quite minimal smoothness conditions, there are classes
of decaying, but non-integrable, potentials for which the spectrum is purely
absolutely continuous on (0, co) (see for example [4]) or on (M, o0 ) for some M >0
(see [1]). In such cases, we seek a series representation of pj(4) and Ao, A4;€R™,
where the series representation is valid for 1> A, and there are no points of spectral
concentration for 1> A; . We develop a general method which builds on the results
of [6] and illustrate the method by the examples

@) g(x) = (14+x)" 32<a<l for 0<x<oo,
1
(b) q(x ):%, for 0<x< o0,

(14-x)

© g(x) =ML hi(x)e? @ for 0<x<oo where ¢ is real-valued, ¢,eR and
hi(x)—>0 as x> oo for k=-M,...,M. We also impose differentiability
conditions on the /i (x).

Example (a) is amenable to the analysis of [4] where it is shown that p{(4)>0
for all >0 and that an upper bound exists for the points of spectral con-
centration.
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Example (b) is beyond the range of [4] but is amenable to the analysis of [1], from
which it may be inferred that the so-called resonance set is empty, and hence that the
spectrum is purely absolutely continuous on (0, o0).

Potentials of type (c) are known as Wigner—-von Neumann potentials and have
been widely discussed over the years, we mention in particular [1] and the recent
results of [11]. They too are beyond the scope of [4].

We work throughout with the special case o = 0 of (1.2). Essentially the same
methods work for o#0, but the analysis is a bit more complicated. Relations
between spectral derivatives for different values of o may be found in [3,5], and we
mention the recent result in this direction contained in [12].

2. The main results
In [6] the following theorem was proved

Theorem 1. Let ge L'[0, 00) and suppose that there exists Ay >0 such that for x>0

and 1.> /Ay
/ e lg(r) dt
X

where a(-) € L is decreasing, (1) —0 as 2.— oo and 32n(%) [ a(t) di<1. Then for all
A> Ay, py(L) exists and satisfies

<a(x)n(4),

Py (4)

1 4 .
- m < ml’[(l) /0 a(t) dt

so that pj(A)>0 for A> Ay and, in particular, Ay is an upper bound for the points of
spectral concentration of py(1).

The proof of the theorem involved the construction of a series representation for
po(4), which was valid for 0< A9 <4, where Ay <A, and Ay, A; were computable.

In this paper, we use a similar approach to establish the following analogous result
for slowly decaying potentials.

Theorem 2. Let g(x) be continuously differentiable and satisfy q(x)—0 as x— oo,
q¢ L'[0, ). Define

O(x,7) = q(x) — R — R* = 2iV/AR

for Re{i} >0, Im{A} >0, where R = R(x, ) is chosen so that Q(-,A)eL'[0, ), R’
denotes differentiation with respect to x, and Q, R, %—% %—If are continuous in x and A.

Suppose that there exists M >0 so that
(a) for Re{2} =0, Im{1} >0, |A|> M:
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(1) there exists KeR so that for 0<x<t
t
Re{2i'?(t — x) +2 / R(s,2) ds} <K,
X

(i) for 0<x<t

/ 2=+ [ R(s.) dsQ(l,i) di| <a(x)n(2),
where a(x),n(1) are real valued functions with a(-)eL'0, 0) and
decreasing, n(1) =0 as |A| > oo and 32n(7)eX |7 a(r) di<1,

(iii) 5
@/x R(s, ) ds

(b) for Re(1)>0, Im(4) = 0, A> M, there exists a decreasing function b(x) such that

for x=0,

Then pjj(A) exists for 2> M and satisfies

<const(f — x) for 0<x<t< oo,

OR
02

© |92
oA

+

N
—
~
N
S
—
N

a(tyn(i) di< ™

1 10

i
- " %mm
pO(j‘) 27_5\/1 na;{

(RODY <2

We remark that the overall purpose of both theorems is the same: to enable 4, >0
to be determined such that p{j(4) exists and satisfies p{(4) >0 for A> A, in which
case there are no local maxima of p;(4) in (A4, co) and hence no points of spectral
concentration in (A, c0). An added complexity in Theorem 2 is that consideration
of the size and sign of Im{R(0, 4)} is needed to determine A;.

We note that Theorem 2 reduces to a special case of Theorem 1 if R(x,1) =0,
Im{A} =0, K=0, b(x)=%[" since in this case Q(x,4) = ¢(x) and
conditions (a) (i) and (111) are tr1v1ally satisﬁed. However, this special case is less
general than Theorem 1, where the differentiability condition on ¢(x) is not required.

It follows from the proof of Theorem 2 that if there exists M < oo satisfying the
conditions of the theorem, then there also exists Ay with 0< Ay <M so that py(4)
exists as a finite limit for 1> A,, and we have the following corollary.

Corollary 1. Let g, Q and R be as in Theorem 2 and suppose that Ay>0 exists such
that for Re{1}>0, Im{A}>0, |A|> Ay, conditions (a) (i) and (ii) of Theorem 2 are
satisfied. Then for A> Ay, py(A) has an absolutely and uniformly convergent series
representation, so that py(2) exists and hence the spectrum of (1.1) with Dirichlet
boundary condition at x = 0 is purely absolutely continuous on (A, o0).
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Note that the Corollary and Theorem 2 provide the means to investigate and
compute upper bounds Ay and A;, for embedded singular spectrum and points of
spectral concentration, respectively. However, if no finite values of Ay and A; result
from application of the theorem and corollary, then it cannot be inferred that the
spectrum is not eventually purely absolutely continuous, respectively, eventually free
of points of spectral concentration, although this might well be the case. It is possible
to obtain an improved estimate of A, in the corollary by replacing the inequality
32n(2) [y a(t)di<1 by In(2) [,” a(r) di<1. The details are given in the proof of
Theorem 2, which is contained in the following section.

3. The method
In the present context we define spectral concentration as follows.

Definition. /.€R is said to be a point of spectral concentration of p, (1) if:

(1) p,(72) exists finitely and is continuous in a neighborhood of A.
(i) pl(4) has a local maximum at A.

It follows immediately from the definition that if p}(4) exists and has one sign for
A> Ay, then A, is an upper bound for points of spectral concentration of p, (1), and
the associated spectrum is purely absolutely continuous on (A;, o) (cf. [8,
Lemma 4]).

Let 0, and ¢, denote the solutions of (1.1) which satisfy the initial conditions
0,(0,4) = cosa, 0',(0,4) = sinoa, (3.0)
$,(0,7) = —sina, ¢/ (0,4) =cosa, | '

The hypotheses on ¢(x) ensure that (1.1) is in the limit point case at infinity,
so for Im(4)>0, the solution ¥,(x,4)=0,(x,1)+m,(L)¢,(x,2) of (1.1)
belongs to L?[0, co) where m,(/) is the Titchmarsh-Weyl m-function associated

with (1.1) and (1.2). Since ¥,(x, 1) does not vanish for x>0, Im{4} >0 we may set

v(x,A) = P24 and note that v(x,A) is independent of o and satisfies the Riccati
Pa(x,4)

equation
V==t q— 0% (3.2)
It follows that
P (x,4) ~0(x, 4) + my (AP, (x, 4)
) "D TG T )b v 7) (33)
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and in particular

¥,(0,4)  sina+ m,(4)cosa
¥,(0,4) coso — my(L)sina

Specializing to the case o = 0 we see that

mo(2) = —C20 — (0, 7). (3.4)

We note that for x>0, Im{1} >0, the function v(x, 1) satisfying (3.3) may be
identified with the Dirichlet m-function associated with (1.1) on [x, c0) (see for
example [7,13]).

It is known, see [5,8,15], that when the normal limit lim, _, o+ mo (1 + ie) exists, the
derivative pj(4) of the spectral function also exists and satisfies

Ph(i) = 1 Tim Tm {my( i)} = lim Im (e, i)} (3

This relationship suggests that the behavior of the spectral function for large u can
be investigated by analyzing the asymptotic properties of the appropriate solutions
of the Riccati equation. We therefore proceed as follows. Guided by knowledge of
the asymptotic form of v(x, 1) as defined in (3.3) for Im{1} >0 (see for example
[6,9,13]), we seek to determine conditions under which a series solution of (3.2) of the
form

v(x,7) = iA* + R(x, 1) + Z v(x, 4) (3.6)
n=1
exists where
R(x, 1) is chosen so that
0(-,/)=q— R — R*=2i)"*Re L'0, ) (3.7)
and Y7, va(x, 4) satisfies
> va(-,2)eL![0, ),
= (3.8)

NgE]

vu(x,1) >0 as x, |A|> 0.

n=1

Substituting (3.6) into (3.2) and rearranging yields,

0 C
Z v, —|—21}1/2—|—R)v,,)_Q—v%— Z

n=1 n=3

8
N
S
+
[\e]

S
:
S
3
~__—
w
x>
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which leads, in a similar way to that of [6], to the choices

v+ (2i2? 4 2R)v; = 0,
L+ (2212 4 2Ry = —1?,

(3.10)
v, + (2i21? + 2R)v, = —v2 | = 20, Z Ums
for n=13,4,5, ... "
and
)= = [ N LD b gy a,
0a(x, 2) = f:c ezf;.‘/3<t—x>+2 f R(s,2) dsvl(t, /1)2 dr, oy

0 iV (- ' S, n=2
ol d) = [ FH [} Ris,i) ds (U}%l 20, Zl v}ﬂ) dr,
m=
for n =3,4,5, ...

We suppose now the existence of a constant K so that
t
Re{2i2?(1— x) +2 / R(s, ) ds} <K for 0<x<t, Im{i}>0. (3.12)

We further suppose that

a t
oA

R(s, 2) ds<const(t — x). (3.13)

and that there exist functions a(x) and n(4) so that
o1 (x, )< alx)n(4) (3.14)

for 0<x< oo, Im{4} >0 where a(-) is a decreasing member of L![0, o) and (1) =0
as |A| > oo. We then have

Lemma 1. If Ay is such that for |A|>Ag, In(2)e* [” a(t)di<1, then for
0<x< 0 [o,(x, )| ST ) for 0<x< a0, |2]> Ag.

Proof. This is very similar to the proof of Lemma 2 of [6]. O

It follows from Lemma 1 and (3.10) that Y~ v,(x,4) and >~ v,(x, 1) are
uniformly, absolutely convergent for x>0 and |4| > Ay, Im{A} >0. Thus, the series of
(3.6) does indeed represent a solution of (3.2) on this region. In particular, we note
that each of the functions of (3.11) is such that for 2eR, 1> Ao, lim,_, ¢+ v;(x, A + ie)
exists. It follows then from the uniformity of the convergence that the analogous
limit exists for the function v(x, 1) in (3.6), which represents a solution of (3.2), and
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hence from (3.5), that pj (1) exists and

po(4) :llm{ )12 zy: 0, (0 A)} (3.15)

n=1

is a continuous function of 1 on (Ay, c0). From known results relating p((4) to
spectral properties (see e.g. [8]), we may infer that, since the essential spectrum is
[0, c0) and pg(4) exists as a finite limit on (Ao, o0), the spectrum is purely absolutely
continuous on (Ay, o0 ), as stated in Corollary 1. A consequence of (3.15) is that we
may discuss points of spectral concentratlon of py(4) directly, that is, we seek
conditions under which w,(x, 1) = & 9 p,(x, ), n=1,2,3, ... exists for LeR, 1> A,
and which ensure that the series Y~ w,(x, 1) converges uniformly and absolutely.
In order to derive bounds for the terms of this series it is helpful to construct a
sequence of differential equations satisfied by the w, functions for n>2. This

approach requires the equality of the mixed second-order partial derivatives of v,,.
This equality follows if we show that %Uf’ %’;’, g;:}” are continuous in x and 4. For n>2

the continuity of those partial derivatives may be proved by induction on n. The

gﬁ;; from (3.10) and the induction

hypothesis. It is sufficient for the continuity of %2 to show that n}eL! for k =
2,3,. which may be proved as in [6, Proof of Lemma 3], and also to require the
fact that f R(s, 2)<const( — x) which is part of the hypothesis of Theorem 2.
We derlve a bound for w; separately. Differentiation of the first equality of (3.11)
gives

0
T / (l) o +2/ o o ) A [ R4 0,7 at

_ * 2012 (1— v+2f dsa
/x e 9 O(t, A)dt

continuity of % follows from (3.10) and that of

=1+ I.

I, may be rewritten as

B / w (iz1/2+2?9—I?(s,z)>em‘/2<f-x>+2 S, R s
x A

o0 12, ! 2

and

o0 R 1
1| <eX / .iz—l/z PYLIC)
. oA

a(s)n(A) ds.
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o0
b|<e /
X

whence, by condition (b) of the hypothesis of Theorem 2
o1 (x, 2)| <2472 (2)b(x).

It may readily be seen that

o0(t, A)

27 dt,

For n>2 we differentiate (3.10) with respect to 4 and, using the equality of the mixed
second-order derivatives, see that

OR
wh + 20012 + 2Rjwy = —20j0) — (z’/{_m + 25) 2,

n—2
o), + [21'21/2 +2R|w, = =204 10y—1 — 201 Y Um (3.16)

m=1

n—2 OR
—20,_ m— (272225 )0,
Up—_1 m{:l o, (l + % v

It follows from (3.16) that

s 22— " Rds 20R
wy(x,4) = foc 6’21)'1 (=042 fx Rds (21)1601 + (i/ll/2 +—6/1 )Uz) dt,

X

) 1/2 —X ! ds n=2
wu(x,A) = foo P2 fx Rd <21J,11 > o (3.17)

x
m=1

n—1 aR
+2w,-1 S O+ <i/l_'/2 + 2—~) u,1> dt
m=1 a/L

forn=3,4,... .
Lemma 2. If M is such that for all 2>M, 32n(2)eX [ a(t) di<1 then for . >M

27 20(2)b(x)

lwi(x, )| < 2171—2 Jor 0<x< oo and j=1,2,3,....

Proof. The result has already been shown for j = 1. Consider now the case j = 2.

w0 R
ln(x, 2)| < eX / o1 | + [iA71 + 2(?)—) vy | dt
} 0 K [e] R
<ef / 4a(t)b(1)7 " Pn(2)7 dt + % / i~V 4 2%'a(1)n(i) dt

< )fl/zn()u)b(x){4eK17()») /0 " dt+%}

and the result follows.
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Suppose the result was true up to, and including, n — 1. Then
0 n—2 n—1
|, (x, 1) < eX / 2|vp—1] Z || + 2|wp—1] Z U | dt
X m=1

+ X /
X

B ) 2a(t - 2a(t)b(l) N
K 1/2 d
<e A / ’7(/“) / 2;1 T A2 ( 2 : Dm— 2) on—3 Z] om—1 !

7 1/2—1-2 |v,,|dl

x m=

OR
2 2
7 + B

~1/2 x @
<%{148K”(1)/0 a(l)dfﬂ‘%}

as required. [

We are now able to complete the proof of Theorem 2. It follows from Lemma 2
that, provided 4 is sufficiently large, the series 7, v,(x, 2) may be differentiated
term by term to give

a(t) dt

9 0
EZUM :;a) X, A

n=1

Thus from (3.15) and Lemma 2 we have
po(4) = {}1/2 + Im{R(0, }+Z Im{v,(0, 1) }} for 2= A,

po(A) = % {%/11/2 Im{R A} + Z Im{w,(0 )}} for i=M  (3.18)

SO

" 1 10 , 1 &
po(/h) — m — Eall’l’l{R(O,A)}‘S E Z |w’1(07}»‘)|
1/2
A~ (Z 2~ n+2 + 1)

n(2)b(0) for 2> M. (3.19)

<

3,712
<
T

Depending on the behaviour of Im{R(0, 1)} for large A, it is often possible to use
(3.19) to compute an upper bound, A, for points of spectral concentration of p,(1).
In the next sections we illustrate the method with examples.
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4. Application to slowly decaying potentials

—0o

Example 1. Let ¢(x) = (1 +x) " $<a<1, 0<x< oo and set R(x,4) = R + R +

R3, where
—ig(x) q(x) —ig(x)*
R = R = R A) = ——
l(x7/1) 2\/2 ) 2()(71) 4) ) 3(X, ) 823/2
Then,

O(x,2) =q— R — R* —2i'R

B U0 R A L/ .
4 164> 6423 812 16237 23

so that [” |Q(t,4)| dt = O((1 1+ x) 7 ) e L0, o).
It is straightforward to show that

t
Re{2i'?(t — x) + 2/ R(s, ) ds} <0

for 0<x<1, Im(4)>0 where we take the branch of the square root with A'/? =
o+ if, o, =0, so that condition (a)(i) of the hypothesis of Theorem 2 is satisfied
with K = 0. We now have from (3.11) and (4.1) that

) <0 * < 1-3a
el <e [ 100l drisgn +2)'

where we have supposed, in order to improve our final estimate for A, that
Re{1}>9 and Im{/} >0. Then we set

alx) = (1+x)" 0<x<ow,

n(2) =3"", Re(2)=9.

It may readily be seen that the condition 321(4)eX fo 1) dt<1 is satisfied provided
that |A| >24(30 — 2)717 from which it follows that condltlon (a)(ii) of the hypothesis
holds for the same values of 1. Condition (a)(iii) also holds for these values of 4, since
R(x, ) is bounded in x and A for x>0 and || >const.>0.

We note that for %<oc<l, Ag is at least 24 so for the remaining estimates we
suppose that 1 is real and greater than 24.
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To determine b(x) satisfying the hypothesis of Theorem 2 we note first that

q 3ig | _(1+x)7*[1 1 3 5(1+x)~"
‘ 23/2 BT Y VIR T R TYeE
‘5_Q _|d @)’ 3¢ & SiPq Bigq|_ 9
or (a2 823 4t 4r 3277 4097 T1623(1 + x)*
and
i _OR 17 .
i+ T 0
It follows that
“100 i OR “9(1+0)" 51(1+1)
¢ ‘ T | aon() dIS/x 67 ean

11 1 3111
< 17321 “3a42 _ 4-1/22 11 1 3042
8<3a—2> (1+x) 76 Ba=g TV

Hence, we may choose

b(x) = %(30(17_2)(1 + x) 72,

We have now shown that the hypothesis of Theorem 2 is satisfied with R(x, 1) as
chosen above and M = 24(30 —2)~'. Hence for i> M, po(4) exists and satisfies

(3.19), so that
1 1(1
meay o &2 -3/2 5/2
po(4) 2!/ n{4} i A }

133 1 33
Snl2456(30—2)  a8(3e — 2)237

24
It follows that pj(4)>0 if /1>max{M,4(3j3_ 2)} =32 and so there are no

points of spectral concentration for 4> A, with A4, = M = 24(3u —2)"".

sin((1 + x)"/?)

(1+ x)l/ 2
R; + Ry + R3 be defined in terms of ¢ as in Example 1. Then as before

Example 2. Let g(x) = , 0<x< oo and for Re{1} >0 let R(x,1) =

2 . .
¢ @)y, ¢ ¢ idd | igd

X,/l = — — R +
o(x, 4) 47 1622 6477 812 16737 )32




D.J. Gilbert et al. | J. Differential Equations 201 (2004) 139-159 151

so that, in this case,

/% |01, )| di = O((1 +x)""*) ¢ L'[0, 0).

However, we may assert that for Re{4}>25

! 4 1 21
Re{2i&1/2(t—x)+2/ R(s, 2) ds}swl/z+|;<25 for 0<x<t<

since for all x, ¢

t

t .
/Rl(s,/l)ds :}ﬁ{cos((l—#s)l/z)} <22,
‘ . 1/2+ |
/Rz(s’,l)ds = M <l|}|71
x 41+ | 2

and

t
Re{2iﬂul/2(t—x)+2/ Ri(s,A) ds}<0 for Re{A}>0, Im{1}>0.

X

Thus, condition (a)(i) of the hypothesis of Theorem 2 is satisfied with M = 25,
K= % To satisfy condition (a)(ii), we need to identify suitable functions a(x), n(4)
such that |v(x,4)|<a(x)n(4). Using (3.11) we first integrate by parts twice
to give

P 2i x4 [ R(s.d) ds
u](x,z):—/ FHP 2 [R6A b oy 5y gy

X

, a2,
CO(x,4) | [T 2 [ R(s) ds
=2 Ty tRer O

?0‘|
X

© 202 (1-x) .
B / iy RO +4RQ + 0" 4R Q1 L HON gy
¢ 17
Q(x.7) _ 2R(x,2)Qx.7) + Q'(x,4)
=i s +1(x, ), (4.2)
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where, for Re{1}>25

1(x, i)|<% / 10" +2RQ + 4RQ + 4R2Q| di (4.3)
and
|R(x, 2)| S0 IR’(x,i>|<m7
0(x,%)] < m 10/ (x, 7»)|<m7 (4.4)
) 26
10"(x,2)| < S0

Substitution of (4.4) into (4.3) gives

21
SR
¢ (1407 dr<

1 -3/2
) d 17 (1 + %)

BIES

and hence from (4.2) we have

o (x, )| < YA (1 +x) 72

so we may choose

a(x) = (14272, (2) =i

It is now straightforward to check that the inequality

21 [
32n(A)e2s / a(t)dt<1
0

holds for Re{/} >30 and, proceeding as in Example 1, we see that condition (a)(iii)
of the hypothesis is also satisfied for such A.
To determine b(x) satisfying part (b) of the hypothesis of Theorem 2 we note that
in this case with / real and at least 25,
<1/1 3/2 +X)_1/2
3 3
8Q 1 Y
1
‘ o “(1+x)
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and ﬁ+2g§ a(x)< /1 2(1 + x)7/% so that
i 8R

3A,2 16~,3/2 /DO -3/2
< — -
<2A +25A : (I+0~7"dt

1 147 ~12
Hence, we may choose
47
b(x) = —1/2
5(14x)

and to satisfy all the hypotheses of Theorem 2 we take M = max{25,30} = 30. We
now have that for 1> 30, pj (1) exists and satisfies (3.19), so that

1 1 (sin(1) = 3sin*(1)
S N et V2
po(4) Zn)V n{ 4,32 + 1652

1 3 147 141
Sc——F—=——+-

2545 25pp3?

e, 141

25133
we may take A, —M—30 to be an upper bound for points of spectral
concentration.

Hence pjj(1)>0if 2>30 and

that is if 2>max{12,30} = 30. Thus,

5. The Wigner von—Neumann Case

We suppose now that
q(x) = > h(x)e (5.1)
where ¢ eR, ¢ #0, h(x)>0 as x—-o0, M(-)eCt0,00) for k=
-M, ..., M, h,i”l)eAC[O, o0 ) and there exists p(x) with
W ()| <p(x)" for 0<x<oo, j=0,..,L+1, (5.2)

where

xp(x)F2e L0, o). (5.3)
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We set R(x, 1) = S5 R,(x, 2) and

L+l L+l L+l n-1
N R, 20N R, - R —Z<R3+2Rn2 Rl)
n=1

n=1 n=2 =1
—=(q— R, = 2i2"?R)) — (R, 4+ 2i2'*R;, + R?)

I+1 k=2
- Z{R; + 20\ PR, + (R,% +2Re 1Y R;) }

k=3 =1

L
—R%,, —2Rp Z R;. (5.4)
=1

We choose the {R;} so that

q— Ry —2i)'*R, = E,
R, +2i2'?Ry + R} = E»,

=1
for k=3,...,L+1,

R, +2i)' Ry + <R2 +2R kf R) = E G2)
k v k k—1 k—1 ! ks

where
xEj(x,2)eL'[0,0) forj=1,..,L+1.

From (5.5) we may take
2 2 i91/2 o i91/2
R](X,l 721/1/ 21/1/ dl—|— —2ipl/ x/ 6217.1/ tE](l, /1) dl,
x

o0 0
RQ(X, /1) _ 72M1/2 / 21AI/ZTR ( /1)2 dr — 6721').1/2)6/ eZi).l/zth(t’ )‘) dt,

‘ k=2
Ri(x,2) :e’z"‘l/'x/ 2 I{Ri 1+ 2Ry Z Rl}

X =1

higlj2. 1)2
—e 2il )./ 621). lEk(l, /1) dt
X

fork=3,....,L+1.
We set ¢, = maxg—_y._u |ck| and suppose that 4 is such that || — 2L¢, >0.
From (5.1)

0 S M . L
eizul/2x/ €2iAl/-tq(l‘) df — Z efzz),l/zx/ ezl(A1/2+ck)zhk(t) dr. (5.6)

k=—M
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Now, by integration by parts

e—Zi/ll/zx/OO eZi()v]/2+ck)th]((/')(t) dt
x

Zit’kxh(j)( ) 20712

e v (x — /w 2i(0 e )t p (+1)
_ B e RV (1) dr
21‘(/11/2 +Ck) 2i(;u1/2 +Ck) x , ( )

so from (5.6)

_ —2i1/2x * 2i21/2¢ _ & 2icx ! ( 1) ( )
e /X e q(t)dt = Z {e ;[2:’("

k=M Mty )}

!
L, 2j!/?
+ (=DTe /OCe2i(/11/2+ck)tkl(CL+1)(t) dt}

2i(2"? 4 ¢)]F!

and we set
ic L+1
B ) = ()P 3 S
o (A 4 )Y
We then have
M L ()
i )’y (x)
_ 2ickx
= e e L SR/ 5.7
k;M ; /11/2 ¥ ]l+1 (5.7)
and note from (5.2) and (5.3) that
const p(r)=?

|E1([, /1)| <W

Consider now Ry(x, ). From (5.7), R}(t,7) is a sum of terms of the form

hg]”l) (l)h/(:zﬂz) (l)eZi(Ckl ey )t

(21[ 1/2+Ck1])m1+1(21.[;nl/2+Ck2])mz+l’

where 0<m,my<L, —M <k, k<M. It follows from (5.8) that

he (R (1) dr
(21[11/2 + Ckl]>ml+l(2i[ll/2+ Ck2]>m2+l

.1 1/2 a2 N
Rz(x, ;L) :ezz). 12 § : 621<A/ ey ey )t >

my,my,ky,k;
1/2 L
_ Qi / AP (1) dt, (5.9)
X

where E; is to be chosen. If m; + my>L then the terms of the sum in (5.9) are

bounded above by % and may be absorbed into Ex(t,4). If my +my =
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I<L — 1, then such terms are differentiable and successive integrations by parts give
rise to a sum of integrated terms like

eZi(ck1 +ex, )xhl((”]ll ) (x)hl(cZZ) (X)

(21[/11/2 + Ckl + CkZ])p(zi[/ll/2 + Ckl])m]+l(2i[)ul/2 + Ckz])mz+1’

(5.10)

where n; +ny;>=m; +my, p=0. Each integration by parts increases p and
ny + ny by 1. Eventually we reach a point where ny +n, =L — 1 and m; +m, +p =
const p(r)-+?

<M‘]/2726*)L+2
may be absorbed into E,. Thus, E>(x,4) and Ry(x, 1) consist of sums of terms like

(5.10) and

L, where the integrated terms are less than or equal to and

const p(x)~™

E(x, )| <——t——.
| Ex(x, 2)] (wl/z_zc*)uz

Similar considerations apply to R3, ..., Rz and Ej3, ..., Er ;. In general, R;(x, 4) is
a sum of products of the form
p2iler, ++- +ck,,,)h](€’:l J(x) h]((’:ﬁ (x)
(202" 4 e )Y QI e )20 + ey 4 ) (20 e e+ e,
(5.11)

and

const p(x)-

(|42 = 201, 2

|Ej(x, 2)| <

We turn now to the requirement that there exists a constant K with

t
2Re{iil/2(l_x)—|—/ R(s,i)ds}<K for 0<x<r< 0.
X

Consider first the contribution to the integral of R;(s, ). This is a sum of terms of
the form

where 0</< L.

/’ sies (=)' (s) ds
4 —_—,
x 2i(22 4 )

Upon integration by parts this becomes

-1 { gt () vicgr () /’ Yigs (4 ) }
ek (1) — ey (x) — ek s)ds p.
2ick[2i(),l/2 4—(:;()]“rl e ) ) x e )
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The two integrated terms are bounded by (5.2) and the argument may be repeated
with the non-integrated term until we are left with an integral involving h;{LH)(-)
which belongs to L'[0, o).

A similar argument applies to the R;(s,4) terms for j=2,...,L+ 1. The only

difference is that they now involve products of the h,((m)(-) terms. This establishes the
existence of a real constant K such that condition (a)(i) of the hypothesis of Theorem
2 is satisfied.

From (5.4) and (5.5) we have that

L+1 L
O(x,2) = > Ei(x,2) = Rpja(x,2)° = 2Rp1(x,2) > Ri(x,2)  (5.12)
k=1 I=1

and from (5.2) and (5.12):

10(r, 1] < P
v \<V~‘1/2—2LC*)L+2.

(5.13)

It follows from (5.13) that, in the notation of Theorem 2, we may take

n(2) = C(|A]"* = 2Fc,) = and  a(x) = / p(OF 2 dr

which have the required properties. We may now infer the following result from

Corollary 1 and (3.19); note that A, is determined by the requirement that
In(L)ek Ow a(t) dt<1 for 1> A (see remarks following Corollary 1).

Theorem 3. If q(x) satisfies the conditions of (5.1)—(5.3) there exists Ay >0 so that for
AeR with 1> A,

oh(2) :%{;,‘/2 + Im(R(0, 7)) + v(0, 7)}

:%{),‘/2 +Im(R(0, 1)} + O(|/1|(L2ﬁ).

We look now at the question of spectral concentration. In order to use Theorem 2
we need to show that condition (a)(iii) is satisfied and that there exists a decreasing

function, b(x), with
[e¢] 8Q 0 B
K K —1/2
e L 8i‘dl+e /Y il +282

=1 + L < y(2)b(x). (5.14)

OR (n() dr
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It is clear by direct differentiation and the choice

b(x) = /% a(t)dt = /oo(s — X)p(s)F ds

that I, satisfies this condition. Consider now /;. Again differentiation of the last two
terms of (5.12) with respect to A show that this part of I satisfies (5.14) and we are
left with the term

dr. (5.15)

Each term of the sum of Ej’s can be expressed as a sum of constant multiples of
terms like (5.11) where n; + --- + n,, > L. Differentiation with respect to A yields the
required bounds. To see that condition (a)(iii) is satisfied, we note from (5.7), (5.9)
and (5.11) that ZR(x, 2) is bounded in x on [0, 00) and in 4 on [C, c) for any C>0.
We now have the following result, where A is determined by the requirement that
32n(2)eX [ a(t) di<1.

Theorem 4. There exists Ay such that if q satisfies (5.1)~(5.3), py(4) >0 for 2€R with
A>Ay. In particular there are no points of spectral concentration for 1> A;.

Proof. By Theorem 2, there exists M >0 such that pj(4) exists and satisfies

1 1 3
. TIm{R(0, )} <=

Py {R(0,7)} i
for 2> M. Since R(0, 1) = O(~"?) and 5(1) -0 as 21— oo, there exists A, > M such
that p((A) has the required properties for A>A,. O

pu(A) (4)b(0)

Corollary 2. There exists M € R such that Ag<M < Ay and for which

(1) py(4) exists and is an absolutely continuous function on (M, ),
(i) pg(4) is strictly positive and strictly increasing on (M, o).

Note that Corollary 2 is a strengthening for large A of what is already known in the
Wigner—von Neumann case, viz, that the spectrum is purely absolutely continuous
on (0, o0 ) outside a set of resonances (see [1]).
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