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On the Cosmological Models with

Matter Creation

Rossen I. Ivanov and Emil M. Prodanov

School of Mathematical Sciences, Technological University Dublin,
City Campus, Kevin Street, Dublin, D08 NF82, Ireland,

E-Mails: rossen.ivanov@tudublin.ie, emil.prodanov@tudublin.ie

Abstract

The matter creation model of Prigogine–Géhéniau–Gunzig–Nardone is re-
visited in terms of a redefined creation pressure which does not lead to
irreversible adiabatic evolution at constant specific entropy. With the
resulting freedom to choose a particular gas process, a flat FRWL cos-
mological model is proposed based on three input characteristics: (i) a
perfect fluid comprising of an ideal gas, (ii) a quasi-adiabatic polytropic
process, and (iii) a particular rate of particle creation. Such model leads
to the description of the late-time acceleration of the expanding Universe
with a natural transition from decelerating to accelerating regime. Only
the Friedmann equations and the laws of thermodynamics are used and
no assumptions of dark energy component is made. The model also allows
the explicit determination as functions of time of all variables, including
the entropy, the non-conserved specific entropy and the time the accel-
erating phase begins. A form of correspondence with the dark energy
models (quintessence, in particular) is established via the Om diagnos-
tics. Parallels with the concordance cosmological ΛCDM model for the
matter-dominated epoch and the present epoch of accelerated expansion
are also established via slight modifications of both models.

Keywords: Thermodynamics of the Universe; FRWL cosmology; matter cre-
ation; ideal gas; polytropic process; dynamical systems; integrability.
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1 Introduction

Cosmological models with adiabatic matter creation were first introduced by
Prigogine et al. [1] through the formulation of the second law of thermodynam-
ics in the framework of general relativity. Lima et al. — see [2] and the references
therein — showed that cosmological models with certain rates Γ of irreversible
particle creation at the expense of gravitational energy are capable of describing
the late-time acceleration of the Universe without the need to introduce dark
energy, that is, such models offer an alternative to the dark energy. Adiabatic
matter creation models are fully dominated by cold dark matter particles with
non-conserved number and the matter creation is assumed to happen in such
way that the specific entropy is constant. However, there are no equations from
which the form of Γ can be determined. The consensus [1, 2, 3, 4, 5, 6] is that
Γ should be considered as an input characteristic in the phenomenological de-
scription.
In this paper the Universe is modelled as a perfect fluid comprising of an ideal
monoatomic gas containing a single type of particles with non-conserved num-
ber. This is the first of three input characteristics of the presented analysis. It
is argued that there is no need at all for adiabaticity. Very importantly, this
also allows the freedom to choose the processes that will undergo in the gas
which models the content of the Universe [a quasi-adiabatic polytropic process
(with negative specific heat) will be chosen] — another input characteristics of
the model. The last input characteristic will be the choice Γ = 3βH, where β =
const > 0 and H = ȧ/a is the Hubble parameter (with a being the scale factor
of the Universe).
As the limitations imposed by the requirement of conserved specific entropy are
now also fully lifted, the cosmological model with matter creation will be stud-
ied in its generality and it will shown that all model variables can be explicitly
determined as functions of time. It will be demonstrated that, for specific ranges
of the model parameters, a natural transition from cosmic deceleration into ac-
celeration occurs and the acceleration redshift will be determined (depending
on the model parameters). Through Om diagnostic [7], the model will be found
to correspond to a quintessence model (even though there is no involvement of
dark energy in the matter creation models). By allowing the model parameter
β to depend on the cosmological epoch, a form of correspondence will be estab-
lished with the concordance ΛCDM model for which Λ will be allowed to vary
as the inverse second power of slow cosmological time: it will be demonstrated
that such models are in agreement for the matter-dominated epoch and also for
the epoch of the late acceleration.

2 The Model of Prigogine–Geheniau–Gunzig–
Nardone

Prigogine et al. showed [1] the equivalence between the energy conservation
equation and the law for adiabatic and isentropic evolution of a homogeneous
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and isotropic Universe, that is, the energy conservation equation, ρ̇ = −3H(ρ+
p), which stems from the covariance (∇µTµν = 0) of the energy-momentum
tensor Tµν = uµuν(ρ + p) − pgµν , was shown to be equivalent to an adiabatic
(δQ = 0) and isentropic (dS = 0) thermodynamical system with evolution
TdS = δQ = dU + pdV = 0. When particles are produced into the system at
the expense of the gravitational field, the entropy can be no longer conserved
since the particle creation enlarges the phase-space. In this case, one needs to in-
troduce a mechanism for entropy production within such framework and the in-
creasing entropy will necessitate a description in terms of irreversible processes:
TdS > δQ = 0, hence only matter creation could be allowed, while the reverse
process must be thermodynamically forbidden. Prigogine et al. showed that, in
order to achieve entropy production, one has to redefine the energy-momentum
tensor Tµν so that a supplementary pressure Π, additional to the true thermo-
dynamical pressure p, is included: Tµν = uµuν(ρ+p+Π)−(p+Π)gµν and hence
dU + (p + Π)dV = 0. Imposing a rather limiting requirement [1] of conserved
specific entropy σ = S/N (that is σ̇ = 0, while Ṡ > 0), an explicit expres-
sion for this additional (“creation”) pressure was determined: Π = −hΓ/(3H),
where h is the enthalpy density (enthalpy per volume, H/V ), Γ = Ṅ/N is the
particle creation rate. In the case of conserved specific entropy, it immediately
follows that Ṡ/S = Ṅ/N = Γ. Prigogine et al. illustrate their model [1] with
Γ = αH2 > 0, where α > 0 and regime of contraction (H < 0) being also allowed
(hence the square in H). By choosing Γ = 3γH0 + 3βH with 0 ≤ {γ, β} ≤ 1,
Lima et al. [2] ensured that there is a natural transition from cosmic decelera-
tion into acceleration. Other authors [3, 4, 5, 6] make different choices for Γ.
The form of the pressure term Π obtained in [1] can also be determined from
the following considerations. The Gibbs equation for a system with a varying
number of particles, TdS = dU + pdV − µdN , can be re-written as TNdσ =
dU+pdV −µdV −TσdN = dU+pdV −χdN = dU+(p+Π)dV , where χ = µ+σT
is the specific enthalpy (enthalpy per particle, H/N) and Π = −χdN/dV with
the interpretation of the expression dN/dV as Ṅ/V̇ = nΓ/(3H). Owing to
the fact that the specific enthalpy χ is related to the enthalpy density h via
χ = h/n, one immediately obtains the above Π = −hΓ/(3H). Given that the
Gibbs law becomes TNdσ = dU + (p + Π)dV and given that one must have
dU + (p+ Π)dV = 0 due to the energy conservation equation, it is obvious why
conservation of the specific entropy is required.

3 The Model with Non-conserved Specific En-
tropy

The first input characteristic for the proposed model is the consideration of the
Universe as a perfect fluid comprising of an ideal monoatomic gas with three
degrees of freedom. As usual, the Universe is studied in terms of a simple
thermodynamical system [8] with its volume V as the single external parameter
and pressure p as the single generalized force associated with the single external
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parameter V . Only one type of particles with non-conserved number N will
be considered. The analysis will be done in terms of the thermodynamical
variables n (the number density, n = N/V ) and T (the temperature). Units
c = 8πG = kB = h̄ = ε0 = 1 will be used throughout.
The thermic equation of state for the ideal gas is:

p = nT. (1)

The mean kinetic energy of a gas particle with typical rest mass m0 is (3/2)T .
If one has N = nV such particles, then the internal energy of the thermody-
namical system will be U = [m0 + (3/2)T ]nV and, as U = ρ/V on the other
hand, the relationship between the energy density, the number density, and the
temperature is given by the caloric equation of state U = U(V, T ) or

ρ = n

(
m0 +

3

2
T

)
. (2)

The Gibbs equation for the thermodynamical system is:

TdS = dU + pdV − µdN, (3)

where µ is the chemical potential.
Adiabaticity (δQ = dU + pdV − µdN = 0) will not be forced upon the model.
The Gibbs equation can also be written as:

dU +

(
p− µdN

dV
− T dS

dV

)
dV = 0. (4)

Only time variation of the quantities will considered, thus, dN/dV is interpreted
as Ṅ/V̇ , while dS/dV — as Ṡ/V̇ .
Form this form of the Gibbs equation, one can identify the term −µdN/dV −
TdS/dV as pressure P , additional to the existing thermodynamical pressure p.
The additional pressure P = −µdN/dV −TdS/dV is due to the fact that neither
the number of particles is conserved, nor the entropy is conserved. Thermody-
namically, one can view the above relationship as one describing an effective
adiabatic thermodynamical system with fixed number of particles, but with an
additional pressure term: dU+(p+P )dV = 0. The extra pressure term P could
be referred to as “creation–entropy pressure” and is due to the introduction of
particles to the system by some mechanism and, through this, it is also due to
the increase in the total entropy S as the phase space enlarges.
As the enthalpy of the system is H = U + pV = µN + TS, in terms of the
energy density ρ = U/V ; particle number density n = N/V ; specific entropy
σ = S/N ; enthalpy density h = (U + pV )/V = ρ + p; and specific enthalpy
χ = (µN + TS)/N = µ+ Tσ = h/n, the Gibbs equation can be written as:

Tdσ = pd

(
1

n

)
+ d
( ρ
n

)
=

1

n
(dρ− χdn). (5)

4



One then has

P = −µ dN
dV
− T dS

dV
= −χ dN

dV
− TN dσ

dV
= −χ Ṅ

V̇
− TN σ̇

V̇
. (6)

Consider next a Friedmann–Robertson–Walker–Lemâıtre (FRWL) metric with
flat spatial three-sections:

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θ dφ2)], (7)

where a(t) is the scale factor of the Universe.
The matter energy-momentum tensor Tµν , in the presence of an additional pres-
sure term P of some origin, is given by:

Tµν = (ρ+ p+ P )uµ uν − (p+ P ) gµν , (8)

where uµ is the flow vector satisfying gµνu
µuν = 1.

The Friedmann equations for the perfect fluid are:

ȧ2 =
1

3
ρ a2, (9)

ä = − 1

6
[ρ + 3 (p + P )] a (10)

or, in terms of the Hubble parameter H = ȧ/a:

H2 =
1

3
ρ, (11)

Ḣ = −1

2
(ρ+ p+ P ). (12)

Energy conservation means vanishing of the covariant divergence of the energy-
momentum tensor: ∇µTµν = 0. This leads to:

ρ̇ = −3H(ρ+ p+ P ). (13)

Replacing H by ȧ/a and multiplying across by a3 yields (d/dt)(ρa3) + (p +
P )(d/dt)a3 = 0 or dU + (p + P )dV = 0 — exactly as (4), if one identifies
the pressure P in (8) with the creation–entropy pressure (6). In other words,
the reason for absorbing the entropy and particle creation terms from (3) into
the new pressure term P is to match the second law of thermodynamics (3)
with dU + (p+P )dV = 0, which follows from the energy conservation equation
ρ̇ = −3H(ρ + p + P ). Thus, the energy conservation equation is equivalent to
the second law of thermodynamics for an effective thermodynamical adiabatic
and isentropic system exhibiting an additional pressure term P .
The continuity equation for the particles of the fluid is Nµ

;µ = Ψ, where Nµ =
nuµ is the particle flow vector and Ψ = nΓ is the particle production rate. Thus

ṅ = −3nH + Ψ = −3nH + nΓ. (14)
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Given that V = a3, one has dσ/dV = σ̇/(3HV ). Separately, dN/dV =
d(nV )/dV = n+ ṅ/(3H) = Ψ/(3H). Hence:

P = − 1

3H
(χΨ + nT σ̇). (15)

The Gibbs equation in the form (5) gives

σ̇ =
1

Tn
(ρ̇− χ ṅ) = − 1

Tn
(3HP + nχΓ). (16)

Prigogine et al. [1] consider processes of particle creation which render the
specific entropy constant (i.e. σ̇ = 0). In such case, the creation pressure
P will simply be equal to the Prigogine–Geheniau–Gunzig–Nardone creation
pressure Π which corresponds to adiabatic particle production — conserved
specific entropy, but not conserved full entropy S (in the case of σ̇ = 0, one has
Ṡ = SṄ/N). This pressure is given by:

Π = −χΨ

3H
= −ρ+ p

n

Ψ

3H
= −(ρ+ p)

Γ

3H
(17)

and thus

P = Π− nT

3H
σ̇. (18)

In thermodynamical variables n and T one has:

ρ̇(n, T ) =

(
∂ρ

∂n

)
T

ṅ+

(
∂ρ

∂T

)
n

Ṫ . (19)

Substituting the energy conservation equation (13) and the particle conservation
equation (14), using the thermodynamic identity

h = ρ+ p = T

(
∂p

∂T

)
n

+ n

(
∂ρ

∂n

)
T

(20)

and also (18), leads to the following temperature evolution law:

Ṫ

T
=

(
∂p

∂ρ

)
n

ṅ

n
+

nσ̇(
∂ρ
∂T

)
n

. (21)

In the absence of particle creation and with conserved specific entropy, this
reduces to Ṫ /T = −3H(∂p/∂ρ)n.
The entropy of the system will depend on the type of gas used for the model
of the Universe, on the type of the process involved, and also on the particle
creation rate Γ. All these are input characteristics of the model as they cannot
be determined from any equations. Amongst the so far presented equations (or,
in other words, the laws of thermodynamics and general relativity), there is not
one from which one can determine the entropy.

6



Calvão, Lima, and Waga [3] introduce, through an ansatz, the following form
of the creation pressure:

P = −α Ψ

3H
(22)

where α is positive.
This is nothing else but an additional constraint on P , since P was already
determined when the second law of thermodynamics was cast into the form
dU+(p+P )dV = 0 which, in turn, stems from the energy conservation equation
(13). Equating P from this ansatz to P determined in (15), gives:

σ̇ =
Γ

T
(α− χ). (23)

This relationship is also obtained in [3] and it is obvious that when α = χ = (ρ+
p)/n, then the creation pressure is equal to the Prigogine–Geheniau–Gunzig–
Nardone creation pressure Π, the specific entropy is conserved, and the adiabatic
picture of Prigogine et al. [1] applies.
However, in the case of entropy production, α in (22) remains undetermined and
the resulting equation (23) leaves the entropy production in turn undetermined.
To determine the produced entropy, as already mentioned, one needs to commit
to a particular type of gas for the model of the Universe, a particular process,
and a particular particle creation rate.
Since (∂p/∂ρ)n = (∂p/∂T )n/(∂ρ/∂T )n, for an ideal gas the temperature law
(21) becomes

Ṫ

T
=

2

3

(
ṅ

n
+ σ̇

)
. (24)

This integrates to give

T = τ n
2
3 e

2σ
3 or σ =

3

2
ln

(
T

τ
n−

2
3

)
, (25)

where τ is an integration constant (temperature scale). To determine τ , consider
the following. If a particle has g internal degrees of freedom, then the density
of states in the phase space is given by g(2π)−3f(p), where the distribution
function

f(p) =
[
e
E(p)−µ

T ± 1
]−1

. (26)

for a system of particles in equilibrium is given by the Fermi-Dirac distribution
functions for fermions (positive sign) or the Bose-Einstein distribution function
for bosons (negative sign). Here µ = χ − σT is the chemical potential and
E(p) =

√
m2

0 + p2 = m0 + p2/2m0 is the energy of a particle of rest mass m0

and momentum p.
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The particle number density n is obtained after integrating g(2π)−3f(p) over
the momentum

n =
g

(2π)3

∫
d3p f(p) = g

(
m0T

2π

)3
2

e−
m0−µ
T

=

(
m0g

2
3

2π

)3
2

T
3
2 e−

m0−χ
T e−σ =

(
m0g

2
3 e

5
3

2π

)3
2

T
3
2 e−σ.

(27)

since (χ−m0)/T = [(ρ+ p)/n−m0]/T = 5/2.
Thus

σ =
3

2
ln

(
m0g

2
3 e

5
3

2π
Tn−

2
3

)
(28)

and hence

τ =
2π

m0g
2
3 e

5
3

(29)

— see also equation (46.1a) in [9].
Two further equations are needed in order to determine how the two independent
thermodynamical variables n and T depend on time and from this — how all
other variables of the model depend on time. One of these equations is already
available — this is the particle conservation equation, ṅ/n = −3H+Γ. To avail
of this equation, a specific choice of the particle creation rate Γ has to be made.
Following [2, 3, 4, 5], the particle creation rate will be taken as Γ = 3βH with
β > 0 and H > 0 (in view of the current state of the Universe, only regime
of expansion will be considered: H = ȧ/a > 0) and this is the second input
characteristic of the model. Note that, because of Ṅ/N = Γ, the positivity of
Γ leads to Ṅ > 0, i.e. only a particle creation process is considered. But this is
not the only possibility — see [4, 5, 6].
To derive the needed equation for the evolution of the temperature, a third (and
final) input characteristic is needed — the type of process which the ideal gas
undergoes. With the freedom to chose, a polytropic process TdS = δQ = NcdT ,
where c = const is the specific heat of the expanding Universe. To ensure
increasing entropy in the regime of decreasing temperature, one must have c < 0.
Such polytropes are called quasi-adiabatic processes [10].
Polytropes have very wide applications in astrophysics and the related fields —
see the extensive monograph [11]. Polytropic gas models of dark energy provide
alternative explanation of the accelerated expansion of the Universe — see the
review [10] and the references therein. These models follow the steps of the
Cardassian expansion cosmological models [12] for which the right-hand side
of the Friedmann equation H2 = (1/3)ρ is modified to involve an additional,
polytropic, term: H2 = (1/3)ρ+Bρn, where B is some constant and n < 2/3 in
order to achieve accelerated expansion. The authors of these models also allow a
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more general function f(ρ) to be added to the modified Friedmann equation and
this is referred to as generalized Cardassian model. The Cardassian models fit
with both quintessence and phantom cosmology. A phenomenological model in
which the pressure density of (phantom) dark energy is given by the generalized
p = −ρ − f(ρ) was further investigated by [13] in the context of the study of
future singularities; see [14] for the study of the future singularities in the case of
f(ρ) = Bρn and see also [15] and the references therein for further developments,
including interacting dark energy.
For the polytropic process TdS = δQ = NcdT (with c < 0), the first law of
thermodynamics, NcdT = dU + pdV − µdN , becomes:

(c− 3

2
)
dT

T
=
dV

V
+

(
3

2
+
m0 − µ
T

)
dN

N
. (30)

In the regime of low particle number densities n, one has ρ ≈ m0n. Thus,

p = nT ≈ (τ∗/m
5/3
0 )ρ5/3 > 0. This corresponds to a polytropic process in a

monoatomic ideal gas with three degrees of freedom: p = (const)ρ(α+1)/α with
α = 3/2, giving a polytropic index of 5/3, equal to the heat capacity ratio of
the gas.
Given that σ = (χ−µ)/T = [m0 + (5/2)T −µ]/T and also using (dN)/N = Γdt
and (dV )/V = (da3)/a3 = 3Hdt gives:(

c− 3

2

)
Ṫ

T
= 3H − Γ + Γσ. (31)

This equation and the particle conservation equation

ṅ

n
= −3H + Γ (32)

form a two-dimensional autonomous dynamical system for the two thermody-
namical variables n(t) and T (t).
Substituting ρ from the caloric equation of state (2) into the Friedmann equation
H = +

√
ρ/3 > 0 yields H = +(

√
3/3)

√
m0n+ (3/2)nT > 0 and the dynamical

system in the case of Γ = 3βH can be written as:

Ṫ

T
=

√
3

c− 3
2

√
nm0 +

3

2
nT

[
1− β +

3

2
β ln

(
T

τ
n−

2
3

)]
, (33)

ṅ

n
=
√

3 (β − 1)

√
nm0 +

3

2
nT . (34)

This dynamical system is integrable. To see this, introduce variables x = lnn
and y = lnT and divide the two equations to get:

dy

dx
=

1

κ
(1− β + βσ) =

1

κ

(
α+

3

2
βy − βx

)
, (35)

where κ = (c − 3/2)(β − 1) and α = 1 − β − (3/2)β ln τ . The solution of this
equation is

ln

(
T

τ
n−

2
3

)
= Dn

3β
2κ +

4c(β − 1)

9β
, (36)
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where D is an integration constant. The value of D, depends on the prescribed
initial conditions T0 = T (n0).
In view of (25):

σ =
3

2
Dn

3β
2κ +

2c(β − 1)

3β
. (37)

If the integration constant D is zero, then the specific entropy is constant.
Thus D = 0 corresponds to adiabatic particle creation. For a positive specific
entropy, one must have D > 0 [the constant 2c(β − 1)/(3β) will turn out to be
also positive].
The temperature T as function n is therefore given by

T (n) = τ∗ n
2
3 eDn

3β
2κ , (38)

where τ∗ = τ exp[4c(β − 1)/(9β)] = const.
Substituting this temperature law into equation (34) yields:

ṅ =
√

3 (β − 1)n
3
2

√
m0 +

3

2
τ∗ n

2
3 eDn

3β
2κ . (39)

In view of the transcendental character of this equation, the complete evolution
of n(t) cannot be given explicitly in terms of elementary functions. Proper
phase-plane analysis, for example in the n–H plane, would reveal qualitatively
all features of the bahaviour of the system.
Physically, it makes sense to have T → 0 when n→ 0. Thus, given that β > 0,
one has to have κ > 0, which, in turn, leads to 0 < β < 1 since c < 0. Having
0 < β < 1 also avoids a model in which, owing to (34), n increases with time
(and, together with it, T ), i.e. the parameter β in the particle creation term
Γ = 3βH is restricted.
Equipped with T (n) from (38), equation (34) becomes an equation for n(t) in
separate variables and can be integrated (albeit not analytically). In view of
this, it is best to study the dynamical system (33)–(34) numerically in order to
determine T (t) and n(t).
For small n, the dynamical equation (34) in leading order is:

ṅ ≈
√

3m0(β − 1)n
3
2 . (40)

After integration one gets:

n(t) =
1[√

1
n0
−
√
3m0

2 (β − 1)(t− t0)
]2 , (41)

where n0 = n(t0).
As time increases (t→∞), the number density behaves so that√

n(t) ≈ 2√
3m0 |β − 1| t

. (42)
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Thus

ȧ

a
=

d

dt
ln a = H ≈

√
m0

3

√
n ≈ 2

3 |β − 1| t
. (43)

For the scale factor one gets:

a(t) = a0 t
2

3 |β−1| . (44)

The evolution of the scale factor a(t) in the general case can be obtained after
integration of

ȧ

a
=

√
3

3

√
m0n +

3

2
τ∗ n

5
3 eDn

3β
2κ , (45)

where n = n(t) is the solution of (39).
When there is no particle creation (i.e. β = 0), the time-dependence of the
scale factor is the well known a(t) ∼ t2/3. Accelerated expansion (ȧ > 0 and
ä > 0) is achieved for 1/3 < β < 1. Smaller values of β (between 0 and
1/3) correspond to particle creation that does not generate enough particles
to trigger acceleration of the expansion. In summary, as the particle creation
rate is proportional to H (with H ∼ 1/t), for 0 < Γ < H, the Universe is
expanding, without acceleration, towards n→ 0, T → 0. With a higher particle
creation rate, namely for H < Γ < 3H, the expansion is accelerating — towards
n→ 0, T → 0 again. Finally, for Γ > 3H (corresponding to β > 1), the particle
creation rate is so high that n increases with time.
Due to (37), one has:

σ̇ =
9β

4κ
Dn

3β
2κ−1 ṅ =

27Dβ(β − 1)

4κ
H n

3β
2κ < 0 (46)

in view of β < 1, i.e. the specific entropy σ = S/N decreases with time. This is
not a contradiction to the second law of thermodynamics, it simply means that
N grows faster than S. The full entropy S increases with time as can be easily
seen: one has Ṡ = (d/dt)(σa3n) = N(σ̇ + Γσ) and thus

Ṡ =
3NH

2

[
3βD

κ
(c− 1)(β − 1)n

3β
2κ +

4

3
c(β − 1)

]
(47)

which is positive.

4 Accelerated Expansion and the Acceleration
Redshift

The accelerated expansion is not an ever-present feature of the model. To
understand when (at what redshift) the acceleration becomes positive, consider

11



the Friedmann equation (10) and note that ρ+ 3(p+P ) < 0 is needed for ä > 0
(acceleration of the expansion).

− 6
ä

a
=ρ+ 3(p+ P ) = ρ+ 3

(
p+ Π− nT

3H
σ̇

)
= ρ+ 3

[
p− β(ρ+ p)− nT

3H
σ̇

]
,

(48)

as, in view of (17), Π = −(ρ+ p)Γ/(3H) = −β(ρ+ p) since Γ = 3βH. Further,

in light of (46), one has σ̇ = 27Dβ(β − 1)/(4κ) H n
3β
2κ . Using equation (2) for

the relationship between ρ and n and the equation of state (1) yields:

− 6
ä

a
= (1− 3β) (m0n+

3

2
nT ) + 3(1− β)nT − 9Dβ(β − 1)

4κ
T n

3β
2κ+1. (49)

Substituting the temperature law (38), one finally gets the acceleration in terms
of n only:

− 6
ä

a
= (1− 3β)m0n−

τ∗

2
(15β − 9)n

5
3 eDn

3β
2κ +

9τ∗Dβ(1− β)

4κ
n

3β
2κ+

5
3 eDn

3β
2κ .

(50)

Thus, there is some value of n, say nc, which depends on all model parameters,
nc = nc(m0, D, ε, c), and for which the expression in the brackets changes sign
(the last two terms increase monotonically with n). Therefore, the transition
from decelerated to accelerated behaviour occurs when n drops to nc. Although
the form of nc is not available explicitly in terms of elementary functions, it is
clear that such value exists for small n.
As already seen, values of β greater than 1/3 lead to power law accelerated
expansion and there is no acceleration if 0 < β ≤ 1/3. Also, β must be smaller
than 1 so that T → 0 when n → 0. To investigate the critical value βc = 1/3,
consider β = 1/3 + ε, where 0 < ε� 1. Then (49) becomes:

− 6
ä

a
= nT (n)

(
−3m0ε

T (n)
+ 2 +

D

2κ
n

1
2κ

)
with T (n) = τ∗ n

2
3 eDn

1
2κ .

(51)

Note that κ = 1− 2c/3 when β = 1/3 + ε.
For values of β well above βc (but still β < 1), accelerated expansion is always
present within this non-relativistic model.
To express the model quantities as functions of the redshift z, instead of time
t, introduce the cosmological redshift z for a flat FRWL space-time via

1 + z =
a0
a
. (52)

Thus, dz = −(a0ȧ/a
2)dt = −(1 + z)Hdt. One immediately gets:

dH

dt
=

dH

dz

dz

dt
= −(1 + z)H

dH

dz
= −1

2
(1 + z)

dH2

dz
, (53)

dn

dt
=

dn

dz

dz

dt
= −(1 + z)H

dn

dz
. (54)
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Using the particle conservation equation ṅ = 3(β− 1)H on the left-hand side of
the latter yields:

dn

dz
= −3(β − 1)

1 + z
. (55)

This integrates easily to give

n(z) = n0(1 + z)3(1−β). (56)

The deceleration parameter q, given by:

q = −aä
ȧ2

= − ä

aH2
, (57)

with the help of (51), i.e. for small n and β = 1/3 + ε, can be written as

q =
nT (n)

6H2

[
2− 3m0ε

T (n)
+
D

2κ
n

1
2κ

]
. (58)

For small n, one has T (n) ≈ τ∗n2/3. In terms of the redshift z, one immediately

gets T (z) ≈ τ∗n
2/3
0 [(1 + z)3(1−β)]2/3. When β = 1/3 + ε, one further gets

T (z) ≈ τ∗n2/30 (1 + z)4/3.
Introduce, for simplicity, the scaled deceleration parameter q̃(z) given by q̃(z) =
6H2(z)n−1(z)T−1(z)q(z). The zeros of q̃(z) and q(z) coincide. Then, for q̃(z)
one has:

q̃(z) = 2− k

(1 + z)
4
3

+ small terms, (59)

where k = (3m0ε)/(τ
∗n

2/3
0 ) = const.

Figure 1: The scaled deceleration parameter q̃ = (6H2)/ (nT ) q (plotted with k = 4 which
yields acceleration redshift za = 0.68).

Clearly, the graph of q̃(z) intercepts the ordinate at 2−k, while the acceleration

redshift is za = (k/2)3/4 − 1 = [(3m0ε)/(2τ
∗n

2/3
0 )]3/4 − 1 — see Figure 1. The
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parameters m0, ε, τ
∗, and n0 could be chosen in such way that q̃(z) > 0 for all

z, namely, for q̃(z) > 0 for all z, one needs k = (3m0ε)/(τ
∗n

2/3
0 ) < 2.

To relate to the experimental limits 0.4 ≤ za ≤ 0.8 [7], the parameters m0, ε, τ
∗,

and n0 should be such that 1.4 ≤ [(3m0ε)/(2τ
∗n

2/3
0 )]3/4 ≤ 1.8. This puts limits

on k and hence one can find the limits on ε = (k τ∗n
2/3
0 )/(3m0).

The functional dependence of the scaled deceleration parameter q̃ on the redshift
z is in agreement with the one emerging from q̄ diagnostic of Union supernovae
data, reported in [7] — compare Figure 1 to Figure 7 in [7].

5 Link to Dark Energy Models

Dark energy models are based on a component with equation of state p = ωρ
and the Friedmann equation in these models, namely ä/a = −(1/6)(ρ + 3p) =
−(1/6)(1 + 3ω)ρ, dictates that for cosmic acceleration (ä > 0), one has to have
ω < −1/3 and thus, negative pressure. This also results in the violation of the
strong energy condition: ρ+ p ≥ 0 and ρ+ 3p ≥ 0. When ω = −1, the resulting
model is the standard (concordance) cosmological model ΛCDM. Models with
−1 < ω < −1/3 are called quintessence models, while those with ω < −1
are called phantom cosmological models. The latter violate all four energy
conditions. Recently in [7], a diagnostic test calledOm has been proposed, which
is constructed from the Hubble parameter H = ȧ/a with the latter determined
directly from observational data. This diagnostic provides a null test of the
ΛCDM hypothesis and allows for the differentiation between various dark energy
models [7]. If the Om diagnostics, as a function of the redshift z, that is Om(z),
is constant (equal to the value of the matter density Ω0m) for all z, then the
model in question is the concordance ΛCDM model (ω = −1). For dark energy
models with dynamical equation of state, a positive slope of Om(z) suggests
a phantom cosmological model (ω < −1), while a negative slope corresponds
to a quintessence model (−1 < ω < −1/3) [7]. The Om diagnostics provides
such distinction between various dark energy models both with and without
reference to the value of the matter density Ω0m, thus having the ability to avoid
a potential source of significant uncertainty in the cosmological reconstruction
[7].
The Om diagnostic is introduced in the following manner [7]:

Om(x) =
h2(x)− 1

x3 − 1
, (60)

where x = 1 + z and h(x) = H(x)/H0.
For the ΛCDM model [ω(z) = const] one has [7]:

h2(x) = Ω0mx
3 + (1− Ω0m)xα with α = 3(1 + ω). (61)

Thus [7]:

Om(x) = Ω0m + (1− Ω0m)
xα − 1

x3 − 1
. (62)
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If the dark energy is modelled by the cosmological constant [ω(z) = const = −1],
i.e. for the ΛCDM model, one has α = 0 and hence Om(x) = Ω0m.
Dynamical dark energy models [having ω = ω(z)], as opposed to the standard
cosmological ΛCDM model, can also explain the observational data with which
the ΛCDM model is in excellent agreement — see [7] and the references therein.
The following parametric ansatz for ω(z) is made [7, 16]:

ω(z) = ω0 + ω1
z

1 + z
. (63)

Then, if Om(x) > Ω0m, then the model describes quintessence (α > 0), while if
Om(x) < Ω0m, one has a phantom cosmological model (α < 0), [7]. The graph
of the former has a negative slope, while that of the latter has a positive slope
— see the figures in [7].
The cosmological models with particle creation do not describe dark energy:
such models are alternative to the dark energy models. In order to establish a
form of correspondence between the proposed model with particle creation and
the dark energy models, Om diagnostics will be applied to the particle creation
model. One has

Om(x) =

[
H(n)
H0(n0)

]2
− 1

x3 − 1
=

m0n+
3
2nT (n)

m0n0+
3
2n0T (n0)

− 1

x3 − 1
. (64)

To study the Om diagnostic for values in the leading order of the particle number
density n (namely, disregarding the contributions of the non-conserved specific
entropy σ), expand the temperature evolution law (38):

T (n) = τ∗ n
2
3 eDn

3β
2κ = τ∗n

2
3 + . . . (65)

and substitute in the above to get

Om(x) =

n
n0

(
1 + 3τ∗

2m0
n

2
3

)(
1 + 3τ∗

2m0
n

2
3
0

)−1
− 1

x3 − 1
=

n
n0

[
1 + ξ

[(
n
n0

) 2
3− 1

]]
− 1

x3 − 1
,

(66)

where ξ = (3τ∗n
2/3
0 )/(2m0) = const.

Given that n/n0 = x3(1−β), the application of the Om diagnostic for values of
the parameter β near the critical value βc = 1/3, i.e. β = 1/3+ε with 0 < ε� 1,
gives

Om(x) =
x+ 1

x2 + x+ 1
+ ξ

x2
(
x

1
3 + 1

) (
x

2
3 + 1

)
(
x

2
3 + x

1
3 + 1

)
(x2 + x+ 1)

. (67)

In the numerator of ξ one has T0 in the leading order of n0 and within the
range of validity of the model, T/m0 � 1 for all T , including T0. Therefore
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ξ ≈ 10−9 or less for the present epoch as, more precisely, the characteristic
particles of the model are of rest mass of about 0.5 MeV or more, that is, 109

K or more. Even the highest possible redshift cannot compensate the smallness
of the second term in (67) and for that reason this term should be neglected.
Thus

Om(x) =
x+ 1

x2 + x+ 1
. (68)

With the increase of x, this function tends monotonically from 1 (at x = 0)
to zero. As the slope is always negative, the particle creation model bears the
hallmarks of a quintessence model.

6 Correspondence with the ΛCDM model

As the model is applicable to the matter-domination epoch and the present
epoch of accelerated expansion, to establish a relation to the concordance ΛCDM
cosmological model for these two stages of the cosmological evolution, assume
that the parameter β could vary from one epoch to another. This is, in fact,
a modification of the particle creation model making it differ from what was
associated with quintessence through theOm diagnostics in the previous section.
The matter-domination laws correspond to β = βmd � 1, which, using (44),
leads to a(t) ∼ t2/3.
For the present epoch of accelerated expansion, observational data is fitted by

the ΛCDM model1 with a(t) = a0 exp
(√

Λ/3t
)

, where Λ is the cosmological

constant. Thus, H = ȧ/a =
√

Λ/3. To draw a parallel to the presented
model, the substitution of the latter into the dynamical equation ṅ/n = −3(1−
βpe)H yields ṅ/n = −3(1 − βpe)

√
Λ/3. On the other hand, from (34), for low

temperatures, one has ṅ/n = −
√

3(1 − βpe)
√
m0n. Comparison of these two

gives Λ ≈ m0n. Using equation (41), one gets

Λ ≈ m0 n
∗
0[

1 +

√
3m0n∗0
2 (1− βpe) (t− t∗0)

]2 , (69)

where m0n
∗
0 ≈ Λ(t∗0) is the energy density in the early stages (t∗0) of the present

epoch of accelerated expansion. The time-dependence in the above would be
very weak provided that βpe = 1−ε̃ with 0 < ε̃� 1. In this way, Λ would depend
on the “slow” time ts = ε̃(t− t∗0) and would be a constant in the limit of ε̃→ 0.
Dependence of Λ on time is not a new has been widely discussed. Weinberg
argues [18] that if the cosmological constant is small now, it was not necessarily
always small. Dirac’s large number hypothesis [19] leads to a cosmology where
Λ varies very slowly with cosmological time. Dirac argues that H ∼ t−1. Lima
and Carvalho [20] propose Λ ∼ H2, thus Λ ∼ t−2 — in agreement with the
above.

1Recently, some tension has been reported between different high redshift observations and
the ΛCDM model — see [17].
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7 Conclusions

The aim of this paper is to prove the concept that the specific entropy σ in cos-
mological models with matter creation does not need to be constant. This new
feature is studied in the presented model, together with the viable cosmological
consequences it leads to. On one hand, the significant physical restriction pre-
sented by the requirement σ = const has been lifted. On the other hand, new
horizons are revealed, in particular, it is exactly the non-conservation of the spe-
cific entropy that allows one to uncover the possible transition from decelerated
phase to the current accelerated phase for certain values of the model parame-
ters, that is, models with β close to the critical value 1/3 have the remarkable
property that the transition from deceleration to accelerated expansion (hence
between cosmological epochs) happens naturally with the decreasing of the par-
ticle number density n (or the temperature T ).
The presented analysis is in line with the existing particle creation models with
conserved specific entropy, whose results can be reproduced by setting D = 0;
with the cosmological models without particle creation (reproduced by setting
β = 0); and with the models with adiabatic non-accelerated expansion of the
Universe (by taking c = 0).
The Om diagnostic allows the association of the model with a quintessence
model. Additionally, the presented model with β allowed to vary with the epoch
qualitatively matches the behavior of the scale factor a(t) from the standard cos-
mological model for the matter domination epoch [for early times: a(t) ∼ t2/3]
and for the epoch of the late acceleration [for late times: a(t) ∼ et/tΛ ]. This
analogous ΛCDM model has cosmological constant varying with a very slow
cosmological time.
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[1] J. Géhéniau and I. Prigogine, Found. Phys. 16(5), 437 (1986);
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