
The ITB Journal The ITB Journal 

Volume 6 Issue 2 Article 5 

2005 

Analysis of Response of Flexible Pavements Using Finite Element Analysis of Response of Flexible Pavements Using Finite Element 

Method Method 

R.M. Mulungye 

P.M.O Owende 

K. Mellon 

Follow this and additional works at: https://arrow.tudublin.ie/itbj 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Mulungye, R.M.; Owende, P.M.O; and Mellon, K. (2005) "Analysis of Response of Flexible Pavements Using 
Finite Element Method," The ITB Journal: Vol. 6: Iss. 2, Article 5. 
doi:10.21427/D71T8T 
Available at: https://arrow.tudublin.ie/itbj/vol6/iss2/5 

This Article is brought to you for free and open access by 
the Journals Published Through Arrow at ARROW@TU 
Dublin. It has been accepted for inclusion in The ITB 
Journal by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301312448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol6
https://arrow.tudublin.ie/itbj/vol6/iss2
https://arrow.tudublin.ie/itbj/vol6/iss2/5
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol6%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol6%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol6/iss2/5?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol6%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


ITB Journal 

Issue Number 12, December 2005                                                                                                                        Page 40 

 

ANALYSIS OF RESPONSE OF FLEXIBLE PAVEMENTS USING 
FINITE ELEMENT METHOD 

Mulungye, R.M*, P.M.O Owende, K. Mellon 
School of informatics and Engineering, Institute of Technology 

Blanchardstown, Blanchardstown Road North, Dublin 15, Ireland. 
 

Abstract 
The characteristic response of flexible pavements under traffic load depict a delayed lateral 
strain relaxation (Viscoelasticity), a phenomenon that may be more accurately and 
expeditiously analysed using finite element (FE) viscoelastic response models. In this study a 
flexible pavement was modelled using ANSYS/ED finite element software suite. The pavement 
model was subjected to cyclic loading that simulated three levels of truck loads on 10R20 
tyres at four tyre inflation pressures (viz. 350,490,630 and 770 kPa). The modelled results 
were in good agreement with the measured in-situ full-scale test data. Therefore, for known 
pavement material characteristics and tyre-pavement contact regime, finite element 
method could be used to efficiently estimate the fatigue life of flexible pavement with thin 
bituminous surfacing layers. 
 

* Corresponding author. Tel: +353- 1- 8851194; Fax: +353-1-8851001 
Email address: rachel.mulungye@itb.ie 
 

Introduction 
Characteristic response of in-situ bituminous pavement layers, due to vehicular loading has 

been extensively studied (Huhtala et al., 1990, Hartman, 2000, Owende et al., 2001). The 

results depict a delayed lateral strain relaxation (viscoelasticity) which varies with lateral 

position of wheel loads on a pavement (Fig. 1), and truck operational parameters such as tyre 

inflation pressure and axle load.  For trucks with multiple axles, such viscoelastic paving 

material behaviour may lead to accumulation of strain (Huhtala et al., 1989) and therefore 

accelerated pavement distress, i.e., defects on the pavement surface (fatigue cracking and 

potholes) or substratum (rutting/heaving), which may limit their serviceability (Martin et al., 

2000) and eventually causing failure. 
 
Pavement failure is determined by criteria based on longitudinal rutting or fatigue cracking in 

the wheel tracks (Cebon, 2000). However, large elastic deflections on thin pavements with 

weak foundations cause fatigue failure (cracking) that undermine the substructure before 

appreciable rutting has occurred; hence, fatigue cracking is the limiting criterion. Structural 

performance of a flexible pavement is therefore primarily affected by factors that influence 

the critical tensile strain at the bottom of the surfacing layer (Ullitdz, 1987). For any given 

pavement attributes, the axle load, axle configuration, suspension type, and tyre inflation 

pressure will all affect the magnitude and distribution of stresses, strains, and displacements 

in its structure (Owende et al., 2001). 
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The objective of this study was therefore to model pavement response due to the transient 

traffic loads and the time dependency of material properties, considering the viscoelastic 

characteristics of bituminous materials. In order to verify the efficiency of the model, the 

predicted response was to be compared to accurately measured in-situ response data for such 

a pavement. 

 
Fig. 1. Illustration of pavement response output of longitudinal and lateral strains, and stress on 
the subgrade corresponding to three lateral positions on a wheel track. The magnitudes 
correspond to single front wheel, dual middle wheel, and dual rear wheel loads of 31.7, 44.6, and 
44.1 kN, respectively, and tyre inflation pressure of 630 kPa (Owende et al., 2001) 
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Materials and Methods 

Pavement model and loading conditions 

The pavement model considered in this study consisted of 50 mm of asphalt layer of Dense 

Basecourse Macadam (DBM), 200 mm of crushed rock base, and 400 mm of sandy gravel 

subbase overlaid on a subgrade of peat. Illustration in Fig. 2 depicts the cross-section of the 

experimental road from which the model verification data was derived. Owende et al., 2001 

details the experimental conditions and precautions that were implemented to assure integrity 

of the in-situ experimental data used in the verification of the finite element model in this 

study. 

 
Fig. 2. Schematic of pavement model, positioning of wheel loads and location of sensors including, 
Strain Transducers (S1, S2, S3), Pressure Cells (P1, P2, P3 and P4), and Moisture Sensors (MS); 
axle spacing and track width of experimental truck are superimposed (Owende et al., 2001). 

 

Pavement material properties and the finite element model 

The elastic material properties of the modelled pavement layers are provided in Table 1. 

Viscoelasticity was also considered, and the response was compared to the corresponding 

response of linear elastic pavement material.  A material is considered to be viscoelastic if its 

stress response consists of elastic and viscous characteristics, whereby, upon application of a 

load, the elastic response is instantaneous while the viscous response occurs over time. For 

small strains, the constitutive equation for an isotropic viscoelastic material is expressed as 

(Blab et al., 2002; ANSYS inc, 1999): 
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Where   !=Cauchy stress 

  e = deviatoric part of the strain 

  =!  Volumetric part of the strain 

  G(t) = shear relaxation kernel function 

  K(t) = bulk relaxation kernel function 

  t = current time 

  !  = past time 

  != unit tensor 

 

The viscoelastic material curve fitting tool in ANSYS (1999) was used to determine the 

material constants of the prony series expansion for shear modulus option from experimental 

data. The data (Table 2) was obtained from four point bending tests performed at temperature, 

20°C, void content, 7.4% and a frequency of 4Hz (Hartman, 2000). The experimental data 

was then used in ANSYS, to define a third order of the prony series expansion.  Non-linear 

regression and correlation analysis was performed on the data to obtain the coefficients of the 

prony series.  The curve fitting results were inspected graphically and compared to the 

experimental data. The fitted coefficients were then written as ANSYS non linear data table 

commands to the material model database for the subsequent finite elements analyses. 

 

Table 1: Layer thickness and elastic material Properties (Hartman, 2000) 

Layer  Thickness 

(mm) 

 Modulus of Elasticity 

(MPa) 

 Poisson’s Ratio 

Asphalt 

Base 

Subbase 

Subgrade 

 50 

200 

400 

Infinite 

 2,300 

55 

25 

10 

 0.30 

0.35 

0.40 

0.45 

 

A pavement structure with the layer profile shown in Fig. 2 was modelled in ANSYS/ED 

finite element suite as plain strain, using PLANE82 elements, an 8-node quadratic element 

with two degrees of freedom at each node i.e. translations in the horizontal and vertical 

directions. PLANE183 elements with viscoelastic capability were used for the non linear 

viscoelastic model (ANSYS inc, 1999). Considering the symmetry in the truck-pavement 

interactions, a 2D pavement model under half wheel load of length 1500 mm and 2000 mm in 
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the lateral and longitudinal directions, respectively, and a road profile depth of 2650 mm was 

considered for analysis. The model pavement structure was then meshed (see Fig. 3). 

 

Table 2. Curve fitting data for viscoelastic prony coefficients from four point bending 
fatigue test (Adapted from Hartman, 2000) 

Cycles  Time(s)  Stiffness Modulus,E (MPa)  Shear Modulus, G 

(MPa) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 

300 

400 

500 

550 

950 

1050 

1150 

1250 

1350 

1450 

1550 

2550 

3550 

4550 

4590 

 2.5 

5.0 

7.5 

10.0 

12.5 

15.0 

17.5 

20.0 

22.5 

25.0 

50.0 

75.0 

100.0 

125.0 

137.5 

237.5 

262.5 

287.5 

312.5 

337.5 

362.5 

387.5 

637.5 

887.5 

1137.5 

1147.5 

 2536 

2383 

2440 

2437 

2469 

2495 

2561 

2528 

2475 

2392 

1550 

1521 

1551 

1563 

1601 

1402 

1390 

1408 

1420 

1462 

1481 

1474 

1298 

1043 

589 

551 

 975 

916 

938 

937 

950 

960 

985 

972 

952 

920 

596 

585 

597 

601 

616 

539 

535 

542 

546 

562 

570 

567 

499 

401 

227 

212 
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Fig. 3. The Finite Element Mesh showing the physical dimensions and the imposed boundary 
conditions and load distribution. 
 

For the longitudinal 2D model, the bottom nodes and the nodes corresponding to the edge of 

the pavement were fully constrained. In the transverse 2D model, all nodes were horizontally 

constrained along the line of symmetry, but are free to move in the vertical direction. The 

model was subsequently subjected to cyclic loads to simulate the wheel configuration of the 

three axled truck (Fig. 2). Three levels of wheel loads (when the truck is empty, half loaded 

and fully loaded) and four tyre inflation pressures of 350, 490, 630 and 750 kPa were applied 

to the finite element model. The normal contact pressure was assumed to be uniformly 

distributed over the contact area. In this analysis, the top surface was considered to be free 

from any discontinuities (with no cracks) or unevenness, and the interface between layers was 

considered to be fully bonded i.e., with no gaps.  

Extraction of simulation data 

Nodes corresponding to the respective location of the sensor groups located in the wheel track 

(Fig. 2) and for which verification data from in-situ field experiment were available were 

selected for the simulation. Nodes at a depth of 40 mm and 750 mm from the tyre-pavement 

interface in the model were selected to correspond to the strain transducers located at the 

bottom of the DBM layer and the pressure cells at the top of the subgrade respectively. In the 

transverse plane, nodes at a distance of 1070 mm, 920 mm and 680 mm from the line of 



ITB Journal 

Issue Number 12, December 2005                                                                                                                        Page 46 

symmetry (see Fig.3) in the horizontal direction of the cartesian plane were selected to 

correspond to the group sensors P1/S1, P2/S2 and P3/S3 respectively. Whereas for the 

longitudinal plane, nodes at a distance of 1100 mm were selected to correspond to pressure 

sensors P1/S1 and P3/S3 in Fig 2.  

Results and Discussion 

The peak longitudinal and lateral strains incurred by each wheel passage at the set wheel load 

and tyre pressure combinations were obtained and verified against the corresponding in-situ 

experimental data.  

Characteristics of pavement surfacing layer interfacial strains and stress on 

subgrade 

Fig. 4 shows the predicted pavement strains in the longitudinal direction. The observation 

indicates that the longitudinal strain shifts from compression (negative values) to tension 

(positive values) and back to compression with the simulated wheel passes, which was 

consistent with available evidence (Owende et al., 2001, Huhtala et al., 1990, Douglas, 1999, 

Siddharthan et al., 1998). The predicted compressive strain before and ahead of the wheel was 

approximately equal.  

 

Fig. 5 shows the response of the pavement in the transverse direction. The corresponding peak 

strains were higher for the front wheel than the dual tandem wheels, even though the wheel 

load was less (31.7 kN and 44.6, 44.1 kN, respectively). The shape of the tensile strain curves 

for the dual wheels were also less steeper, and ultimate values lower than the longitudinal 

component (Fig. 4), possibly depicting interaction of the dual wheels.  
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Fig. 4. Simulated longitudinal strain curve for nodes corresponding to sensor location P1/S1 at 
the bottom of the bituminous layer corresponding to single front, middle, and rear dual wheel 
loads of 31.7, 44.6, and 44.1kN 

 
Fig. 5. Simulated lateral strain curve for nodes corresponding to sensor location P1/S1 at the 
bottom of the bituminous layer corresponding to single front, middle and rear dual wheel loads 
of 31.7, 44.6, and 44.1 kN, respectively, at tyre inflation pressure of 630 kPa.  
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Comparison of predicted and measured in-situ pavement response data 

The individual axle time course of the observed and simulated longitudinal and lateral strains 

were compared graphically (Fig. 6). It was observed that the peak values of the simulated 

strains matched well with its in-situ measured strains in both planes, with the longitudinal 

strains showing a closer fit i.e lower standard error (Table 3). The model overpredicted as 

well as underpredicted the strains in some cases for both linear and viscoelastic 

models.Scattergram of the observed and simulated strains from the time course showed that 

the simulated strains were generally overpredictive in the longitudinal plane (Fig. 7). 

 

 

 

Fig. 6. Individual axle time course for measured and predicted longitudinal and lateral strains 
corresponding to single front wheel, middle and rear dual wheel loads of 31.7, 44.6 and 44.1 kN, 
respectively, at tyre inflation pressure of 630 kPa (90 psi). Linear (top) and viscoelastic (bottom) 
material characteristics of DBM layer are considered. 
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Table 3: Error analysis of predicted against measured strains 

Predicted Strains  
Lateral  Longitudinal 

 
 

Model Statistical Parameter  Linear  Viscoelastic  Linear  Viscoelastic 
RMS Error (%) 
SE(Microstrains) 
tcalculated 
tcritical (95% confidence) 
Residual Analysis 

 28.3 
248 
0.21 
2.12 

Random 

 29.7 
260 
0.15 
2.12 

Random 

 13.6 
103 

-0.32 
2.12 

Random 

 13.2 
100 

-0.13 
2.12 

Random 
 

 
Fig. 7. Correlation between predicted and in-situ measured longitudinal strains corresponding to 
single front wheel, middle  and rear dual wheel loads of 31.7, 44.6 and 44.1 kN, respectively, at 
tyre inflation pressure of 630 kPa (90 psi). Linear (top) and viscoelastic (bottom) material 
characteristics of DBM layer are considered. 
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Analysis of Variance (ANOVA), in Table 4 shows that the FE model incorporating 

appropriate material characteristics can be used for accurate prediction of pavement strains. 

Student’s t-test (Montgomery, 2003) showed that the observed and simulated mean strains 

were not significantly different at 95% confidence level assuming a two tailed test (tcalculated < 

tcritical , see Table 4). The coefficient of determination, R2, of 0.91 and 0.68 (when linear 

material properties are considered) in the longitudinal and lateral planes, respectively, 

indicated a close relationship between the in-situ measured and the predicted strains. Better fit 

was recorded for the longitudinal strains as compared to the lateral model, with RMS errors of 

13% and 28%, respectively.  The viscoelastic material characteristic registered a marginally 

better fit (R2= 0.92) than the linear material characteristics (R2= 0.91) on average in the 

longitudinal plane. However, for the lateral plane, there was a better fit when linear material 

characteristics were considered (R2= 0.68)) than the viscoelastic material characteristics (R2= 

0.66). 

Table 4: Analysis of Variance (ANOVA) for lateral linear model (a), lateral viscoelastic 
model (b), longitudinal linear model (c), and longitudinal viscoelastic model (d). 

 
Source 

Degrees of 
Freedom 

ANOVA Sum of 
Squares 

 
Mean Square 

 
F Calculated 

 
F criticala 

(a) Plot Lateral Strains, Linear Model  
Model 
Error 
Total 

1 
7 
8 

939789.9 
432410.1 
1372200.0 

939789.9 
61772.9 
 

15.21b 5.59 

Root Mean Square Error 219.2 
R2 0.69 
(b) Lateral Strains, Viscoelastic Model  
Model 
Error 
Total 

1 
7 
8 

898388 
473812 
1372200 

898388.0 
67687.4 

13.27 b 5.59 

Root Mean Square Error 229.4 
R2 0.66 
(c) Longitudinal Strains, Linear Model  
Model 
Error 
Total 

1 
7 
8 

743837.1 
74762.9 
818600.0 

743837.1 
10680.4 
 

69.64 b 5.59 

Root Mean Square Error 91.1 
R2 0.91 
 (d) Longitudinal Strains, Viscoelastic Model  
Model 
Error 
Total 

1 
7 
8 

748226.2 
70373.8 
818600.0 

748226.2 
10053.4 

74.43 b 5.59 

Root Mean Square Error 88.4 
R2 0.92 
a  Values at a 95% level of confidence. 
b Model significant for the prediction of stains since F calculated is greater than F critical. 

 

Fig. 8 shows the studentized residuals as a function of the measured strains. As can be seen 

that the plots were reasonably random, and none of the residuals was noticeably distinct from 

the others, and therefore there were no outliers. It can also be seen that none of the residuals 
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have studentized values greater than -2 or less than 2, therefore, it may be concluded that 

there were no unusual residuals in the analysis (Montgomery, 2003). 

 

 
 

Fig. 8. Distribution of residual errors for predicted longitudinal strains corresponding to single 
front wheel, middle and rear dual wheel loads of 31.7, 44.6 and 44.1 kN, respectively, at tyre 
inflation pressure of 630 kPa. Linear (top) and viscoelastic (bottom) material characteristics of 
DBM layer are considered. 
 

Therefore, the predicted and in-situ measured pavement strains due to single and dual wheel 

tyre configurations depicted similar response variations and matched closely in magnitude. 

The observed disparities could have been due to lateral wheel wander from the strain gauge 

positions for in-situ measurement data; possible inaccuracy in the exact location of nodes 

corresponding to strains gauges used in the in-situ measurements and dynamic contact area 
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variations. Available experimental evidence suggest that contact pressure distribution between 

tyre and road surface is not uniform across the tyre (De Beer et al., 1997, Huhtala et al., 

1989).  

Conclusion 

It has been shown that for known pavement material characteristics and tyre-pavement 

contact regime, finite element method could be used to efficiently estimate the strain at 

the bottom of the bituminous surfacing layers. Such data could be used to assess the 

expected fatigue performance of model pavements and improve on design characteristics 

prior to construction. 
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