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HOLOMORPHIC BASIS FOR FAMILIES OF SUBSPACES OF A
BANACH SPACE

CHRISTOPHER BOYD AND MILENA VENKOVA

Abstract. In this article we investigate the connection between a family of com-
plemented subspaces of a Banach space having a holomorphic basis, and being
holomorphically complemented.
AMS classification: 46G20.
Key words: holomorphic projection, holomorphic basis.

1. Introduction

Perhaps the most fundamental of all selection results is the Axiom of choice: given
any collection of non-empty sets {Xα}α∈A it is possible to “choose” an element xα
from eachXα. The choice of an element is realised by a “choice function”. Additional
structure on the indexing set A or on the range spaces Xα allows to refine the
problem of “selection”. The additional structure on the range spaces can be given
by assuming they are, for example, rings, spaces of linear operators, or Banach
algebras. Additional structure on the domain can be given by assuming A is an open
subset of a topological or even a complex Banach space. This assumption allows us
to ask for the choice function to be continuous or holomorphic. The problem now
changes from set-theoretic to analytic. The solution typically consists of two stages.
The first is finding a local solution about each point; the second is ”patching” these
local solutions to obtain a global one. Until recently, all selection problems have
assumed that the domain is finite-dimensional, and somethimes that the range is
finite-dimensional as well. Typically, the choice function has values in an operator
space and the question has often been considered in the context of invertibility
properties of the operators,e.g. ([1, 2, 19]). The recent work of Lempert and Patyi
however has allowed to extend such results to infinite-dimensional domains, as in
[5, 6, 7].

In this paper, we concentrate on a different, although related (see [7]) problem -
the case when our operators are projections. We introduce holomorphic Schauder
basis and study the relationship between families of subspaces with such basis and
holomorphically complemented families of subspaces. The case when Ω is a domain
in a finite dimensional space was studied by Shubin in [15]. Saphar ([14]) and Bart
([2]), on the other hand, considered finite holomorphic bases over a domain in C.
Here we consider the non-trivial generalizations to both infinite-dimensional domains
and infinite holomorphic bases.
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2. Notation and definitions

LetX and Y be Banach spaces over C, L(X, Y ) will denote the space of continuous
linear mappings from the Banach space X into the Banach space Y , GL(X, Y ) will
denote the set of all invertible linear operators from X to Y . We let H(Ω;X)
denote the set of all X-valued holomorphic mappings defined on an open subset Ω
of a Banach space. We use the standard notation X ′ := L(X,C) and GL(X) :=
GL(X,X).

We remind the reader that a sequence (xn)n in a Banach space X is called a
Schauder basis of X if for every x ∈ X there is a unique sequence of scalars (an)n so
that x =

∑∞
n=1 anxn. A sequence (xn)n which is a Schauder basis of its closed linear

span is called a basic sequence. Two bases, (xn)n for a Banach space X and (yn)n
for a Banach space Y , are equivalent if there exists an isomorphism T : X → Y such
that T (xn) = yn for all n ∈ N.

If (xn)n is a Schauder basis for the Banach space X, the bounded linear functionals

x∗n
( ∞∑
n=1

anxn
)

= an

for all n, are called the biorthogonal functionals associated to this basis. If for every
x∗ ∈ X ′ the norm of x∗|[xi]∞n , the restriction of x∗ to the span of (xi)

∞
i=n, tends to

zero as n→∞, then (xn)n is called a shrinking basis. The biorthogonal functionals
(x∗n)n form a basis of X ′ if and only if the basis (xn)n is shrinking.

When (xn)n is a basic sequence we define (x∗n)n by using the relation x∗n(xm) = δnm
and extending by linearity and continuity to all of X (Definition 1.f.1, [11]).

We refer to [12] for background information on operators between Banach spaces,
to [4, 13] for the theory of holomorphic mappings on Banach spaces and to [3, 11]
for information on Schauder bases and basic sequences.

In the reminder of this section we recall the definition of holomorphic Banach
vector bundles and of their sub-bundles, and some of their properties.

Definition 2.1. Let π : E → Ω be a surjective holomorphic map of complex Banach
manifolds. We assume that the fibre above z ∈ Ω, Ez := π−1(z), has been given a
Banach space structure whose topology coincides with the topology induced from E. A
collection (Uα, τα)α∈Γ is called a trivializing cover for π if (Uα)α∈Γ is an open cover of
Ω and for each α ∈ Γ there is a Banach space Xα such that τα : π−1(Uα) −→ Uα×Xα

is a biholomorphic mapping and conditions (1), (2) and (3) below are satisfied.

(1) τα,z := τα|Ez is a linear isomorphism from Ez onto Xα, modulo identifying
{z} ×Xα and Xα, for each z ∈ Uα.

(2) π = πα ◦ τα, where πα is the canonical projection from Uα ×Xα onto Uα.
Conditions (1) and (2) imply that ραβ := τα◦τ−1

β |Uα∩Uβ has the form ραβ(z, x) =
(z, gαβ(z)x) where gαβ(z) ∈ L(Xβ, Xα) whenever α, β ∈ Γ and z ∈ Uα∩Uβ 6=
∅.

(3) If α, β ∈ Γ and Uα ∩ Uβ 6= ∅ then the map z 7→ gαβ(z) from Uα ∩ Uβ into
L(Xβ, Xα) is holomorphic.

Two trivializing covers are said to be equivalent if their union is also a trivializing
cover.
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Definition 2.2. A holomorphic Banach vector bundle is a triple (E , π,Ω), where
π : E −→ Ω is a surjective holomorphic map of complex Banach manifolds, together
with a class of equivalent trivializing covers.

The bundle structure is specified by any one trivializing cover. If Ω is connected,
then all the XU are isomorphic to a common Banach space X, called the fibre type of
the bundle. We call E the bundle space, π the projection of the bundle, Ω the base of
the bundle, τα a trivialization of π−1(Uα) and gαβ a transition map. If X is a Banach
space and Ω is a complex manifold, the triple (Ω×X, π,Ω), where π is the canonical
projection from Ω × X onto Ω, together with the trivializing covers equivalent to
the trivializing cover {(Ω, π)}, is called the trivial bundle. For convenience, we often
write E in place of (E , π,Ω).

A holomorphic section of the holomorphic vector bundle (E , π,Ω) is a holomorphic
mapping f : Ω −→ E such that π ◦ f = 1Ω. The set of all holomorphic sections is
denoted by H(Ω; E). When (E , π,Ω) is the trivial bundle (Ω × X, π,X) we write
H(Ω;X) in place of H(Ω; E). Under the restriction maps, the collections H(U ; E),
U ⊂ Ω open, make up a sheaf OE over Ω.

An endomorphism of the holomorphic vector bundle (E , π,Ω) is a holomorphic
mapping f : E → E such that π ◦ f = π, fz := f |Ez is a continuous linear mapping
for all z ∈ Ω, and the mapping

z ∈ U −→ τz ◦ fz ◦ τ−1
z ∈ L(X)

is holomorphic for any trivialising map τ : π−1(U)→ U ×X. We denote by M(E)
the set of all endomorphisms of E . If f 2

z = fz for all z ∈ Ω we call f a projection.

A sub-bundle of (E , π,Ω) is a bundle (E ′, π′,Ω) where E ′ is a subset of E , π′ = π|E ′ ,
E ′z is a closed subspace of Ez for all z ∈ Ω and the following condition holds:

for each z in Ω there exists an open neighourhood U of z in Ω, a subspace YU of
XU and trivializations τ : π−1(U) −→ U ×XU and σ : (π′)−1(U) −→ U × YU such
that

τz ◦ (σ−1)z = IdU×YU .

A sub-bundle (E ′, π′,Ω) is direct if its fibres are complemented subspaces of the
corresponding fibres of (E , π,Ω). We say that there is a projection from (E , π,Ω)
onto (E ′, π′,Ω) if there is an endomorphism of E which on each fibre is a continuous
projection onto the corresponding fibre of E ′.

In [7] Dineen and the second author proved the following proposition:

Proposition 2.3. Let Ω be a pseudo-convex open subset of a Banach space with an
unconditional basis and (E , π,Ω) be a holomorphic Banach vector bundle over Ω. If
(F , π′,Ω) is sub-bundle of the holomorphic vector bundle (E , π,Ω), then (F , π′,Ω)
is a direct sub-bundle if and only if there exists a holomorphic projection p ∈M(E)
such that p(E) = F .

This result relied upon the following important theorem of Lempert ([9, 10]):

Theorem 2.4. Let Z be a Banach space with a Schauder basis, Ω ⊂ Z pseudo-
convex open, E → Ω a holomorphic Banach vector bundle. If plurisubharmonic
domination holds in every pseudo-convex open subset of Ω, then the sheaf coholomogy
groups Hq(Ω,OE) vanish for all q ≥ 1.
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Theorem 2.4 implies the solvability of the additive Cousin problem.
We will not go into details about plurisubharmonic domination - let us just say that
in his recent paper [18] Patyi showed that plurisubharmonic domination holds on a
pseudo-convex open set Ω of a space with a Schauder (not necessarily unconditional)
basis, and on a convex set Ω in a separable space. For the rest of this article we will
assume the former case, i.e. that Ω is a pseudo-convex open subset of a space with
a Schauder basis, but it is worth remembering that the same results will hold when
Ω is a convex open subset of a separable space.

Let {M(z)}z∈Ω be a family of complemented subspaces of E. If there exists
P ∈ H(Ω,L(E)) such that P (z) is a projection mapping of E onto M(z) for all
z ∈ Ω, we will call {M(z)}z∈Ω a holomorphically complemented family of subspaces
of E. This definition, together with Patyi’s result, allows us to re-state and generalize
Proposition 2.3 in the following form:

Proposition 2.5. Let Ω be a pseudo-convex open subset of a Banach space with
a Schauder basis and E be a Banach space. Suppose {M(z)}z∈Ω is a family of
complemented subspaces of E. The following are equivalent:

(1) {M(z)}z∈Ω a holomorphically complemented family of subspaces of E.
(2) (z ∈ Ω,M(z)) is a direct holomorphic sub-bundle of Ω× E.

A multiplicative Cousin data for (Uα)α∈Γ, an open covering of Ω, is a collection of
functions (fαβ)α,β∈Γ ⊂ H(Uαβ,GL(E)) on Uαβ := Uα ∩ Uβ 6= ∅, satisfying

fαβ ◦ fβα = 1

on Uαβ, and
fαβ ◦ fβγ ◦ fγα = 1

on Uαβγ := Uα ∩ Uβ ∩ Uγ whenever Uαβγ 6= ∅.
The multiplicative Cousin problem consists in finding a collection of holomorphic
mappings (fα)α∈Γ ⊂ H(Uα),GL(E)) such that

fα|Uαβ ◦ f−1
β |Uαβ = fαβ

whenever Uαβ 6= ∅.
The following Theorem ([17, 16]) shows the multiplicative Cousin problem is solvable
on certain domains:

Theorem 2.6. Let Z be a Banach space with a Schauder basis, Ω ⊂ Z be pseudo-
convex and open. If plurisubharmonic domination holds in every pseudo-convex
open subset of Ω, then for any Banach space E any multiplicative Cousin problem
for OGL(E) is solvable over Ω as soon as it is continuously solvable.

In particular, since for contractible (i.e. homotopically equivalent to a point) set
Ω the bundle OGL(E) is continuously trivial, under the constraints of Theorem 2.6
it will be holomorphically trivial.

3. Holomorphic bases

Definition 3.1. Let E and X be Banach spaces and let Ω be an open subspace
of X. The sequence

(
xn
)
n∈N with xn ∈ H(Ω, E) for all n ∈ N is said to form a

holomorphic basis (resp. holomorphic basic sequence) for E if the following two
conditions are satisfied:
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(1)
(
xn(z)

)
n∈N is a Schauder basis (resp. basic sequence) for E for every z ∈ Ω;

(2) for every z0 ∈ Ω there exist a neighbourhood V0 of z0 and continuous map-
pings l0 : V0 → R+ and L0 : V0 → R+ such that

l0(z)
∥∥∥ N∑
n=1

anxn(z0)
∥∥∥ ≤ ∥∥∥ N∑

n=1

anxn(z)
∥∥∥ ≤ L0(z)

∥∥∥ N∑
n=1

anxn(z0)
∥∥∥

for all
(
an
)
n∈N, all N ∈ N, and all z ∈ V0.

If
(
xn
)
n∈N is a holomorphic basis (basic sequence) than the bases (resp. basic

sequences)
(
xn(z0)

)
n∈N and

(
xn(z)

)
n∈N are equivalent for all z ∈ V0. Note that if a

Banach space has a Schauder basis, then it has infinitely many non-equivalent bases
(see [11]), thus allowing us to ask whether we can ’select’ in such a way that we
obtain a holomorphic basis over Ω.

Example 3.2.

Let E be a subspace of a Banach space F . Suppose E a Schauder basis (en)n and
let Ω be an open subset of E. Let f ∈ H(Ω, E) is such that for each z in Ω the

derivative of f at z, d̂f(z), is an invertiable linear mapping from E into E. For each

n in N let xn(z) = d̂f(z)en. Then for each z in Ω we have that (xn(z))n is a Schauder

basis for E. Let z0 be a point of Ω. Since the function d̂f : z → d̂f(z) is holomorphic

we can choose a neighbourhood V0 of z0 so that ‖d̂f(z)− d̂f(z0)‖ < 1

‖d̂f(z0)−1‖
for

all z in V0. Then for z in V0 we have

d̂f(z) = d̂f(z0) + (d̂f(z)− d̂f(z0)) = d̂f(z0)
(
I + d̂f(z0)−1(d̂f(z)− d̂f(z0))

)
.

Hence for for each z in V0, each sequence of complex numbers (an)n and each N ∈ N
we have that

l0(z)

∥∥∥∥∥
N∑
n=1

anx
∗
n(z0)

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
n=1

anx
∗
n(z)

∥∥∥∥∥ ≤ L0(z)

∥∥∥∥∥
N∑
n=1

anx
∗
n(z0)

∥∥∥∥∥
where

l0(z) =
1

‖(I + d̂f(z0)−1(d̂f(z)− d̂f(z0)))−1‖
and

L0(z) =
∥∥∥I + d̂f(z0)−1

(
d̂f(z)− d̂f(z0)

)∥∥∥ .
Thus we have that (xn(z))n is a holomorphic basis for E over Ω. Regarding xn as
a holomorphic function from Ω into F we get that (xn(z))n is a holomorphic basic
sequence for F over Ω.

In particular, if f : Ω → f(Ω) is bi-holomorphic then (xn(z))n is a holomorphic
basic sequence for F over Ω.

We will need the following lemma, proven in [6]:

Lemma 3.3. If P and P ′ are projections in L(X) and ‖P −P ′‖ < 1 then (1X−P +
P ′) ∈ GL(X) and (1X − P + P ′)(P (X)) = P ′(X). In particular, P (X) ' P ′(X).
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Proposition 3.4. Let Ω be a contractible pseudo-convex open subset of a Banach
space with a Schauder basis and E be a Banach space. Suppose {M(z)}z∈Ω is a
holomorphically complemented family of subspaces of E and that for some z0 ∈ Ω
the space M(z0) has a Schauder basis. Then {M(z)}z∈Ω has a holomorphic basis.

Proof. Let P ∈ H(Ω,L(E)) be a projection onto {M(z)}z∈Ω and zα be fixed in Ω.
Let Vα be a neighbourhood of zα such that ‖P (zα) − P (z)‖ < 1 when z ∈ Vα. By
Lemma 3.3, (1E−P (zα)+P (z)) ∈ GL(E) and (1E−P (zα)+P (z))(M(zα)) = M(z)
for all z ∈ Vα. In this way we obtain an open cover Γ := {Vα}zα∈Ω for Ω. Let
Qα(z) := 1E − P (zα) + P (z). As Ω is connected and open it is path-connected,
hence there exists a continuous path in Ω connecting z0 and zα. This path is a
compact set, hence it can be covered by a finite number of sets {Vi}ki=0 ⊂ Γ. For
simplicity of notation let V0 be the set in Γ corresponding to z0, Vα = Vk, and
Vi ∩ Vi+1 6= ∅ for i = 0 . . . , k − 1. Let (x0

n)∞n=1 denote the Schauder basis of M(z0).
If z̄0 ∈ V0 ∩ V1, then

x0
n(z̄0) = (1E − P (z0) + P (z̄0))(x0

n) = Q0(z)(x0
n)

is a basis for M(z̄0). Since z̄0 ∈ V1, the mapping Q−1
1 (z̄0) = (1E − P (z1) + P (z̄0))−1

is well defined, and
x1
n(z1) = Q−1

1 (z̄0)(x0
n(z̄0))

is a basis for M(z1). Moreover,

x1
n(z) = Q1(z)x1

n(z1) = Q1(z)Q−1
1 (z̄0)(x0

n(z̄0))

will form holomorphic bases for {M(z)}z∈V1 .
Next we choose z̄1 ∈ V1 ∩ V2, and by repeating the steps above we obtain

x2
n(z) = Q2(z)Q−1

2 (z̄1)(x1
n(z̄1)),

a holomorphic basis for {M(z)}z∈V2 . Let at each step Ai := Q−1
i (z̄i)Qi−1(z̄i) where

i = 1, . . . , k. After a finite number of steps we will get

xkn := Ak . . . A1(x0
n),

and
xkn(z) := Qk(z)Ak . . . A1(x0

n)

is a holomorphic basis for {M(z)}z∈Vk . Clearly the bases (xi(z))z∈Vi are equivalent
for all i = 0 . . . , k.
Suppose Vα and Vβ belong to Γ and Vα∩Vβ 6= ∅. Let z ∈ Vα∩Vβ, then as before we
can construct Aα ∈ GL(E) such that xαn(z) = Qα(z)Aα(x0

n) and Aβ ∈ GL(E) such
that xβn(z) = Qβ(z)Aβ(x0

n). The mapping AβA
−1
α is a linear isomorphism mapping

xαn onto xβn for all n. Then

xβn(z) = Qβ(z)AβA
−1
α

(
Qα(z)

)−1
(xαn(z))

for all n. Let Tβα(z) := Qβ(z)AβA
−1
α

(
Qα(z)

)−1
, then Tβα is holomorphic on Vα ∩ Vβ

and Tβα(z) ∈ GL(M(z)) for every z ∈ Vα ∩ Vβ. Let Vα ∩ Vβ ∩ Vγ 6= ∅, then if
z ∈ Vα ∩ Vβ ∩ Vγ we have

Tαβ(z) ◦ Tβγ(z) ◦ Tγα(z)(xαn(z)) = xαn(z)

for all n. Hence Tαβ(z) ◦ Tβγ(z) ◦ Tγα(z) = 1M(z), so we can consider a holomor-
phic vector bundle S with base Ω, open cover {Vα}α∈Γ, fibre M(z) and transition
mappings {Tαβ}. Clearly the mappings {Tαβ} form a (multiplicative) Cousin data
for {Vα}α∈Γ. By Theorem 2.6 the multiplicative Cousin problem is solvable over Ω.
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The solution
(
xαn
)
n∈N gives us the desired holomorphic basis. Indeed, part (1) of

Definition 3.1 is clearly satisfied. To show that part (2) of Definition 3.1 is satisfied,
take a fixed zα in Ω, on the neighbourhood Vα the bounded and invertible linear
operator Qα(z) maps (xn(zα))n to (xn(z))n. Hence for each z in Vα, each sequence
of complex numbers (an)n and each N in N we have that

1

‖Qα(z)−1‖

∥∥∥∥∥
N∑
n=1

anxn(zα)

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
n=1

anxn(z)

∥∥∥∥∥ ≤ ‖Qα(z)‖

∥∥∥∥∥
N∑
n=1

anxn(zα)

∥∥∥∥∥
on Vα. �

4. Applications and properties of holomorphic bases

The following proposition is a partial converse to Proposition 3.4:

Proposition 4.1. Let Ω be a pseudo-convex open subset of a Banach space with a
basis and E be a Banach space. Suppose

(
xn
)
n∈N is a holomorphic basic sequence

such that the closed linear span of
(
xn(z)

)
n∈N, M(z), is a complemented subspace of

E for every z ∈ Ω. Then {M(z)}z∈Ω is holomorphically complemented in E.

Proof. Suppose z0 ∈ Ω is fixed, and let P0 denote a continuous projection from E
onto M(z0). Let x ∈ E. By part (2) of Definition 3.1 there exist a neighbourhood
V0 of z0 and a continuous mapping L0 : V0 → R+ such that∥∥∥ ∞∑

n=1

[x∗n(z0)(P0x)]xn(z)
∥∥∥ ≤ L0(z)

∥∥∥ ∞∑
n=1

[x∗n(z0)(P0x)]xn(z0)
∥∥∥

for all z ∈ V0. Hence ∥∥∥x− P0x+
∞∑
n=1

[x∗n(z0)(P0x)]xn(z)
∥∥∥

≤ ‖1− P0‖‖x‖+
∥∥∥ ∞∑
n=1

[x∗n(z0)(P0x)]xn(z)
∥∥∥

≤ ‖1− P0‖‖x‖+ L0(z)
∥∥∥ ∞∑
n=1

[x∗n(z0)(P0x)]xn(z0)
∥∥∥

= ‖1− P0‖‖x‖+ L0(z)‖P0‖‖x‖.

Thus the mapping defined by

A(z)x = x− P0x+
∞∑
n=1

[x∗n(z0)(P0x)]xn(z),

is continuous on V0. For each k ∈ N, the function
∑k

n=1[x∗n(z0)(P0x)]xn(z0) is
holomorphic. Since

∑∞
n=1[x∗n(z0)(P0x)]xn(z0) converges uniformly on V0, it is the

uniform limit of a series of holomorphic functions, hence A ∈ H(Ω,L(E)). Moreover,

A(z0)x = x− P0x+
∞∑
n=1

[x∗n(z0)(P0x)]xn(z0)] = x,
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i.e. A(z0) = IE. Hence there exists a neighbourhood of z0 such thatA ∈ H(V0, GL(E)).
Without loss of generality we will assume this neighbourhood is V0. Clearly,

A(z)xn(z0) =
∞∑
n=1

[x∗n(z0)(P0xn(z0))]xn(z) = xn(z).

The mapping Q(z) = A(z)P0A
−1(z) is a projection onto Mz and Q ∈ H(V0,L(E)).

The mappings
V0 × E → V0 × E, (z0, x)→ (z0, A

−1(z)x)

provide a trivialization so that V0 ×Mz is a direct holomorphic sub-bundle of the
trivial bundle V0 × E. By Proposition 2.5, the family of subspaces {M(z)}z∈Ω is
holomorphically complemented in E. �

Lemma 4.2. Let Ω be an open subset of a Banach space X, E and F be Banach
spaces. Suppose that f ∈ H(Ω,L(E,F )) is holomorphic. Then f t given by f t(z) =
f(z)t for z in Ω, is holomorphic.

Proof. Take z0 in Ω. Then we can find a neighbourhood V0 of z0 and M > 0 such
that ‖f(z)‖ < M for z in V0. Then we have that ‖f t(z)‖ = ‖f(z)t‖ = ‖f(z)‖ < M
for all z in V0 and thus we have that f t is locally bounded. Given x in E and ϕ in
F ′ we have that

〈ϕ⊗ x, f t(z)〉 =
(
f t(z)ϕ

)
(x) = ϕ(f(z)x).

Hence the function z → 〈ϕ⊗ x, f t(z)〉 if holomorphic for all x in E and ϕ in F ′. As
{ϕ⊗ x : x ∈ E,ϕ ∈ F ′} is a separating subset for L(E,F ), Theorem 3 of [8] implies
that f t is holomorphic. �

Proposition 4.3. Let Ω be a connected pseudo-convex open subset of a Banach
space with a basis and E be a Banach space with holomorphic basic sequence (xn)n
on Ω such that the closed linear span of (xn(z))n, Mz, is a complemented subspace
of E for every z in Ω. Then the associated biorthogonal functionals x∗n belong to
H(Ω, E ′) for all n. Moreover, if there is zs in Ω such that (xn(zs))n is a shrinking
basis for Mzs, then (x∗n)n is a holomorphic basis sequence on Ω.

Proof. Fix z0 in Ω and let P0 be a continuous projection from E onto Mz0 . For x in
E let

A(z)x = x− P0x+
∞∑
n=1

x∗n(z0)[(P0x)]xn(z).

Then as shown in Proposition 4.1 A is bounded, continuous and invertible on some
neighbourhood V0 of z0. Moreover, we have that A(z)xn(z0) = xn(z) for all n in N.
Let B(z) = (A(z)−1)t for z in V0. It follows from Lemma 4.2 that B is analytic on
V0. Also, if z belongs to V0 then for all n,m in N

〈xn(z), B(z)x∗m(z0)〉 =〈A(z)xn(z0), (A(z)−1)tx∗m(z0)〉
=〈A(z)−1A(z)xn(z0), x∗m(z0)〉
=〈xn(z0), x∗m(z0)〉
=δnm

proving that x∗m(z) = B(z)x∗m(z0). It follows that x∗m is holomorphic on a neigh-
bourhood of z0, and hence on Ω.
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Suppose there is zs in Ω such that (xn(zs))n is a shrinking basis for Mzs , and let Ps
be a continuous projection from E onto Mzs . We have already shown that each of
the biorthogonal functionals x∗n belongs to H(Ω, E ′) and there is a neighbourhood
Vs of zs so that for each z in Vs,

A(z)x = x− Psx+
∞∑
n=1

x∗n(zs)[(Psx)]xn(z)

is bounded and invertible linear operator which maps xn(zs) to xn(z) and hence
Mzs onto Mz. In addition we have that B(z) := (A(z)−1)t maps x∗n(zs) to x∗n(z)
for each z in Vs. Let z belong to Vs and take x∗ in M ′

z. Then B(z)−1x∗ be-
longs to M ′

zs . As (x∗n(zs))n is a basis for M ′
zs , we can find a sequence of complex

numbers (an)n such that B(z)−1x∗ =
∑∞

n=1 anx
∗
n(zs). Applying B(z) we get that

x∗ =
∑∞

n=1 anB(z)x∗n(zs) =
∑∞

n=1 anx
∗
n(z) and thus (x∗n(z))n is a basis for M ′

z. More-
over, for each z in Vs, each sequence of complex numbers (an)n and each N in N we
have that

1

‖B(z)−1‖

∥∥∥∥∥
N∑
n=1

anx
∗
n(zs)

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
n=1

anx
∗
n(z)

∥∥∥∥∥ ≤ ‖B(z)‖

∥∥∥∥∥
N∑
n=1

anx
∗
n(zs)

∥∥∥∥∥
showing that part (2) of Definition 3.1 is satisfied on Vs. We now repeat the above
procedure with each z in Vs to get a neighbourhood Vz of z such that for each w
in Vz we have an invertible continuous linear operator Bz(w) on E ′ which maps M ′

z

onto M ′
w, in the process mapping x∗n(z) to x∗n(w) for each n in N. As in the above

it follows that (x∗n(w))n is a holomorphic basis for Mw with

1

‖Bz(w)−1‖

∥∥∥∥∥
N∑
n=1

anx
∗
n(z)

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
n=1

anx
∗
n(w)

∥∥∥∥∥ ≤ ‖Bz(w)‖

∥∥∥∥∥
N∑
n=1

anx
∗
n(z)

∥∥∥∥∥
for all sequence of complex numbers (an)n and each N in N. Using the same method
as in the proof of Proposition 3.4, we will eventually reach each point of Ω. Moreover,
as the sequence (x∗n(z))n is the dual of the sequence (xn(z)n, it is uniquely determined
and we have that (x∗n)n is a holomorphic basis sequence on Ω. �

As an application of holomorphic bases, we will use them to show the existence
of holomorphic generalized inverses. To remind the reader: if T ∈ L(X, Y ) and
there exists S ∈ L(Y,X) such that TST = T and STS = S, we call S a generalized
inverse for T .

The following definition appears in [7]:

Definition 4.4. Let f ∈ H(Ω,L(X, Y )), where X and Y are Banach spaces and
Ω is an open subset of a Banach space. A mapping g ∈ H(Ω,L(Y,X)) is called a
holomorphic generalized inverse for f if, for all z ∈ Ω, g(z) is a generalized inverse
for f(z).

Also in [7] it is shown that the existence of holomorphic generalized inverse is
equivalent to three other conditions - none of which, unfortunately, is easy to check:

Theorem 4.5. Let Ω be a pseudo-convex open subset of a Banach space with an
unconditional basis and X and Y be Banach spaces. Suppose f ∈ H(Ω,L(X, Y )) has
a generalized inverse for each z ∈ Ω. Then the following conditions are equvalent:

(1) f has a holomorphic generalized inverse on Ω.
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(2) There exist holomorphic projections P ∈ H(Ω,L(X)) onto ker(f(z)) and
Q ∈ H(Ω,L(Y )) onto Im(f(z)).

(3) {z ∈ Ω : (z, ker f(z))} and {z ∈ Ω : (z, Im f(z))} are holomorphic subbun-
dles of Ω×X and Ω× Y respectively.

(4) For every w ∈ Ω there exist a neighbourhood Vw of w and closed subspaces
Xw ⊂ X and Yw ⊂ Y such that for all z ∈ Vw, ker f(z) ⊕ Xw = X and
Im f(z)⊕ Yw = Y are direct sum decompositions.

As a straitforward application of Proposition 4.1 we obtain the following:

Proposition 4.6. Let Ω be a pseudo-convex open subset of a Banach space with a
basis, E and F be Banach spaces. Suppose T ∈ H(Ω,L(E,F )) has a generalized
inverse for each z ∈ Ω. Then if {ker T (z)}z∈Ω and {Im T (z)}z∈Ω have holomorphic
bases, T has a holomorphic generalized inverse.

Note that if P ∈ H(Ω,L(E)) is a projection then 1−P is a holomorphic projection
onto its complement, hence in Proposition 4.6 the condition that {ker T (z)}z∈Ω and
{Im T (z)}z∈Ω have holomorphic bases can be substituted by a condition that their
complements can be chosen so that they form families with holomorphic bases.
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