
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Dissertations School of Computing 

2009-03-01 

Opinion mining with the SentWordNet lexical resource Opinion mining with the SentWordNet lexical resource 

Bruno Ohana 
Technological University Dublin, bohana@gmail.com 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Ohana, Bruno, "Opinion mining with the SentWordNet lexical resource" (2009). Dissertations. 25. 
https://arrow.tudublin.ie/scschcomdis/25 

This Dissertation is brought to you for free and open 
access by the School of Computing at ARROW@TU 
Dublin. It has been accepted for inclusion in Dissertations 
by an authorized administrator of ARROW@TU Dublin. 
For more information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301312408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/scschcomdis/25?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


      

Opinion Mining with the SentiWordNet 

Lexical Resource 

Bruno Ohana 

A dissertation submitted in partial fulfilment of the requirements of 

Dublin Institute of Technology for the degree of  

M.Sc. in Computing (Knowledge Management) 

March 2009 



 i

I certify that this dissertation which I now submit for examination for the award of 

MSc in Computing (Knowledge Management), is entirely my own work and has not 

been taken from the work of others save and to the extent that such work has been 

cited and acknowledged within the test of my work. 

This dissertation was prepared according to the regulations for postgraduate study of 

the Dublin Institute of Technology and has not been submitted in whole or part for an 

award in any other Institute or University. 

The work reported on in this dissertation conforms to the principles and requirements 

of the Institute’s guidelines for ethics in research. 

Signed:   _________________________________ 

Date:    31 March 2009 



 i

1. ABSTRACT 

Sentiment classification concerns the application of automatic methods for predicting 

the orientation of sentiment present on text documents. It is an important subject in 

opinion mining research, with applications on a number of areas including 

recommender and advertising systems, customer intelligence and information retrieval. 

SentiWordNet is a lexical resource of sentiment information for terms in the English 

language designed to assist in opinion mining tasks, where each term is associated with 

numerical scores for positive and negative sentiment information. A resource that 

makes term level sentiment information readily available could be of use in building 

more effective sentiment classification methods. 

This research presents the results of an experiment that applied the SentiWordNet 

lexical resource to the problem of automatic sentiment classification of film reviews. 

First, a data set of relevant features extracted from text documents using SentiWordNet 

was designed and implemented. The resulting feature set is then used as input for 

training a support vector machine classifier for predicting the sentiment orientation of 

the underlying film review. Several scenarios exploring variations on the parameters 

that generate the data set, outlier removal and feature selection were executed. 

The results obtained are compared to other methods documented in the literature. It 

was found that they are in line with other experiments that propose similar approaches 

and use the same data set of film reviews, indicating SentiWordNet could become an 

important resource for the task of sentiment classification. Considerations on future 

improvements are also presented based on a detailed analysis of classification results. 

Key words: opinion mining, sentiment classification, lexical resources, data mining, 

SentiWordNet. 
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1. INTRODUCTION 

“Where is the wisdom that we have lost in knowledge? 

Where is the knowledge that we have lost in information?” 

T.S. Eliot. 

1.1. Knowledge Management, Discovery and Opinions in Text 

In the recent decades, the business world has witnessed a number of changes that 

affected the competitive landscape of companies across all industries. The impressive 

advances in technology, deregulation trends and the lowering of trade barriers resulted 

in accelerated competition and the need for companies to constantly innovate its 

products and services. Those changes have influenced how a company should be 

positioned, and what strategies should companies pursue to achieve or preserve their 

competitive advantage. From a transactional view of the company, whose raison d’etre

was to process a certain input into a value added output, emerged the notion of a 

knowledge creating company, capable of constantly innovate and improve its products, 

business processes and services. Naturally, one key element of the innovation 

processes behind this dynamic nature is the knowledge that exists within the 

organisation in the form of people’s skills and experiences, or stored in databases and 

other repositories. Ensuring this knowledge is efficiently managed, and effectively 

employed to maximise the success of organisations is the realm of the discipline of 

Knowledge Management.  

At the same time the huge advances in information technology, coupled with the 

reduction in cost of the technology infrastructure has caused a true explosion in the 

volumes of data available in information systems. Today, most aspects of an 

organisation’s business processes are dependent on computer systems such as online 

collaboration, email, transactional databases and data warehouses. The volumes of 

information are indeed much larger than an individual’s ability to process them, 

causing a phenomenon whereby too much information is leading to inefficiencies in 

decision making: information overload (Farhoomand et al, 2002). From a knowledge 

management standpoint, the inability to tap into the vast information resources stored 

on computer systems also affects a company’s capacity to reuse existing knowledge 
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already created, and to create new knowledge from yet undiscovered patterns and 

relationships present in data. Providing means for creating new knowledge is an 

important consideration when shaping the innovation strategy in organisations, and 

knowledge discovery from data repositories can be an important factor on such 

strategies (Wang et al, 2008). 

The ability to discover new knowledge from databases using automated methods thus 

became relevant to the success of organisations, and a requirement for the detailed 

analysis of any very large set of data. This need has fuelled research in the area of 

knowledge discovery in databases, or data mining, and the development of 

methodologies, techniques and systems to execute this type of project. Meanwhile a 

strong industry has also been developed, dedicated to assisting organisations in their 

knowledge discovery initiatives, and applications of data mining techniques have 

become relevant in a number of real world scenarios such as recommendation systems, 

spam filtering, customer trend analysis, and fraud.

One important type of information available in computer systems today is textual data. 

This is by far the most widely used method for storing information in explicit form, 

and some estimates suggest that as far as 85% of information found in organisations is 

in text format (McKnight, 2005). It is also the most common source of information on 

the internet, being the natural way of presenting information in human readable form. 

It is in this context that performing data mining on text or, Text Mining gains 

importance. Text mining applies knowledge discovery methods to unstructured textual 

data, leveraging other research areas such as natural language processing, artificial 

intelligence and machine learning to tackle the complexities of extracting information 

from unstructured textual format. Text mining techniques have been applied in a 

number of knowledge discovery scenarios, such as automatic categorisation of 

documents, trend analysis and spam detection. 

An important branch of research within knowledge discovery in text concerns the 

ability to detect and extract opinions, or sentiment information. Detecting the 

sentiment of customers towards a new product based on feedback available in text 

format could be an important element affecting decision making and the product’s 
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future direction. Opinion Mining is the research area dealing with automated methods 

for detecting and extracting this information from textual data, and has a number of 

potential applications on building more efficient recommender systems, financial 

analysis, product engineering and market research. One approach for detecting 

sentiment in text present in literature proposes the use of sentiment-oriented lexical 

resources such as a dictionary of opinionated terms. SentiWordNet is one such lexical 

resource containing opinion bias information on terms extracted from the WordNet 

database, and was made publicly available for research purposes (Esuli et al, 2006). 

Lexical resources have the advantage of being created a-priori and the potential of 

being applied to a number of different categories of text. This, an interesting question 

is to assess how effective are lexical resources to detecting sentiment, in comparison to 

other methods, and the potential advantages that could be obtained from this approach.  

1.2. Background 

Within opinion mining research, sentiment classification concerns the application of 

automatic methods for making predictions about the orientation of sentiment present 

on text documents. These predictions are given according to pre-defined values for 

sentiment polarity. For instance, the sentiment of film reviews could be classified as 

positive, or “thumbs-up”, or negative “thumbs-down”; author sentiment on articles of a 

given subject, such as a proposed tax bill could be subject to similar types of queries, 

and ranked in a numeric scale representing sentiment strength and orientation.  

Sentiment classification is a valuable technology in a number of fields such as 

recommender systems that can retrieve information based on sentiment orientation, as 

an aide to the correct placement of online advertising by evaluating the sentiment of a 

page’s content; or in online collaboration systems where sentiment detection can assist 

the detection of inappropriate user behaviour, or flaming. The problem of evaluating 

sentiment orientation for the purposes of classification has received considerable 

research attention, and several approaches are surveyed in (Pang et al, 2008). One of 

the seminal experiments published in the literature is reported in (Pang et al, 2002), 

where well known bag-of-words machine learning methods used in text classification 

were applied to sentiment classification using a data set of film reviews. The data set 

used for the experiments is known as the polarity data set, comprising 2000 film 
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reviews extracted from discussion groups from the internet movie database, and was 

also made available for further research in (Pang et al, 2004).  

It was observed that the results obtained using text classification methods based on the 

bag-of-words approach seen in (Pang et al, 2002) remained below that of traditional 

topic based text classification, suggesting the extraction of patterns that capture 

sentiment information in text requires additional linguistic analysis, and has fuelled 

interest in this field of research. In (Cui et al, 2006) an experiment indicates that the 

use of higher order n-grams based on pairs of words and three word combinations can 

yield better classification results, provided the training data set is sufficiently large. 

Another approach suggesting the use of linguistic part of speech information as 

features is seen in (Salvetti et al, 2004) and (Wiebe et al, 2003). The relationship 

between sentiment orientation and the detection of subjective and objective sentences 

within a document is explored in (Pang et al, 2004), with considerable improvements 

over the baseline bag-of-words method. 

Finally, it can be argued that sentiment information exists at term level through words 

and expressions known to carry a given sentiment polarity. Intuitively, a product 

review that contains words such as “excellent” and “good” can be expected to be more 

likely a positive than a negative review. There are several methods that explore the 

existence of such words and perform sentiment classification based on calculating 

scores based on terms present in a document from pre-defined lists of positive and 

negative terms.  Examples of opinion mining experiments implementing techniques 

based on term sentiment as seen in (Salvetti et al, 2004), (Pang et al, 2002) and 

(Kennedy et al, 2006).  

SentiWordNet is a lexical resource of sentiment information for terms in the English 

language introduced in (Esuli et al, 2006) designed to assist in opinion mining tasks. 

Each term in SentiWordNet is associated with numerical scores for positive and 

negative sentiment information. The database is built upon a subset of paradigmatic 

terms assumed a priori carry positive or negative sentiment, such as the words “good” 

and “bad”, and extended by an iterative process that generates scores based on term 

relationships extracted from the WordNet database (Miller et al, 1990). Investigating 

the potential benefits of using the SentiWordNet database for performing sentiment 
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classification is the key purpose of this dissertation’s research, and is explored further 

in the next section. 

1.3. Research Problem 

SentiWordNet could be a valuable resource for performing opinion mining tasks since 

it provides a readily available database of term sentiment information for the English 

language. This means SentiWordNet can be a replacement to the process of manually 

deriving lists of terms containing sentiment information for opinion mining tasks.  It 

can also be noted that SentiWordNet is built from a semi automated process that 

derives opinion information from the WordNet database, and has the potential to be 

applied to documents on different domains. The semi-automated approach also 

indicates the process can easily be replicated on other languages, where lexicons 

similar to WordNet are available. 

Thus, SentiWordNet offers potential benefits to opinion mining and to the task of 

sentiment classification in particular. Assessing the viability and performance of 

SentiWordNet as a tool for performing sentiment classification on textual documents is 

the key research problem of this dissertation, and the results can provide useful 

insights on its application to opinion mining tasks, and further research direction for 

this type of lexical resource. 

1.4. The Intellectual Challenge 

To tackle the research problem proposed above, the main challenges of this 

dissertation are related firstly to the design of a set of features extracted in conjunction 

with SentiWordNet that capture as much sentiment information as possible from text 

documents. The feature design was based on a detailed evaluation of the 

SentiWordNet database, the data set chosen for the experiment, a study of other 

approaches proposed previously in opinion mining research, and finally in identifying 

and understanding the limitations of sentiment classification based on term 

information. 

Secondly, designing and executing an experiment that leverages data mining 

techniques to perform sentiment classification with SentiWordNet required 
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understanding of the state of the art in data mining algorithms for classification, and 

how they relate to previous efforts in sentiment classification reported in the literature. 

Also, the ability to implement the proposed experiment in a data mining package, and 

building the necessary technical components to extract SentiWordNet information are 

also important challenges this research faced. 

1.5. Research Objectives 

Having in mind the research problem and intellectual challenges posed in the previous 

sections, the objectives of this dissertation’s research can be outlined as follows: 

• Investigate the fields of knowledge management, knowledge discovery and 

data mining, and the relevance of data mining for the creation of new 

knowledge and organisation competitiveness. 

• Review research in data mining processes, the state of the art in algorithms for 

classification, challenges and limitations to classifier performance; investigate 

the state of the art in data mining tools. 

• Investigate the areas of text mining and opinion mining, outline approaches 

proposed in the literature for performing sentiment classification; review 

literature on lexical resources used in opinion mining and SentiWordNet. 

• Design a data set with features extracted with the help of SentiWordNet, to be 

used for sentiment classification of text documents. 

• Implement an algorithm that extracts the proposed features using 

SentiWordNet, and using the polarity data set (Pang et al, 2002) as the source 

for text documents. 

• Design and train a baseline classifier for sentiment classification similar to the 

one presented in (Pang et al, 2002), to be used for comparisons. 
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• Design and train a classifier based on SentiWordNet features for sentiment 

classification. 

• Evaluate the effects of changing generation parameters of SentiWordNet 

features to the overall performance of sentiment classification. 

• Evaluate the effects of outlier removal and feature selection to overall 

performance of sentiment classification using SentiWordNet. 

• Analyse results obtained, investigate source of classification errors, and 

compare results with other research in the literature using the same data set. 

1.6. Methodology 

As part of this dissertation, both primary and secondary research was conducted. 

Secondary research consisted of a review on research literature on the fields of 

knowledge management, knowledge discovery, data mining, text mining and opinion 

mining. The following resources were used to perform secondary research. 

• Research journals and periodicals (ACM, IEEE, Harvard Business Review, 

etc.). 

• Published books in the relevant areas. 

• Conference Proceedings. 

• Websites and discussion groups associated to relevant research. 

• Product white papers. 

• Company websites. 

The primary research is an experiment in sentiment classification that uses data mining 

techniques and SentiWordNet. The methodology is based on best practices found on 

knowledge discovery methodologies from both the industry and academic circles, 

involving an iterative process of: 

• Data selection and data pre-processing tasks originating from a data set of film 

reviews in raw text format. 



19 

• Implementation of sentiment classification experiments using machine learning 

algorithms, applying to this end a data mining application that allows for the 

rapid prototyping of tasks. 

• Results evaluation and comparisons. 

The experiment setup and presentation of results will closely follow published work in 

the area, to ensure result comparisons are possible, and that the experiment follows 

sound research practices. 

1.7. Resources 

To successfully achieve the goals of this dissertation, the following resources were 

identified as key requirements. 

Human Resources 

• Access to supervisor, for review and guidance throughout the preparation of the 

dissertation. 

• Access to other members of DIT research staff as needed, for addressing more 

technical questions and sharing ideas. 

Technical Resources 

• Personal Computer system or laptop of recent specification for setting up and 

executing experiment. 

• Access to library resources for research in books and periodicals.  

o Due to the nature of a part-time degree, online and remote access to 

content should be used whenever possible. 

• Data Mining Application. 
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o The RapidMiner open source tool will be employed (Mierswa et al, 

2006). 

• Programming language. 

o Python programming language and libraries will be used for required 

programming tasks during experiment execution.  

o The Python NLTK Library will also be employed for specific linguistic 

tasks (Loper et al, 2002). 

• Labelled text mining data sets: The polarity data set (Pang et al, 2004) 

comprising of text corpora of film reviews will be used for the experiment. 

• SentiWordNet Database (Esuli et al, 2006) 

o The lexical resource is required in a format that can easily be integrated 

into the experiment. 

1.8. Scope and Limitations 

The experiment conducted on this research uses the well known polarity data set for 

execution and presentation of results. This is useful for comparisons to other research 

in opinion mining; however applying this research to other data sets could yield 

different results and new insights. It is acknowledged that testing on a single data set is 

a limitation of this research. 

The main focus of this research is evaluating sentiment classification using 

SentiWordNet and comparing it to other approaches in the literature. To this end, 

choosing classification algorithms and algorithm parameters are a pre-requisite step for 

the data mining aspect of the experiment. Whereas potentially better results are 

possible by using a different choice of parameter than the ones presented here, it is not 

the objective of this research to investigate this aspect of data mining. Instead, to stay 

within the focus of the experiment, the choice of parameters and algorithms will be 

based on previous results in the literature, and a limited evaluation by experimentation.  
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1.9. Organisation of this dissertation  

The remaining chapters of this dissertation are organised into the review of relevant 

research, experiment design and execution, and results presentation and conclusion 

according to the chapter described below. 

Chapter 2 presents a review of research literature in knowledge management and 

knowledge discovery, stressing the importance of knowledge creation as a knowledge 

management initiative beneficial to the success of organisations, and the relationship 

between knowledge creation and the discovery of new knowledge stored in databases 

across various information systems.  

Chapter 3 reviews in more details the fields of knowledge discovery and data mining, 

evaluating methodologies for implementing knowledge discovery projects and the 

important success factors. The main data mining activities are reviewed, presenting a 

number of potential uses to data mining techniques, followed by a detailed analysis of 

pattern classification, algorithms and challenges. The chapter concludes with a review 

of data mining tools available today for commercial and academic use. 

Chapter 4 introduces the area of text mining and opinion mining, exploring their 

additional challenges and how they relate to the general area of data mining. Opinion 

Mining is the main subject of this dissertation and its research literature is reviewed in 

depth. The SentiWordNet lexical resource is presented and potential applications of 

such a resource are discussed. 

In Chapter 5 the first part of this dissertation’s experiment is presented: an approach 

for extracting sentiment information from text documents as features for sentiment 

classification using SentiWordNet is proposed, based on a detailed evaluation of this 

lexical resource, and considerations on the challenges for extracting information from 

textual data. 

Chapter 6 describes the opinion mining experiment: the experiment’s scope and 

objectives are laid out, the setup of the experiment, success criteria and limitations are 

discussed.  



22 

Chapter 7 presents the experiment results. The results for each experiment activity 

proposed in Chapter 6 are presented as collected in accordance with the proposed 

metrics. The obtained results are examined in more details and discussed in light of 

other research in the literature. 

Finally, Chapter 8 concludes this dissertation. It reviews the dissertation’s key 

objectives, the research approach and results obtained. The key contributions to the 

body of knowledge resulting of this research are presented, along with opportunities 

for future research. The chapter concludes with final remarks on the overall 

dissertation project. 

The below diagram illustrates the division of Chapters according to its key objectives. 

Figure 1 - Organisation of Dissertation Chapters 



23 

2. KNOWLEDGE CREATION AND DISCOVERY  

In this chapter, research literature on the fields of knowledge management and 

knowledge discovery are presented and discussed. The discussion focuses on the 

importance of knowledge management and knowledge creation in particular as 

strategic tools for promoting organisational competitiveness, and how the vast amounts 

of data stored in companies’ information systems can be used as a source for creating 

new knowledge via the process of knowledge discovery.  

2.1. Knowledge Organisations 

The term knowledge organisation derives from understanding of the concept of a 

company from a new perspective that gained popularity in the strategic management 

literature through the 1990s (Cole, 1998; Alavi and Leidner, 2001; Nonaka, 1995). 

This view evolved from the traditional notion of the company as an information 

processing unit aimed at employing its resources to build a product or solve a specific 

problem. Knowledge resources have always been employed by organisations in the 

development and production of tangible goods, and the management of enterprises. It 

has been available, for example in the form of books, technical manuals, training and 

company communications. However the ”transactional” view of the company did not 

take into account the fact that knowledge is not only applied but also dynamically 

created, exchanged and refined within the boundaries of the company, and that such 

phenomena influence the company’s ability to grow, innovate and remain competitive 

(Nonaka, 1994). 

The knowledge based view of the company gained momentum amid changes in 

competitive pressures faced by organisations. These changes precipitated in the need 

for new perspectives in the frameworks of how a company should be interpreted and 

analysed to ensure sustainable profitable positions in their industries: 

• Globalization and Deregulation have in recent decades removed old trade barriers 

and expanded markets. Bigger markets also meant a wider number of competitors, 

and the lowering of trade barriers would over time lessen the impact of 

geographical advantages a company might have obtained from its location. 
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• Intellectual Property became increasingly regulated, thus protecting company’s 

investment on knowledge assets by means of copyright laws, trademarks and 

patents (Teece, 1998). This provided a stable framework that favoured the creation 

and growth of companies whose business is to commercialise those assets.   

• In addition, the idea of The Law of Increasing Returns have influenced economic 

understanding of companies, stating that knowledge based activities are not subject 

to the traditional model of diminishing returns, where companies’ return on 

investment tend to reduce over time in the face of increased competition and 

marginal cost increases. Instead, knowledge based activities are more difficult to 

imitate, and tend to create a positive feedback loop that amplifies returns as more 

knowledge gets created from already existing knowledge. This aggregated with 

factors such as customer’s technology lock-ins and appropriate market timing 

suggest increasing potential returns of knowledge assets over time (Teece, 1998; 

Arthur, 1996). 

  

These factors have strengthened the idea of knowledge as the source of sustained 

creation of new products and services, and the ultimate resource for increasing 

company value and its competitiveness (Cole, 1998; Nonaka, 1991). In the face of 

increased competition in a global market, and promising prospects that can be 

achieved from developing knowledge assets, it became more suitable to view the firm 

as a collection of capabilities and knowledge skills that can be quickly reconfigured 

and applied in other realms, a notion later crystallised in the term knowledge 

organisation (Davenport, 2001; Nonaka, 1994; Drucker, 1995; Teece et al, 2002). It 

follows from this view of the company that ensuring organisational knowledge is 

effectively created, is accessible, retained and improved upon are fundamental 

activities for companies in order to retain competitiveness. These activities are the core 

building blocks of what emerged as the discipline of Knowledge Management (von 

Krogh, 1998; Quintas et al, 1997; Tiwana, 2000).  

The benefits of implementing activities focusing on the knowledge of the organisation 

are well documented on a number of examples in the literature, as can be observed in 

(Nonaka, 1991), presenting initiatives taken by several Japanese companies in re-
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inventing their product lines in the face of increasing competition and lowering profit 

returns, one example being the successful migration of Canon from its camera business 

to office automation products such as copying machines by leveraging expertise 

already present in its product development and manufacturing divisions; Another 

successful example can be seen at Pixar Studios (Catmull, 2008), where the fostering 

of a knowledge sharing culture where employees are provided forums to participate, 

exchange ideas and suggestions supports the creative process of new feature films. 

More strong evidence of the success of this approach is presented in the Most Admired 

Knowledge Enterprises award (MAKE, 2007), where global companies are chosen for 

their excellence in delivering knowledge processes and achieving tangible benefits in 

competitiveness and financial returns. In this survey it has been observed that 

companies present in the winning list are usually recognised leaders in their industries, 

and delivered twice as much return on investment than the average of Fortune 500 

companies over the past decade. 

2.2. Knowledge Management 

To support the view that knowledge is an imperative to an organisation’s success, a 

coherent theoretical foundation and set of practices is necessary to ensure knowledge 

resources are effectively used, and Knowledge Management as a discipline emerged 

from this need. The ultimate objective of knowledge management is closely linked to 

the success of organisations; however the broadness of the scope and the inter 

disciplinary nature of the topic gave rise to a number of overlapping definitions of the 

term, varying on specificity, the aspects of the discipline being stressed, author 

preference and target audience. To illustrate this effect, and provide a better indication 

of the scope of knowledge management in the literature, several definitions are 

enlisted below: 

  

• “Knowledge management refers to identifying and leveraging all aspects of an 

organisation’s knowledge to help the organisation compete” (von Krogh, 

1998). 
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• “Knowledge management is a newly emerging interdisciplinary business model 

that has knowledge within the framework of an organisation as its focus” 

(Awad et al, 2004). 

• “Knowledge management refers to processes and practices through which 

organisations generate value from knowledge” (Grant, 2008). 

  

To achieve its broad goals, knowledge management leverages the company’s 

organisational processes, people and technology in implementing a set of tasks that 

map to relevant knowledge activities. To facilitate the identification of what 

knowledge activities are in fact needed, and what are the potential benefits obtained, a 

number of frameworks have been proposed in the literature. The view of knowledge 

activities as a workflow of coordinated stages has led to the formation frameworks 

based on knowledge life cycles, as seen in (Awad et al, 2004), and similarly presented 

in (Alavi et al, 2001). The knowledge management life cycle proposed in (Awad et al, 

2004) entails four knowledge activities that can be executed iteratively throughout the 

organisation: first, there is capturing organisational knowledge from various sources; 

once captured, knowledge can be organised in more appropriate and useful ways; in 

the next step knowledge is refined and aggregated for different uses; finally knowledge 

is transferred across the organisation. Each stage comprises several sub-activities 

highlighting the typical concerns of knowledge management initiatives, as illustrated 

on Table 1. In (Alavi et al, 2001) a similar framework of high level intertwined 

knowledge systems is presented, and activities are divided into knowledge creation, 

storage and retrieval, and transfer. 

Stage Activities 

Capturing Data entry, Scanning. 

Brainstorming. 

Interviewing. 

Voice and Video input. 

Organising Cataloguing. 

Indexing. 

Filtering. 
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Encoding. 

Refining Collaborating. 

Contextualising. 

Compacting. 

Mining. 

Transfer Sharing. 

Push / Alerting. 

Publishing. 

Table 1 - KM Life Cycle (Awad et al, 2004) 

Other knowledge management frameworks aim at categorising knowledge activities 

based on a hierarchical taxonomy, such as the one presented in (Grant, 2008) where 

key categories are knowledge generation and exploitation, with various sub activities 

indicating more granular tasks. Several other frameworks have been proposed both in 

research and by practitioners. In (Hoslapple et al, 2002) a proposed framework of 

knowledge management episodes based on previous research was evaluated and 

reviewed by a panel of practitioners. Frameworks have also been surveyed in the 

literature in (Holsapple et al, 1999) and (Tiwana, 2000), with varying approaches 

targeting specific problems or emphasising a specific view of the discipline.  

2.2.1. Characterising Knowledge 

Knowledge is a broad concept that has occupied the minds of philosophers and 

researchers for many centuries. From its roots in philosophy, the nature of knowledge 

has been studied in cognitive sciences, linguistics and biology (Allix, 2003). Within 

the somewhat narrower scope of knowledge management, the epistemological debate 

around the nature of knowledge is normally considered out of scope (Alawi et al, 

2001; Allix, 2003; Davenport et al, 1998), and instead a more pragmatic approach is 

taken by investigating only perspectives that contribute to building a theory of 

organisational knowledge (Alawi et al, 2001; Davenport et al, 1998). Notwithstanding 

this, the term has received distinct definitions, highlighting the different perspectives it 

can take in the context of knowledge management:  
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• Knowledge can be seen as the accumulation of facts, procedural rules and 

heuristics and defined as “understanding gained from experience and study”

(Awad et al, 2004).  

• Knowledge is defined by Nonaka as “a justified belief that increases an 

entity’s capacity for effective action” (Nonaka, 1994).  

• In (Davenport et al, 1998) knowledge is defined as a “mixture of framed 

experiences, values, contextual information and expert insight for evaluating 

and incorporating new experiences and information”.

Furthermore, as noted on (Alawi et al, 2001), knowledge can be defined according to 

different perspectives: as a state of mind achieved via knowledge acquisition, as a 

process where knowledge leads to a particular action, an object that can be 

manipulated, a condition of having access to knowledge, or as an organisational 

capability. Focusing on a particular perspective will affect which knowledge 

management strategy and supporting systems will be employed. For example, an 

object view of knowledge may privilege strategies that emphasize the creation of 

knowledge stocks for the accumulation of knowledge objects. 

We now discuss in more detail the perspectives on knowledge that provide a better 

understanding on key attributes relevant to achieving the goals of knowledge 

management, and to that of creating new knowledge in particular.  

Tacit Knowledge and Explicit Knowledge

An important dimension to knowledge is the distinction between Tacit and Explicit

knowledge (Nonaka, 1994). Explicit knowledge is knowledge encoded into a formal 

language, can be expressed numerically or in symbols, can be easily stored and 

transferred. This is, for example, the knowledge that exists in documentation, 

electronic mail, presentations and reports. Tacit knowledge can be seen as knowledge 

that exists within people’s minds and is closely related to the individual’s actions, 

experiences, commitment and involvement. Tacit knowledge comprises a technical 

dimension that indicates the level of know-how, as well as a cognitive dimension 

related to beliefs, ideals, values and mental models of an individual (Nonaka, 1998), 
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and because tacit knowledge is already internalised it is ready to be applied and is 

sometimes referred to as actionable knowledge (Marwick 2001).  

Data, Information and Knowledge

Attempts to establish the nature of knowledge often involve the discussion of the 

concepts of information and data and how they relate in the framework of 

organisational knowledge. Investigating how these concepts relate in more detail has 

led to a hierarchical view with an implicit scale of values commonly accepted in the 

knowledge management literature (Rowley, 2007). This view also implies there are 

processes involved in the transformation of knowledge from a lower to a higher level 

in the hierarchy. In this scale the concepts of data, information and knowledge are 

commonly discussed (Davenport et al, 1998; Rowley, 2007). 

Data can be seen as a set of discrete, unorganised facts related to an event (Davenport 

et al, 1998), and is widely available in organisations today in the form of recorded 

transactions in databases, for example, as bank withdrawal records from ATMs, or 

records of items sold in an on-line shop. Most companies are now capable of 

generating large volumes of data on all aspects of their operations; however, on its 

own data lacks context and relevance, and data accumulation per se will not 

necessarily bring positive benefits to a company (Awad et al, 2004). 

  

Information can be seen as a data message intended to a receiver, aimed at improving 

the receiver’s judgement or behaviour (Davenport et al, 1998). To the receiver, 

information has always meaning and belongs to a context. In this view, data is not 

necessarily information: a long list of bank account transaction records may be 

irrelevant if out of context or not used by the right person. However we can add value 

to data, for instance by placing it in a summarised transaction report, so that in the 

right context it gains meaning to a receiver and therefore becomes information.  

Information adds value to data by giving it context and meaning; however information 

on its own will assist but does not generate better decisions or new processes and 

products. First, it must be put to use. Davenport defined knowledge as the “mixture of 

framed experiences, values, contextual information and expert insight”. It is also 

stressed that “it originates and is applied in the minds of knowers” (Davenport et al, 
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1998), thus giving it a very human perspective. This definition also suggests 

information is one of many components of knowledge.

Knowledge is derived from information once information is assimilated into the mind 

of a knower for a relevant goal; Davenport proposes information becomes knowledge 

through enhancement processes requiring the knower’s involvement, such as 

comparison, analysis of consequences, making connections. The progressive scale 

from data to knowledge has also been noted in (Zeleny, 1987), with a similar 

observation stating that whereas data and information may exist per se, knowledge can 

only exist after having being added with context, opinion and judgement by a human.  

To illustrate the hierarchy arising from the analysis of the relations between data, 

information and knowledge, the knowledge pyramid diagram is commonly referred to, 

and displayed below. In some cases, the pyramid is added with a top layer indicating 

wisdom as the accumulation of knowledge that encompasses vision, foresight, critical 

thinking and the transferring of knowledge to different contexts (Rowley, 2007; Awad 

et al, 2004). This concept of wisdom however is not as widely discussed in the 

literature (Rowley, 2007), and some authors prefer a simplified approach whereby 

wisdom attributes are embedded in the concept of knowledge (Davenport et al, 1998). 

The hierarchy of the knowledge pyramid also suggests data is a more tractable entity 

for the purposes of encoding and programming than knowledge would be, again 

suggesting the higher levels of the pyramid require increasing human interactions. 

Figure 2 - The Knowledge Pyramid (Awad et al, 2004)
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2.3. Knowledge Creation 

Creating new organisational knowledge is at the heart of corporate innovation. 

Companies must be capable of acquiring and generating new knowledge, and recycling 

existing knowledge into novel, more relevant ideas (Nonaka, 1995). However 

generating new knowledge is not a straightforward process, and it has been observed to 

be one of the least systematic and difficult to measure processes of a knowledge 

management initiative (Davenport et al, 1998).  In this section, Nonaka’s model for 

knowledge creation is presented in more details, followed by a discussion on factors 

affecting the creation of new knowledge within the company environment.  

2.3.1. Nonaka’s Spiral of Knowledge (Nonaka, 1994) 

A theory of organisational knowledge creation was postulated by Nonaka (Nonaka, 

1994) as the interplay of two dimensions of knowledge: first, there is the tacit-explicit

dimension, where knowledge moves between its encoded explicit form into the 

actionable tacit form; second, there is the ontological dimension: knowledge can only 

be created by individuals and must be amplified to an organisational level in order to 

be effective. Permeating these two dimensions are the concepts of intention, autonomy 

and fluctuation as behavioural drivers which act as a medium for knowledge 

movement along the tacit-explicit and ontological dimensions. Intention can be seen as 

an individual’s willingness to act upon knowledge, driven by personal behaviour and 

motivations. Autonomy relates to an individual or a group’s degree of freedom within 

the organisation, and increases the possibility of unexpected opportunities to occur; 

finally, fluctuation indicates a degree of uncertainty or noise within the organisation’s 

environment, which tend to increase chances on unusual and novel patterns to occur.  

The Spiral of Knowledge

Nonaka introduces the idea of creating knowledge through the conversion between 

tacit and explicit forms (Nonaka, 1994), and postulates four modes of knowledge 

conversion in the context of an organisation: 

• Socialization (tacit to tacit): In this mode knowledge is transferred between 

individuals by shared experiences, without the need of an explicit representation. 

This is analogous to the work of an apprentice learning from his master by simple 
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observation and imitation. Naturally this mode requires an individual as a source of 

knowledge, and is normally very difficult to replicate to larger groups. 

• Internalization (explicit to tacit) and Externalization (tacit to explicit): In these 

modes, knowledge is transferred to and from an explicit form. Internalization can 

be compared to the idea of learning, whereas externalization transform knowledge 

in an encoded form that can be transmitted and replicated to other individuals with 

relative ease, as would be the case with training material, books and technical 

diagrams. 

• Combination (explicit to explicit): Existing resources in explicit format can be 

recombined to produce new knowledge through activities such as sorting, 

categorization and review into a different context. With the wide availability of 

explicit knowledge in existing computer systems, these may not always be in use to 

their full potential (Quintas et al, 1997) it has been noted that this reprocessing of 

knowledge can be of aid in reducing knowledge overload and improving 

knowledge based decisions (Holsapple, 2002).   

The table below summarized the four modes of knowledge transformation in Nonaka’s 

framework: 

From / To Tacit Explicit 

Tacit Socialization Externalization 

Explicit Internalization Combination 

Table 2 - Modes of Knowledge Creation (Nonaka, 1994) 

If knowledge can be created upon carrying out one of the above transformations, then 

a dynamic process that encourages and manages such transformations at an 

organisational level should be aimed for. To maximize the practical benefits of such 

process, knowledge transfers should be encouraged continually amplified to a wider 

audience, thus increasing its relevance and reach, in what Nonaka had conceptualised 

as the spiral of knowledge.  
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2.3.2. The Conditions for Knowledge Creation 

As seen in Nonaka’s model of knowledge creation, behavioural drivers play a key role 

in tacit and explicit knowledge transformations, and in amplifying new knowledge 

throughout the organisation. The right attitude is required from individuals so that 

knowledge is shared instead of hoarded (intention); individuals need to act within an 

organisational culture that values and fosters knowledge creation and sharing 

(autonomy), and finally a substantial degree of uncertainty is required so that new 

knowledge can flourish out of experimentation (fluctuation). The individual and 

organisational conditions for knowledge creation are also noted in (Awad et al,  2004), 

where personal factors such as personality and attitude, and also vocational drivers 

provided by the organisation such as compensation, work environment, moral values, 

job security and employee recognition play a key role in knowledge sharing and 

creation. The requirement for a level of uncertainty in the knowledge creation process 

is also acknowledged in (Davenport et al, 1998), and illustrated by case studies where 

companies intentionally build teams with people from diverse backgrounds and 

personalities since different backgrounds often imply the use of different vocabularies 

to describe similar situations thud forcing the exchange of concepts; and different 

personalities which bring with them different ways of approaching a problem, 

knowledge exchange is thus maximised. 

In order to foster knowledge creation, time and space resources must be made 

available so that such activities can take place. As noted in (Davenport et al, 1998), 

companies tend to dedicate such resources to knowledge creating activities through the 

creation of research centres and research and development departments. However, as 

illustrated by the Xerox PARC case study, care must be taken to ensure that 

knowledge is not only created, but is being disseminated internally in the company. In 

this instance, Xerox missed the opportunity to capitalise on graphical user interfaces 

already developed in their research centre, with Apple taking the lead in the field: an 

example of knowledge being created in one section, but not “spiralled” through other 

areas of the company.  

It is also worth noting that space for knowledge creation may not always denote 

physical space in the form of laboratories. Knowledge sharing spaces where people 
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can congregate, meet and share experiences are equally as valuable (Davenport et al, 

1998), as in the example illustrated in Pixar’s office design that maximises 

opportunities for people to meet (Catmull, 2008). Space for knowledge creation may 

also occur electronically, facilitated by information technology tools (Marwick, 2001). 

In (Nonaka et al, 1998), the need for having appropriate knowledge creation spaces is 

linked to the four stages of knowledge transformation in the spiral of knowledge, and 

formalised in a framework guided by the concept of Ba – a Japanese word that roughly 

translates to “place”. Ba refers to a shared space or platform where knowledge creation 

can take place. This can take the form of physical spaces (meeting rooms and 

laboratories) as well as virtual spaces (typically embedded in a information technology 

system), or simply mental spaces (shared concepts, ideas and vocabulary). 

Organisations should foster the creation of ba in the workplace to act as facilitators of 

the four stages of the spiral of knowledge, and enable the transformation of 

information into knowledge. For each stage in the spiral of knowledge, one type of ba

acts as the strongest influencer. At the tacit-to-tacit conversion, the originating ba

reflects shared ideas, mental models and behavioural patterns that enable face-to-face 

knowledge conversions; The interacting ba supports tacit-to-explicit knowledge 

conversions, where space for dialogue where mental models can be explained and 

analysed is necessary; the exercising ba supports explicit-to-tacit conversion, it is 

where internalisation occurs and thus learning, simulated activities and active 

participation activities take place. 

Of particular interest to this dissertation is the cyber ba, which supports the explicit to 

explicit knowledge transformation. Because it involves manipulation of codified 

knowledge, the cyber ba is where the role of information technology as an enabler of 

knowledge creation is more pronounced, providing the ability to assist the 

reorganisation of already stored knowledge into other forms with potentially novel 

uses (Nonaka et al, 1998; Alavi et al, 2001). In the next section, the link between 

technology and knowledge creation is examined further. 
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2.4. Information Technology and Knowledge Management 

The importance of information technology to knowledge management has been widely 

documented in the literature, and is seen as a crucial component for the success of 

knowledge management projects by (Holsapple, 2002; Alavi et al, 2001; Marwick, 

2001; Awad et al, 2004). It is also pointed out in (Davenport et al, 1998) that the 

availability of certain technologies such as the internet and online collaboration tools 

such as Lotus Notes have been catalysts for the knowledge management movement. In 

(Alavi et al, 1999) a survey amongst companies with existing knowledge management 

systems across a broad range of industries revealed perceived positive benefits in 

employee communication, process efficiencies such as shorter problem solving times, 

and financial benefits related to higher profitability and shorter sales and support 

cycles. 

Information technology comes in support of knowledge management in different ways. 

To map knowledge activities to their supporting knowledge management systems a 

framework is proposed in (Marwick, 2001) based on the knowledge conversion 

scheme seen in (Nonaka, 1994), illustrating the supporting role of information systems 

across the spectrum of knowledge activities, as shown in the below table. 

Tacit to Tacit 

• e-Meetings. 

• Online synchronous collaboration 

(chat, video conferencing). 

Tacit to Explicit 

• Question answering. 

• Annotation. 

Explicit to Tacit 

• Visualisation. 

• Video and Audio repositories. 

Explicit to Explicit 

• Text search. 

• Document categorisation. 

Table 3 - Information Systems and Knowledge Conversions (Marwick, 2001) 

The systems supporting the tacit-tacit dimension typically make shared experiences 

between individuals possible across geographical and temporal boundaries (Awad et 

al, 2004). In this dimension, information technology acts solely as a conductor for the 

exchange of knowledge through electronic medium, but the system has little 

involvement in providing or enhancing knowledge itself. Supporting systems such as 
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online chat, video conferencing and groupware fall into this category, and may bring 

considerable efficiencies on how tacit knowledge is employed inside a company. One 

example is documented in (Davenport et al, 1998) where video conferencing 

technology facilitated the remote troubleshooting of a problem in a large oil company 

by technicians based in different offices around the world. Another class of systems 

with similar concerns are expertise locators (McDonald et al, 1998), designed to assist 

in finding people with a required set of skills or similar interests inside large 

organisations. 

In the tacit-explicit, or externalisation dimension, the transformation aims at forming a 

shared mental model of tacit knowledge. Collaboration systems, systems supporting 

brainstorming and descriptions of mental models such as mind maps, and online 

discussion databases fall into this category. Those systems allow the externalisation of 

knowledge through discussions and sharing points of view. A similar objective is 

attained by expert systems that leverage elicited tacit knowledge into explicit decision 

rules encoded into a system.  

On the explicit-tacit knowledge transformation, systems are concerned with supporting 

the creation of tacit knowledge from explicit knowledge repositories, mainly by 

augmenting or facilitating the understanding of available data. These aims are closely 

related to information overload and mitigation strategies such as visualisation, 

summarisation and filtering techniques. Computer based learning systems are also 

considered by (Marwick, 2001) as enablers of explicit-tacit knowledge exchanges. 

Finally, the explicit-explicit knowledge transformation is perhaps where the role of 

information technology is more pronounced. The increase of explicit knowledge 

available inside information systems also generates opportunities for supporting 

systems to provide knowledge combination approaches. These would include 

automatic document classification, summarisation and search capabilities. Other 

authors place the discovery of knowledge from large amounts of data within this 

dimension of knowledge transformation (Awad et al, 2004; Nemati et al, 2002). The 

discovery of new knowledge from data will be investigated in depth in the next 

section. 
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The above framework suggests a broad range of possibilities for the use of information 

systems to knowledge management. It is however accepted that knowledge 

management initiatives entail several non-technological aspects involving 

organisational strategy and how knowledge issues will be addressed (Hansen et al, 

1999). It has been seen in the previous sections that knowledge by its very nature is 

ultimately personal and belongs to a human entity. Reservations are noted in the 

literature to approaching knowledge management initiatives strictly from the 

perspective of an information system implementation, where such concerns may not 

receive the deserved attention (von Krogh, 1998; Fahey 1998; McDermott, 1999; 

Prusak, 2001). 

One example can be seen in (McDonald et al, 1998), where it was observed how 

patterns of behaviour affect the usability of expertise location systems, by illustrating 

how users may seek expertise not by directly reaching experts found in an expertise 

location system, but by using escalation procedures across the hierarchy of the 

organisation where political help is easier to find. Human resource factors such as 

employee motivation and communication have also been noted in (Hahn et al, 2000) to 

affect the success of a system implementation of knowledge management initiatives. 

Another example in (Davenport et al, 1998) illustrates how organisational changes 

have led to the abandonment of a knowledge management system, once executive 

support for the costly task of capturing expert knowledge in explicit format was no 

longer present.   

Despite this caveat, the role of information technology as an enabler of knowledge 

management initiatives can be successful when applied with a clear perspective on the 

organisation’s knowledge challenges. In (Hansen et al, 1999) several successful 

initiatives were investigated and a framework was devised dividing their use of 

information technology into codification and personalisation strategies. Codification 

focuses on achieving economies of scale by making knowledge explicit and widely 

available within the company, whereas personalization focuses its efforts on 

facilitating sharing of difficult to encode tacit knowledge like online collaboration 

systems, video and voice conferencing. Each of these strategies must be evaluated in 

light of the company’s approach to clients, the economics of the industry, and staff 

profile. One example from the study presents a high-profile management consulting 
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firm based on small teams with flat hierarchies, very distinct projects and where 

customer relationships generally occur at executive level. The nature of its business 

determined this company should favour knowledge systems for personalisation, 

facilitating the tacit communication between team members for solving clients’ 

problems, but has little to gain from mass economies of scale and reusing of explicit 

knowledge from repositories.  Another study extended this model indicating initiatives 

should also take into account the volatility of knowledge within the industry, or how 

frequently knowledge changes and becomes obsolete, to assist in determining how to 

best employ codification or personalization strategies (Kankanhalli et al, 2003). 

2.5. Knowledge Discovery 

With the popularisation of information technology, organisations are now capable of 

storing very large amounts of data in digital format, with nearly all aspects of a 

company’s business processes being undertaken with the assistance of information 

systems, and recorded into data repositories, and sources of information ranging from 

documents, emails, company memos, customer transactions and collaboration systems 

exist in explicit format throughout the organisation. As seen on (Nonaka, 1994), the 

explicit-to-explicit, or combination mode of knowledge transfer is an integral step in 

the spiral of knowledge and contributes to knowledge creation inside the organisation. 

Thus, it could be argued that such vast data repositories could yield novel and useful 

knowledge if analysed and provided to the right (Awad et al, 2004).  

However one side effect of the widespread use of information systems is the 

generation of very large amounts of data over time, which can be retained by long 

periods of time at little expense. Due to the sheer volume of data available, explicit 

knowledge combination work such as categorization, summarization and data analysis 

becomes a time consuming effort, sometimes impossible do be executed manually. Not 

being able to extract information from the available data repositories may lead to 

inefficiencies in productivity, cause poor decision making by not availing of the most 

accurate and most recent information, and may ultimately affect employee motivation 

(Cody et al, 2002; Farhoomand et al, 2002). Thus, to fully take advantage of large 

scale data repositories available today, automatic methods that employ the computing 
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power of today’s information systems are required. These are challenges addressed by 

the area of research of knowledge discovery in databases, or data mining.  

2.5.1. Knowledge Discovery and Data Mining 

Knowledge discovery is the product of scientific research in mathematics, computer 

science, statistics and engineering, coupled with advances in information systems 

which precipitated in high volume data being easily stored and accessible. It also 

emerged from the need of businesses to be more competitive and accelerate the process 

of creating new knowledge and innovating (Awad et al, 2004). 

Using knowledge discovery methods, data can be analysed using descriptive 

techniques to obtain more understandable or summarized representations of data, 

which may highlight yet unseen patterns, rules and relationships in the data (Fayyad, et 

al, 1996; Hand et al, 2001). Prediction is also a common task in knowledge discovery, 

where algorithms can learn patterns embedded on large data sets, and applied to 

predict future occurrences such as the anticipating fraudulent bank transactions. Data 

can be further analyzed using interactive exploratory methods that enable knowledge 

analysts to establish relationships visually that would otherwise not be possible on 

extremely large volumes of data (Hand et al, 2001).  

Knowledge discovery started attracting significant interest in the research community 

during the early to mid 1990s, amid the rise in importance of knowledge discovery 

activities within organisations, and growing availability of collected raw data from a 

variety of information systems. During this time the first definitions of knowledge 

discovery in databases appeared in the literature. The term itself emphasises knowledge 

as the end product of the process. In (Fayyad, et al, 1996), the term is defined as 

follows: 

 "The nontrivial process of identifying valid, novel, potentially useful, and 

ultimately understandable patterns in data". 

In the knowledge management literature, similar definitions for this process occur with 

different names. the terms “knowledge discovery”, “data mining” and “business 
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intelligence” are sometimes used interchangeably, with knowledge discovery being 

more popular in academic research, whereas data mining is a more widely used term 

amongst practitioners in the industry (Piatetsky-Shapiro, 2007). In (Awad et al, 2004) 

a definition of data mining in the business context is given as follows: 

“Data mining is producing knowledge and discovering new patterns to 

describe data. DM is also predicting future values and business behaviour”. 

However, according to (Fayyad, et al, 1996), at the heart of the knowledge discovery 

process is the application of automated methods that can extract useful patterns from 

large volumes of data, referred to as data mining algorithms. In this context, data 

mining refers to the step in the overall discovery process whereby algorithms are 

applied to data. For consistency, the term will be used in accordance to the above 

definition throughout this dissertation.  

2.5.2. Implications to Knowledge Management 

The discovery of new knowledge from explicit repositories employing automatic 

methods is regarded by some authors as a key knowledge management activity of the 

modern organisation, and a crucial one to knowledge creation. In (Herschel et al, 

2005), business intelligence initiatives that apply automated methods to support data 

analysis is seen as a crucial component in decision making and the creation of 

corporate knowledge; A framework that encompasses discovery activities with 

knowledge management is proposed in (Wang et al, 2008). The knowledge creating 

aspects of knowledge discovery and their relationship to knowledge management are 

also highlighted in (Awad et al, 2004) and (Gargano et al, 2008). 

In the context of knowledge management, it has also been noted that knowledge 

discovery can assist not only on the knowledge creation process but also in support of 

other knowledge management activities such as organising knowledge (Wei et al, 

2002) and performing knowledge elicitation tasks automatically (Awad et al, 2004). 

One example of such use is the eClassifier system for document exploration, 

categorization and taxonomy construction presented in (Cody et al, 2002).  
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2.6. Conclusion 

This chapter has investigated how changes in the competitive landscape had influenced 

the knowledge oriented view of a company, and the subsequent changes in 

organisation strategy. In particular, increasing competition and the need for constant 

innovation has increased the perception of knowledge as a strategic asset for a 

company’s success. 

Knowledge management concerns the management of all aspects of an organisation 

concerned with creating, retaining, renewing and applying knowledge to a company’s 

benefit. To achieve its goals, several frameworks capturing relevant knowledge 

activities were proposed and surveyed. Also, perspectives in knowledge that fit the 

needs of knowledge management were presented. The tacit-explicit dimension and the 

hierarchical view of data, information and knowledge are most notably contributors to 

the view of knowledge within the knowledge management literature.  

The knowledge creation aspects of knowledge management were further investigated 

in this chapter. Creating new knowledge within the scope of an organisation requires 

the correct conditions to be present, amongst others the ability to perform knowledge 

conversions along the tacit-explicit dimension, and allowing for creative conditions to 

exist inside the company, such as opportunities for knowledge sharing, and physical 

and virtual knowledge creation spaces.   

Knowledge discovery provides a process and methodologies for unearthing useful 

information from large sets of data that would not otherwise be feasible within 

reasonable time frames. The motivation for performing knowledge discovery comes 

from the potential for creating new knowledge by extracting novel patterns from 

existing information already stored in explicit format and now widely available on 

information systems across the organisation.  

Knowledge discovery is an important component to creating new knowledge in the 

organisation by means of transforming explicit knowledge into new explicit 

knowledge, as described in the combination knowledge conversion mode on Nonaka's 

spiral of knowledge (Nonaka, 1994). Applying knowledge discovery is thus beneficial 
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to the overall creation of knowledge inside an organisation, and is seen as a crucial 

component of knowledge management initiatives (Wang et al, 2008; Awad et al, 

2004). It is worth highlighting that this conclusion also applies to the particular case of 

this dissertation’s experiment, where methods for automatic discovery of opinion 

information from text are investigated, and can form an important component on the 

decision making  process of certain organisations. 

In the following chapter, processes for knowledge discovery are investigated in more 

details. The key challenges facing discovery projects are discussed, and a detailed 

survey of discovery activities is presented, illustrating in more details what type of new 

knowledge can emerge from data by applying data mining techniques. Predictive 

methods are investigated in more details, and a survey of the state of the art in 

applications for performing knowledge discovery is presented. 
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3. KNOWLEGDE DISCOVERY AND DATA MINING 

This chapter explores related research on the methodologies, goals, key challenges and 

available tools for the execution of a knowledge discovery project. Key knowledge 

discovery processes developed by research and the industry are discussed, and what 

are the important success factors of a project. Data mining techniques presented in the 

literature are reviewed, highlighting the objectives, potentials and challenges of each 

technique. The chapter continues with a more detailed review of classification in data 

mining, algorithms used in classification, and discusses important aspects of 

classification relevant to the opinion mining experiment performed as part of this 

dissertation. To conclude the chapter, a discussion on applications for executing data 

mining projects is presented. 

3.1. Knowledge Discovery Processes 

Knowledge discovery is a complex activity involving multiple steps and requiring 

diverse abilities, such as skills coming from individuals with business understanding, 

analysts possessing familiarity with the data, information technology professionals and 

data miners. As with any complex undertaking, a systematic approach to performing 

all required tasks is crucial to ensure projects are successful, and that successful 

projects are repeatable. This need has not gone unnoticed on both research circles and 

in the industry, with six different methods having been identified and surveyed in 

(Hofmann, 2003). The KDD process and its reviewed version (Fayyad et al, 1996; 

Collier et al, 1998) are an important methodology for knowledge discovery coming 

from academic research. In the industry, the need for a common framework for 

performing data mining that embedded best practices from companies and practitioners 

resulted in the CRISP-DM methodology (Chapman et al, 2000); in addition, core 

knowledge discovery processes are also embedded in software offerings by industry 

providers, as is the case with SAS SEMMA data mining technique of Sample, Explore, 

Modify, Model and Access (SEMMA, 2008). In this section the KDD and CRISP-DM 

knowledge discovery processes are discussed in more details, the approaches are 

compared with further considerations on the important aspects of a knowledge 

discovery project. These considerations will be of importance to this dissertation’s 
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experiment, which will perform a data mining task, and will benefit from best practices 

embedded on these methodologies.    

3.1.1. Analysis of Knowledge Discovery Processes 

To further understand the activities involved in performing a knowledge discovery 

project, this section discusses two processes originating from academic research and 

the industry: the KDD process for knowledge discovery in databases proposed in 

(Fayyad et al, 1996), and CRISP-DM processes (Chapman et al, 2000) originated from 

a consortium of companies involved in data mining. 

KDD Process (Fayyad et al, 1996) 

The KDD Process is a series of interactive steps to achieve the goal of finding useful 

knowledge from large amounts of raw data. The process is designed to be iterative: 

any sequence of steps may be refined and re-executed several times. The diagram 

below illustrates the main stages of the KDD process. 

Figure 3 - Stages of the KDD Process (Fayyad et al, 1996) 

The process begins with identifying the problem domain and business goals, where 

business users and data analysts discuss requirements, scope and how to approach the 

problem from a data mining perspective. Next, work begins on the creation of target 

data set to be analyzed, and data from all relevant sources is identified and sourced. 
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Once a data set is produced, data cleansing and pre-processing occurs: here, important 

pre-requisite steps are performed such as removing noisy data, handling missing values 

and outliers and data type correction, which may impact the performance and quality 

of the final result. The next step in the process is data reduction, where a subset of the 

overall data is selected based on its relevance to the data mining task. Data reduction is 

of critical importance in speeding up mining algorithms to acceptable performance 

levels, especially in cases where data may contain a large number of attributes, or the 

data set is in the order of several million records.  

After data cleansing and reduction, a data set is produced and ready to be mined, and 

work can begin on choosing a data mining task, based on discussions with business 

users and project goals. Also, exploratory analysis of the data set can take place; this 

provides further insights on the nature of the data, helps in determining the data mining 

tasks and provides early feedback on collected data to business users. Any corrective 

action can take place by re-executing earlier stages on the process. Finally, the data 

mining stage is executed, where data mining algorithms are applied to the data set 

based on criteria determined on previous stages. Then, results are evaluated and 

interpreted, and it is likely that this will lead to several iterations of the mining stage, 

so that algorithms can be fine tuned and hypothesis can be confirmed. Lastly, by 

reviewing results of the data mining exercise with business users, these can be used as 

new knowledge and acted upon in their relevant business context. 

Revision of the Original KDD Process (Collier et al, 1998) 

It was observed in (Collier et al, 1998) that the original KDD process touched only 

briefly on two important aspects of knowledge discovery: the framing of data mining 

questions, arising from business requirements but specifically targeted at directing the 

data mining modelling work, should be part of the initial stages of knowledge 

discovery. The second aspect is actionable results: it is not enough to provide 

discovered patterns as the output of a discovery exercise. Instead, directions on how 

the discovered knowledge will be put to practice in the business context should be 

included for a more transparent assessment of its benefits. The iterative nature of the 

process is also a strong aspect of knowledge discovery, and should be made more 

evident. A new diagram is proposed illustrating these remarks: 
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Figure 4 - Revised KDD Process by (Collier et al, 1998) 

CRISP-DM (Chapman et al, 2000) 

The CRISP-DM methodology (Cross-Industry Standard Process for Data Mining) 

grew out of the need to have a common platform-independent process model for 

implementing data mining projects on an industry that was experiencing an explosion 

in demand. It started in 1996 as a consortium formed initially by pioneer companies 

heavily involved in the field of data mining – Daimer-Benz, NCR and SPSS – that 

later transformed into a special interest group comprising several hundred 

representatives from the industry with a stake in data mining technology. Two and half 

years later the initial draft version of the CRISP-DM 1.0 methodology was published 

(CRISP-DM, 2000b).  

CRISP-DM is a process model describing data mining activities in four hierarchical 

levels of abstraction. At the top level are the project stages, which generally describe a 

data mining project and can guide implementations, but can easily be transported 

between industries and data mining scenarios. Any stage can be drilled down into 
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generic tasks, detailed tasks and process instances, which describe with in high detail 

what each activity entails, what are their input and expected outputs. In this regard 

CRISP-DM is a more comprehensive methodology than the high level steps outlined in 

KDD. CRISP-DM is both a reference model and a user guide, embedding 

practitioner’s knowledge and best practices learned from past projects. The CRISP-

DM project life-cycle is divided into iterative stages, but with no specific execution 

sequence. Each stage can be repeated depending on obtained outcomes from previous 

stages, nature of the data and data mining objectives. These are outlined below along 

with a diagram illustrating key interactions between stages: 

• Business Understanding: the initial stage where business requirements are 

understood and agreed upon, a definition of the problem is devised between data 

miners and business analysts and planning can take place. This step will also 

highlight whether the data mining approach is the best or the only viable 

alternative for addressing the underlying business problem (Shearer, 2000). 

    

• Data Understanding: this stage comprises tasks to obtain an initial data collection 

and familiarization with the data. An exploratory analysis of data is also part of this 

stage, which will generate initial findings and insights to be further developed on 

future stages of the project. 

• Data Preparation: With a better understanding of the problem being tackled and 

nature of the data available, data can then be selected, cleaned and pre-processed in 

a variety of ways so that a final data set ready to be applied to a data mining 

technique can be created.  

• Modelling: In this stage a data mining technique will be chosen, applied to the final 

data set and the results assessed. Choosing a data mining technique will depend on 

the nature of the data and specific requirements of the project.  

• Evaluation: The evaluation stage provides a checkpoint to ensure the work 

produced so far is indeed of relevance to the project’s business objectives. A more 
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careful and comprehensive evaluation of the results is carried out, and next steps in 

the exercise are agreed upon. 

• Deployment: Finally, with the correct data and models ready, it is possible to 

deploy the data mining project to the wider business audience and monitor its 

benefits. The entire project is also reviewed with significant insights, pitfalls and 

lessons learned discussed for use in future projects.   

Figure 5 - Stages in the CRISP-DM Methodology (Chapman et al, 2000) 

3.1.2. Considerations on Knowledge Discovery Processes  

From observing the models analysed in the previous section, certain common 

characteristics and key concerns of performing a knowledge discovery exercise 

become evident: Firstly, we identify the iterative nature of the process being stressed 

on both KDD and CRISP-DM methods, suggesting that great level of flexibility is 

required on such projects, since the scope of the exercise is likely to be modified, 
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expanded or contracted depending on what is initially discovered from the available 

data. This can also be seen as a challenge, since it is not known a priori the number of 

iterations a project will require, or when the outcomes will provide a good enough 

answer to the originating business needs. Such decisions need to be weighted against 

the project’s cost and timeframe constraints. 

Another important point highlighted on both processes is the existence of two groups 

with stakes in a knowledge discovery process and distinct skill sets: data miners who 

perform the data extraction, modelling and execution activities, and business 

community users who understand the business problem and wish to apply the results of 

the process to their advantage. To be effective, the project must ensure a constant 

dialogue between data miners and business users, and loosing sight of this interaction 

could cause a misalignment on what the business expects and what patterns data 

miners unearth from data. This could become a key factor in failures on knowledge 

discovery projects (Pyle, 2004). Whereas both KDD and CRISP-DM acknowledge and 

provide stages for discussions with business users within their processes, some authors 

argue that this point deserves greater attention at organisational level, and that it 

requires the development of competencies that blends analytical skills with business 

acumen (Kolyshkina et al, 2007). This issue was also noticed in (Wang et al, 2008), 

and it is framed in a knowledge management context where the traditional knowledge 

discovery process cycle -  typically executed by data miners - is enhanced with a 

second knowledge development cycle executed by the business community. This new 

cycle starts with knowledge sharing of results from the data mining exercise, and 

comprises learning from its results, acting and internalising the acquired knowledge 

and providing feedback for future mining tasks. The next diagram illustrates the two 

cycles and how they interact. 
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Figure 6 - Cycles of Knowledge Development through Data Mining (Wang et al, 2008) 

The diagram also illustrates how knowledge discovery is in fact a knowledge creation 

activity in the context of knowledge management investigated in Chapter 2: the 

explicit knowledge acquired from raw data via data mining can be seen as a knowledge 

combination transformation in terms of Nonaka’s spiral of knowledge (Nonaka, 1994), 

thus enabling further knowledge creation activities to occur. These are present on the 

knowledge development cycle pertinent to business users: new knowledge is shared, 

learned, acted upon and finally unlearned or enforced depending on the outcome 

obtained from the new knowledge. Once new knowledge has gone through the entire 

cycle it can be used as feedback for a new data mining cycle.   

One important stage of a knowledge discovery task present on both processes, but 

often overlooked is data preparation. Collecting, cleaning and reformatting data so it 

can be fit for use in a data mining algorithm is a time consuming and complex task, 

and it is estimated that between 50% and 70% of the time in a knowledge discovery 

project can be spent on these activities (Shearer, 2000). For this very reason it can be 

tempting to reduce project costs and scope by way of neglecting or oversimplifying 

data preparation issues, with negative consequences to the quality of the final results 

(Pyle, 2004). An example in (Kolyshkina et al, 2007) illustrates how poor data 
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preparation can damage the outcome of a project: it was discovered after reviewing 

poor results from the data mining exercise, that in incorrect assumption on the source 

data caused a salary field to be filled with zero value on a significant number of cases, 

thus incorrectly skewing the final results and invalidating the analysis. 

  

Finally, choosing a data mining technique for a specific problem is also a difficult task 

that needs thorough understanding of the project objectives and the universe of tools 

available (Wang et al, 2008). Choosing a model best suited for a project’s desired 

outcome has to be done taking factors such as data availability and quality, how much 

understanding from the model is required for business users, time constraints, 

familiarity with a technique and the business goals of the project. In (Chapman et al, 

2000) the CRISP-DM methodology states that initial results from a model should be 

assessed and tuned iteratively. CRISP-DM also provides a categorization of techniques 

in term of mining tasks, in order to assist in choosing the right technique for a specific 

problem, and in (Pyle, 2004) it is suggested that data mining goals should be extracted 

from business goals via the construction of a goal hierarchy, starting with the business 

problem being addressed and adding more layers of detail until a business question can 

be framed in data mining terms.  

The experiment performed as part of this dissertation comprises the execution of a data 

mining algorithm to identify opinion bias in text documents. It is useful to approach 

this task with a systematic methodology that will guide the execution of the 

experiment, embedding previously acquired best practice knowledge on common 

pitfalls and areas of concern, and this can be achieved by leveraging the methodologies 

discussed in this chapter, since the experiment will face similar issues on data 

preparation and choice of data mining techniques, will be iterative in nature, and 

should never loose sight of the higher level goals an opinion mining project hopes to 

achieve. In the next section the stage where data mining algorithms are applied to data 

is discussed in more details, with particular consideration to predictive data mining 

techniques for data classification – the technique used in this dissertation’s experiment. 



52 

3.2. Data Mining Techniques 

The overall goal of data mining is to extract knowledge from large volumes of raw 

data that satisfies the criteria of novelty, usefulness and intelligibility (Fayyad, et al, 

1996), and as discussed in the previous section, a systematic process can be applied to 

find, extract and prepare data so it is ready to be explored.  

Data mining is a field rich in techniques available to the analyst, each with a varying 

number of parameters to choose from, and deciding on the most suitable one for a 

given task can be particularly daunting. It is also noted in (Chapman et al, 2000) that 

the data miner needs to choose from the universe of available tools, the ones that fit 

both business constraints and political requirements of the project, such as the delivery 

time and intelligibility of results. Deciding on what data mining techniques to apply to 

the data based on the overall goals of a knowledge discovery project is the goal of this 

section. 

3.2.1. Goal Based Categorisation of Data Mining Techniques

To help in better choosing which data mining technique to apply, it is useful and 

common in the literature to categorise them according to the overall goals of the 

knowledge discovery projects. In (Fayyad et al, 1996), data mining methods are 

grouped into prediction and description. In (Hand et al, 2001), exploratory data 

analysis, information retrieval and rule discovery are also added to the categorisation. 

A similar categorisation of data mining techniques according to types of problem is 

also present in the CRISP-DM methodology (Chapman et al, 2000). We explore in 

more details the data mining goals and their associated techniques in the remaining of 

this section.  

Predictive Methods 

Predictive methods attempt to determine future values of a variable of interest by 

learning from data available on a given data set. This variable can be, for instance, the 

suitability of a loan application given an applicant’s financial data, or the future share 

price for a given company. When using predictive methods, there are two important 

assumptions to consider: It is assumed that a data set containing instances with values 

for the variable we are trying to predict is available for training. Learning in predictive 
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methods works solely by observing past occurrences and attempting to find patterns on 

it, and have no ability to reason or derive conclusions from basic principles (Weiss et 

al, 2005), thus it is also assumed that inherent to the data set are patterns which can fit 

future occurrences of the information being predicted (Alpoydin, 2004). If future 

occurrences are completely different to the ones used in training, or the data does not 

capture important aspects that determine future behaviour, then prediction results may 

not be relevant. With this in mind data mining algorithms can be applied to “learn” 

such patterns and make predictions on a given variable to yet unseen occurrences, not 

present on the original data set. Algorithms performing predictive methods that take 

into account known instances of the target variable for training are categorised in the 

machine learning literature as supervised learning methods (Nilsson, 1996; Alpoydin, 

2004).  

Another factor to be considered is the type of variable being predicted: the target 

variable could be a real valued number of interest to the problem, such as predicting 

the target price of items in an auction; or the target variable can be determining 

whether an instance belongs to a pre-determined class a priori, with no numeric 

relevance, such as predicting whether a transaction is fraudulent, or whether an email 

is considered spam. Classification methods attempt to learn a function that maps a data 

into one of a set of predefined classes. There are numerous examples of the application 

of classification methods in knowledge discovery literature, such as the case studies 

surveyed in (Wei et al, 2002) for predicting credit application adequacy, customer 

profiling, and disease screening; and the classification of astronomical objects seen in 

(Fayyad et al, 1993). Other popular classification examples involve spam detection 

(Drucker et al, 1997), and fraud detection in financial services and telecommunications 

industry (Awad et al, 2004). To illustrate the goal of classification, the graphic below 

represents a two-attribute data set of bank loan applications labelled “yes” and “no”. 

The grey line separates the examples into a classification boundary, and represents 

how future instances might be categorised: 
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Figure 7 - Example Classification of Loan Applications 

In Regression a function is learned from an initial set that maps a data item to a real 

valued prediction variable. The key difference between regression and classification is 

that the predicted value does have numerical significance (Hand et al, 2001), such as 

predicting future property values, fuel consumption of an automobile, or stock prices; 

whereas in classification the predicted class is solely a class identifier determined a 

priori with no numeric value. 

Descriptive Methods 

The primary objective of descriptive methods is to describe important aspects of the 

data set in a human understandable format. Examples of descriptive techniques include 

clustering, where data is partitioned into groups according to a similarity criteria, 

modelling the probability distribution of the data; dependency modelling, where 

models attempt to find dependency relationships between data items, and change 

detection, where models are built to find out most significant changes on data from 

previous measurements. Additionally, summarization of data in a more concise format 

is also viewed as a descriptive method in (Fayyad et al, 1996). 

Descriptive clustering techniques have been employed to better understanding of 

customer transactions in the web (Yang et al, 2005) and for detecting user 
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personalisation preferences (Mobasher et al, 2002). Hierarchical clustering applied to 

categorising concepts in text data sets is seen in (Fry et al, 2008). 

Exploratory Data Analysis 

Exploratory data analysis is the application of data mining techniques to obtain further 

insights on the data, without a specific goal in sight. It is seen in (Fayyad et al, 1996; 

Chapman et al, 2000) as a preliminary stage in the knowledge discovery process 

aiming at acquiring familiarity with the data and directing further discovery activity, 

and was noted to be a crucial, often overlooked step in the success of knowledge 

discovery projects (Pyle, 2004; Kolushkina et al, 2007). Data exploration in itself can 

also be seen as a genuine data mining goal since its output may produce sufficient 

information to enable the discovery of knowledge and improved decision making 

(Hand et al, 2001). 

Exploratory data analysis techniques tend to be interactive and visual in nature, 

highlighting the strong level of human involvement in such activities. These 

techniques are also named visual analytics in the literature, and suggest a more 

prominent role for human cognitive and perceptual processes in discovering patterns 

by interacting with data not only by using well known plotting and summarization 

methods such as charts and scatter plots, but also by means of innovative visualization 

techniques (Keim et al, 2007). To this end, more sophisticated interactive computer-

aided interfaces can be employed to enrich the data exploration process by supporting 

typical tasks of visual analytics such as presenting a data overview, zooming, filtering 

and presenting details on demand (Keim et al 2007, Schneiderman 1996; Fry, 2008). 

Visual analytics applied to large data sets is an active area of research, with results 

being applied to the analysis of social networks (Kang et al, 2007), genetic pattern 

identification (Hochheiser et al, 2003) and text analysis (Zheleva et al, 2007).   
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Rule and Pattern Discovery 

This class of algorithms is concerned with detecting patterns in data, such as regions or 

events that differ significantly on the data set being analyzed. Examples of applications 

of pattern detection include detecting fraudulent behaviour in credit card transaction, 

or detecting astronomical objects with unusual characteristics. Rule learning methods 

not only detect patterns, but often have the ability to present intelligible results that can 

be easily analysed (Hand et al, 2001). 

One popular technique for finding rules in data sets originates from the problem of 

market basket analysis, where the objective is to identify from a data set of shopping 

transactions what items are commonly purchased together. This problem can be 

generalised to other areas where the objective is to identify common associations 

between items in a data set, and became known as association rule mining (Hipp et al, 

2000). A large quantity of algorithms was developed to address this type of problem, 

the APriori algorithm being one of the most popular (Agrawal et al, 1994), with 

several improved variations being developed since its inception, along with different 

techniques being developed, as surveyed in (Hipp et al, 2000). Association rule mining 

has been put to practice on databases from several different industries, such as retail 

organisations looking for cross-marketing and product placement opportunities (Brijs 

et al, 2000), profiling students in educational institutions (Ma et al, 2000), and 

predicting the occurrence of heart disease given certain diagnostic conditions 

(Ordonez, 2006). 

Rule induction methods describe another set of techniques aimed at representing 

discovered patterns in data according to a rule framework. In this context, a rule can be 

described in terms of a first order logic proposition, as per the example: 

If Salary is higher than 30000 AND HomeOwner then Approve Loan. 

The core idea of rule induction is to perform a search for potential rules on the existing 

data, and rank these rules according to a fitness function, such as rule probability or 

degree of generalisation (Hand et al, 2001). To this end, decision tree methods such as 

the algorithms described in (Quinlan, 1986) can be employed to find useful rules: a 
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branch is considered a candidate rule that can then be scored according to the desired 

fitness method. Other methods employed include search the result space with 

heuristics, as used by the CN2 (Clark et al, 1989) and the HYDRA algorithms (Ali et 

al, 1993). Examples of applying rule induction methods have been documented in the 

literature, for instance in systems assisting in genetic-based diagnostics (Livingston et 

al, 2003), and in building of stock portfolios for financial engineering (John et al, 

1996). 

3.2.2. Summary and Considerations 

The table below summarizes the data mining methods according to their goals: 

Goals Data Mining Techniques Application Examples 

Prediction  

(Fayyad et al, 1996; Hand 

et al, 2001) 

Classification. 

Regression. 

Credit application, customer 

profiling and disease screening 

(Wei et al, 2002); categorization 

of astronomical observations  

(Fayyad et al, 1993); spam 

detection (Drucker et al, 1997); 

fraud detection  

(Awad et al, 2004). 

Description 

(Fayyad et al, 1996; Hand 

et al, 2001)

Clustering. 

Summarization. 

Dependency Modelling. 

Change Detection. 

Probability Estimation. 

Summarisation of documents 

(Weiss et al, 2004); Analysis of 

web transactions (Yang et al, 

2005); Hierarchical clustering 

(Fry et al, 2008); Web 

personalisation (Mobasher et al, 

2002). 

Exploratory Data 

Analysis 

(Hand et al, 2001) 

Visual Analytics. 

Summarization. 

Social network analysis (Kang et 

al, 2007); Genetic pattern 

identification (Hochheiser et al, 

2003); Text analysis (Zheleva et 

al, 2007).   

Rule and Pattern Association rule mining. Retail (Brijs et al, 2000); 
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Discovery 

(Hand et al, 2001) 

Rule induction. 

Student Profiling (Ma et al, 

2000); Heart disease diagnostic 

(Ordonez, 2006). 

Generating investment portfolio 

(John et al, 1996), and Genetic-

based diagnosis (Livingston et 

al, 2003). 

Table 4 - Data Mining Techniques Categorised by Goal 

The goal oriented classification of data mining techniques gives a good overview of 

what data mining is capable of achieving which, coupled with understanding of 

business objectives and domain knowledge is a useful guide in determining what 

methods to apply to a specific task. It can also be noted that the data mining techniques 

need not necessarily be used independently, and that some techniques are well suited 

to more than one goal. We see for instance, how similar pattern discovery methods can 

aid in a prediction objective (John et al, 1996) and also in data description (Brijs et al, 

2000). The goals of data mining also may overlap, as rule discovery is closely related 

to the goal of prediction, and indeed certain predictive methods do provide explanatory 

capabilities suitable for a rule discovery exercise, as will be further detailed on the 

survey of classification algorithms in the following section.   

The goal of this dissertation experiment is the prediction of sentiment orientation on 

text as being positive or negative, which involves the use of supervised learning 

methods. In the following sections two key elements for performing a classification 

task in data mining are defined and discussed in more details: these are the aspects of 

the data set and classification algorithms. 

3.2.3. Considerations on the Data Set 

One important aspect data mining is that it relies on available data for the application 

of techniques and extraction of meaningful conclusions. Data sets from the real world 

however will rarely be in the correct format for data mining, or free from a variety of 

errors and noise. Ensuring data represents as closely as possible the domain in which 

knowledge needs to be extracted, and that the quality of data has been verified is 
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therefore crucial to obtaining better results. Before discussing data mining algorithms 

in more details, it is useful to qualify more formally what is meant by the term data 

set, and discuss data quality issues commonly found in them. 

At a general level, a data set comprises “a set of measurements taken from some 

environment or process” (Hand et al, 2002). The term is formalised as a set of n

objects, for which p measurements on different events or attributes were made, 

forming thus a n x p matrix of data points. Each group of measurements for a given 

object in this matrix is commonly called a case, entity, record, or vector while the 

individual measurements for a given object are typically called variables, attributes, 

features or fields (Hand et al, 2002; Nilsson, 1996). The table below is an example of a 

simple data set for bank loan applications in the form of a matrix of 5 measurements 

and 9 attributes: 

ID Age Employment 

Status 

Years 

Employed 

Salary Dependents Home 

Owner 

Home 

Value 

Approve 

Loan 

100 44 Employed 15 35000 2 Y 250000 Y 

101 32 Self-Employed 8 28000 2 N  N 

102 27 Employed 5 25000 0 N  Y 

103 53 Unemployed 21 44000 3 Y 300000 N 

104 33 Self-Employed 9 35000 1 Y 20000 Y 

Table 5 - Example data set for loan applications 

From the above example a few key observations can be made on the nature of data 

sets. Firstly, for the purposes of data analysis, data can be distinguished into numerical

– where attributes possess real values; and categorical, where attributes can only take a 

predetermined set of discrete non numeric values. In this example, “employment 

status” and “home owner” are categorical, as they only allow values from a specific 

set.  The presence of numerical or categorical data will determine what algorithms are 

more suited for the data mining task.   

Another aspect of real world data sets is that, due to measurement problems or the 

nature of data, attributes values may be missing or unknown, as is the case on the field 

“home value” in the above example. The existence of missing values can deteriorate 

the quality of the data mining results, and several approaches have been developed to 
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handle the issue, ranging from ad-hoc methods aided by domain knowledge to more 

sophisticated approaches. At first instance, removing data with missing values can be 

attempted: in this approach, rows where missing values are found are simply removed 

from the data set before performing any data mining activity. However removing a 

large number of entries due to missing values may skew the data set and affect the end 

result of the data mining task. 

When removing missing values is not possible, data imputation methods can be 

applied. With knowledge of the data set and domain being modelled, missing values 

can be “filled in” with an appropriate value, such as a fixed value: in the example data 

set from Table 4, “home value” may indicate the amount of collateral being offered for 

the loan application, and could be replaced with a constant value where it is known 

that the applicant is not a home owner; other similar rules can be composed with 

sufficient domain knowledge and knowledge of the data collection process.  Another 

approach would be to replenish missing values with the mean value for that attribute 

over all instances in the data set, or over instances whose other attributes contain 

similar values, in case the attribute is numeric. The use of such methods however 

should be cautious: it is advocated in (Weiss et al, 1998) that it is preferable to perform 

classification without any missing values, or rather than attempting to perform the 

above pre-processing tasks, apply a classification algorithm capable of handling 

missing values simply as another value for data. Other more sophisticated statistical 

techniques, such as expectation minimization and predictive mean matching have also 

been attempted and demonstrated superior empirical results in classification tasks on 

instances where missing data occurs (Su et al, 2008). 

Data mining relies solely on the data set being analysed, thus other aspects to data 

quality such as data precision and accuracy need also be taken into account when 

preparing a data set. Data precision relates to the amount of variation observed on the 

measurements being collected. Measurement variability can be caused by 

environmental factors or instrument quality. Data accuracy reflects how close the 

measurements are from their expected “true” value. Inaccurate measures can be caused 

by faulty measurement devices, or bias caused by external factors. In (Hand et al, 

2001), the notions of reliability and validity are also discussed: these relate closely to 

the concepts of precision and accuracy, but the terms are applicable to social and 
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behavioural sciences and the issues encountered on data collection in this area. A 

reliable measurement means results for a given question are repeatable for the same 

circumstances and persons; validity relates to how relevant is the data, or questions 

being asked to the phenomena being measured.   

Outliers 

Outliers are abnormal instances on data due to a considerable deviation from other 

instances in the data set. They can be caused by errors in measurement, and may cause 

distortion in the model being built by a data mining algorithm, when they can be 

considered unrepresentative of the domain being measured. On the other hand, outliers 

can be sometimes sought elements in data, as would be the case on fraud detection and 

spam detection systems, where it is assumed the majority of occurrences will follow a 

given pattern, and unusual patterns are triggered by fraudulent behaviour, or spam 

activity. Identifying outliers is typically carried out by a comparison with the 

remainder of the data set, via a similarity measurement. A method involving clustering 

techniques is seen in (Ramaswamy et al, 2000); with other methods surveyed in (Hand 

et al, 2001; Knorr et al, 1998). 

3.3. Data Mining Algorithms for Classification 

The main objective of this section is to introduce and discuss predictive algorithms that 

perform the data mining task of classification, also known as classifiers. This chapter 

reviews the relevant research topics in the literature that relate to the choice and 

evaluation of classification algorithms. A formalization of a classification algorithm is 

presented, alongside with historical background on various classification methods. 

Algorithms for classification are briefly surveyed, with emphasis on techniques more 

commonly applied in the literature and with greater relevance to text classification. 

Finally, success criteria metrics and common challenges to classification are discussed. 

3.3.1. Introduction 

The problem of data classification can be seen as an instance of the more generic 

problem of fitting a model to observed data (Alpoydin, 2004), a concern that exists not 

only on computer science, but on different fields of research. Hence, the algorithms 

used as classifiers have their origins on diverse fields from induction on statistics, 
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pattern recognition and signal processing in engineering, machine learning, 

information theory and artificial intelligence to the more recent biology inspired 

methods such as neural computing and evolutionary methods (Alpoydin, 2004; 

Kulkarni et al, 1998). Supervised learning algorithms are an active field of research 

with new techniques and improvements to already existing algorithms being developed 

constantly. A comprehensive survey of all available classification techniques in the 

literature would be beyond the scope of this dissertation. Indeed, being such a vast 

topic, the difficulties in compiling an exhaustive survey have been noticed as early as 

in (Ho et al, 1968). Nonetheless, it is relevant to present and discuss the development 

of well known classes of algorithms and state-of-the-art methods, and their relative 

strengths and weaknesses. This assessment will allow for a more careful selection of 

what classifier will be employed to this dissertation’s experiment and will allow us to 

further illustrate the implications of choosing a particular algorithm over another. Well 

known classes of algorithms are commonly discussed in recent data mining textbooks, 

such as (Hand et al, 2001; Alpoydin, 2004; Weiss et al 1998) and also in more specific 

data mining literature such as text mining (Weiss et al, 2005). A survey on algorithms 

focusing on two class pattern classification including state-of-the-art methods can be 

found on (Kulkarni et al, 1998). Variations on specific classes of classification 

algorithms such as neural networks and tree-based methods are surveyed in (Zhang, 

2000) and (Lim et al, 2000). 

3.3.2. Supervised Learning Algorithms 

As discussed in section  3.2.1, a supervised learning algorithm attempts to predict 

future values of a given variable based on information contained on an already present 

data set used for training. The data set contains instances of the variable we wish to 

predict, and it is assumed that future values retain a certain similarity to already 

observed values, which can be “learned” by a supervised learning algorithm. This 

dependency on the available data as being representative for predictions is worth 

stressing: if future values do not retain any similarity to already seen data, prediction 

results will not be reliable (Alpoydin, 2004; Weiss et al 2005). Thus, the design of 

good supervised learning algorithms has a dependency on the data available for 

training. 



63 

Judging the fitness of a classifier depends in part on the data mining objectives, and on 

how technical factors such as training time are likely to affect the end result of the 

task. In (Weiss et al, 1998) the evaluation of a classifier is based on its data pre-

processing requirements, solution complexity, timing and explanatory capabilities. 

Data pre-processing requirements relate to issues such as handling of missing features 

and ability to handle both numerical and categorical features; solution complexity

indicates the level of parameterisation that the underlying algorithm model allows; 

timing indicates training time and algorithm runtime, which when considering large 

volumes of data are important factors in the project completion; the explanatory 

capability of an algorithm suggests whether the explanation for a given classification 

decision can be easily understood from the classifier output. In (Alpoydin, 2004), it is 

argued that good classifiers should be able to predict the correct output for new 

instances after learning from the training set. In other words, they should have the 

ability to generalise well from the training data. Other desirable characteristic of a 

good classifier is its robustness: the ability to generate good results despite the 

existence of anomalies in the data caused by noisy data due to incorrect labels, 

imprecision in data collection and measurement errors. In the next section, a survey of 

classification algorithms is presented, discussing them in the context of their strengths 

and weaknesses in practical applications and in text mining in particular.    

3.3.3. Nearest Neighbour Methods 

Nearest neighbour methods are considered one of the simplest and most yet effective 

classes of classification algorithms in use. Their principle is based on the assumption 

that, for a given set of instances in a training set, the class of a new yet unseen 

occurrence is likely to be that of the majority of its closest “neighbour” instances from 

the training set. Thus the k-Nearest Neighbour algorithm works by inspecting the k

closest instances in the data set to a new occurrence that needs to be classified, and 

making a prediction based on what class the majority of the k neighbours belong to. 

The notion of closeness is formally given by a distance function between two points in 

the attribute space, specified a priori as a parameter to the algorithm. An example of 

distance function typically used is the standard Euclidean distance between two points 

in an n-dimensional space, where n is the number of attributes in the data set. 
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When using nearest neighbour methods the clear decision to be made by the data miner 

relates to the choice of values for k and distance function that optimize results for a 

given training set. Choosing too small a value for k, for instance, k=1 neighbour may 

cause the algorithm to become much too sensitive to training data and thus instable 

when new occurrences are inspected. On the other hand, large values of k may cause 

the algorithm to include much too distant points, which are not necessarily close to the 

instance being inspected, and algorithm may loose some of its predictive power. There 

are theoretical results indicating that k should grow as the number of instances 

available for training grows (Kulkarni et al, 1998), other results however indicate that 

for sufficient large training sets there is little benefit in increasing k beyond very small 

values (Cover et al, 1967). With respect to distance functions, the best choice will 

depend on the data being used. Euclidean distance is a popular choice with numerical 

data, and often extended to incorporate weights representing a measure of importance 

of each attribute (Hand et al, 2001). In text mining, document similarity by word co-

occurrence is commonly used as a distance function (Weiss et al, 2005)  

Nearest neighbour methods have the advantage of being simple to understand and 

implement, and there is sound theoretical foundation for the convergence of nearest 

neighbour method to the best possible solution as the training set increases (Cover et 

al, 1968; Kulkarni, 1998) . Other important factors are its ability to easily handle 

missing values (by selectively eliminating from the distance calculation the dimensions 

where values are missing) and ability to easily implement a reject option when the 

confidence of a prediction is not acceptable (Hand et al, 2001). Classification based on 

distance functions often translate to a certain measure of similarity between data 

points, which facilitates the interpretation of results by simple comparison to its closest 

neighbours. The method however has certain drawbacks: numerical values are required 

for the calculation of distance metrics between data points, and thus the algorithm does 

not readily work with categorical data; also, because it is based on a distance metric, it 

can be sensitive to dimensions with comparatively larger values, a problem that can be 

mitigated by introducing weights to dimensions in distance calculations or adjusting 

values as a data pre-processing step.  Also, nearest neighbour methods tend to perform 

poorly on high dimensional attribute spaces with limited training data, as distance 

values used for prediction decisions get exacerbated with the growth in number of 

dimensions in the data set (Hand et al, 2001). In fact it can be shown that for nearest 
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neighbour methods, the size of the training set required to achieve acceptable levels of 

performance increases exponentially with the dimension of the data set (Kulkarni, 

1998). The method also contains certain scalability issues, caused by the fact it needs 

to store all data points from the training set in order to calculate distances and compute 

a prediction.

3.3.4. Tree Based Methods 

Tree based methods attempt to solve the classification problem by recursively finding 

partitions of the solution space based on data attributes which optimally separate the 

classes being predicted. This procedure is performed recursively on the training data 

set, so that each stage introduces a decision point related to an attribute. In the data set 

example from table 4, for instance, a decision rule could be created on attribute 

“Employment Status”, partitioning the data according into “Unemployed” and 

“Employed, Self-Employed” when classifying on the target variable “Loan 

Approved”. From this rule, further rules could be recursively devised for other 

attributes such as “Home Owner”, “Salary”, etc. The end result is thus a tree where 

each tree node creates a decision rule for classifying the data based on a given 

attribute. The process of creating new nodes (e.g. new branches in the tree) stops when 

a given threshold such as tree size or number of instances found for a given node is 

reached.  

The key issue to consider when designing a tree-based algorithm is how to choose a 

data attribute to be used in the tree node such that the solution space is optimally 

divided according to the class being predicted. To this end, attributes can be ranked 

according to a scoring function that represents the greatest possible improvement on 

the tree classification. One approach would be to simply apply the loss function, or 

classification error described in 3.3.2 (Hand et al, 2001). However the development of 

tree-based algorithms has seen other scoring methods being proposed providing more 

effective results (Kulkarni et al, 1998). For instance, the ID3 algorithm (Quinlan, 

1986) uses a scoring function based on the concept of information gain, and attribute 

selection is based on minimising a measure of entropy on the attributes being 

investigated.  
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Decision tree methods have the advantage of providing an output model that is 

relatively easy to interpret and explain: to understand how the classifier arrived at a 

particular decision, one must simply retrace its steps from the root of the tree, 

following decisions taken at each node. This class of algorithms also have the ability to 

handle both numerical and categorical data easily, and achieve relatively quick 

execution times: once the tree model is built, finding a classification decision for a new 

instance requires simply traversing the decision tree. Decision trees however have the 

potential downside of long training time, since data needs to be partitioned on a given 

attribute at each node and the number of nodes doubling each time the decision tree 

grows by one level, although algorithmic improvements are available to mitigate this 

type of problem. Another consideration is the fact that decision trees are a monothetic

class of algorithm: because each node is split according to one attribute, only one 

attribute is considered at a time. This has the potential performance downside on 

problems where data is better described (and partitioned) as a combination of more 

than one attribute, such as a in a linear combination of attributes (Hand et al, 2001).  

3.3.5. Naïve Bayes 

The Naïve Bayes classifier uses a probabilistic approach for predicting the class of a 

given data point. The starting point is the Bayes theorem for conditional probability, 

stating that, for a given data point x and class C: 

Furthermore, by making the assumption that for a data point x = {x1,x2,…xj}, the 

probability of each of its attributes occurring in a given class is independent, we can 

estimate the probability of x as follows (Hand et al, 2001): 

Training a Naïve Bayes classifier therefore requires calculating the conditional 

probabilities of each attributes occurring on the predicted classes, which can be 

estimated from the training data set. Naïve Bayes classifiers often provide good results, 

and benefit from the easy probabilistic interpretation of results. However, the model’s 
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main weakness lies on the assumption of independence of occurrence of attributes. 

This may not always hold on real data sets, where attributes may be strongly 

correlated. Consider, the data set presented in Table 5, where the “salary” and “home 

value” attributes, for instance, can be expected to be correlated.  

3.3.6. Large Margin Classifiers: Support  Vector Machines 

Support Vector Machines are a class of algorithms for classification that belong to 

parametric methods – that is, finding an adequate function that partitions the solution 

space so as to separate the training data points according to the class labels being 

predicted, under the assumption that future prediction follows the same pattern. In the 

simple case where a linear function divides the two classes, a resulting hyperplane 

partitions the solution space. The following graph illustrates dividing hyperplanes for a 

sample of points belonging to 2 classes: 

Figure 8 - Hyperplane Separating Two Classes 

In the above example, there is a potentially unlimited number of separating 

hyperplanes dividing the two classes. In choosing the best possible one, an intuitive 

idea would be to choose a hyperplane that has the largest distance between any points 

from either class, thus creating the widest possible margin between points from the 
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classes. The intuition behind this method is that a hyperplane with a large margin 

would be a “safer” classification boundary, less likely to make prediction errors by 

being to close to the boundaries of one of the classes. Finding such hyperplane is the 

objective of the Support Vector Machine algorithm, first presented in (Boser et al, 

1992). To achieve this, the problem can be formalised as finding the vector w, such 

that: 

For classes C1 and C2, and feature data vectors X = { xt, rt } where: 

rt = +1 if xt ∈∈∈∈ C1, and 

rt = -1 if xt ∈∈∈∈ C2 

Find w and constant w0, such that the dot product of w and a given data vector is as 

follows: 

wt •••• xt  + w0 ≥≥≥≥ +1 if xt ∈∈∈∈ C1, and

wt •••• xt  + w0 ≥≥≥≥ -1 if xt ∈∈∈∈ C2 

And w has maximum length (Alpoydin, 2004).  

The above equations state that points belonging to class C1 and C2 are on separate 

sides of the orthogonal hyperplane defined by the vector w, and by maximising the 

vector length ||w||, we obtain a dividing hyperplane with maximum distance between 

points from either class.  It is demonstrated in (Boser et al, 1992) that finding this 

optimal hyperplane translates to a quadratic optimization problem, and whose 

complexity depends on the number of training vectors N, but not on the dimensionality 

of the data set. This is an interesting feature of this method as it has the potential to 

address the requirements of high dimensionality data sets, and as seen in (Alpoydin, 

2004), the time complexity of this method has an upper bound of N 3. Another 

interesting result is that the model obtained from training support vector machines 

takes into account only the data points close to the dividing hyperplane for predictions: 

these are called the support vectors, and are expected to be in much smaller number 

than the entire data set, thus providing an algorithm with good performance during 

execution time.  
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It can not always be assumed that the classes can be suitably divided by a linear 

hyperplane, and in some data sets this assumption may be voided by noisy data, or by 

the nature of the data sets. On those cases, the method provides the ability to introduce 

an error constant during the learning process, where a penalty score C is added to 

points too close, or beyond the dividing hyperplane, thus allowing for some flexibility 

on misclassified points. Another important feature of Support Vector Machines in 

dealing with cases not linearly separable is its ability to map the problem space into 

another, possibly more convenient space by means of a kernel function, where the 

points allow for better separation. Several kernel functions have been employed to 

support vector machine classification, and have been surveyed in (Alpoydin, 2004).  

As noted in (Burges, 1998) the theory of Support Vector Machines does not guarantee 

high performance of the method on all cases, however one interesting result as noted in 

(Alpoydin, 2004; Burges, 1998) states it can be demonstrated that the expected error 

for a Support Vector Machine classifier is a function of the number of support vectors, 

and not its dimensionality. This upper bound could translate to good performance, 

especially on high dimensional data sets. Also, some results from statistical learning 

theory suggest a relationship between large margins obtained by the method and 

reduced upper bounds on classification error (Kulkarni et al, 1998). In any case, the 

method has reportedly performed very well on empirical experiments, ranging from 

image recognition (Boser et al, 1992), text classification (Joachims, 1998), to opinion 

mining (Pang et al, 2002; Kennedy et al, 2006; Pang et al, 2004). 

3.3.7. Considerations on Classifier Techniques 

In the sections 3.3.2 to 3.3.6 of this chapter, common classes of classification 

algorithms were surveyed, with emphasis on their underlying motivation, applicability 

and positive aspects. It can be seen from the algorithms inspected that each implements 

a specific heuristic to address the lack of information regarding the unknown real 

distribution of data. Therefore, each method makes assumptions on how the predicted 

classes can be separated: for the Naïve Bayes algorithm, this corresponds to its reliance 

on the probabilistic independence of attribute occurrence, and in Nearest Neighbour 

methods, its assumption that data belonging to the same class are close by a certain 

similarity measure. These assumptions reflect the inductive bias of a certain algorithm, 
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and should be understood so that performance results can be correctly interpreted 

(Alpoydin, 2004).  

To summarise the findings of this survey the results on each method’s assessment is 

presented in the table below. 

Algorithm Positive Aspects Negative Aspects 

k-Nearest 

Neighbour 

Simple to understand and 

implement.  

Easy interpretation. 

Potentially slow as training data 

increases. 

Categorical or missing values need 

to be pre-processed.  

Decision Trees Model is easy to interpret. 

Handles both numerical and 

categorical data. 

Monothetic, potentially leading to 

sub-optimal solutions. 

High training times. 

Naïve Bayes Model is easy to interpret. 

Efficient computation. 

Assumption of attributes being 

independent not necessarily valid. 

Support Vector 

Machines 

Very good performance on 

experimental results. 

Low dependency on data set 

dimensionality. 

Categorical or missing values need 

to be pre-processed. 

Difficult interpretation of resulting 

model. 

Table 6 - Survey of Classification Methods 

As noted earlier in this chapter, the above survey aims at presenting popular 

classification techniques and their approaches to data-driven prediction, and represents 

only a fraction of available classifier techniques, with many more constantly being 

developed. Other methods based on the same principle present on Support Vector 

Machines, of finding a dividing hyperplane can be seen in the linear discriminant class 

of methods presented in (Hand et al, 2001; Weiss et al, 2005). A closely related 

method that received much attention on pattern recognition problems is Neural 

Networks, presented in (Kulkarni et al, 1998; Geman et al, 1992). A variety of 
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methods applied to the classification of textual data is surveyed in (Sebastiani et al, 

2002). 

Choosing a Classifier 

The analysis of some of the available classification methods provided in this section 

highlighted key characteristics to observe when choosing a classifier for a particular 

task. The nature of the data set should be taken into account, in terms of 

dimensionality, size and data characteristics. Most methods presented handle only 

numerical data, and categorical or missing values need to be addressed before training. 

Training and runtime characteristics of each algorithm must also be taken into account, 

as time requirements are a determining factors to project success, cost and ultimately 

to the usefulness of the data mining task. On some cases, the high dimensionality or 

sheer size of the data set may forbid the application of slow performing methods. The 

explanatory capabilities of the method also need to be taken into account, and may 

constitute a key factor in the choice of data mining algorithm, depending on the 

expected outcomes of the data mining exercise by the end users. 

Finally, it would be ideal to choose the classifier with the best performance in terms of 

minimisation of classification error. In other words, a classifier that makes as little 

mistakes as possible on its predictions. Determining which classifier will perform best 

is dependant on a number of factors related to the availability of data, such as 

distribution of the class label in the total population - an unknown fact in principle - 

and how closely that distribution is represented in the data attributes available for 

training. It is desired that the distribution present on the training set closely reflects 

that of the entire population but this however can not always be guaranteed. The size 

of the training set is also relevant, since larger training sets tend to approximate the 

performance of a classifier to the best obtainable performance in its class, as 

theoretical results for various methods demonstrate (Kulkarni et al, 1998). In addition, 

induction bias has a part to play in choosing an algorithm since a particular heuristic 

present in one technique may better discriminate classes than other methods for a 

particular problem.  

In general, however the available data is the single most important source of 

information and intuition on deciding on a classification method, and the 
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recommended approach in the literature for choosing the best performing classifier for 

a given problem is not based on algorithm principles or theoretical results, but instead 

it advocates proceeding in a data driven approach, by making the best use of the 

available training set and experimenting with different methods and parameters (Hand 

et al, 2001; Kulkarni et al, 1998; Weiss et al, 1998). 

3.3.8. Evaluating Classifier Performance 

Determining how well a classifier will make predictions on unseen data is one of the 

most crucial aspects of any supervised learning task. A series of methods for 

evaluating classification performance are investigated in this section. 

Testing on Unseen Data 

If the performance of a classifier is tested against data used for the training process, it 

can be expected that the predictions will be optimistically biased, since these are data 

points already “seen” by the classifier (Hand et al, 2001). Thus, a better option is to 

test the classification results on a separate data set, not used during training, and the 

data set can be divided into two sections: the training set is a subset of data used to 

train the classifier algorithm; and the validation set is used to evaluate predictions 

using the trained algorithm, and measure classification results. This strategy will allow 

the classifier to be tested on data points not used during training, and therefore yet 

unseen by the classifier. 

A further extension of this approach takes into account the fact that when testing only 

on a particular subset of data, there is a chance of the algorithm performing unusually 

good or bad simply by chance, as a result of the selected data points for each of the 

subsets. To mitigate this problem, the training and testing cycles can be repeated using 

different subsets from the data set, in a process called cross-validation. The idea of 

cross-validation is to subdivide the data set into various subsets, or folds, to be used as 

the test set, while the remainder of the data set is applied for algorithm training. A 10-

fold cross validation will generate 10 training and testing cycles, thus evaluating the 

performance of the algorithm when different sets of data are used for training. Upon 

each cycle, algorithm performance can be measured using adequate metrics, and 

inspected individually, or averaged over all folds.
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It is suggested in (Hand et al, 2001), that while cross-validation is a robust and often 

used method, the validation set, though not used in training, becomes part of the design 

process of the classifier. To avoid further bias on the validation set, a third test set, or 

“hold out” set is advocated to be used purely for results confirmation, for the cases 

where enough training data is available. The use of data sets from different time 

periods is suggested in (Weiss et al, 1998), in order to avoid any temporal bias on data 

sets where time is a factor. 

Performance Metrics 

As formalised in Section  3.3.2, classification performance is usually measured by a 

loss or error function over prediction results. The choice of error function will also 

drive the iterative improvement of classification parameters for a certain algorithm, 

and should be consistent with the requirements of the data mining task. The 

classification error rate or misclassification rate amounts to the proportion of 

classifier predictions that are incorrect, and is given by the formula, for a data set of 

total size N: 

In many cases, a classifier may show low error rates but still display undesirable 

classification behaviour. If, for instance, a loan applications data set with a very high 

percentage of negative cases is provided, the classifier may choose to simply make 

negative predictions for every new case seen, which would still generate low error 

rates, but its results would be of little practical use. To better illustrate the possible 

types of classification error, results are often displayed in terms of correct and 

incorrect classifications per each class, in a confusion matrix (Weiss et al, 1998) as 

shown below for a classification problem with two classes (positive and negative). 

Real Value 

Predicted Value Positive Negative 

Positive  True Positive False Positive 

Negative False Negative True Negative 

Table 7 - Confusion Matrix for 2-Class Classification Problem 
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To ensure the classifier is in fact detecting the correct classes, and covering a suitable 

number of cases on each class, the notions of precision and recall can be used. These 

are given by the formulas below, as presented on (Weiss et al, 2005): 

Precision indicates the rate at which a classifier makes a correct prediction, or the 

percentage for which its predictions are correct. A high-precision classifier on the 

positive class would have high true positives and low false positives. Recall relates to 

how many predictions for a given class are made, out of the total available cases for 

that class. A high recall classifier would have high true positives with low false 

negatives thus covering all entries labelled “positive”. The above formulas can be 

rewritten using the above confusion matrix, and are shown below for the “positive” 

class: 

There is an inherent trade-off between precision and recall: by increasing the precision 

of a classifier, it is made more specific and thus more “conservative” in making a 

prediction, thus lowering recall. On the other hand a high recall classifier might be 

tuned to make predictions more “generously”, at the expense of precision. Using the 

loan application data set as an example, a high-precision, low-recall loan applications 

classifier would make few loan approvals, but its decisions would be correct most of 
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the time. A low-precision, high-recall loan applications classifier would make incorrect 

predictions more often, but is more likely to detect a positive loan application.  

Accuracy and F-Measure 

Aggregated metrics incorporating precision and recall information are sometimes used 

to report research results. The accuracy refers to the overall classifier precision across 

all classes, and is given by the formula: 

In other words: the rate of correct predictions over all predictions. Accuracy is 1 when 

no classification errors are reported by the classifier. Accuracy however suffers from 

the same issues seen on misclassification rates, where a data set where a class contains 

many more occurrences than another can generate biased results. To mitigate this 

problem, the harmonic mean of precision and recall, or F-measure is often used: 

The choice of performance metric should take into account the data set and nature of 

the prediction problem being investigated: classification precision might be of more 

importance than recall, for instance on diagnostic systems with a high risk of 

misclassified occurrences might prefer high precision classification at the expense of 

recall. In the literature, F-measure is a common metric for reporting classification 

performance results, as seen on (Sebastiani, 2002), with accuracy often reported for the 

cases where the data set is has a balanced number of entries for positive and negative 

classes, as seen in (Pang et al, 2002; Pang et al, 2004). 

3.3.9. Challenges to Classification in Data Mining 

In this section some of the challenges and limitations inherent to the problem of 

supervised learning are explored in more details. 
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Bias / Variance Trade-off 

Classification error can be seen as composed of two factors: one comes from the model 

complexity of a classifier, which dictates how much information can a classifier 

capture, and hence represent the data set nuances as closely as possible. The other 

indicates how much do classification results vary in terms of classification error when 

yet unseen data samples are presented for classification.  These two aspects of a 

classifier are commonly referred to as bias and variance. The overall error for a 

classifier can be interpreted as the sum presented in the formula (Weiss et al, 1998): 

Here, optimal error is the best possible classification error an ideal classifier can obtain 

given the data set in question, which can be non-zero, depending on the nature of the 

data, and how closely it represents the events being captured. To further reduce the 

error of a classifier, one could attempt to build models with increasing complexity, 

making it capable of capturing more information from the data. However, in doing so, 

a more complex model is also more likely to represent a particular training set very 

well, but not the underlying patterns from the data in general: the classifier’s ability to 

generalise is reduced by overfitting the model to the training data. This state of affairs 

is what is commonly known as the bias/variance trade-off: attempting to reduce bias 

error by building more complex model generates classifiers less able to generalise 

well, thus increasing the variance component of the error (Hand et al, 2001; Kulkarni 

et al, 1998). 

Dimensionality 

Intuitively, it would appear sensible to progressively add features representing 

different aspects of the data to train a classification algorithm, hoping that this new 

information will assist in the algorithm’s predictions. However, adding features is done 

at the expense of a requirement for more training data, and performance penalties in 

algorithm training and execution. This drawback is what is commonly called the curse 

of dimensionality. Adding an extra feature to the training data set of a classifier can be 

seen as adding another dimension on the search space the classifier now needs to 

inspect. This implies a larger effort required by training algorithms for searching 
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through the solution space for patterns. This can be seen for instance, on decision tree 

algorithms, where a decision tree needs to grow one level to accommodate a new 

feature, thus doubling the size of a tree which includes all attributes. Similarly, a 

nearest neighbour algorithm now requires the calculation of distance functions for an 

additional dimension across all of its training data set in order to make a prediction, 

thus affecting the runtime of the algorithm. 

A larger search space not only affects algorithm performance: by increasing the size of 

the solution space, data points become more “distant” from one another. This can be 

noted in the example where a data set increases from a 2-dimensional plane to the 3-

dimensional space. The calculation of distance between points now have an additional 

dimension to be added, as seen on the formula for Euclidean distance for both cases: 

The distance between data points can be expected to increase, or at the very minimum 

stay the same, as more dimensions are added, and could mean patterns become less 

pronounced for the same amount of training data. The sparseness effect on data points 

translates to a requirement for more training data to be available for a training 

algorithm to achieve similar performances. This is demonstrated in (Kulkarni et al, 

1998) for various classes of algorithms, where the convergence to an optimal result as 

a function of training data available happens at a slower pace as the number of 

dimensions increase.  

The concerns associated with the curse of dimensionality have created the need for 

strategies that can reduce the number of features while improving or preserving 

classification performance as much as possible. Thus, a number of feature selection 

and reduction techniques have been proposed in the literature. The more common 

approaches attempt to identify attributes with high correlation with the predicted 
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classes using statistical tests, or a measure of attribute information gain (Hand et al, 

2001; Yang et al, 1997). Another approach known as principal component analysis 

involves merging several attributes together by using a linear function, where each 

attribute receives a weight according to its relative importance to prediction (Weiss et 

al, 1998). Feature selection methods have shown to perform similar to full-feature 

classifiers but using a smaller subset of attributes based on high-dimensionality text 

data sets, as seen in (Yang et al, 1997; Rogati et al, 2002; Forman et al, 2002) 

This same concern has motivated the study of methods that achieve better results on 

high dimensional data sets, such as textual data sets, as will be shown on the next 

chapter have this characteristic, containing usually several thousand attributes. Support 

Vector Machines are a method whose training time is dependant on the size of the 

training data set, but not on its dimensionality (Alpoydin, 2004), making it a good 

candidate for this type of data sets. Another compelling feature of Support Vector 

Machines is that the method has an expected classification error dependant on the 

number of support vectors but not data set dimension, thus making it a suitable 

technique for addressing certain dimensionality issues (Burges, 1998). Indeed, Support 

Vector Machines have shown very good empirical results when applied to the problem 

of high dimensional text classification (Joachims, 1998).  

No Free Lunch 

It was noted in the previous Section, that a wide choice of classification methods is 

available to the data miner for performing a prediction task, with new approaches 

constantly being developed. It would be desirable to know if there is a classification 

algorithm that can consistently provide better classification performance than the 

others, or if such algorithm could exist in theory. In the mid 1990s however, a result 

presented in (Wolpert, 1996) has demonstrated this is not the case: The No Free Lunch

theorem for classification states that, assuming no prior knowledge of the classification 

problem is present, all classes of classification algorithms will obtain the same 

classification performance when averaged over all possible learning scenarios, and 

this performance will be no better than random guessing, on average. In other words, 

there is little hope of devising a superior generic classifier algorithm that can 

consistently outperform all the others on all scenarios.  
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In practical terms what this impressive result suggests is that good results obtained by 

a specific classifier to a specific data set reflect the “fitness” of the algorithm’s 

heuristics to one particular case, which is not an indication the algorithm will perform 

any better on a different scenario. This result reinforces the view that choosing what 

classifier to apply on a specific problem should be done in a data driven fashion, 

validating performance results against other models where possible, as discussed on 

Section  3.3.7 and seen in (Hand et al, 2001; Kulkarni et al, 1998; Weiss et al, 1998).  

The No Free Lunch theorem also has implications for cross-validation techniques, 

stating that cases where an algorithm obtains better results in cross-validation are no 

indication the method will perform equally well on unseen examples. However, as 

seen in (Wolpert et al, 2001) this result does not imply cross-validation is not a valid 

and workable technique, but it shows the reliability of this approach can not be 

formally justified for all cases, and should be used with caution and within certain 

assumptions. Despite this caveat, cross-validation is widely regarded as a good method 

for testing and reporting on classification performance in the literature. 

3.4. Data Mining Tools 

This section discusses software applications for performing data mining tasks, 

investigating commercial and open source offerings, from off-the-shelf packages to 

industry specific products. To illustrate the typical capabilities of a data mining 

package the open source RapidMiner package is presented in more details. 

To illustrate the evolution of commercial data mining applications, three stages of 

development were proposed in (Piatetsky-Shapiro, 1999): the first generation of data 

mining applications appeared in the 1980’s and comprised mostly of tools originated 

by research and dedicated to a single task, or single algorithm, such as performing 

decision tree classification, or clustering. This class of tools required technically savvy 

users and a thorough understanding of data mining techniques. Integration between 

tools and between tools and other data applications was non-existent. Later, as data 

mining found its way to wider commercial uses, software vendors in the mid 1990s 

started offering the second generation of data mining suites that would cover not only 

a larger set of data mining techniques, but also would support other important activities 
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of the knowledge discovery process such as data pre-processing and visualisation. By 

this time a survey conducted in (Goebel et al, 1999) found as many as 37 products 

aimed at performing one or more data mining activities and having achieved a 

sufficient level of maturity to warrant their use as commercial applications. The task of 

data mining however remained highly technical, and far too complex for being directly 

applied by business users. Hence, the third generation of data mining tools 

incorporates domain specific vertical knowledge in a given industry, integrates with 

company’s legacy systems and provides useful, intuitive interfaces for business users 

aiming at solving a specific business problem such as email spam detection, fraud 

detection, customer analysis and telephony network analysis.  

3.4.1. Open Source Tools and RapidMiner 

In the open source area, popular research applications have gained popularity with 

practitioners. The wealth of options for open source data mining can be seen on the list 

of available packages in (KDNUGGETS, 2009) and the Machine Learning Open 

Source Software portal and conferences, providing a centralised forum for open source 

data mining (Sonnenburg et al, 2009). One important contribution to the open source 

data mining community is the the Weka Toolkit (Witten et al, 1999), developed at New 

Zealand’s University of Waikato, a popular data mining package available under open 

source license: it is a comprehensive suite of Java class libraries for performing a 

number of data mining tasks. Weka algorithms can be accessed programmatically from 

another application, or directly via its user interface and is now maintained by the open 

source community.  

RapidMiner 

RapidMiner is an open source data mining suite also available under a commercial 

license. It emerged from the YALE data mining environment (Mierswa et al, 2006) 

originally designed to be a rapid prototyping system where data mining 

implementations could undergo a proof-of-concept using a tool that can easily build, 

execute and validate data mining models, before the need to develop a more complex 

solution. RapidMiner has evolved into an offering with commercial strength features 

such as: 

• Ability to quickly prototype data mining tasks on a graphical user interface. 
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• Developed in Java and platform-independent. 

• Support for a wide range of tasks on data analysis, prediction, clustering and 

visualisation.  

• Additional functionality specific to text mining 

• Integration with algorithms implemented for the Weka toolkit, making them 

accessible from inside RapidMiner. 

• Integration with relational database systems via JDBC interfaces. 

Figure 9 - RapidMiner WorkBench 

3.5. Conclusion 

This chapter presented a discussion on how to perform data mining, what are the key 

objectives of a data mining task, and how to go about executing them in a systematic 

way. The area of knowledge discovery processes was introduced, highlighting key 

methodologies available from both the industry and research. Knowledge discovery 

processes embed knowledge and expertise obtained from practitioners and lessons 

learned from previous projects that can be reused in future projects, such as the data 

mining experiment performed as part of this dissertation. The KDD Process and 

CRISP-DM methodology were presented in more details, and important aspects 
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present on these methodologies were discussed, such as its iterative nature, the 

importance of data preparation and choice of data mining tasks to be performed. 

Furthermore, the link between knowledge discovery processes and knowledge 

creation, and its implications to knowledge management were also investigated. 

The key activities of data mining process were surveyed, presenting their objectives 

and examples where each particular activity had a successful application, leading to a 

more focused study on supervised learning and classification – the scope of this 

dissertation. This chapter surveyed different classes of classification algorithms, and 

discussed aspects to be taken into account when selecting a classifier for a prediction 

task, such as data characteristics, algorithm performance and explanatory capabilities. 

Common metrics for measuring classification performance used in the literature were 

surveyed, and the challenges and limitations of supervised learning were discussed: the 

curse of dimensionality and how it affects a model’s ability to produce good results in 

a timely fashion with limited training data; it was also seen how the bias/variance 

trade-off imposes limitations to the complexity of an algorithm at the expense of 

classification performance. Finally, the No Free Lunch theorem demonstrates the 

impossibility to obtain a classifier that can consistently outperform all other methods, 

on average, and how this affects the choice of a classifier to a specific problem. 

Finally, the chapter concluded with a discussion on available data mining tools and 

features, to be taken into consideration for the implementation aspects of this 

dissertation’s experiment.  

The main outcomes of the review of the data mining literature presented on chapter’s 

was to survey and identify important aspects from knowledge discovery processes, 

how they can be used in this dissertation’s experiment, and their relationship to 

knowledge creation and knowledge management; to further understand data mining 

tasks, and survey the state of the art in classification algorithms, performance 

measurements and limitations inherent to the problem of data classification; and finally 

to evaluate the state of the art in data mining applications, identifying potential 

candidates to be used as part of a data mining experiment. In the next chapter the areas 

of text mining and opinion mining are presented, and the SentiWordNet lexical 

resource is discussed concluding the review of the literature in preparation for the 

experiment’s setup, execution and results evaluation.  
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4. TEXT MINING AND OPINION MINING 

This chapter reviews research literature in the fields of text mining and opinion 

mining. It discusses the motivations for performing knowledge discovery on text data 

sources, and illustrates how the field of text mining is closely related to that of data 

mining in general, but with its own additional research concerns stemming from the 

need to understand and process the complexities and nuances of unstructured text data. 

The relevance of text mining technology to the field of knowledge management is also 

explored.  

Next, the field of Opinion mining in text is discussed. Opinion mining is a relatively 

new and challenging field dedicated to detecting subjective content in text documents, 

with a variety of uses in real world applications. It is also the main subject of this 

dissertation’s experiment, thus a thorough survey on the state of the art in approaches 

to performing opinion mining tasks is presented, and the research is placed in the 

context of the objectives of this research. 

4.1. Text Mining 

The key driver for exploring text data from a knowledge discovery perspective, as is 

the case with knowledge discovery in databases, is the abundance of available textual 

data in digitised format. Text is a rich and natural means of storing and transferring 

information, with the Internet being one of the most notable examples: it has been 

estimated that over 3 billion available documents in textual format have been indexed 

by the most popular Internet search engines (Sullivan, 2005). The situation is similar 

inside organisations, where a large variety of textual data within emails, memos, wikis, 

portal pages and corporate documents are now fully authored and made available in 

digital format, with some estimates indicating that up to 85% of corporate data is 

stored in the form of unstructured text documents (McKnight, 2005).  The availability 

of information in text format suggests an opportunity for improving corporate decision 

making by tapping on text data sources, and the large volumes are thus likely targets 

for automated methods of discovering new knowledge. This opportunity triggered the 

development of the emergent area of knowledge discovery in texts, or text data mining 

(Feldman et al, 1995). 
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The fundamental implication of using text data sources for performing knowledge 

discovery is that data is unstructured in nature: as postulated in (Weiss et al, 2005) 

there are no special requirements for including a text document in a text mining task as 

there would be on a typical data set where the data is already organised with clear 

semantic meaning, using pre-defined data types, labels and ranges of values. Text 

documents on the other hand are far more flexible and richer in their expressive power, 

but such benefits are constrained by the added complexity inherent to the vagueness, 

uncertainty and fuzziness present in any natural language (Hotho et al, 2005). For this 

reason, the discipline of text mining or knowledge discovery in text leverages 

contributions from different research areas in computer science, such as computational 

linguistics, artificial intelligence, information retrieval and machine learning (Herschel 

et al, 2005). The definition of what is considered within the realm of text mining varies 

and sometimes overlaps with that of other disciplines that are also concerned with the 

computational treatment of text data, such as information retrieval and natural 

language processing (Kroeze et al, 2003).  

In (Weiss et al, 2005) a task oriented view of text mining is proposed, encompassing 

the following aspects: 

• Information Retrieval or obtaining a subset of documents from a document 

corpus based on user specified search criteria, as observed on internet search 

engines and document searching capabilities of text knowledge repositories. 

• Information Extraction, which deals with extracting specific information 

from text documents, such as extracting the date and time an event occurred 

from news documents, or numeric values for a given attribute – the price of a 

given asset for example. Text summarisation techniques that aim at providing a 

condensed representation of the information contained in a document would 

also fall in this category. 

• Text Data Mining, the application of data mining techniques on text data 

sources, such as classification, clustering and exploratory data analysis for the 

purposes of extracting new and useful information. 



85 

The above suggests text mining involves a wide range of techniques for the treatment 

of text, and whose objectives are not strictly restricted to the discovery of knowledge. 

A similar definition to the above is observed in (Hotho et al, 2005). However, in 

(Hearst, 1999), a clear distinction is made between information extraction and retrieval 

techniques and text data mining, arguing that for the purposes of information retrieval, 

the information contained in documents is already known (at least by the authors), and 

therefore would not fall within the scope of the discovery of new knowledge. 

According to Hearst, data mining on text concerns the use of “text metadata to tell us 

something about the world, outside the text collection itself”, whereas text data mining 

involves the exploratory analysis of text documents for deriving new knowledge. In 

(Feldman et al, 1995) Knowledge Discovery in Text is described as the application of 

knowledge discovery methods to textual data, closely resembling that of text data 

mining seen above. 

From the above discussion, the definitions of text mining in literature can be broadly 

classified in two types: first, text mining can be defined as all activities involving the 

treatment of text for analytical purposes, including extraction and retrieval techniques; 

second, text mining can be seen exclusively as text data mining in line with the 

objectives of the definition of knowledge discovery stated in (Fayyad, et al, 1996), thus 

leveraging text as the source of data for the discovery of new yet unknown knowledge. 

It is worth noting however that in any case, text data mining is closely linked to other 

research fields involving the computational treatment of text, and it is not uncommon 

to see the application of text mining techniques to related areas and vice versa: 

discovering new patterns in text may come into assistance to information retrieval, and 

information retrieval and knowledge extraction are useful techniques for text data 

mining, as will be further illustrated in the following sections discussing text mining 

applications and techniques.  
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4.1.1. Applications of Text Mining 

Exploratory Text Analysis 

The exploration of large text data sets is a useful approach for obtaining insights from 

data not usually possible by manual inspection. The value of this type of investigation 

to creating new knowledge can be seen in the breakthrough analysis of (Swanson et al, 

1997), where mining relationships between research documents produced in distinct 

areas has led to the corroboration of new hypothesis in the medical domain.  Many 

other approaches of successful systems and prototypes incorporating data mining 

methods for data description and visualisation are reported in the literature. In 

(Nasukawa et al, 2001) a system for the interactive analysis of patterns in text is 

presented, with a case study on support tickets where documents can be analysed by 

their correlation to categories, urgency and client feedback. In (Dorre et al, 1999) 

descriptive text mining techniques are applied to improve customer relationship 

management. Another innovative use of text sets is finding trends in documents 

creation according to topic, timeline or keywords. A prototype trend analysis system 

based on phrase similarity measures is demonstrated in (Lent et al, 1997) applied to the 

investigation of patents; another approach using measures of word co-occurrence and 

the assistance of a pre-defined taxonomy is investigated in (Feldman et al, 1998) for 

investigating trends and similarities amongst different news data sets. 

Visualisation techniques for exploring documents clustered into topics, and graphs 

representing relationships between entities such as companies and executives are 

presented in (Feldman et al, 1998-b). An approach for organising documents into using 

clustering techniques based on a legal documents data set is presented in (Conrad et al, 

2005). Other approaches to extracting information from document collections based on 

visualisation techniques are surveyed in (Hotho et al, 2005). 
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Information Extraction 

Information extraction concerns the identification of relevant information present in 

text documents, which can be extracted into a more structured database for further use, 

or used as additional metadata in the exploration of text sources. Automated methods 

could be employed for example, to extract company, industry and executive names 

from news sources to build a searchable database of company details. Systems that 

perform information extraction have been applied in law enforcement to help in the 

analysis of seized documents, where entities such as name, addresses and bank 

accounts were extracted into a database for the purposes of visual analysis and 

reporting (Weiss et al, 2004); In (Ghani et al, 2006), product attributes were extracted 

from text sources to enrich the content of a decision support system based on 

transactional data, and had further uses in competitive intelligence and 

recommendation systems; In (Dorre et al, 1999) another example of attribute 

extraction from financial news is presented, for the purposes of exploration of 

documents.  

Automatic Text Classification 

Text classification involves the application of classification techniques in text data for 

the prediction of a class for a given document. One common use of text classification 

is in automatic text categorisation according to topics, as seen in the categorisation of 

news sources in (Joachims, 1996; Joachims 1998); a similar example can be seen in 

(Forman et al, 2006) for the automatic categorisation of incoming technical support 

requests per product type, reducing manual intervention and accelerating routing of the 

call to the correct support teams. Supervised text classification techniques are also at 

the core of many approaches for filtering unsolicited content such as email spam 

(Provost, 1999; Meyer et al, 2004; Kolcz et al, 2001). The classification of text for 

forensic purposes such as author identification has also been studied in (Corney et al 

2002). Text classification techniques will be employed as part of this dissertation’s 

experiment, and are discussed in more details in Section  4.1.3 of this chapter. 
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Text Mining in Knowledge Management 

As shown in the above examples, text mining technology opens opportunities for the 

creation of new knowledge from text, enriching data sources with extracted data from 

textual documents and optimising information retrieval from repositories for decision 

support. The large collections of text data in digital format available in today’s 

companies suggest those techniques are useful tools for knowledge management 

systems. Indeed, the application of data mining techniques to text, or text data mining 

are aimed at creating new knowledge and could therefore yield the same benefits to 

knowledge management, innovation and competitiveness studied in the Chapter 2.  

Applications of text mining technology as an assistive technology for knowledge 

management initiatives are outlined in (Marwick, 2001), such as automated 

classification of documents into categories, the organisation of knowledge repositories, 

and text summarisation techniques to mitigate information overload. An example is the 

eClassifier application presented in (Cody et al, 2002) aiming at using text mining 

technologies for building taxonomies in explicit corporate knowledge repositories. 

Another approach is seen in (Kao et al, 2003) where a knowledge management system 

was developed for automatic organisation of knowledge hierarchies to facilitate the 

retrieval of relevant knowledge.  

4.1.2. Representation of Text Data 

To realise the benefits of text mining applications, strategies are needed to address the 

complexities and ambiguities of natural language. In addition, a structured 

representation of text that captures relevant information from documents is a necessary 

requirement for many text mining tasks such as classification and clustering. In this 

section the techniques for the treatment of natural language and approaches for 

representing text are surveyed. 
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Natural Language 

Due to its lack of structure, text data normally undergoes a preparation stage that 

attempts to capture key components of natural language that will be employed on the 

text mining task. The treatment applied to the source data will dictate the model’s 

characteristics and what information can be extracted from it. It is therefore important 

to match the preparation steps with the overall objectives of the exercise. The table 

below extracted from (Stavrianou, 2007) summarises the key concerns commonly 

found in processing natural language for data mining, with text preparation 

encompassing all but the last task. 

Issue Objectives 

Stop lists Removal of terms occurring with high frequency and 

potentially of little relevance. 

Stemming or Lemmatisation Reducing words to a normalised form, or stem. 

Noisy data Correction of spelling mistakes, word shortenings 

and alternative forms. 

Tagging Adding syntactic categories to terms. 

Word Sense Disambiguation Determining meaning of ambiguous terms that best 

applies to context of text. 

Collocations Identifying terms represented by multiple words.  

Tokenisation Determine policy for grouping units of textual 

information. 

Text Representation Conversion of textual document into a model that 

best captures relevant features for text mining. 

Automated Learning (Text 

Data Mining) 

Determining text mining approach.  

Determining similarity measures.

Table 8 - Key issues in Text Mining (Stavrianou, 2007) 

One of the first concerns in capturing relevant information from texts the creation of 

stop lists. These lists indicate what terms from the document collection are highly 

likely to appear, and carry little information when attempting to detect patterns. 

Common words in the English language such as “the”, “and”, “of” are usual 

candidates for stop lists. Care must be taken however to build a list with the specific 
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objectives of the data mining task in mind, since stop words may become relevant on 

different scenarios. 

The objective of lemmatisation and stemming is to reduce the number of variations of 

a term by transforming similar occurrences to a canonical form, or lemma, or by 

reducing words to their inflection root, or stem. This will reduce the number of 

attributes to be analysed in the text collection, reducing noisy signals and the 

dimension of the data set. An example of stemming is the conversion of singular/plural 

and present tense/past tense into a single form. This pre-processing step is dependant 

on the objectives of text mining, and the loss of relevant information from stemming 

should be evaluated (Weiss et al, 2004). One widely used approach is the rule based 

method described in Porter’s algorithm (Porter et al, 1980), whose implementation is 

now in public domain.  

As with any data collected in uncontrolled environments, data clean up tasks to 

eliminate noisy data need to be taken into account. In text, data clean up issues take the 

form of spelling error and inconsistent spellings corrections, resolving term 

shortenings and abbreviations, stripping markup language tags, and converting text to 

lowercase or uppercase where appropriate.  

There are instances in natural language where the same term may yield different 

meanings, depending on their use within the sentence, the domain the document 

belongs to. Consider for example the two very distinct meanings of the word “book” in 

the following sentences: 

• “This is a great book.” 

• “You can book your flights from this website.” 

Discovering the meaning a specific term refers to in a sentence is known as word sense 

disambiguation, and is an active research topic in natural language processing and 

machine translation. This problem has received much attention in the field of machine 

translation from very early stages, where its intrinsic difficulties were noticed 

(Nirenburg, 1997): in broad terms, to obtain reasonable results in word sense 

disambiguation a large amount of information is required about the context the word is 
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being used – such as its role in the sentence and discourse aspects - and on the 

availability of external knowledge sources where sources of meaning can be queried. 

Several approaches for addressing word sense disambiguation are surveyed in (Ide et 

al, 1998), where it can be noted the use of external resources progressively evolved 

from manually building small disambiguation resources of restricted scope to the more 

recent data driven methods that leverage available knowledge resources in electronic 

format such as online ontologies, large annotated corpus and large scale manually 

derived lexical resources such as the WordNet database of term relationships (Miller et 

al, 1990).  

Tokenisation refers to the process of segmenting a text input into its atomic 

components. The approach to tokenise a document depends on the mining objectives, 

one common approach is to use individual words as tokens, and spaces and 

punctuation marks as separators. However, punctuation marks can often be part of the 

analysis, as seen in (Corney et al 2002) and might instead be used as tokens. Word 

collocations are terms described by more than one word and should be referred to as a 

unit for analysis. Collocations can be found by statistical similarity when examining 

text sets, or derived via information extraction techniques and dictionaries.  

Finally, depending on data mining objectives, it is important to determine the 

grammatical class a term belongs to. This can be done by attaching tags indicating the 

part of speech being used by a word in the text sentence. A part of speech tagger is an 

application that performs this task. Taggers are usually built by statistic analysis of 

patterns from large corpus of documents with annotated parts of speech, with The Penn 

Treebank (Marcus et al, 1993) and Brown Corpus (Garside, 1987) being popular 

examples. The Brill part of speech tagger (Brill, 1992) is one commonly used 

algorithm based on building tagging rules from annotated documents. Other 

approaches to part of speech tagging have been proposed using maximum entropy 

techniques (Toutanova et al, 2000) and in building statistical markov models (Brants, 

2000). Several implementations of part of speech taggers can be found in the free 

NLTK toolkit for natural language processing (Loper et al, 2002). 

The above discussion presented the main aspects of natural language processing that 

can be part of a text mining implementation. In the next section text representations for 
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mining text documents are discussed and techniques for text classification are 

surveyed in more details. 

Text Representation 

Before executing machine learning techniques on textual data, a structured document 

representation needs to be devised capturing as much statistical information about the 

document as possible. The most common representation formats are a variation of the 

concept of word vectors originally proposed in (Salton et al, 1975), and is based on the 

assumption a document can be characterised by the tokens, or words, it contains. 

Considering a document tokenisation based on words, at its simplest form a word 

vector data set similar to the model described in Chapter 3 can be built where each 

column represents information for a given word in the document, and each line 

represents a document in the collection. When a word is present in a given document, a 

non-zero value is present representing term presence. This can be, for instance, a 

binary value indicating a term has occurred in a given document. A partial word vector 

data set is represented in the figure below. 

Figure 10 – Example Word Vector 

A common extension to this idea uses frequency information about a term, instead of a 

binary presence indicator. Attribute values are a numeric value indicating how often a 

term appears in a given document. The frequency information can be refined by 

balancing it with a measurement of the importance of a given term on the overall text 

collection, as high frequency terms that appear on most documents are less likely be 

statistically significant for pattern detection. In this case, a popular measure is the TF-

IDF metric, or term frequency – inverse document frequency (Salton et al, 1987), given 

by the formula: 
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The first term is term frequency of a word in a document, and the second indicates the 

inverse document frequency of a word as a measure of how often the term appears in a 

document collection of size N, with df representing the frequency of a word in the 

document collection.   

The number of columns in a word vector is a function of the number of distinct tokens 

in the document collection, or its dictionary. This number can grow quite quickly with 

larger and richer documents, and it is not uncommon to see very high dimensional 

word vector spaces with several thousand attributes.  To mitigate the negative effects 

of high dimensionality, stop word lists and stemming are often used resources in 

reducing the final number of terms (Weiss et al, 2004; Sebastiani et al, 2001).  

One natural extension of the above model is the use of more than one word to 

represent a column in the attribute vector. This approach can be useful to detect 

important collocations based on more than one term, sometimes referred to as bigrams

(two word collocation), or n-grams for the generic case. Other combinations of single 

term unigrams, with multi-term n-grams are also possible, and could be effective 

depending on the domain and type of mining problem.  

4.1.3. Document Classification Techniques 

Of particular concern to this dissertation is the subject of text classification within text 

mining. This section investigates strategies and issues encountered in topic based text 

classification, and its relationship to data mining algorithms. 

Initial text classification methods suggested in research were based on knowledge 

engineering approaches, where expert knowledge was elicited and encoded into sets of 

rules to classify documents. One example can be seen in the Construe system (Hayes 

et al, 1990) for classification of news stories. However systems based on manually 

built rule bases suffer from the high maintenance cost of updating the repository with 

expert knowledge, and slow implementation times due to manually deriving rules from 

experts. In the 1990s, with advances in machine learning and availability of computing 
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resources, this method gave way to more automatic supervised learning techniques that 

depend on training data, but are able to perform classification without the expensive 

knowledge elicitation step while achieving similar performance. In present day 

research, data driven machine learning methods prevail as the main paradigm for 

performing text categorisation (Sebastiani et al, 2001).  

The most common representation of documents for text classification is based on the 

word vector representation, also referred to as bag of words, seen in the previous 

section. Early work on evaluating text classification with word vectors can be seen in 

the rule induction method proposed in (Apte et al, 1994); In (McCallum et al, 1998) 

the Naïve Bayes classifier is applied to text categorisation of topics in news sources; In 

(Joachims, 1996) a comparison of various supervised learning methods with TF-IDF 

word vectors is presented; A more recent example using binary presence word vectors 

and support vector machines applied to spam filtering is presented in (Kolcz at el, 

2001). Other applications of this representation to text classification have been 

surveyed in the literature and can be found in (Joachims, 1998; Weiss et al, 2004; 

Sebastiani et al, 2001).  

Extensions to the bag of words representation are also seen in the literature, aiming at 

capturing other useful non-textual information from documents for classification. In 

(Corney et al 2002), stylometric measures such as number of paragraphs, paragraph 

length, and types of punctuations are added to the model for gender detection of 

emails. In (Moschitti et al, 2004), linguistic information from parts of speech and 

proper nouns extracted from text are added as features to text categorisation of news 

sources.  

As mentioned earlier, the word vector representation of documents generates data sets 

with very large number of attributes, which are liable to issues related to the curse of 

dimensionality seen in Chapter 3. One approach to mitigate this problem is to use 

linguistic pre-processing such as word lists, and stemming to reduce the number of 

terms before initiating text classification. Another approach is to employ feature 

selection mechanisms seen in data mining to automatically remove less relevant 

features while minimally affecting classification performance. Studies seen in (Rogati 
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et al, 2002; Forman et al, 2002) report good on using statistical feature selection 

methods for reducing the size of the feature space in text classification problems.  

It is also worth noting that the high dimensionality of text data sets make it a good 

candidate for the application of support vector machines. Theoretical results seen in 

Chapter 3 indicate that the algorithm’s training efficiency and error rate are a function 

of support vectors, and not dimensions, suggesting potentially better results could be 

obtained for this domain. In (Joachims, 1998) it is argued that in the high dimensional 

feature space of textual data, most features are significant and should be present in the 

model. The results of a feature selection experiment are shown where aggressive 

pruning of features led to poorer results. In the same study, superior results were 

obtained with support vector machines in comparison to other classification algorithms 

on text data sets, thus eliminating the need for the often expensive feature selection 

step.   

4.2. Opinion Mining 

Opinion Mining is a new and exciting field of research concerned with extracting 

opinion related information from textual data sources. It has the potential for a number 

of interesting applications both in commerce and academic areas, and poses novel 

intellectual challenges, which continues to attract considerable research interest. In this 

section the research field of opinion mining is introduced, its motivations, key tasks 

and challenges are discussed in more details. Then, the SentiWordNet lexical resource 

for opinion mining is presented, and its potential advantages, applications and 

limitations are discussed. 

4.2.1. Introduction: Opinions in Text 

Information concerning people’s opinions can be a very important component for more 

accurate decision making in a number of domains. Companies, for instance, have a 

keen interest in finding out what are their customers’ opinions on a new product 

launched on a marketing campaign. Consumers on the other hand would benefit from 

accessing other people’s opinions and reviews on a given product they are intending to 

purchase, as recommendations from other users tend to play a part on influencing 

purchasing decisions. Knowledge of other people’s opinions is also important in the 
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political realm, where for instance, one could find out the sentiment towards a new 

piece of legislation, or an individual such as a politician or activist. 

In recent years, the internet has enabled access to opinions in the form of written text 

from a variety of sources and in a much larger scale. It also made it easier for people to 

express their opinions on virtually any subject by means of specialised product review 

websites, discussion forums and blogs. This is in fact a growing trend, as pointed out 

in the research performed by (Horrigan, 2008) with 2000 American adults, stating that 

60% of the American population, or 81% of the country’s internet users have used the 

internet to perform research on a product they intended to purchase, as of 2007. The 

research also shows that over 30% of American internet users have at one time posted 

a comment or review online about a product or service they’ve purchased suggesting 

an ever growing availability of opinion related information on the web available to 

consumers. It is worth highlighting that consumer goods are not the only target of 

opinion related content: specialised websites that gather and provide opinion 

information on companies, politicians and education resources are also available. 

Opinion sources are not restricted to specialised review sites, and are also contained in 

users’ blog posts, discussion forums and embedded in online social networks.  

The internet is clearly a vast repository of publicly available user generated content 

dedicated to expressing opinions on any topic of interest. However, despite the clear 

benefit of having such information available, it was also pointed out in (Horrigan, 

2008) that 58% of internet users reported finding product information online either  

confusing, difficult to find, or were overwhelmed by the volume of information 

available. These results indicate the problem of information overload, discussed in 

(Cody et al, 2002; Farhoomand et al, 2002) also exists in the realm of product reviews, 

where vast information resources are difficult to leverage, and are poorly utilised as a 

result. Automated methods for efficiently extracting knowledge from these resources 

appear an attractive proposition for both individuals who would be able to make better 

decisions and to companies who could quickly gauge opinions on their products and 

services, adding knowledge to their product development processes. This in fact is 

precisely the realm of knowledge discovery and data mining proposed in (Fayyad, et 

al, 1996) and discussed in Chapter  32. In addition, opinions are generally expressed in 

textual form, making it a rich ground for the application of text mining and techniques 



97 

to analyse natural language. Thus, the motivating need to analyse large volumes of 

opinion information, coupled with advances in natural language processing and 

machine learning methods gave rise to research in the emerging field of Opinion 

Mining.  

Opinion Mining is concerned with applying computational methods for the detection 

and measurement of opinion, sentiment and subjectivity in text (Pang et al, 2008). A 

text document can be seen as a collection of objective and subjective statements, where 

objective statements refer to factual information present in text, and subjectivity relates 

to the expression of opinions, evaluations and speculations (Wiebe, 1990). To further 

illustrate the motivations for performing opinion mining, we now survey the potential 

applications of computing systems that apply techniques that detect and extract the 

subjective aspects of text.  

Search Engines 

The most direct application of opinion mining techniques would be the searching of 

opinions within documents. Finding out subjective statements related to a topic, and 

their bias can augment traditional search engines into recommendation engines by 

retrieving results on a given topic containing only positive or negative sentiment (Pang 

et al, 2002), for example when searching for products that received good reviews on a 

particular area, like a user query for digital cameras with good feedback on battery life. 

On the other hand, information retrieval systems that need to provide factual 

information on a given subject can detect and discard opinion information to increase 

the relevance of results (Wiebe et al, 2004).  

Inappropriate Content 

In a collaborative environment such as a discussion group or email list, opinion mining 

could be applied to classify subjective statements containing overly heated or 

inappropriate remarks, also called flaming behaviour (Kaufer, 2000). Similar 

techniques could assist more efficient online advertisement strategies by avoiding ad 

placements next to content that is related to the ad campaign, but carries unfavourable 

opinions towards a certain product or brand (Jin et al, 2007). 

Customer Relationship Management 
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Systems that manage customer interactions can become more responsive by using 

sentiment detection as a tool to automatically predict the level of satisfaction of client 

feedback. One example is the automatic classification of customer feedback replies by 

email containing positive or negative sentiment (König et al, 2006), which could then 

be used for automatically routing of messages into the appropriate teams for corrective 

actions when necessary. 

Business Intelligence 

Opinion mining has the ability to add analysis of subjective components of text to 

discover new knowledge from data. This may take the form of aggregated sentiment 

bias information from user feedback which can be used to drive marketing campaigns 

and improve product design. In the financial industry, sentiment information present 

on financial news have been studied to assess its impact on the performance of 

securities (Devitt et al, 2007). 

Benefits to Knowledge Management 

From the examples of opinion mining applications presented above, it can be seen this 

field of research has the potential to add value to knowledge management efforts in 

companies across a range of knowledge based activities. Knowledge based systems 

that store explicit content can become more efficient by extending its query interface 

to include opinion information for more relevant results, or excluding subjective 

documents when more factual results are needed. Knowledge sharing systems that 

provision collaborative environments for exchange of explicit or tacit knowledge can 

become more fluid and require less administration efforts by employing sentiment 

detection to avoid flaming and other unwanted user behaviour; finally, knowledge 

discovery systems can leverage opinion information to help knowledge creation in the 

organisation, and improve decision making where user feedback is relevant.  

4.2.2. Key Problems Addressed by Opinion Mining Research 

In an attempt to map the activities of the emerging field of opinion mining the research 

survey of (Pang et al, 2008) categorises the area into two broad fields of classification 

and extraction. Classification would entail research related to detecting in first instance 

if a piece of text can be categorised as subjective or objective and, in case it is 
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subjective, be ability to correctly predict the text’s sentiment orientation or polarity; 

the extraction aspect of opinion mining shares the concerns of information retrieval, 

and attempts to identify within a text document what are the key attributes of an 

opinion, such as the holder or to what entity it refers to, with a view to build 

summaries based on opinion information. A similar formulation appears in (Esuli et al, 

2006), where the primary objectives of opinion mining are categorised into 1) 

determining the degree in which a given text is objective or subjective; 2) determining 

whether it expresses a positive or negative bias, if a text is indeed subjective; and 3) 

determining the degree of strength of the polarity of a given subjective text.  

In (Pang et al, 2008) other categories that may fall into the realm of author opinion or 

sentiment are mentioned. For instance, mining “pros and cons” expressions reflect 

points of view part of an argument for a given topic and are close but not necessarily 

the same as author sentiment, and indeed a formulation of opinion proposed in (Kim et 

al, 2004) does take this into account. Agreement detection is a similar problem where 

differing or agreeing opinions between two distinct documents are sought.  

One field of research that shares some of the concerns of opinion mining is that of 

affective computing, aiming at the development of computational approaches for 

detecting human emotions such as anger, fear and humour. Affective computing has 

applications in human computer interaction, but is closely linked to the problem of 

detecting subjective text, since both relate to the expression of human emotions. In 

(Mihalcea et al, 2005) a method for detecting humour in text is proposed with good 

empirical results, and in (Strapparava et al, 2004) a lexical resource for assisting the 

detection of emotions is proposed. Further in this chapter, it will be shown how this 

same resource is used as a starting point for establishing the opinion strength for terms 

on the SentiWordNet lexical resource (Esuli et al, 2006). 

For the purposes of this research, the focus or this review is on the predictive aspects 

of opinion mining related to the tasks of subjectivity detection and sentiment 

classification of texts. As noted in (Pang et al, 2008), opinion extraction research can 

be often placed more naturally within the realm of information extraction rather than 

on predictive data mining. It is acknowledged however that opinion extraction is a 

relevant part of this field and one that often goes hand in hand with opinion detection 
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and classification methods, as illustrated in (Dave et al, 2003), thus any relevant 

research on opinion extraction will be mentioned where appropriate to the discussion.   

4.2.3. Subjectivity Detection 

In order to detect subjectivity in text automatically, a computational model requires a 

formalisation of what is understood by the concept. In (Wiebe et al, 2004), the 

subjectivity of a sentence is defined based upon previous work in linguistics and 

literary theory. First, there are subjective elements: the linguistic expressions that 

characterise private states of mind. Characterising subjective elements is not a trivial 

task; they may appear in text as single words, expressions or entire sentences, may 

depend on the context, and may also be evident in text style. A subjective element 

expresses the opinions, thoughts and speculations of a source, that is the document 

author or someone mentioned in the text. Finally, a subjective element has a target, or 

the object being referred to. A similar abstraction to subjectivity is presented on (Kim 

et al, 2004), where an opinion is expressed as a quadruple of the form [Topic, Holder, 

Claim, Sentiment] in which a Holder believes a Claim on a given Topic, with a given 

Sentiment associated with it. Subjectivity detection is generally concerned with finding 

the subjective elements or sentiment in text, but other aspects of the above 

characterisation can also be of relevance for query systems and summarisation tasks. 

For instance, when tracking the opinions of a given person. Handling queries such as 

“what does the Taoiseach think of the new EU referendum?” would involve knowledge 

of the subjective element and also the source and target components of subjectivity. 

There have been several approaches proposed in the literature to detect elements of 

subjectivity on text. In (Wiebe et al, 2004) an approach is proposed based on exploring 

word relationships learned from an annotated corpus of subjective expressions. 

Subjectivity is annotated manually at expression, sentence and document levels, and 

used to train detection methods based on terms presence and term collocations, or their 

position in the text relative to each other. This is based on the hypothesis that 

subjectivity of an expression is a function of how subjective their surrounding 

elements in text are. The method has the advantage of relying on automatically 

extracting knowledge from a corpus. Word collocation analysis also assists in term 
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disambiguation on cases where words can alternate between objective and subjective 

meaning depending on context, such as the word “heart” in the examples: 

• “the gory scenes in this film are not for the faint of heart.” 

• “open heart surgery will be available from January.” 

Analysis of the corpus also has shown that unique or rare terms are often associated 

with subjective expressions, indicating a certain measure of author “creativity” when 

expressing opinions. 

Another approach to detecting subjectivity is proposed on (Pang et al, 2004), where  

machine learning classification algorithms are trained to predict objective or subjective 

sentences based on a training set of extracted documents from the internet. The 

subjective data set is comprised of 5000 text extracts from film reviews, whereas the 

objective set is built from 5000 extracts from film plot summaries. A similar approach 

is presented in (Yu et al, 2003) where a Naïve Bayes classifier is trained to detect 

subjective documents and based on a data set of news sources known a priori to carry  

objective (news and business sections) and subjective (editorials and letters to the 

editor) content, with good results. The method is extended to sentence-level opinion 

detection by including parts of speech, sentence similarity measures and counting the 

presence of semantically oriented terms from a subset of manually labelled seed 

words. Results from (Wiebe et al, 1999) also show positive results on Naïve Bayes 

classifiers trained a data set of subjective and objective documents, using features 

derived from part of speech, punctuation and syntax elements. 

4.2.4. Sentiment Classification 

Sentiment classification is concerned with determining what, if any, is the sentiment 

orientation of the opinions contained within a given document. It is assumed in general 

that the document being inspected is known to represent opinion, such as a product 

review, and that the document’s opinion refers to a single entity (Pang et al, 2008). 

Opinion orientation can be classified as belonging to opposing positive or negative 

polarities – positive or negative feedback about a product, favourable or unfavourable 

opinions on a topic – or ranked according to a spectrum of possible opinions, as is the 
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case with film reviews with feedback ranging from zero to five stars (Pang et al, 2005). 

Sentiment classification is at the centre of this dissertation’s experiment, and in this 

section, the approaches to sentiment classification studied in the literature and its 

challenges are surveyed in more details. 

Word Vectors 

One natural approach to performing sentiment classification is to take the traditional 

text mining representation of documents as word vectors, where each entry maps to a 

term found in the corpus of documents, and the value of a given entry corresponds to a 

measure of term presence or a measure of relative term frequency from the field of text 

mining and information retrieval. In (Pang et al, 2002) a series of experiments using 

various classes of word vectors for sentiment classification of film reviews generated 

positive results for single term word vectors – or unigrams - using binary presence 

values for each term. Binary presence did perform better than frequency-based word 

vectors, suggesting that term existence, rather than frequency is more significant to 

opinion identification. This distinction is observed in (Pang et al, 2008), with a 

suggestion that traditional topic-based document classification relies more strongly on 

repeated occurrences of the same terms throughout the text, whereas this may not be 

the case for opinions.  

The experiment in (Pang et al, 2002) achieves best results when using term unigrams 

rather than larger n-gram features, even though bigrams could capture sentiment 

encoded in for form of 2-term expressions such as “really good” or “much preferred”, 

etc. The poorer classification results could be attributed to a necessary increase in the 

volume of training data for all relevant term n-grams to be captured. Indeed, work 

from (Cui et al, 2006) reports good results for higher order n-grams where a 

significantly larger training data set comprised of over 320.000 product reviews is 

available. Another similar experiment based on word vectors and product reviews as 

the data set reports good results for tri-grams is seen in (Dave et al, 2003).  

Taking the traditional text mining approach to train a classifier based on word vectors 

for opinion mining generates good classification performance results, but as observed 

in (Pang et al, 2008), these results stay well below those obtained for topic-based 

document classification using the same techniques. Empirical performance metrics for 
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topic-based text categorisation using Support Vector Machines seen in (Joachims, 

1997) and surveyed in (Sebastiani, 2002) show how high precision, high recall topic 

based classification can be achieved, based on results using well known experiment 

data sets. This observation, coupled with further analysis of opinion bearing 

documents suggests that sentiment information needs to be captured by other means. 

One point highlighted on (Pang et al, 2002) is the issue of thwarted expectations, as 

seen on the extract below: 

“This film should be brilliant. It sounds like a great plot, the actors are first 

grade… However, it can’t hold up”  

In the above case a sentence contains a high number of positive statements, building 

up the expectation of a positive review, but the overall sentiment of the review is still 

negative. This affects prediction decisions based on term information presence alone, 

and suggests that the order of which opinions are presented is of importance to overall 

sentiment (Pang et al, 2008). 

Word Sense Disambiguation 

Issues stemming from ambiguity in word sense surveyed in Section  4.1.2 of this 

chapter also arise on opinion mining problems. In (Wiebe et al, 2006), subjectivity 

detection is improved by adding a subjective feature to detect terms in need of 

disambiguation, and the authors speculate improvements to sentiment classification 

tasks with the assistance of term disambiguation techniques. This need has also been 

highlighted in (Dave et al, 2003), when inspecting results of sentiment classification 

experiment based on term opinion information.  

Parts of Speech 

Classifying terms from a textual document into its grammatical roles, or parts of 

speech within a sentence has also been explored in opinion mining. A motivating 

factor behind this approach is that detecting parts of speech can be considered a form 

of word disambiguation for the cases where word senses are associated with its 

grammatical use, such as noun, verb, etc (Wiebe et al, 1998). Another factor is the 

finding that adjectives are considered good indicators of opinion information and have 

been seen to provide good correlation to sentiment orientation, as reported by (Turney, 
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2002). In (Pang et al, 2002), a study reports good results using only adjective words as 

features to perform sentiment classification using a machine learning method, however 

with poorer results than using full word vectors as features. The use of parts of speech 

as a pre-processing step for deriving features for opinion mining has also been seen in 

a number of other sentiment classification experiments: In (Yu et al, 2003) it is used as 

part of a feature set for performing sentiment classification on a data set of newswire 

articles, with similar approaches attempted in (Pang et al, 2002; Salvetti et al, 2004; 

Gamon, 2004) on various data sets; On (Turney, 2002) a method that detects and 

scores patterns in part of speech is applied to derive features for sentiment 

classification, with a similar idea applied to opinion extraction for product features 

seen in (Yi et al, 2003).  

Document Style and Document Structure 

The subjective components of a document also have been shown to have relationships 

to the document structure and writing style, as in the example of thwarted 

expectations, previously discussed in this section. One consideration is term position

within the document. It can be argued that the location of a specific opinion bearing 

term within a document can have greater or lesser influence in overall sentiment 

classification: if for instance, this term is placed towards the end of the document, it 

may have a greater relation to author’s opinion, as the end of the document is generally 

where concluding remarks are present. This is one aspect that has been explored in the 

experiments presented in (Pang et al, 2002), where it was seen to influence overall 

classification, albeit in a small scale. Another attempt to model discourse structure can 

be seen in (Devitt et al, 2007) where a graph-based representation of text relationships 

is proposed, based on linguistic models of lexical cohesion and other metrics extracted 

from the document. 

Detecting the existence of expressions that can increase, decrease or invert sentiment 

orientation of text - also called valence shifters - are of importance to sentiment 

classification of documents. A comment present on a film review, such as the one 

below: 

  

“This film is not great, not funny and not interesting.”  
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Predicting the correct sentiment of the above review can not rely on term orientation 

alone, since each positive-oriented term has been negated and is expressing its exact 

opposite. In (Pang et al, 2002) negation detection is modelled by adding a modifier 

prefix to negated terms, such as converting “great” into “NOT_great”. The resulting 

modified text is then used as input for a word vector classifier. Several approaches 

have been studied for the detection of negation in the context of extracting information 

from medical records (Chapman et al, 2001; Huang et al, 2007; Mutalik et al, 2001). 

Other valence shifting modifiers, such as “very”, “just” or “extremely” have also been 

shown to influence sentiment classification of the overall document (Kennedy et al, 

2006). 

Humoristic features such as sarcasm and irony also do play a part in expressing author 

sentiment. These can be relatively more complex to identify, usually not depending on 

term sentiment alone, but relying on word play, contrasts and domain knowledge. 

Other affective expressions such as anger, joy, and fear can also be closely related to 

author sentiment, and therefore opinion. The role of affective computing to sentiment 

analysis has been highlighted in (Strapparava et al, 2006). Supervised approaches to 

humour detection have been investigated in (Mihalcea et al, 2005) for a limited aspect 

of written humour, but with some success when experimented on a test data set.  

Finally, it is to be expected that opinionated documents may contain also objective 

sections. On product reviews this may amount to sections describing the product 

features, as opposed to expressing an opinion on them; on film reviews the author may 

chose to present details of the plot, or the background of a certain actor, to further back 

up an argument. It can be speculated that the objective sections of an opinionated 

document in general will carry less opinion bias than the subjective ones, and may 

cause a decrease in performance on overall document classification. As an example we 

can consider for instance the case where an actor dialogue is inserted by the author into 

a film review, containing terms in opposition to author opinion. Similar issues have 

been noted in (Pang et al, 2002; Kennedy et al, 2006), and the beneficial aspect of 

subjectivity detection and filtering to sentiment classification has been noted in (Pang 

et al, 2008). In (Pang et al, 2004) an approach to filter out objective sentences as a pre-

processing step to document classification is proposed based on training on a data set 
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of subjective sentences, with considerable improvements over a baseline machine 

learning classifier. 

Combining Approaches 

Taking the view that different methods for performing sentiment classification capture 

different types of sentiment related information from a document, it is worth noting the 

contribution in the literature to combining results from more than one classifier in 

order to obtain better results. This can be done not only to address induction bias from 

a specific classifier algorithm, as seen on section  3.3.7, but also to make better 

decisions from a pool of classification techniques, each leveraging different types of 

data. Applications of this idea to sentiment classification can be seen on (Kennedy et 

al, 2006), where a combination of classifiers using word vectors and scores from a 

word list generate improved results over a baseline. A similar approach is seen on 

(Mullen et al, 2004) with the combination of proximity metrics and term relationships 

extracted from a lexicon.  

In the next section we turn our attention towards a distinct class of techniques for 

performing sentiment classification, based on building lexicons containing sentiment 

information that can be employed to the detection of opinion in documents. 

4.2.5. Lexical  Resources for Opinion Mining and SentiWordNet 

One common approach in performing both subjectivity detection and sentiment 

classification involved the use of key words that are assumed to be indicative of either 

positive or negative bias, and therefore also of overall subjectivity. This idea is based 

on the hypothesis that words can be considered as a unit of opinion information, and 

several methods based on this assumption have been proposed with considerable 

success: (Turney et al, 2003) proposes a subjectivity detection method that extends a 

list of seed words based on a proximity measure to other common terms in text; In 

(Pang et al, 2002) an experiment with a list of manually created positive and negative 

words yields accuracies of 69% in the task of sentiment classification of film reviews. 

In (Kennedy et al, 2006), a lexicon of positive, negative and valence shifter terms is 

built from various sources to perform document-level sentiment classification.  
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One interesting aspect of approaches based on word lists is that it does not necessarily 

require training data for making predictions, since it relies only on a pre-defined 

sentiment lexicon, thus being applicable to cases where no training data is present. For 

this reason these methods are often labelled as unsupervised learning approaches 

(Pang et al, 2008). 

Creating word lists manually however is time consuming, and approaches have been 

proposed in the literature for automatically creating resources that contain opinion 

information on words based on readily available lexicons, often termed lexical 

induction (Pang et al, 2008). In (Kennedy et al, 2006) a lexicon of positive, negative 

and valence shifting terms is built from various data sources for the purposes of 

sentiment classification. Another common approach is to derive opinion information 

from the freely available WordNet database of terms and relationships (Miller et al, 

1990), typically by examining term relationships to a subset of core terms assumed a 

priori to carry opinion information, such as “good”, “excellent”, “bad” and “poor”. 

This approach to lexical induction can be seen on subjectivity detection research 

conducted in (Yu et al, 2003) and in sentiment classification (Dave et al, 2003; Kim et 

al, 2003; Salvetti et al, 2004). A similar example of WordNet-based lexicon has been 

proposed for the purposes of affective computing, such as the WordNet-Affect 

resource (Strapparava et al, 2004). 

SentiWordNet 

One example of a lexical resource conceived to assist in opinion mining tasks is 

SentiWordNet (Esuli et al, 2006). SentiWordNet aims at providing term level 

information on opinion polarity by deriving this information from the WordNet 

database of English terms and relations (Miller et al, 1990) in a semi-automatic 

fashion. 

For each term in WordNet, a positive and a negative score ranging from 0 to 1 is 

present in SentiWordNet, indicating its polarity, with higher scores indicating terms 

that carry heavy opinion bias information, whereas lower scores indicate a term being 

less subjective. The table below illustrates a score for the term “interesting” extracted 

from SentiWordNet’s web interface. 
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Term: Interesting

o Positive: 0.325 

o Negative: 0.0 

Figure 11 - SentiWordNet Sample Score (http://sentiwordnet.isti.cnr.it) 

WordNet 

WordNet is a lexical database for the English language where terms are organised 

according to their semantic relations (Miller et al, 1990). It has been widely applied to 

problems in natural language processing with a comprehensive list of work in the 

literature available on (Csomai et al, 2008). Several opinion classification methods in 

the literature are based upon it (Kim et al 2004; Dave et al, 2003; Salvetti et al, 2004). 

Before describing how SentiWordNet is built, a brief discussion on the database that 

originated it will be of help in understanding the underlying motivations and how the 

data is organised. 

The WordNet lexicon is the result of research efforts in linguistics and psychology at 

Princeton University on better understanding the nature of semantic relations of terms 

in the English language, and on providing a complete lexicon in the English language 

where terms can be retrieved and explored according to concepts and their semantic 

relationships. At its third version, WordNet is available as a database, searchable via 

web interface or via a variety of software APIs, providing a comprehensive database of 

over 150.000 unique terms organised into more than 117,000 different meanings 

(WORDNET, 2006). WordNet also grew with extensions of its structure applied to a 

number of other languages (WORDNET, 2009). 

Key Term Relationships 

The key relation between terms in WordNet is similarity of meaning, or synonymy. 

Terms are grouped together into sets of synonyms called synsets. The general criteria 

for grouping terms together into a synset is whether a term used within a sentence on a 

specific context can be replaced by another term on the same synset without modifying 

the sentence’s understanding.  One direct implication of this structure is that terms 

must also be differentiated by syntactic categories, since nouns, adjectives verbs and 
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adverbs are not interchangeable within a sentence. Synsets also contain a short 

descriptive text defining its terms – or gloss – to assist in specifying its meaning. This 

is particularly useful on synsets with only a single term, or synsets with a small 

number of relations. 

Another important term relationship present in WordNet is antonimity, or whether 

terms are conceptually opposites. In the special case of adjectives, there is a distinction 

between direct and indirect antonyms, or when terms can be categorised as direct 

opposites, or indirectly via another conceptual relationship (Fellbaum et al, 1990). The 

words “wet/dry” are qualified as direct antonyms, however “heavy/weightless” are 

conceptually opposites and thus indirect antonyms, since they belong to synsets where 

a direct antonym exists between the terms (“heavy/light”) but are not directly 

correlated. 

Hyponymy is another class of relationship present in WordNet, and indicates a 

hierarchical “is-a” type of relationship between terms, such is the case with 

“oak/plant” and “car/vehicle”, while meronymy relationships indicate “part-of” types 

of relationship between terms. For the special case of adjectives, an attribute type of 

relationship exists, indicating of what generic attribute the adjective is a modifier, for 

example the example adjectives “heavy” and “light” are modifiers of the attribute 

“weight”. WordNet would then link the noun representing the attribute to the 

adjectives that modify it with this type of relationship.  

Building SentiWordNet 

Building on the strengths of WordNet’s semantic relationships, SentiWordNet derives 

opinion scores for synsets using a semi-supervised method where only a small portion 

of synset terms - called the paradigmatic terms - are manually labelled, with the 

remaining database derived using an automated method. The complete process is 

described in (Esuli et al, 2006) and summarised below: 

1. Manually label paradigmatic terms extracted from the WordNet-Affect lexical 

resource (Strapparava et al, 2004) into positive or negative labels, according to 

opinion polarity. 
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2. Iteratively expand each label by adding terms from WordNet that are connected 

to already labelled terms by a relationship considered to reliably preserve term 

orientation. The following relationships are used to extend the labels: 

a. Direct antonym 

b. Attribute 

c. Hyponymy (pertains-to and derive-from) 

d. Also-see 

e. Similarity 

3. From newly added terms, add to opposite label the terms containing directly 

opposite opinion orientation, according to the direct antonym relationship. 

4. Repeat steps 2 and 3 for a fixed number of iterations K. 

Upon completion of steps 1-4, a subset of WordNet synsets is now labelled either 

positive or negative. To complete the score assignment for all terms, a set of classifiers 

is trained on their synset glosses, or textual definitions of each synset meaning 

available on WordNet. The process continues by classifying new entries according to 

this training data, and generating an aggregated score, as detailed below: 

5. For each labelled synset from steps 1-4, produce a word vector representation, 

along with a positive/negative label. This data set is used to train a committee 

of classifiers built as follows: 

a. Train a pair of classifiers to make the following predictions: 

positive/non-positive, and negative/non-negative. 

i. synsets that belong to both positive and negative labels are 

excluded from the training set and assigned to the “objective” 

class, with zero-valued positive and negative scores. 

b. Repeat process for different sizes of training sets. These are obtained by 

varying K in the previous stage: 0,2,4 and 6. 

c. For each training set, use Rocchio and Support Vector Machine 

classification algorithms. 
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6. When applying the set of classifiers to new terms, each resulting classifier 

returns a prediction score as a result. These summed together and normalised to 

1.0 to produce the final positive and negative scores for a term. 

The process for building SentiWordNet illustrated above highlights the reliance of 

term scores on two distinct factors: the choice of paradigmatic words that will generate 

the initial set of positive and negative scores must be carefully considered, since the 

extension of scores to the remainder of WordNet terms relies on this core set of terms 

for making a scoring decision. Secondly, the process relies on synset’s textual 

description, or glosses, for the machine learning stage of the process, to derive a new 

term’s similarity to positive or negative terms. 

  

Applying SentiWordNet 

Earlier in this section the advantages of lexicon-based approaches to opinion mining 

were observed, and results from experiments on both subjectivity detection and 

sentiment classification were investigated. The use of SentiWordNet as a lexical 

resource for opinion mining could be of advantage on various instances. The approach 

of using individual terms as a unit for sentiment information has received considerable 

research attention in opinion mining, and SentiWordNet could be applied as a 

replacement to manually building sentiment lexicons from WordNet, often done on an 

ad-hoc basis for specific opinion mining research, as found on (Salvetti et al, 2004; 

Dave et al, 2003; Kim et al, 2004). Validating automated methods for building term 

orientation information such as SentiWordNet can be useful in the scalability and 

automation of these approaches to opinion mining.  

4.3. Conclusion 

In this chapter the research areas of text mining and opinion mining were surveyed. 

Text mining concerns the computational treatment of text for extraction of novel 

information, and leverages techniques from machine learning, natural language 

processing, information retrieval and computational linguistics. Applications of text 

mining to knowledge discovery were surveyed, based on exploratory analysis and 

other traditional data mining techniques. 
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The representation of documents for performing text mining was studied in more 

details, with the word vector, or bag of words method being one of the most popular 

methods for representing text for machine learning, demonstrating very effective 

empirical results. 

The research area of opinion mining was introduced. Opinion mining is a new field of 

research leveraging components from data mining, text mining and natural language 

processing, and a wide range of applications of extracting opinion from documents is 

possible, as discussed in this chapter. These range from improving business 

intelligence in organisations to information retrieval systems, recommender systems 

and more efficient online advertising and spam detection. It was seen that opinion 

mining can be beneficial to knowledge management initiatives either directly, by 

improving the quality of knowledge repositories through opinion-aware features, or by 

adding to the knowledge that can be extracted from textual data sources, thus indirectly 

creating more opportunities for knowledge creation within the company. 

Finally, the WordNet and SentiWordNet lexical resources were introduced, with a 

presentation of its building blocks and potential uses. SentiWordNet is an extension of 

the popular WordNet database of terms and relationships, and is a readily available 

lexical resource of term sentiment information, which could be used on opinion mining 

research where a number of similar approaches were devised in an ad-hoc fashion. 

SentiWordNet is also one key component of this dissertation’s research. In the next 

chapter, the capabilities and structure of this resource are explored in details having in 

mind the challenges to opinion mining surveyed in this chapter. The end result is the 

design of a set of features that leverage sentiment information extracted from 

SentiWordNet and can be applied to sentiment classification problems. 
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5. DESIGNING FEATURES WITH SENTIWORDNET 

5.1. Introduction 

As outlined in the introductory discussion on the research problem and objectives in 

Chapter 1, this dissertation’s experiment is comprised of two distinct parts: First, in 

order to use SentiWordNet as a tool for performing sentiment classification, a set of 

features that capture as much sentiment information as possible from textual 

documents needs to be devised. Then, once a feature set is generated from text 

documents with SentiWordNet, these can be used as input to a classifier algorithm and 

results on classification performance and execution speed can be analysed. This 

chapter begins the experiment discussion by presenting the first aspect of this 

experiment. 

  

In this chapter the structure of the SentiWordNet database is analysed in detail and the 

Polarity data set of film reviews is presented. Considerations on writing style are 

presented, and the implications to the type of information SentiWordNet can extract 

for the purposes of opinion mining are discussed. These considerations will drive the 

requirements for data preparation and cleanup of the source text needed to generate an 

effective data mining exercise, and as noted in (Shearer, 2000) and surveyed in 

Chapter 3, these are important contributing factors for the success of knowledge 

discovery activities. 

The outcome of this chapter is a specification for a set of features that takes a film 

review in plain text as the starting point and captures sentiment information present on 

terms using SentiWordNet. This set of features can be used as input to train supervised 

learning methods in performing sentiment classification. 

5.2. The SentiWordNet Database 

As detailed on Section  4.2.5 of the previous chapter, SentiWordNet is a database 

containing opinion scores for terms derived from the WordNet database version 2.0. It 

is built using a semi-supervised method to obtain opinion polarity scores from a subset 
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of seed terms that are known to carry opinion polarity. Each set of terms sharing the 

same meaning, or synsets, is associated with three numerical scores ranging from 0 to 

1, each indicating the synset’s objectiveness, positive and negative bias. One important 

characteristic of SentiWordNet is that positive and negative scoring is graded for any 

given term, and it is possible for a term to have non-zero values for both positive and 

negative scores, according to the following rule: 

For a synset s, we define: 

• Pos(s)  →  Positive score for synset s.

• Neg(s)  → Negative score for synset s.

• Obj(s)  → Objectiveness score for synset s.

Then the following scoring rule applies: 

Pos(s) + Neg(s) + Obj(s) = 1 

The positive and negative scores are always given, and objectiveness can be implied 

by the relation: 

Obj(s) = 1 – (Pos(s) + Neg(s)) 

5.2.1. Database Structure 

The SentiWordNet database is provided as a text file where term scores are grouped by 

synset and the relevant part of speech. The table below describes the columns for one 

entry in the database reflecting opinion information of a synset. 

Field Description 

POS Part of speech associated with synset. This can take four possible 

values: 

• a = adjective 
• n = noun 
• v = verb 
• r = adverb 

Offset Numerical ID which associated with part of speech uniquely 

identifies a synset in the database. 
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PosScore Positive score for this synset. This is a numerical value ranging 

from 0 to 1. 

NegScore Negative score for this synset. This is a numerical value ranging 

from 0 to 1. 

SynsetTerms List of all terms included in this synset. 

Table 9- SentiWordNet Database Record Structure 

To illustrate how opinion information appears in SentiWordNet, the table below 

presents sample rows extracted from the raw database file. 

POS Offset PosScore NegScore SynsetTerms 

a 1001456 0.375 0.125 casual 

everyday 

n  13488485 0.0 0.125 pull 

twist 

wrench 

v  1248670 0.125 0.0 truss 

tie_up 

bind 

tie_down 

r  326136 0.375 0.25 dreamily 

dreamfully 

moonily 

Table 10 - Sample SentiWordNet Data 

5.2.2. Statist ics on Part  of Speech Scoring  

As seen on the previous section, SentiWordNet terms are categorised by the role being 

played in a given sentence, or the part of speech the term is used as. To further 

understand how opinion scores are affected by part of speech, the table below 

reproduces analysis presented on (Esuli et al, 2006): 
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Part of 

Speech 

% Synsets with 

Objectiveness = 1 

Average 

Objective Score

Average Pos. 

Score 

Average Neg. 

Score 

Noun 83.50 % 0.944 0.022 0.034 

Verb 81.05 % 0.940 0.026 0.034 

Adverb 32.97% 0.698 0.235 0.067 

Adjective 44.71% 0.743 0.106 0.151 

Table 11 - Scoring statistics per part of speech (Esuli et al, 2006) 

It can be seen from the above data that nouns and verbs are predominantly objective in 

nature, and carry little positive or negative bias. According to the process of building 

SentiWordNet, this indicating nouns and verbs have weaker relations to other 

WordNet terms known to have either positive or negative bias, while adverbs and 

adjectives are the parts of speech carrying the highest percentage of terms with a non-

negative subjective score. As observed on (Esuli et al, 2006), it is an indication that the 

use of modifiers (adjectives or adverbs) is more frequent when expressing subjective 

opinion than speech parts such as verbs and nouns, more commonly used to denote 

entities of objective nature. Another important observation is that while adverbs do 

carry considerable polarity weight (only 32.97% of terms contain no subjective bias), 

the average scoring tends to be overwhelmingly positive. 

5.3. Considerations on SentiWordNet Data  

After analysing the database structure of SentiWordNet, this section explores key 

aspects that need to be taken into consideration when designing features to be used in 

sentiment classification. 

5.3.1. Automatic Part of Speech Tagging 

Data in SentiWordNet is categorized according to part of speech, and indeed as seen 

on Table 11, there are considerable differences in the level of objectiveness a synset 

might carry, depending on its grammatical role. Information on part of speech in the 

source documents being classified will need to be extracted, so that SentiWordNet 

scores can be accurately applied. To achieve this, a part-of-speech tagging algorithm 

can be employed to automatically classify words into categories based on parts of 

speech from the source documents. Part-of-speech taggers and their use within opinion 
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mining research were discussed on section  4.2.4 of the review on opinion mining 

research literature. 

A part-of-speech tagger receives as input a plain text document, and returns as output a 

document where every word and punctuation mark is associated with a tag that 

indicates the part of speech the term is used as. For example, the input sentence: 

“the variety of music , as well as the beautifully shot performances , are easy to 

become immersed in .” 

Generates the following output from a part-of-speech tagger: 

“ the/DT variety/NN of/IN music/NN ,/, as/IN well/RB as/IN the/DT 

beautifully/RB shot/VBN performances/NNS ,/, are/VBP easy/JJ to/TO 

become/VB immersed/VBN in/IN ./. ” 

Each term has been associated with a relevant tag indicating its role in the sentence, 

such as verb, noun, adjective, etc. Several standards exist for tag formats, of which the 

most popular are related to the Penn Treebank annotated corpus (Marcus et al, 1993) 

and the various instances of the CLAWS tag sets, derived from the original tag set for 

the brown corpus (Garside, 1987). To illustrate the above example, the table below 

highlights key tags from the Penn Treebank tag set relevant to SentiWordNet, with the 

complete set of tags available in the appendix section. 

Part of Speech Penn Treebank Tags 

Adjective JJ, JJR (Comparative), JJS (Superlative) 

Verb VB, VBD (Past tense), VBP (Present tense), VBZ (Present 

tense 3rd person), VBG (Gerund), VBN (Past participle).  

Adverb RB, RBR (Comparative), RBS (Superlative) 

Noun NN, NNP (Proper noun), NNPS (Proper noun, plural), NNS 

(Plural) 

Table 12 - Penn Treebank Tags (Marcus et al, 1993) for parts of speech present in 

SentiWordNet 
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After tagging plain text documents, this information needs to be parsed so that it can 

be used with the SentiWordNet database. This process will require the development of 

an application that reads a tagged document and correctly match terms and their part of 

speech tag to a SentiWordNet score.  

5.3.2. Word Sense Disambiguation 

When evaluating scores for a given term using SentiWordNet, an issue arises in 

determining to what specific WordNet synset the term belongs to and which score to 

take into account. Consider the example for the term “mad”, with four synsets in 

WordNet. 

Synset SentiWordNet 

Score (Pos, Neg) 

Gloss 

huffy, mad, sore (roused to anger) (0.0, 0.125) "she gets mad when you wake her up 

so early"; "mad at his friend"; "sore 

over a remark" 

brainsick, crazy, demented, disturbed, 

mad, sick, unbalanced, unhinged (affected 

with madness or insanity) 

(0.0, 0.5) "a man who had gone mad" 

delirious, excited, frantic, mad, 

unrestrained (marked by uncontrolled 

excitement or emotion) 

(0.375, 0.125) "a crowd of delirious baseball fans"; 

"something frantic in their gaiety"; "a 

mad whirl of pleasure" 

harebrained, insane, mad (very foolish) (0.0, 0.25) "harebrained ideas"; "took insane 

risks behind the wheel"; "a 

completely mad scheme to build a 

bridge between two mountains" 

Table 13 - Example of multiple scores for the same term in SentiWordNet 

In the above example, there are four possible choices of meaning for the adjective 

“mad”, one of which refers to positive states of emotion, and carries a positive score in 

SentiWordNet, raising the question of which one to apply when scoring this term 

inside a given document. Determining which synset needs to be applied on a specific 

context is analogous to the problem of word sense disambiguation. In section  4.2.4 of 

the opinion mining literature review, this area of research and its connection to opinion 

mining was explored in more details. For the purposes of this dissertation’s 
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experiment, no sophisticated techniques of word sense disambiguation are being 

considered due to time constraints and the impact on the complexity of the data set 

being modelled. At first instance, some level of disambiguation can be obtained from 

part of speech information as noted by (Wilks et al, 1998), and part of speech tagging 

is already executed as a requirement for extracting SentiWordNet scores. If however 

the process is faced with the task of scoring a term with multiple senses and same part 

of speech, a simpler approach will be taken, based on the following rules: 

• Evaluate scores for each synset for a given term; 

• If there are conflicting scores – e.g. positive and negative scores exist for the 

same term – calculate the average of all positive scores and all negative scores, 

and  

• Return the averaged SentiWordNet score with higher value only if the positive 

and negative scores differ by more than a given threshold. 

This approach assumes that ambiguous synsets with a majority score in a given 

orientation are likely to appear more frequently in the document and are therefore 

chosen. If the aggregated positive and negative scores for an ambiguous synset are 

below a given threshold, it is assumed then that a decision can not be made on term 

orientation and the score is discarded. Because word sense is not evaluated in depth, 

this approach may limit the amount of information gathered from SentiWordNet at the 

expense of some discarded scores, and as seen on the above example, may not always 

guarantee the correct scoring is being applied. It is hoped these will not be significant 

to the overall performance of the method, however future developments of the 

SentiWordNet model taking into account more sophisticated techniques of word sense 

disambiguation could yield positive results.    

5.4. The Polarity Data Set 

The polarity data set is a set of film review documents available for research in 

sentiment analysis and opinion mining. It was first introduced as a research data set 

along with Bo Pang and Lillian Lee’s initial results on machine learning methods for 
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sentiment classification presented in (Pang et al, 2002). The most recent available data 

set is version 2.0, and is the one being used for this dissertation’s experiment. It 

comprises 1000 positive labelled and 1000 negative labelled film reviews extracted 

from the Internet Movie Database Archive (Pang et al, 2004). In this section, the 

polarity data set is further evaluated with considerations on how SentiWordNet can be 

used to extract opinion bias information from documents contained in it. 

5.4.1. Document Structure 

A film review from the polarity data set already underwent several pre-processing 

tasks aiming at standardising the text (Pang et al, 2004): 

• All text is converted to lowercase. 

• Each line in a document corresponds to a single sentence. 

• All HTML tags are stripped from the document – e.g. documents are plain text. 

• Ratings information is removed from text: Labels are derived from rating 

information explicitly mentioned in the document. This information is removed 

from the data set since author bias should be indirectly implied from the text, 

and not from the rating scale given. 

Labelling a document as positive or negative is derived from ratings information 

explicitly stated in the review. Because the formatting of ratings in text is inconsistent, 

a set of ad-hoc rules was derived for deciding on the correct label. The rules are 

documented in the readme file for version 2.0 of the data set, and consist of: 

• Ratings must be explicitly mentioned as a numerical or “star” scale. Valid 

examples are: 8/10, nine out of ten, three stars (out of five), etc. 

• In a five-star system, positive labels are assigned to ratings of “three-and-half 

stars” or higher, whereas negative labels are assigned to ratings of “two stars” 

or lower. 

• In a four-star system, positive labels are assigned to ratings of “three stars” or 

higher, whereas negative labels are assigned to ratings of “one-and-half stars” 

or lower. 
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• In a letter grade system, “B” or above is considered a positive review, whereas 

“C-“ or lower is considered a negative review. 

Document Statistics 

The table below presents document statistics to assist in understanding the document 

structure for a typical review, for each document class. Average terms/Doc counts all 

of the terms in a document and averages the results for all documents in a class; 

Average sentences/Doc calculates a similar metric for sentences; Unique Terms/Doc

counts each term in a document only once. Finally, term-to-sentence ratio averages the 

number of terms in a sentence for a given document, then averages the result for all 

documents in each class. Further considerations on the below statistics will be made 

while applying SentiWordNet features and evaluating results obtained. 

  

Class Average 

Terms/Doc 

Average 

Sentences/Doc 

Average Unique 

Terms/Doc 

Average Term-to-

Sentence Ratio 

Positive 685.526  35.941 351.973 19.208 

Negative 611.903  35.419 326.641 17.968 

Table 14- Polarity data set document statistics 

5.4.2. Considerations on Writing Style 

To extract scores from a review using SentiWordNet, a document needs to be scanned, 

and each term would receive a score based on SentiWordNet data and part of speech 

information. Further investigation on writing style reveals other parameters are also 

relevant in determining how to score terms appropriately. Based on challenges to 

opinion mining previously discussed in section  4.2.4, this section explores these 

considerations and how to address the potential issues affecting sentiment 

classification. 

Negation 

The use of negating terms such as “not” and “no” play a part in determining the 

orientation of a term. Consider the following simple examples: 
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• “This film is good.” 

• “This film is not good.” 

Clearly, both contain the term “good”, which carries positive connotation and a 

positive SentiWordNet score. The second sentence however has a negative meaning. 

Therefore a scoring method that simply adds scores for terms as they appear on text 

can lead to poor results. 

In the English language, negation can occur in a variety of often subtle ways. In 

general, it involves a negation signal, a set of negated concepts for which the signal 

has scope on, and in some cases a supporting pattern or expression commonly appears 

with a type of negation (Huang et al, 2007). On the above examples, “not” indicates 

the negation signal. It is also worth noting that negation can modify strength of a 

sentence, and modify the scope of previous concepts in a sentence, such as in the 

examples: 

• “The film is not one bit good.” 

• “Production quality and good acting were absent in this film.” 

In the first case, the pattern “one bit” increases the strength of the statement (e.g. “the 

film is not at all good”), while on the second case, the negation signal “absent” 

modified the concepts preceding it.  

Apart from performing rich linguistic analysis on text, it is difficult to predict and 

correctly determine all negation cases in a text (Mutalik et al, 2001). However, 

effective approaches have been suggested based on simpler techniques that use text 

parsing rules coded as finite state regular expressions, as seen on the NegEx algorithm 

(Chapman et al, 2001) and the NegFinder algorithm (Mutalink et al, 2001), while other 

hybrid approaches that also include detecting patterns from the parsing tree of a 

sentence were proposed in (Huang et al, 2007). These approaches have provided good 

results in predicting common negation cases on objective document corpora from the 

medical industry. 
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A similar approach for dealing with negation statements in film reviews could be 

applied to the Polarity data set. An algorithm that detects negation by regular 

expressions, based on the NegEx algorithm (Chapman et al, 2001) is proposed, with 

source Python code available in the Appendix B.1 section. NegEx works by 

identifying three classes of expressions: There are pseudo-negating terms, where a 

negation expression is found but does not alter the orientation of terms; and 

expressions that negate previous or next terms in a sentence. If a negating expression is 

found, then sentiment polarity of a sentence is inverted for all terms within a specific 

window, or until a punctuation or negation altering term is found. A negating window 

is a numeric parameter that indicates the scope of a negating term within a sentence.  

An interesting by-product of a negating algorithm is the ability to determine for a 

given text how many terms are being negated, and how often negating expressions are 

used as a narrative device. This information could be used as features in detecting 

sentiment orientation on the basis of writing style, and can be of assistance on the 

sentiment classification task.  

Objective Sentences 

Another aspect of a typical review is the presence of both opinion related comments 

and sections containing more objective text, such as a plot description, remarks on an 

actor or director’s career.  An example can be seen on the sample extract below, from 

one of the reviews of the Polarity data set: 

“when the aliens begin to menace society , it may take the scientists' combined 

efforts to stop them before they terminate the evolution of another life form : 

humanity .” 

In this case, even though there are terms that may carry opinion information such as 

“menace” and “terminate”, the sentence is very objective and does not provide 

evidence of author opinion.  The problem can become more complex for adequate 

scoring since author opinion can appear in the middle of a descriptive sentence. For the 

purposes of this experiment, no formal detection of subjectivity in sentences is 

performed. To mitigate the effect of potentially objective sentences an approach based 

on determining areas of document more likely to be subjective is proposed below. 
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Document Segmentation 

As observed in section  4.2.4, the strength of sentence opinions can be related to its 

position in a document, suggesting a relationship between document structure and 

author sentiment. In order to better detect those sentiment hot areas within the 

document,  a text document can be separated into individual segments, and term scores 

calculated separately for each of these segments. This approach can also help in 

detecting areas of the document which tend to carry generally objective content, and 

thus of little relevance to sentiment classification. In addition, to further test the idea of 

term importance as a function of document position, scores can be adjusted according 

to a function of term position, indicating which areas of the document are more 

relevant. 

5.5. Proposed Model 

In the previous sections of this chapter, the structure of the SentiWordNet database, 

and the polarity data set were assessed in details, and considerations were made on 

challenges and limitations of what opinion information can be gathered. With those in 

mind, a model can be proposed for creating a set of features for opinion classification 

using SentiWordNet. It is worth highlighting here that, as noted in (Kennedy et al, 

2006; Pang et al, 2008), lexical resources such as SentiWordNet are built 

independently of the data set being analysed, and could be used in an unsupervised 

fashion, thus discarding the need for training data. The approach for a feature set 

proposed in this section however starts from the principle that the features obtained 

through SentiWordNet capture diverse aspects of document sentiment, and are best 

suited for the creation of a data set that can be applied to train a classifier algorithm, 

like other machine learning methods proposed in opinion mining. The high level 

approach for obtaining these features is presented in the diagram below. 
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distinguish document areas more likely to represent overall opinion content. Finally, a 

negation detection algorithm should be in place to enable the inversion of scores for a 

term when appropriate. The feature design is divided by feature type, and their concept 

is explained below. 

Overall Scoring per Part of Speech 

Intuitively, the overall positive and negative scores for all terms in a document 

extracted from SentiWordNet terms can be taken as a measure of opinion polarity. A 

similar approach is seen on (Kennedy et al, 2006). In addition, for each part of speech, 

the overall sum of SentiWordNet scores in a given document can also be calculated. 

The scoring of terms is calculated according to a function of term position within the 

document, as described in section  5.4.2. 

Score Strength Measures per Part of Speech 

Overall scoring alone may be assisted by a measure of opinion strength, which 

captures how strong, on average are the positive and negative scores found in the 

document, for each part of speech. The calculation is done by computing the total 

positive/negative scores divided by total positive/negative terms found, for each part of 

speech. 

Positive and Negative Ratios 

For each part of speech, this metric calculates the percentage of positive and negative 

occurrences out of total terms found, to give an indication of positive and negative 

term usage within the document. 

Scores per Document Segment. 

To evaluate the contribution of individual document areas to overall sentiment, each 

document is divided into N segments of equal size, and for each segment the total 

positive and negative scores for a given document segment, per part of speech. For the 

case of adjectives, other metrics such as strength and ratios to be calculated for each 

segment. 
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Negations 

By applying a negation detection algorithm, the following measurements related to the 

use of negation expressions can be extracted: 

• Percentage of document terms affected by a negating expression. 

• Total negating terms for a given document segment, assuming number of 

segments N, defined a priori. 

The parts of speech being considered for SentiWordNet scores are adjectives, adverbs 

and verbs. According to information from Table 11 - Scoring statistics per part of 

speech (Esuli et al, 2006), nouns are mostly objective and carry little opinion bias and 

will be left out of the final set of features. Further evidence suggesting this can also be 

seen on the classification performance results obtained in (Yu et al, 2003) where the 

best feature set taking parts of speech into account disregards the use of nouns. From 

Table 7 it can be seen that most adverbs carry positive bias, hence an assumption will 

be made that positive adverbs are widely present on most texts and are redundant for 

the purposes of opinion classification, and therefore only negative adverbs will be 

included on the feature set. Adjectives, on the other hand have the potential to carry 

considerable opinion information, and therefore the feature set will be extended for 

this particular part of speech. 

The table below details individual features to be extracted from a film review using 

SentiWordNet. The total number of features generated varies according to the number 

N of segments the document is divided into. 
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Feature Type Description of Features 

Overall Scores per 

part of speech. 

Sum of all positive scores for adjective. 

Sum of all negative scores for adjective. 

Sum of all positive scores for verbs. 

Sum of all negative scores for verbs. 

Sum of all negative scores for adverbs. 

Scores Strength per 

part of speech. 

Negative and positive strengths for adjectives. 

Negative and positive strengths for verbs. 

Negative strength for adverbs. 

Ratios per part of 

speech. 

Negative and positive ratio for adjectives. 

Negative and positive ratio for verbs. 

Negative ratio for adverbs. 

Scores per document 

segment. 

For a N-segmentation of document: 

N positive scores for adjectives. 

N negative scores for adjectives. 

N positive scores for verbs. 

N negative scores for verbs. 

N negative scores for adverbs. 

N sums of positive adjectives. 

N sums of negative adjectives. 

N positive scores for adjective strength. 

N negative scores for adjective strength. 

Negation Percentage of negated terms in document. 

Negated terms per document segment (for N segments)

Table 16 - SentiWordNet Feature Description 

Parameters for Feature Generation 

The end result of the above set of feature is dependant upon how the extraction 

algorithm is configured. In this section, the key parameters affecting feature values 

extracted from SentiWordNet are detailed. Tuning of SentiWordNet feature generation 

parameters may affect the performance of the opinion classification task, and is 

included as an activity on the experiment described on the next chapters. The table 

below details the identified parameters. 
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Parameter Description 

Scoring function Determine score value as a function of term location within 

a document. Example scoring functions are: 

• Linear growth with document position. 

• Polynomial growth with document position. 

Negation detection Negation detection algorithm can be enabled or disabled. 

When enabled, a window size for terms to be negated can 

be specified. 

Number of segments Choice of value of N when partitioning the document into 

N separate segments. 

Threshold for score 

consideration 

Threshold value in positive/negative score differences 

when considering ambiguous synsets (See discussion on 

Section  5.4.2). 

Table 17 - Parameters for Feature Generation 

5.6. Conclusion 

In this chapter the structure of the SentiWordNet lexical database of term opinion 

scores (Esuli et al, 2006), and the Polarity data set of film reviews (Pang et al, 2004) 

were analysed in more details, with the objective of determining how to best use 

SentiWordNet to build a model that represent opinion information from text 

documents. The analysis highlighted the need to avail of natural language processing 

techniques such as part-of-speech tagging to enrich the model, as well as potential 

limitations of using lexical resources for determining opinion information. 

Lexical resources such as SentiWordNet contain opinion bias scores based on 

individual terms, and when building a model based on this type of information there 

are certain challenges stemming from the nature of natural language to be considered, 

as surveyed in Chapter 4. Word sense disambiguation becomes relevant, since terms 

with potentially multiple meanings may carry different opinion bias depending on 

context and their use within a sentence. Problems with a sentence’s level of 

objectiveness also arise, when scoring terms that do carry opinion bias, but not strictly 
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related to author opinion, such as text extracts that objectively describe a film plot. 

Another challenge arises when negation sentences occur, potentially inverting the 

meaning and associated scores for a term. Domain-specific terms are also an issue, 

since they may indicate a different bias than that of their more commonly seen uses. 

The above issues naturally impose limitations to the effectiveness of sentiment 

classification using SentiWordNet. These were addressed with mitigating strategies 

where feasible, or acknowledged as relevant topics of research for further improving in 

the model. 

The outcome of this chapter is the specification of a data model that reflects opinion 

information derived from SentiWordNet, and a proposed process for obtaining the 

features having the original Polarity data set as a starting point. From this 

specification, the process can be implemented with the assistance of third party tools 

for part-of-speech tagging, and scripting code for the generation of SentiWordNet 

features.  

In the next chapters, the experiment on opinion mining will be described in details, and 

results will be presented and discussed. The experiment uses a data mining 

classification technique for determining opinion orientation of documents from the 

polarity data set based on SentiWordNet information, and the input to the classification 

task will be the set of features described by the specifications from this chapter. 

Additionally, the analysis of results of the classification experiment will take into 

consideration findings from the assessment of SentiWordNet capabilities and 

limitations conducted during the process of devising the data model. 



131 

6. SENTIMENT CLASSIFICATION EXPERIMENT 

6.1. Introduction 

The use of lexical resources for performing opinion mining tasks has received 

considerable attention in the research literature and several approaches have been 

proposed, as surveyed previously on section  4.2.5. The underlying motivation for these 

techniques is the assumption that individual terms in a document are objects that carry 

unit opinion bias, which could in principle be used as a measure of opinion of the text 

document they belong to (Kim et al, 2004). Lexical resources that relate words to 

sentiment can be constructed manually by eliciting positive and negative words, or via 

induction methods on existing lexicons such as WordNet. SentiWordNet is a lexical 

resource built upon such approach via the generation of opinion scores on WordNet 

synsets from a core of paradigmatic words, using a semi-supervised machine learning 

classification process (Esuli et al, 2006). One interesting problem in opinion mining 

where SentiWordNet can be of assistance is sentiment classification: determining 

positive or negative opinion for a given document on a specific topic.  

In Chapter 5, the first part of this dissertation’s experiment was discussed: the 

SentiWordNet database was studied in details, and a set of features that extract 

sentiment information from documents using SentiWordNet was proposed. Using the 

polarity data set of film reviews comprising 2000 documents equally categorised into 

positive “thumbs-up” and negative “thumbs-down”, this chapter presents a 

classification experiment that aims at determining how well can the SentiWordNet set 

of features perform sentiment classification, and how does it compare with other 

methods in the literature is the key motivation of this experiment. 

In this chapter the experiment in sentiment classification with SentiWordNet is 

described in details. The experiment’s objective, scope and approach are presented, 

followed by a detailed description of the experiment setup, key evaluation metrics and 

execution steps.  



132 

6.2. Objectives and Scope 

The experiment described on this section aims at assessing the viability of using 

SentiWordNet as an approach for performing sentiment classification on text. To 

further detail the line of investigation, the experiment objectives can be described as 

follows. 

• Determine what classification performance can be achieved by using 

SentiWordNet features from Chapter 5, and how it compares to other results 

published in the literature. 

  

• On Chapter 5 a proposed data set with features reflecting several aspects of 

opinion information that can be extracted with SentiWordNet was developed. 

This data set relies on a number of parameters that affect how features are 

computed. The experiment results should determine the effect of each 

individual parameter to overall classification performance, thus indicating how 

relevant each parameter is to sentiment classification. 

• Evaluating the effect of increasing the number of training examples to 

classification performance, in comparison to a baseline classification method. 

• Assess the training time and runtime characteristics of a classifier based on  

SentiWordNet, and compare it to a baseline classification method. 

With the above experiments, it will be possible to evaluate how accurate, how fast and 

how robust can the SentiWordNet approach perform document-level sentiment 

classification. These indicators will give further insights into SentiWordNet’s 

applicability to opinion mining problems in practical applications, and identify areas in 

sentiment lexicons and document-based classification with potential for development 

of better results. To achieve these goals, a labelled data set based on SentiWordNet 

information will be generated using the specifications derived in Chapter 5, and used 

as input to train a classifier that performs sentiment classification.  
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The tasks that need to be performed for the completion of the experiment are outlined 

in the milestones below. 

1. Implement algorithm for extracting features from text documents based on 

SentiWordNet, as described in Chapter  5, using the polarity data set of film 

reviews as input (Pang et al, 2002).  

2. Train a baseline classifier for sentiment classification based on unigram bag-of-

words method similar to the one described in (Pang et al, 2002). 

3. Evaluate results on classification performance using SentiWordNet feature set 

when applied to three standard classification algorithms: Naïve Bayes, Support 

Vector Machines and k-Nearest Neighbours. 

4. Evaluate the effects of feature changes to SentiWordNet feature parameters (as 

described in Section 5.4) to classification performance.  

5. Evaluate the effects of feature selection and outlier removal to classification 

performance.  

6. Compare results obtained using SentiWordNet approach for opinion 

classification to the baseline classifier using to a set of evaluation criteria. 

The above milestones reflect the major activities required by the experiment. First, an 

algorithm that extracts SentiWordNet features from plain text is needed to generate the 

experiment data set. Another requirement is the implementation of the baseline 

classifier where SentiWordNet results can be compared to. Sentiment classification 

tests with SentiWordNet are then performed by steps 3 to 6. In the following section, 

these milestones are logically grouped into execution stages, to be concluded in the 

order outlined above.  
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6.2.1. Out of Scope 

To perform sentiment classification, this experiment leverages supervised learning 

algorithms from the data mining literature. There is a vast array of classification 

methods available and new methods being constantly developed, as discussed in  3.3.7. 

The experiment results are primarily interested in evaluating SentiWordNet, and 

whereas potentially better results can be obtained by testing a wider range of 

algorithms, it is not the objective of this dissertation to perform this comparison. 

Instead, a classification algorithm that provides good results based on a comparison 

between three methods, and which are commonly applied to text mining will be chosen 

and applied to sentiment classification tests using SentiWordNet.  

As seen on section  3.3.2, supervised learning algorithms also rely on parameters that 

determine how classification models are built, often with a large number of possible 

combinations. Finding algorithm parameters that best suit the particular experiment 

being performed here is not considered within scope of this investigation, as it will 

focus instead on the effects of SentiWordNet to sentiment classification. It is 

acknowledged however that gains to classification performance metrics could be 

obtained by fine tuning the algorithm, further considerations on this topic will be made 

on experiment conclusions on chapter  8. 

6.3. Experiment Process 

In order to achieve the desired objectives for the opinion mining experiment, and to 

ensure the experiment is consistently repeatable, an execution process is presented 

below. The process is logically subdivided into stages performing distinct, self-

contained tasks of the experiment process. The below diagram illustrates the 

relationships between each stage, and activities within each stage are detailed in the 

next sub sections. 
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Figure 12 - Experiment Execution Stages 

6.3.1. Baseline Classifier 

For measuring the effectiveness of opinion mining with SentiWordNet, it would be 

useful to compare it with results of other techniques in the literature. In particular, a 

baseline method can be chosen using for criteria the fact it has been widely applied in 

text classification research problems, is closely related to seminal research in the area 

of opinion mining, and where results exist for the data set being used in this 

experiment. Implementing a baseline classifier will provide the ability to obtain results 

that represent closely the ones available in the literature, and to execute different tests 

when required by the experiment. For example, when comparing results using different 

cross-validation settings and with varying training data set sizes. 

With this in mind, the chosen baseline method for comparisons is  analogous to the one 

described in (Pang et al, 2002), comprising a classification task on the polarity data set 

according to its opinion label, using word vectors as the input data set.  This method is 

commonly referenced in the literature when comparing opinion classification 
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experiments using the polarity data set. The building of the baseline classifier 

comprises the following activities: 

1) Create word vector feature set from Polarity data set plain text film reviews;  

2) Train and execute classifier algorithm.  

The parameters chosen to be used as baseline in this dissertation’s experiment are 

based on the best results found on the sentiment classification experiments described 

on (Pang et al, 2002).  

6.3.2. Generate SentiWordNet Features 

This stage is responsible for generating a data set with features derived from 

SentiWordNet, taking the documents from the Polarity data set as input, as described 

in Chapter 5. The outcome of this stage is a data set ready to be used by a classifier 

algorithm. As shown on Section 5.4 of the previous chapter, there are several 

parameters to be tuned in relation to how documents are scored with SentiWordNet, 

and we wish to assess how each parameter may affect the end result of the experiment. 

Thus, the feature generation stage is iterative, requiring several executions to generate 

different data sets with the required combination of parameters. This approach is in 

line with the discussed knowledge discovery methodologies in Chapter  3, where 

iterating through stages – in our case data preparation and data mining -  is 

recommended for results refinement; and with the views of performing data mining in 

a data oriented manner advocated in (Hand et al, 2001; Kulkarni et al, 1998; Weiss et 

al, 1998)  

6.3.3. Sentiment Classification Using SentiWordNet 

A classifier algorithm can now be trained and executed taking a data set containing 

features generated using SentiWordNet in the Polarity data set from the previous stage. 

This stage will be executed iteratively as parameters for SentiWordNet features are 

refined. Upon completion the following tests will have been executed: 

1) Select classification algorithm that provides best performance using SentiWordNet 

features. 
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• To this end, three classifier algorithms will be evaluated with standard settings: 

the Naïve Bayes, k-Nearest Neighbour and Support Vector Machines 

algorithms will be tested. 

• The best method will be chosen based on classification accuracy results. 

2) With the classification algorithm chosen from the previous stage, evaluate the 

impact of changes in SentiWordNet parameters described in Section  5.5 to 

classification performance. 

• Evaluate the relevance of each parameter to sentiment classification according 

to performance criteria established for the experiment. 

• SentiWordNet parameters being tested are number of document segments, 

negation detection, choice of scoring function and scoring threshold value for 

ambiguous synsets. 

3) Using the best combination of parameters found on step 2, test and document the 

impact of feature selection and outlier detection to classification performance. 

4) Using results from steps 2) and 3), evaluate the effect of different training set sizes 

to classification performance, in comparison to the baseline classifier. 

As the experiment progresses through each step, it obtains classification performance 

results and selects the best method as the starting point for the next step. As discussed 

on Section  6.2.1, step 1 selects the classification algorithm based on standard 

parameters and a choice of 3 well known methods. For step 2, as illustrated on Table 

17 - Parameters for Feature Generation, there are a series of parameters involved in 

the generation of the SentiWordNet data set that may affect classification performance. 

In practical terms, it would be prohibitive to attempt to evaluate all possible 

combinations of parameter values, together with variations on classification algorithm 

and training set sizes. Instead, the proposed approach described above iterates through 
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each individual parameter, finding the best possible classification results out of a 

subset of pre-determined options, before selecting another parameter for evaluation, a 

method is similar to the simple greedy heuristic search described in (Hand et al, 2001). 

At this point is worth mentioning that other parameter search approaches have been 

proposed in the literature, addressing the issue of finding sub-optimal solutions, a case 

that may occur in the greedy search method although it has been acknowledged to 

yield good results in practice with a simple implementation framework. A survey of 

other search optimisation techniques can be found in (Hand et al, 2001).  

After the experiment execution, all results obtained in this stage will be documented 

and analysed in the next chapter, and used as the basis for this dissertation’s 

conclusions.  Based on the described experiment above, the next section introduces the 

criteria for comparing results, and discusses the chosen metrics for evaluation. 

6.4. Criteria for Comparisons 

The final objective of any classification method is to perform predictions on new 

instances of data from training data as accurately as possible. To assess the feasibility 

of the method it would then be natural to find out if the resulting classifiers can obtain 

acceptable classification error rates, according to a certain pre-determined error metric. 

In addition, evaluating training and execution speeds is also of importance for any 

classifier used in practical applications where computing time is a constraint, and is of 

primary importance on environments where predictions are required in near real time.  

Finally, comparing how results behave with limited training data is also important, due 

to the cost involved in obtaining and labelling training data sets. The approach to 

performing sentiment classification using SentiWordNet uses distinct pre-processing 

steps and feature generation, and measuring factors such as speed, classifier 

performance and sensitiveness to training data would provide useful information for 

assessing the overall usefulness of the method.  

To evaluate the SentiWordNet approach to sentiment classification, the obtained 

results will be compared with the ones obtained from the baseline classifier, which 

represents as closely as possible results available in the literature for the same data set 
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employed in this experiment. The metrics chosen for comparison based on the factors 

discussed above are presented in more details in the following sections.  

6.4.1. Classification Performance 

The key measurement for classification performance will be classification accuracy, 

introduced in Section  3.3.8. The polarity data set used for this experiment contains an 

equal number of documents for positive and negative classes, and there is no a priori 

distinction in importance between the two classes for the purposes of classification 

precision and recall. Accuracy is thus a suitable and easily understandable single value 

metric for this type of data set. 

In addition, most results reported in the literature performing sentiment classification 

using the polarity data set use classification accuracy as a metric, thus it is reasonable 

to present results on the same metric so comparisons can be made. For cross-validation 

experiments, the result is typically presented in average accuracy across all folds.  

6.4.2. Training Data Set Size 

Finding labelled training sets for classification tasks is a non trivial and often 

expensive undertaking. It is therefore important for a method to achieve the best 

possible results from as little training data as possible. For that reason, classifier 

sensitiveness to training data will also be evaluated in comparison to the baseline 

classifier. This will be measured by comparing accuracy results using different sizes of 

training data. Two tests will be performed: 

• Evaluate classification accuracy using 3-fold cross-validation for fractions of 

training data available: 10%, 25%, 50%, 75% and 100%. 

• Evaluate classification accuracy for various cross-validation folds: 3, 5, 10 and 

100. 

6.4.3. Dimensionality and Runtime 

Finally, dimensionality of a data set can be a determining factor in the training and 

execution time of a classification algorithm. High dimensional models can be 
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prohibitive when applied to certain classification methods, and may hinder the 

usefulness of a given model on certain applications where execution performance is 

paramount. Whereas the accuracy of any classifier is important, one could think of 

situations where results of automatic classifiers are needed in a near real-time fashion 

(e.g. to process results obtained from a search engine, or for processing live incoming 

streams of text from a news feed). For this reason, some consideration will be given to 

training and execution times of each method.  

6.5. Experiment Setup 

In this section the execution environment of the experiment is fully described. The 

main objective is to provide detailed documentation of the experiment setup, tools, 

relevant parameter settings and execution order for future reference, and to ensure the 

process can be replicated as accurately as possible.  

6.5.1. Technical  Resources 

In this section, all the technical resources used as part of the experiment, including 

software and physical hardware are provided. The chosen package for executing data 

mining classification algorithms was RapidMiner (Mierswa et al, 2006). RapidMiner is 

an open source data mining package with an intuitive user interface aimed at the rapid 

prototyping of data mining processes, an approach that suits the needs of a data mining 

experiment. It implements a wide range of algorithms, including the Naïve Bayes, 

Nearest Neighbour and Support Vector Machines applied in this experiment, and also 

implements functionality for performing text mining tasks directly from source text 

documents, facilitating the process of obtaining results from plain text data sets such as 

the Polarity data set of film reviews.  

Additional scripting and integration with the SentiWordNet database were written in 

Python language, and the part of speech tagger used is the freely available Stanford 

POS Tagger described in (Toutanova et al, 2000). 
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Resource Selected Product References and Comments 

Data Mining Package RapidMiner  

Community Edition 

v4.1 

www.rapidminer.com 

(Mierswa et al, 2006) 

Scripting and Text 

Processing Language 

Python v2.5 www.python.org 

(van Rossum et al, 2003) 

Part of Speech Tagging The Stanford POS 

Tagger  

(Toutanova et al, 2000) 

Operating System Windows Vista SP1 www.microsoft.com/windows 

32-bit edition. 

Hardware Intel x86 T2390 

1.86GHz (dual-core). 

4Gb RAM 

Computer manufacturer and 

model is Dell Inspiron 1525. 

Data Set Polarity Data Set v2.0 (Pang et al, 2004), and 

(Pang et al, 2002). 

Available from Cornell 

University Natural Language 

Processing Research Labs (1)

(1) http://www.cs.cornell.edu/People/pabo/movie-review-data/ 

Table 18 - Software and Hardware Resources 

6.5.2. Baseline Classifier 

The baseline classifier performs sentiment classification using the Polarity data set 

using a machine learning method and word vector features, as described on (Pang et al, 

2002). In this section this stage of the experiment is described in details. 
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Word Vector Generation 

The first step in implementing the baseline is to convert textual documents from the 

Polarity data set into a word vector according to a word presence metric, such as the 

ones as described on Section Error! Reference source not found.. The following 

three methods were tested for the baseline implementation: 

• TF-IDF Inverse term frequency measure.  

• Binary: Accounts only for term presence in the document, possible values for 

any given term are present ( 1 ) or absent ( 0 ). 

• Normalised Term Frequency within document. 

Next, stop word removal and stemming are applied to reduce the total number of 

features. Stop words are commonly used terms, expected to be present on nearly all 

documents, and therefore of little value to detecting differences between them. The list 

of stop words used for the baseline classifier is detailed in the Appendix section A.1.   

Stemming is a process of reducing a term to its root syntax. Applying stemming to 

documents as a pre-processing step tends to reduce the final number of features by 

converting variations of terms to a single representation. In this experiment Porter 

Stemming algorithm implemented by RapidMiner was employed. 

Classifier Algorithm 

The classifier algorithm trained on the word vector features is a Support Vector 

Machine using linear kernel. Results of the classification task will be measured using 

classification accuracy using 3-fold cross validation, as per the original experiment in 

(Pang et al, 2002). To ensure results are repeatable across all experiments, the 

sampling for generating each fold will use a fixed random seed. All the above term 

presence indicators will be tested using the classifier algorithm, and the one presenting 

best results will be chosen as the baseline classifier. 

6.5.3. SentiWordNet Test Approach 

The test approach for SentiWordNet will first select a classification algorithm based on 

results obtained on three commonly used methods, then iterate through different values 
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for each parameter described on Table 17 - Parameters for Feature Generation. In 

practical terms, it would be prohibitive to attempt to evaluate all possible combinations 

of parameter values, together with variations on classification algorithm and training 

set sizes. Instead, the proposed approach described below iterates through each 

individual parameter, finding the best possible classification results out of a subset of 

pre-determined options, before selecting another parameter for evaluation, a method is 

similar to the simple greedy heuristic search described in (Hand et al, 2001). The 

stages of the experiment’s evaluation process are summarised on the diagram below 

and explained in the remainder of this section. On all stages, results will be evaluated 

using average accuracy over 3-fold cross validation. 

Figure 13 - SentiWordNet Sentiment Classification Experiment 

1. Choosing Classification Algorithm 

Using default parameter settings for generation of SentiWordNet scores, the 

classification performance of three classification algorithms will be evaluated. The 

objective of this stage is to select the algorithm to be used for the remainder of the 
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experiment, where SentiWordNet parameter changes will be evaluated. The table 

below details parameters used for each classification method. 

Algorithm Classifier Parameter Settings  

Naïve Bayes Using Gaussian distribution for estimation of 

probabilities for real valued attributes. 

k-Nearest Neighbours Neighbours: k = 10 

Distance Function: Euclidean Distance. 

Support Vector Machine Kernel Type: Linear 

Error coefficient C: 1.0 

Table 19 -Classifiers and Parameters Tested in Experiment 

The above settings are fixed throughout the experiment, and as stated on section 6.1.1, 

tuning parameters for specific classification algorithms will not be attempted as part of 

this experiment. All results are evaluated using average classification accuracy using 

3-fold cross validation, and in order to obtain repeatable results, a fixed random seed is 

used on all experiments 

Initial Parameters for SentiWordNet Features 

The default parameter settings for generating SWN features are described in the table 

below. 

Parameter Default Value 

Scoring Function None 

Scoring Threshold 0.1 

Negation Detection  Disabled 

Number of Document 

Segments 

5 

Table 20 - Default SentiWordNet Parameters 

The parameters above thus reflect an initial setup where no negation detection is being 

performed, and a scoring function is not being applied. This starting point was chosen 

so that the effects of testing such features in the next stages become more evident.  
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2. SentiWordNet Data Set 

Once the classification algorithm has been selected from the previous stage, each 

individual parameter affecting the generation of the SentiWordNet data set is tested. 

The approach for testing the effects of each parameter reflects the data-driven 

approaches to data mining, widely prescribed in the literature (Hand et al, 2001; 

Kulkarni et al, 1998; Weiss et al, 1998), by iterative evaluation of the effects of 

parameter changes to classification performance. The table below details the tests and 

values for each parameter from the list detailed in Table 17. The process starts using 

the default values presented on Table 20 applied to algorithm with best classification 

results, selected from the previous stage, and progresses through each test, using the 

best results obtained up to that point as input to the next test. The table below details 

the values being tested for each parameter associated with SentiWordNet feature 

generation: 

Test Evaluation Parameters Tested 

1 Scoring Functions Linear Increase, Linear Decrease, 

Polynomial, None 

2 Scoring Threshold 0.5, 0.1, 0.05, 0.01, 0.001, 0 

3 Negation Detection (Window Size) None (disabled), 1, 5, 10, 20 

4 Number of Document Segments 5, 8, 10, 15 

Table 21 - Parameter Values Tested by Experiment 

On the initial test, the experiment evaluates various heuristics that calculate the 

strength of a given term in SentiWordNet as a function of its position in the document. 

This attempts to map stronger scores to areas of the document more likely to represent 

author opinion. The scores are calculated as a linear ascending and descending 

functions, polynomial increasing function of degree 2, and with no function thus only 

adding scores as they are found in text.  

The second test evaluates the method for isolating SentiWordNet scores likely to be 

ambiguous. This is done by taking into account scores for a given term only when their 

positive and negative SentiWordNet scores differ by more than a given threshold, thus 
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assuming large score differences tend to indicate what opinion polarity is more likely 

to occur in general.  

The third test evaluates the use of the detection algorithm for negated expressions, 

presented in section  5.4.2. Results are tested with the algorithm being disabled and for 

a series of values for the negation “window”, or the number of terms where opinion 

scores will be inverted to the left or right, whenever a negating expression is found. 

We examine results for varying window sizes from a single term to 20, the average 

size of a sentence in the polarity data set. Finally, varying sizes for document 

segmentation are tested, from a starting number of 5 segments, to 15, which according 

to Table 14- Polarity data set document statistics, would represent an average of just 

over 2 sentences per segment. 

3. Feature Selection and Outlier Removal 

It is possible that the process that generates features the SentiWordNet data set creates 

redundant features that carry little information and do not assist in the separation of 

positive and negative film reviews. Also, since this data set originates from real-world 

data, it is very likely that noisy data, potentially misleading to a classification model 

could be present too. In other words, outliers may be present in the data set. Outlier 

detection and removal will be performed using a nearest neighbour method described 

in (Ramaswamy et al, 2000) and implemented in RapidMiner. The method works by 

finding data points with largest distance to the k-nearest neighbourhood they belong to, 

using the assumption that objects with a sparser neighbourhood than the majority of 

objects are likely to be outliers. The distance function can be adjusted, and Euclidean 

distance is being used for this experiment. 

This stage of the experiment also performs an analysis of feature relevance to 

classification and feature selection based on the Chi-Squared correlation metric 

between attributes and the predicted class. The objectives of this task  is  to attempt to 

improve classification performance by eliminating uncorrelated, potentially noisy 

features from the data set, and also to provide insight into which features extracted 

from SentiWordNet provide little information for sentiment classification on this data 

set. 
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6.6. Conclusion 

This chapter provided a detailed description of the opinion mining experiment using 

the SentiWordNet database. The main objective of this experiment is to assess the use 

of SentiWordNet as a tool for document-level sentiment classification. The polarity 

data set of film reviews will be used as the source of subjective documents. This 

objective translated into a series of milestones, and subsequent tasks that compose the 

structure of the experiment. An experiment is proposed within a framework that 

ensures objectives are measured via key metrics, obtaining repeatable results is 

achieved through detailed documentation of execution steps, and results are 

comparable across other research in the literature.

Limitations of the experiment’s approach were also outlined: since the key focus is on 

assessing SentiWordNet as a resource for sentiment classification, there is limited 

scope for fine tuning the parameters of classifier algorithms; for the same reason, the 

range of classification algorithms being evaluated by the experiment is not extensive. 

The following chapter presents results obtained for all stages of the experiment, 

according to the metrics chosen for evaluation, discusses the method’s strength and 

weaknesses, and proposes opportunities for further development arising from the 

information obtained from the experiment. 
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7. EXPERIMENT RESULTS 

The previous chapter described an experiment that assesses SentiWordNet as a tool for 

performing sentiment classification according to performance measurements using the 

criteria of classification accuracy, training set sizes and runtime. This chapter presents 

the results obtained from the experiment execution and discusses them in the context 

of the experiment’s objectives and key performance metrics. 

7.1. Introduction 

This chapter presents results for the sentiment classification experiment using 

SentiWordNet, according to the experiment objectives and setup described in Chapter 

6. The focus of this chapter will be in the presentation and analysis of results obtained 

for the key metrics established on section  6.4. The next section presents results for the 

baseline classifier and compares results with the ones obtained on the original 

experiment described on (Pang et al, 2002). Next, results for the SentiWordNet 

classification task are presented for each intermediate step of the experiment, as 

outlined in the discussion on SentiWordNet parameter test approach on section  6.5.3. 

Results are then presented for training and testing times. Lastly, the key results 

obtained from the experiment are presented in summary and discussed in light of other 

research on the area, examples of documents with inaccurate classification are 

explored, and the chapter is concluded with final remarks on the experiment and 

results.   

7.2. Sentiment Classification Results 

In accordance with the experiment stages and key performance metrics discussed in 

section  6.4, results for the baseline classifier are presented, and results for the 

SentiWordNet classification experiment are presented for each intermediate step, with 

considerations on any improvements obtained. Finally, the best combination of 

parameters obtained with SentiWordNet are used for testing classification results with 

varying training set sizes, and results are presented in comparison to the baseline 

classifier.   
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7.2.1. Baseline Results 

The baseline classifier is described in section  6.5.2. It comprises a support vector 

machine trained to perform sentiment classification using word vectors as features. 

Initially the process was tested with three distinct word vector representations: TF-

IDF, presence and word frequency. The classifier was trained separately using each 

representation as input, using 3-fold cross-validation. Results for average accuracy on 

each type of word vector are presented below. 

Word vector type Accuracy (%) 

TF-IDF 82.45 

Binary Presence 83.90 

Word Frequency 82.71 

Table 22 - Baseline Results and Word Vector Types 

The best accuracy result obtained is the case where word vector records only presence, 

and highlighted in bold face. This result is in accordance with observations in (Pang et 

al, 2002), where binary presence also obtained best classification results. The table 

below details accuracy, training time and runtime results obtained for varying cross-

validation folds using binary presence as the word vector, and will be used for 

comparisons later in this chapter. 

Folds Accuracy Training 

Set Size 

Validation 

Set Size 

Train Time Execution Time

3 83.90 1333  667 31s 29s 

5 83.65 1600 400 40s 12s 

10 84.95 1800 200 48s 10s 

100 84.45 1980 20 102s 3s 

Table 23 - Results for Baseline Classifier using Binary Presence Word Vector 

Training and execution times correspond to the average time recorded for RapidMiner 

to perform one fold. It should be noted that, as the number of folds increase, so does 

the training set size, whereas the validation set where predictions are to be made 
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diminishes in size. The results for 3-fold cross validation are comparable to the 82.9% 

obtained in (Pang et al, 2002), which is indicative of the classification performance 

achieved by the method. The difference could be attributed to choice of cross 

validation folds, algorithm implementation and parameters, and the choice of features. 

We also note that (Pang et al, 2002) uses all document unigrams as input resulting in a 

word vector with 16165 features, whereas the baseline classifier uses a total of 2012 

features. The reduction is obtained by performing word stemming as a pre-processing 

step as described in section  6.5.2. 

7.2.2. SentiWordNet Parameter Tests 

This section presents the results for sentiment classification performed using 

SentiWordNet features, as detailed in section  5.5. The results are detailed for each 

individual experiment step, as described in section  6.3.3. These are: 

1. Select classification algorithm. 

2. SentiWordNet feature parameter testing. 

3. Outlier removal and feature selection. 

1. Select Classification Algorithm 

The first step is to train and execute three distinct algorithms that perform sentiment 

classification using features derived from SentiWordNet, generated using the standard 

parameters described in Table 20 - Default SentiWordNet Parameters. The classifier 

with best results is then chosen for the following experiments on testing SentiWordNet 

parameters, outlier removal and feature selection. The table below presents results for 

average accuracy using 3-fold cross-validation for each algorithm.  

Algorithm Average Accuracy (%) 

k-Nearest Neighbours 

(k=10; Euclidean Distance) 

60.20 

Naïve Bayes 63.05 

Support Vector Machine 

(Linear Kernel, C=1.0) 

67.40 

Table 24 - Results for SentiWordNet Features using 3 Classification Algorithms 
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The above results indicate that Support Vector Machines perform the best with this 

feature set. On this basis, it will be chosen as the classification algorithm for the 

further refinements performed on the remaining of the experiment. It is worth 

remembering that the focus of the experiment lies on testing of SentiWordNet features 

as an approach to sentiment classification, and tuning of algorithm parameters or 

testing of individual algorithms is outside of the experiment scope, as outlined on 

section  6.2.1. Improvements in accuracy results could be obtained with further 

investigation on these mentioned areas.  

2. Parameter Testing for SentiWordNet Features 

With the support vector machine classification method chosen from the previous step, 

a series of tests on SentiWordNet parameters were performed. These tests aim at 

assessing the impact of groups of features representing a certain aspect of the data set 

built from SentiWordNet, as illustrated on section  5.5. The parameter tests were 

discussed during the experiment description in section  6.5.3, and are executed in the 

following order: 

1. Scoring function 

2. SentiWordNet scoring threshold 

3. Negation Algorithm and Negation window size. 

4. Number of document segments. 

Test 1 - Scoring Function 

In this first test, four types of scoring functions were used to adjust individual terms as 

a function of position in document. The remaining SentiWordNet parameters are set as 

per initial configuration described in section  6.5.3. The table below details results 

obtained for average accuracy using 3-fold cross-validation for each scoring function. 

Scoring Function Average Accuracy (%) 

None 67.40 

Linear Increasing 68.00 

Linear Decreasing 67.25 

Polynomial 67.50 

Table 25 - Accuracy Results for Varying Scoring Functions 
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The results show adjusting scores according to a linearly increasing function of term 

position in the document gives the best results in this data set. It could indicate the 

correlation of author sentiment and term position is stronger towards the end of the 

document, where concluding remarks about a film are more likely to occur. 

Test 2 – SentiWordNet Scoring Threshold 

As a measure of the certainty of the SentiWordNet score for a given term, the scoring 

threshold determines what is the minimum difference between the positive and 

negative scores of a given term in order for the term score to taken into account. On 

Chapter 5, we have seen that a given term in SentiWordNet may have both positive 

and negative scores, and that a polysemous term (e.g. one containing more than one 

meaning) will have more than one SentiWordNet score also. Terms where scores differ 

by a large amount are assumed to be heavily positive or negative biased, and therefore 

likely to be less ambiguous. The table below presents results obtained for various 

threshold values, using the best results from the previous test as starting point. Again, 

results are for average classification accuracy using 3-fold cross-validation, with best 

results obtained highlighted in boldface. 

  

Threshold Value Average Accuracy (%) 

0.5 61.60 

0.1 68.00 

0.05 67.70 

0.01 68.10 

0.001 68.05 

0.0 68.25 

Table 26 - Accuracy Results for Varying Scoring Threshold Values 

The above results indicate there is no benefit in ignoring term scores according to 

differences in positive and negative scores as a heuristic for term disambiguation: the 

best results obtained used a threshold value of 0, effectively using all found terms from 

the calculation. 
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Test 3 – Negation Detection and Window Size 

The negation detection algorithm is based on the work of (Chapman et al, 2001) and 

detailed in section  5.5. Its objective is to detect when term orientation is being affected 

by a negating expression. When a negating expression is found, the algorithm inverts 

term scores for terms ahead or before the negating expression, up to a maximum of 

terms specified by the window size. The table below presents average accuracy results 

for varying sizes of negating window and for the case where the negation algorithm 

was not used. 

Negation Window Accuracy (%) 

Off 68.25 

1 67.55 

5 68.50 

10 67.65 

20 67.50 

Table 27 - Accuracy Results for Negation Algorithm with Varying Window Sizes 

In the above, a minor improvement was achieved by implementing negation algorithm 

using a window size of 5 terms, bringing the average accuracy result to 68.5%. 

Test 4 - Document Segmentation 

Finally, document segmentation was tested for varying number of segments, with the 

remaining parameters fixed at the best results obtained on each previous test. The table 

below presents results for average accuracy over 3-fold cross validation. 

Number of Segments Accuracy (%) 

5 68.50 

8 67.95 

10 68.55 

15 65.25 

Table 28 - Accuracy Results for Varying Number of Segments 
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The best result is highlighted in boldface, with only minimal improvement over 

previous accuracy results, using 10 segments. 

Final Parameter Settings 

After completing the parameter tests using SentiWordNet presented above, the final 

parameter settings yielding accuracy results of 68.55% are detailed below. 

Parameter Best Value 

Scoring Function Linear Increasing 

Scoring Threshold 0 

Negation Detection  Enabled, Window = 5 

Number of Document 

Segments 

10 

Table 29 - Best SentiWordNet Parameters Obtained with Experiment 

7.2.3. Outlier and Feature Selection 

The final stage of the experiment performs a refinement of results obtained thus far, by 

performing outlier removal and feature selection using the parameters described on 

Table 29, presented in the previous section.  

Outlier removal 

Outlier removal is performed by using a k-nearest neighbour algorithm for identifying 

outliers based on its relative distance to other data points, as described on 

(Ramaswamy et al, 2000). Euclidean distance was used as the algorithm’s distance 

metric. The table below presents average accuracy results obtained by removing a 

varying number of outliers to be removed, and for two possible values of k neighbours. 

Number of Outliers Accuracy (%) 

k=5 neighbours 

Accuracy (%) 

k=10 neighbors 

No Outlier Removal 68.55 68.55 

5 68.35 68.25 

10 67.75 68.10 
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25 67.80 67.85 

50 68.20 67.95 

100 68.95 68.80 

150 68.40 68.90 

200 68.45 68.30 

Table 30 - Accuracy Results with Outlier Removal 

For 3-fold cross validation, the best results obtained using a value of 5 nearest 

neighbours for inspection, and 100 outliers removed, which corresponds to 

approximately 7.5% of the total number of documents available in the training set. 

Feature Selection 

Feature selection was performed by progressively removing features that have the 

weakest correlation to the positive or negative label being trained. In essence, these are 

features that when observed individually, are less likely to separate between positive 

and negative document classes. To detect which features to remove, chi-squared 

correlation weight was extracted from the data set as a preparation step using 

RapisMiner’s chi-square weighting operator. The results are presented below for the 

bottom 20 features generated from SentiWordNet using the best parameters obtained 

during the experiment, and detailed on Table 23. Scores represent the relative feature 

weights from the least to most correlated features.

Position Attribute 
Name 

Description Weight 
relative to 
Chi-Squared 
Correlation 

1 negbin8 Number of negations in segment No. 8. 0 

2 advnegbin8 
Total score for adverbs with negative scores in 
document segment No. 8. 0.002417466 

3 negbin9 Number of negations in document segment No. 9. 0.007077381 

4 anbin5 
Number of adjectives with negative scores in 
document segment No. 5. 0.007351313 

5 posvpct 
Percentage of positive verbs out of total verbs 
found. 0.010475046 

6 advnegbin5 
Total score for adverbs with negative scores in 
document segment No. 5 0.013643333 

7 apbin10 
Number of adjectives with positive scores in 
document segment No. 10. 0.017331827 
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8 advnegbin9 
Total score for adverbs with negative scores in 
document segment No. 9. 0.018631441 

9 negbin2 Number of negations in segment No. 2. 0.023946131 

10 nbin6 
Total score for adjectives with negative scores in 
document segment No. 6. 0.024514132 

11 advnegbin7 
Total score for adverbs with negative scores in 
document segment No. 7. 0.025177349 

12 nbin3 
Total score for adjectives with negative scores in 
document segment No. 3. 0.028163759 

13 advnstre 
Percentage of negative adverbs from total adverbs 
found. 0.03081977 

14 advnegbin4 
Total score for adverbs with negative scores in 
document segment No. 4. 0.030881908 

15 nbin2 
Total score for adjectives with negative scores in 
document segment No. 2. 0.031037958 

16 nbin8 
Total score for adjectives with negative scores in 
document segment No. 8. 0.032052898 

17 advnegbin2 
Total score for adverbs with negative scores in 
document segment No. 2. 0.032631923 

18 advnegbin3 
Total score for adverbs with negative scores in 
document segment No. 3. 0.033570132 

19 anbin10 
Number of adjectives with negative scores in 
document segment No. 10. 0.033686192 

20 anbin3 
Number of adjectives with negative scores in 
document segment No. 3. 0.033822422 

Table 31 - 20 SentiWordNet Features with Lowest Correlation to Label Using Chi-Squared Test 

We can now test the effects in accuracy of removing features with low correlation to 

the document. The table below presents results for average accuracy using 3-fold 

cross-validation and by progressively removing features from the data set, according to 

the list from the above table. 

N Least Correlated 

Features Removed 

Accuracy (%) 

3 68.65 

5 69.10 

10 68.15 

15 68.15 

20 67.95 

Table 32 - Accuracy Results with Feature Removal 
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Using to this method, optimal results are obtained when the 5 least correlated features 

are removed from the training process, resulting on average accuracies of 69.10%. 

Further removals generate loss of information on the model, affecting accuracy results. 

7.2.4. Training Data Set Size and Execution Time 

Upon execution of the previous experiments, we now turn our attention to the effects 

of sensitivity to training data set size and runtime execution. The table below presents 

results for the best parameter combination for SentiWordNet, outlier removal and 

feature removal from the previous steps, for various sizes of cross-validation folds. 

Folds Average 

Accuracy 

Training 

Set Size 

Validation 

Set Size 

Train Time Execution Time

3 69.10 1333  667 65s 1.6s 

5 67.75 1600 400 92s < 1s 

10 69.30 1800 200 135s < 1s 

100 69.05 1980 20 156s < 1s 

Table 33 -Accuracy and Experiment Timings with Outlier Detection 

Training time refers to time taken in seconds to train the predictive model using a 

Support Vector Machine classifier based on the training set size given. Execution time 

is the time in seconds taken to perform all predictions on the validation set. From the 

above results, a clear improvement can already be noted on execution time of the 

algorithm, due to the reduced size of the feature set. On early tests it was noticed that 

outlier detection step had a large contribution to overall training time. To make more 

accurate training time comparisons with the baseline classifier, which does not include 

this step, the next table presents results for SentiWordNet for various cross-validation 

folds without the outlier detection and removal step. 
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Folds Average 

Accuracy 

Training 

Set Size 

Validation 

Set Size 

Train Time Execution Time

3 68.60 1333  667 35s < 1s 

5 68.65 1600 400 44s < 1s 

10 68.90 1800 200 59s < 1s 

100 69.00 1980 20 86s < 1s 

Table 34 - Accuracy and Experiment Timings without Outlier Detection 

Reduced Training Size 

To verify the effect on reduced training set sizes to the overall classification accuracy, 

the same training process was repeated, this time using only a fraction of the original 

training set sizes for both the baseline method, and SentiWordNet using the optimal 

parameters for feature generation reported on Table 29, outlier removal and removed 

features obtained from Section  7.2.3. The number of outliers removed was adjusted 

proportionally to the percentage of original data available for training. The results are 

presented in the table below using 3-fold cross-validation. 

% Of Original 

Training Set 

Average Accuracy (%) - 

SentiWordNet 

Average Accuracy (%) - 

Baseline 

10 55.75 71.89 

25 61.41 79.92 

50 63.59 82.04 

75 65.77 82.82 

100 69.1 83.9 

Table 35 - Accuracies for Various Training Set Sizes 

7.3. Result Analysis and Considerations 

This section presents key results obtained from the SentiWordNet classification 

experiment, with comparisons to a well know baseline sentiment classification method 

described in (Pang et al, 2002) and implemented as part of this experiment. A 
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discussion on misclassified entries using the SentiWordNet approach is also presented, 

with a view of highlighting further possible improvements to the method. 

7.3.1. Accuracy Results 

In this section the accuracy results for the three stages of the experiment are analysed 

in more details. The table below details the improvements in classification accuracy 

obtained at each step testing SentiWordNet feature parameters, when running the 

experiment with 3-fold cross validation.  

Stage Best Result Accuracy (%) 

Choose Classifier Initial Support Vector Machine 

Classifier 

67.40 

SentiWordNet Parameters Linear Scoring Function 68.00 

 Scoring Threshold = 0 68.25 

 Negation Window = 5 68.50 

 Segment Size = 10 68.55 

Outlier and Feature 

Removal 

Outlier Removal 68.95 

 Feature Selection using Chi-Square 

Correlation 

69.10 

Table 36 - SentiWordNet Sentiment Classification Results 

Choice of Classifier 

Initially, it can be observed from the above that the Support Vector Machine 

classification technique yielded the best classification accuracy amongst the three 

methods compared. The positive results of Support Vector Machines reflect similar 

outcomes obtained on classifier comparisons in the literature for text mining (Joachins, 

1998), and opinion mining (Pang et al, 2002).   

SentiWordNet Features 

On SentiWordNet parameter testing, the best performing scoring function weighted 

term scores increasing linearly as a function of its position in the document, improving 

accuracy to 68.00%. As noted in (Pang et al, 2002) and discussed previously in section 

 5.4.2, this suggest intuitively that the way a typical review is structured may position 
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opinion information more heavily towards the end of the document, where an author’s 

final concluding remarks are commonly placed. It is interesting however to note also 

that scoring more heavily the final terms of a review, such as when using the 

polynomial function did not yield better results than the linear case, suggesting opinion 

information also exist on other parts of the document and should be taken into account 

as well. 

The next parameter evaluated was the scoring threshold used to discard terms with 

potentially ambiguous scoring in SentiWordNet. The experiment reveals that there was 

no gain in predictive accuracy when discarding terms where positive and negative 

scores exist and are closer to each other by more than a specified threshold value. In 

other words, this heuristic caused the loss of opinion information for some terms, 

reflected in the accuracy results presented in Table 20, and the best approach was to 

simply include scores for all found terms, regardless of their potentially ambiguous 

bias, yielding an average accuracy result of 68.25%.  

The negation algorithm employed for detecting negating expressions and adjusting  

scores in SentiWordNet was tested with several sizes of negation windows, and only a 

minor improvement was obtained for the case where a negating window size of 5 

terms was used, bringing average accuracy to 68.50%. The use of negation is however, 

closely linked to writing style and this small improvement suggests more development 

on highlighting opinion expression from negations could be possible. 

Finally, to further investigate the effect of individual parts of a review to the overall 

review sentiment, documents were divided into segments, and SentiWordNet scores 

was calculated for terms belonging to each segment separately. The best results for this 

step of the experiment were obtained from dividing documents into 10 segments, but 

only marginally differed from accuracy obtained using only 5 segments. Using results 

from Table 14- Polarity data set document statistics, each of the 10 segments would 

contain on average 3.5 sentences, and 61 to 68 terms.  

Outliers 

Removing outliers from the training data set by employing a k-Nearest Neighbour 

technique further improved accuracy results for 3-fold cross-validation to 68.95%, 
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suggesting the existence of reviews on the Polarity data set that damage the accuracy 

of the SentiWordNet predictive model when used on training. As shown on the next 

section, however, this result is less relevant as the number of training samples 

increases, suggesting the classifier algorithm is able to adjust to a better model with the 

increase in training data. 

Feature Removal 

The Chi-Squared test for correlation applied to the features extracted from 

SentiWordNet measures the relationship between each individual feature and the 

positive or negative classes of reviews. Lower correlation values indicate that a given 

feature value is likely to occur independently of the positive or negative classes of 

reviews, and therefore unlikely to assist in class prediction. Removing the 5 features 

with lowest correlation scores from the data set improved accuracy results to 69.10%. 

Amongst the 5 least correlated features shown in Table 25, low correlation between the 

document class and features that measure the number of negated terms for a document 

segment (negbin features) can be seen, suggesting the use of negating expressions in 

the narrative of a review is equally likely to be used on both positive and negative 

instances. Low correlation values also appear on several features measuring negative 

SentiWordNet scores for adverbs in a given document segment (advnegbin features), 

and so is the feature measuring the percentage of verbs with positive scores out of total 

verbs found in the document (posvpct). Indeed, this last feature has a value of zero for 

most documents, indicating as pointed out on Table 11 - Scoring statistics per part of 

speech (Esuli et al, 2006), that SentiWordNet scores tend not to carry opinion polarity 

for the majority of verbs.   

7.3.2. Baseline Comparisons 

This section compares results obtained from the experiment using SentiWordNet with 

the baseline classifier for the key metrics outlined in Chapter 6. The results presented 

here will also help this dissertation’s concluding discussion on the SentiWordNet 

approach for sentiment classification, and further research directions. 
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Classification Accuracy 

We begin by presenting classification accuracy across different sizes of cross-

validation folds for SentiWordNet and baseline methods. 

Folds Baseline SentiWordNet 

with Outlier 

SentiWordNet 

without Outlier 

3 83.90 69.10 68.60 

5 83.65 67.75 68.65 

10 84.95 69.30 68.90 

100 84.45 69.05 69.00 

Table 37 - SentiWordNet and Baseline Classification Accuracy 

The graph below illustrates the three results. 

Sentiment Classification - Accuracy Comparison
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Figure 14 - Accuracy Comparisons for various Cross-Validation Folds 

All accuracy results for the SentiWordNet experiments remained well below the 

baseline classifier using unigrams.  On the experiments using a higher number of folds, 

classification accuracy for SentiWordNet without the outlier removal step improves 

and the results are comparable to the ones obtained when this step is used, indicating a 
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more robust model as the training data set increases minimising the need for outlier 

removal, or that outlier detection parameters should be tuned according to training set 

sizes for better results.  

The results obtained however are close to the 69% obtained in (Pang et al, 2002) using 

a classifier based on a list of positive and negative words purpose built for the movie 

domain, and document statistics. This may indicate SentiWordNet is capable of 

achieving similar accuracy results for this class of technique, however with the 

difference of not being tailored towards a specific domain, but rather using a generic 

set of term scores derived from SentiWordNet.    

Training Set Sizes 

To complement the analysis of accuracy results with various sizes of data sets, the 

table below illustrates results obtained with different fractions of the original data set 

available for training. All results were tested using 3-fold cross-validation. 

Accuracy and Data Set Sizes
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Figure 15 - 3-Fold Accuracies for Different Training Set Sizes 

As before, SentiWordNet accuracies remain below the baseline classifier, but as the 

two linear trends suggest, the SentiWordNet method benefits more from more training 

data available, narrowing the difference between the two methods slightly as the 

training data set size increases. 
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Training Time and Execution Time 

The execution time of the SentiWordNet classifiers stayed within less than 2 seconds 

on all experiments, whereas the baseline classifier required higher execution times, as 

outlined on the table below. 

Folds Validation Set 

Size 

Baseline SentiWordNet 

with Outlier 

SentiWordNet 

without Outlier 

3 667 29s 1.6s < 1s 

5 400 12s < 1s < 1s 

10 200 10s < 1s < 1s 

100 20 3s < 1s < 1s 

Table 38 - Execution Times for Baseline and SentiWordNet Classifiers 

Results are calculated by averaging execution time measured over the experiment 

folds. As stated earlier, a higher number of cross-validation folds increases the training 

set size, while reducing the validation set size, hence the decreasing execution times 

for higher folds. We can calculate from the above results that, when applying the 

computing resources and algorithm implementation used on this experiment, the 

baseline classifier performs a prediction on average in 0.04s for the case with 3-fold 

cross-validation. Due to timing precision of the measurements it is not possible to 

determine a similar result for the SentiWordNet classifier, but an upper limit to 

individual prediction time would be 0.003s, when execution time is exactly 1 second. 

The difference between the baseline classifier and SentiWordNet can be attributed to 

the low dimensionality of the SentiWordNet model: SentiWordNet performs 

predictions based on 80 features, whereas the baseline classifier needs 2012 features. 

As seen in Chapter 3, the performance of support vector machines does not necessarily 

correlate to the number of dimensions, but to the number of support vectors. Thus the 

SentiWordNet model requires a much smaller number of support vectors to perform 

the classification task than the baseline.  
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For training times, the table and graph below summarise times in seconds for the 

baseline and SentiWordNet classifiers using different cross-validation folds. 

Folds Training Set 

Size 

Baseline SentiWordNet 

with Outlier 

SentiWordNet 

without Outlier 

3 1333  31s 65s 35s 

5 1600 40s 92s 44s 

10 1800 48s 135s 59s 

100 1980 102s 156s 86s 

Table 39 - Training Times for Baseline and SentiWordNet Classifiers 
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In absolute terms, it is natural to expect training and execution times for any 

classification algorithm to depend on external factors such as processor speed, 

available memory, programming language and implementation details. However by 

comparing results obtained from SentiWordNet and the baseline classifiers using the 

same algorithm implementation and data mining tool, it can be seen the low 

dimensionality nature of the SentiWordNet model does not strongly affect training 

times, when compared to a model with high number of features such as the unigram 

bag-of-words method of the baseline classifier. This is in line with the expected 

theoretical behaviour of support vector machine training seen in Chapter 3, which 
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states that training time is a function of the size of the training set, but not of 

dimensionality. Interestingly, the training times for the baseline classifier outperform 

SentiWordNet on nearly all training set sizes, even for the case with no outlier 

detection. It can be speculated that implementation details of Support Vector Machines 

in RapidMiner, and the nature of features on the bag-of-words method, which only 

admits values of 0 or 1, are likely causes for the speedup on the training process. 

7.3.3. Analysis of Misclassifications 

This section presents a closer examination at film reviews incorrectly classified by the 

SentiWordNet approach. This will assist us in evaluating the method’s weaknesses and 

draw some conclusions and propose possible improvements to the method. The 

following are text extracts from a two film reviews with an overall negative sentiment 

where the SentiWordNet classifier made incorrect predictions. The extracts were taken 

from the concluding remarks at the end of each document: 

“wild wild west's bright spots , such as the cool opening credits sequence , bai 

ling's all-too-brief appearance as a femme fatale , or the brilliant " his master's 

voice " joke , are all part of the film's first half , which is more clever and 

enjoyable , at least , than its second .” 

“summer of sam has some superficial elements of a good film : it looks great , 

it has a few notable performances and i suppose it's pretty well directed , in a 

purely technical way .” 

The first aspect to be noticed relates to the order of opinions presented, also described 

as the phenomenon of thwarted expectations, already noted in (Pang et al, 2008) and 

highlighted as a limiting factor to bag-of-words classifiers such as the baseline 

implementation of this experiment (Pang et al, 2002). In such cases the author builds 

up an expectation by describing positive aspects of the movie, only to later frustrate it 

by presenting another negative aspect. From the above, it can be seen a rich amount of 

words denoting positive bias (e.g. “looks great”, “notable performances”, etc) that 

would be heavily weighted in the SentiWordNet model, since they appear at the end of 

the document, but which however do not contribute to overall film sentiment. It would 



167 

appear that methods that rely solely on term polarity would not perform well for this 

type of narrative, and richer methods for analysing discourse would be necessary. 

Another aspect to be noted is that relying only on term orientation would include 

irrelevant words, such as film titles (e.g. “wild wild west”), actors and place names 

whose terms may carry positive or negative term orientations and affect document 

scoring. Cases like these could be improved by introducing named entity recognition 

as a pre-processing step to detect and ignore such terms where appropriate. One 

example of this step applied to sentiment classification can be seen in (Dave et al, 

2003). 

The two above reviews present another a similar characteristic: they are relatively long 

texts, richly describing film features, scenes and plots. The longer the review, the more 

likely it is to also include off-topic sections, such as character dialogues or descriptions 

of a different film for comparison. According to SentiWordNet model, terms involved 

on purely descriptive sections of the document would also be accounted for, if 

SentiWordNet scores exist for them, thus potentially causing problems to overall 

scores and classifier predictions. One interesting path to address this issue is to 

implement a subjectivity detector in an attempt to filter out sections with 

predominantly descriptive content. Subjectivity detection was discussed in section 

 4.2.3 of Chapter 4, and an experiment using the polarity data set is described in (Pang 

et al, 2004). It is worth highlighting however that this task is not a trivial one, and even 

descriptive sections are likely to contain important but subtle clues about author 

opinion, as in the example below. 

“… the mad inventor who is plotting to divvy up the united states and sell it 

back to britain and spain . how will loveless accomplish this ? well , by hulking 

around the desert in an enormous , mechanical tarantula , of course .” 

Here, the author describes the plot but also introduces ironical remarks by way of 

choice of words and style, which could be lost if the sentence were removed by a 

subjectivity detection step. 
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As noticed in (Pang et al, 2008), reviews are likely to differ considerably in style, and 

choice of vocabulary. Consider the extract below from a misclassified example with 

negative overall sentiment: 

“ the film is just a reel to show off a bunch of snazzy fx shots . “ 

The style of the above review is more colloquial, uses shortened words - the term “fx” 

for special effects - and expressions like “show off”, which are harder to detect: in the 

experiment’s case, only the term “show” appears as a verb after part of speech tagging. 

It suggests that some opinion information may be lost on cases like the above, which 

could be retrieved by introducing text pre-processing steps to facilitate the detection of 

expressions, and an extended lexicon to improve understanding of colloquial language.  

From the same document, another example of incorrect part-of-speech tag can be 

found on the use of the word “asteroid”. The tagger program classified the term as an 

adjective, for which a SentiWordNet score exists: according to WordNet, the term 

“asteroid” not only describes a celestial object, but is a also an adjective, synonym to 

“star-shaped”. The part-of-speech tagger in fact it should have tagged the term as a 

noun, which had been used in the plot description. The adjective scores were then 

incorrectly taken into account, illustrating the importance of accurate tagging for 

classification results. 

SentiWordNet Scoring 

A closer examination of scores extracted from the SentiWordNet database also reveals 

potential issues. The term “ludicrous” was seen on a misclassified film review, and 

contains two possible synsets on WordNet. The table below details their synset glosses 

and SentiWordNet scores: 
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Term Gloss SentiWordNet 

Score 

(Pos, Neg) 

Ludicrous (adj) farcical, ludicrous, ridiculous (broadly or 

extravagantly humorous; resembling farce) "the 

wild farcical exuberance of a clown"; "ludicrous 

green hair" 

(0.5, 0.125) 

Ludicrous (adj) absurd, cockeyed, derisory, idiotic, 

laughable, ludicrous, nonsensical, preposterous, 

ridiculous (incongruous;inviting ridicule) "the 

absurd excuse that the dog ate his homework"; 

"that's a cockeyed idea"; "ask a nonsensical 

question and get a nonsensical answer"; "a 

contribution so small as to be laughable"; "it is 

ludicrous to call a cottage a mansion"; "a 

preposterous attempt to turn back the pages of 

history"; "her conceited assumption of universal 

interest in her rather dull children was ridiculous" 

(0.625, 0) 

Both synsets contain generally positive SentiWordNet scores, however consider this 

term’s use on the extract below: 

“the action in armageddon are so over the top , nonstop , and too ludicrous for 

words.” 

It can be argued that the second synset term should contain a negative orientation, 

given its association with synonym terms such as “farcical” and “idiotic”. However, it 

appears SentiWordNet assigned positive scores to this term, on the basis the text from 

the synset gloss is more likely to be associated with a positive oriented term than a 

negative one. Recalling from section  4.2.5, SentiWordNet scores are expanded to all 

WordNet terms by applying a classification algorithm based on terms extracted from 

synset glosses, therefore terms such as “exuberance” and “clown” and the somewhat 
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ambiguous “laughable” could be influencing the construction method in assigning 

incorrect scores. The dependence of SentiWordNet scores on term glosses could be a 

limiting factor in the accuracy of term scores, and the overall classification accuracy of 

the experiment.  

7.4. Conclusion 

This chapter presented and discussed the results of the sentiment classification 

experiment using SentiWordNet, described on Chapter 6. Initially, a baseline classifier 

method was implemented using a bag-of-word features similar to the one described on 

(Pang et al, 2002). The SentiWordNet classifier was built using features described on 

Chapter 5, and an iterative process tested various combinations of feature generation 

parameters. Next, outlier detection and removal and feature selection was applied to 

the SentiWordNet classification. Finally a discussion on results obtained and 

examination of misclassifications was presented. Results and findings were presented 

on the three key proposed metrics for assessing the experiment: classification 

accuracy, training set size and training and execution times. 

For classification accuracy, the SentiWordNet classifier reported best results of 

average accuracy of 69.10% using 3-fold cross-validation, in contrast to a baseline 

result of 83.90%. The SentiWordNet results are close to the ones reported in (Pang et 

al, 2002), for a classifier based on simple document statistics and a word list for 

positive and negative terms manually built for the data set. SentiWordNet results 

however are built upon a lexicon generated by a semi-automatic method, not 

dependant on a specific domain, this it could be speculated that the SentiWordNet 

approach is potentially more generic, more automated and less domain-dependant than 

manually built word lists. 

The parameters affecting SentiWordNet features were also individually tested during 

the experiment and their effects to overall classification were presented. The best 

combination found during the experiment calculated SentiWordNet scores according 

to a linear increasing function of term position in the document, suggesting that terms 

placed towards the end of a document are more likely to represent author opinion. 

Intuitively this would translate to an author’s concluding remarks about the film.  
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During the discussion on SentiWordNet features in Chapter 5, the idea of a threshold 

value that would triage which term scores were to be used was introduced, in order to 

address the problem of polysemous terms with several meanings and potentially 

contradictory SentiWordNet polarity scores. A similar concern is seen in (Dave et al, 

2003) on the use of similar term-based lexical resources for opinion mining. In this 

experiment a threshold value was used in the cases where multiple SentiWordNet 

scores are found. If the positive and negative scores differed by more than a specified 

threshold, then it could be argued their polarity is less likely to be ambiguous. The 

experiment was executed against several threshold values and no benefit was found in 

discarding terms according to score difference. In other words, a threshold of zero 

yielded the best results during the experiment, and this approach for distinguishing 

potentially ambiguous terms did not have a positive effect on classification accuracy. 

The problem of ambiguous terms however still needs to be addressed and deserves 

further investigation, and other approaches could have better effect on the 

SentiWordNet model. 

  

A negation detection algorithm was also implemented to adjust SentiWordNet scores 

accordingly for negated terms. The algorithm applied is based on the NegEx method 

(Chapman et al, 2001) and yielded a minor improvement to accuracy. The effects of 

negation detection have been extensively studied on the area of medical records 

(Chapman et al, 2001; Huang et al, 2007; Mutalink et al, 2001), and further 

explorations on other domains such as film reviews could yield better results for 

SentiWordNet scores. 

Finally, the best choice of document segmentation found was to divide the document 

equally into 10 segments and calculate scores for each segment individually. Similar to 

the linear scoring function detailed above, this approach attempts to detect and 

highlight parts of the document with stronger opinion.  

The final step of the experiment was to refine results obtained by SentiWordNet by 

performing outlier removal and feature selection. These steps improved the results for 

3-fold cross validation accuracy to the final result of 69.10%. The feature removal 

method has also illustrated a weak correlation (using chi-squared test) between 
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features that count negated terms and negative scores for adverbs to the document’s 

opinion polarity. This finding may suggest negation expressions as a stylistic resource 

are equally used on both positive and negative biased reviews, whereas it has been 

noted that other features related to adverbs and verbs do not contain enough scores on 

the SentiWordNet database and therefore add little information to the model. 

For different sizes of training set, the SentiWordNet approach did not yield substantial 

differences in accuracy, and results remained within or below 69.10%. The 100-fold 

cross-validation experiment however has shown similar results with and without 

outlier detection and removal from the training process, suggesting there is less need 

for this step as training data becomes more available. Alternatively, the outlier 

detection step could be tuned for larger training data sets accordingly. 

Execution time for the SentiWordNet approach remained substantially smaller than the 

baseline classifier, due to the much smaller dimensionality of the feature set built from 

SentiWordNet, in comparison to a word vector based on unigrams, suggesting this 

approach may be better suited for cases where making a prediction as timely as 

possible is of paramount importance. Training times however did not differ 

considerably on the baseline and SentiWordNet cases, in line with the expected 

theoretical behaviour of support vector machines, and indeed the baseline method 

outperformed SentiWordNet on training times on nearly all cases. 

A review of documents that were incorrectly classified by the SentiWordNet classifier 

revealed several challenges and opportunities for improvement of this method. The 

effect of order of opinion related terms in a sentence is important, as is the case with 

the phenomenon of thwarted expectations, where the author builds up expectations on 

positive or negative aspects of the film, only to be frustrated by an opinion with 

reverse polarity. This effect suggests scoring term polarity alone with no regard to their 

placement in the narrative can be misleading to assess overall document sentiment. 

The use of colloquial expressions from spoken English, acronyms and word 

shortenings not present in SentiWordNet also influence scores, and pre-processing 

techniques might be able to help in detecting such cases. In addition, the accuracy of 

part of speech tagging was noted to influence overall accuracy, and some scores for 

SentiWordNet terms were found to be misleading, suggesting the automated method 
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for building the SentiWordNet database has an over reliance on WordNet glosses, and 

can be improved for the purposes of detecting term polarity. 

  

The results obtained from the SentiWordNet experiment highlighted a number of 

challenges and opportunities for improving the method, the next chapter concludes this 

dissertation by summarising the findings from the literature review, experiment design 

and execution, and discuss future research work possibilities. 
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8. CONCLUSION 

This chapter concludes this dissertation’s research. The introductory section reviews 

the motivation, potential benefits and key challenges of opinion mining and sentiment 

classification, followed by a discussion on the research objectives and achievements. 

Results on the experiment using SentiWordNet for sentiment classification are 

reviewed, with concluding remarks on the obtained results. Opportunities for future 

research work are presented, and the chapter concludes with final remarks on the work 

performed.  

8.1. Introduction 

This dissertation is a research in the field of opinion mining that evaluates the 

application of the SentiWordNet lexical resource for sentiment classification in 

documents. Driven by the increasing availability of subjective information in digital 

format on resources publicly available on the internet and in corporate information 

systems, the field of opinion mining entails the use of automated methods for detecting 

subjective content within text resources, and has applications in a variety of fields from 

online advertising systems to search engines and market research. In many instances, 

sentiment information forms a key component in building the knowledge required for 

effective decision making, and is therefore a subject of concern to the field of 

knowledge management.     

To achieve the aims of opinion mining, and to effectively perform its task, the field 

draws from resources on knowledge discovery, data mining and text mining. In 

addition, because of the complexity and nuances of subjective language, opinion 

mining is a rich field for the application of natural language processing techniques. To 

further understand the challenges of opinion mining, a review of the state of the art of 

research in the above fields was conducted as part of this dissertation’s research, and 

so was its relationship to the objectives of the broader field of knowledge management.  

The experiment performed as part of this research produced not only results that can be 

used for future reference on the field, but also revealed several challenges where future 

research might be of interest. In the next sections, those are presented in more details. 
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8.2. Research Overview and Objectives 

The research performed as part of this project aimed at reviewing the state of the art in 

the areas of knowledge management, knowledge discovery and opinion mining. This 

review was then employed to the design and implementation of an experiment aiming 

at assessing the effectiveness of the SentiWordNet lexical resource for the purposes of 

sentiment classification. During this research, the following objectives were achieved. 

• Review of the literature in the area of knowledge management, in particular 

exploring the importance of knowledge creation and knowledge discovery to 

the success of modern organisations. 

• Review of research in the fields of knowledge discovery and data mining, 

techniques, challenges and applications to knowledge discovery. 

• Review of research literature on text mining and opinion mining, exploring 

applications of opinion mining to computer systems, and their relationships to 

the goals of knowledge management. Exploration of opinion mining techniques 

for detecting sentiment orientation in documents, and the use of lexical 

resources for opinion mining. 

• Evaluation of the SentiWordNet lexical resource, and design of a model that 

extracts features from text documents using the SentiWordNet for the purposes 

of sentiment classification. 

• Design and execution of a sentiment classification experiment that tests the 

effectiveness of SentiWordNet according to the criteria of classification 

accuracy, runtime and sensitiveness to training data, and compares results to a 

well known baseline classifier documented in the literature. 

• Comparisons of results obtained and exploration of challenges and limitations 

of the approach proposed by the experiment. 

  



176 

8.3. Experiment Results 

As outlined on Chapter 6, the results for the sentiment classification experiment were 

measured according to three key factors: classification accuracy, training set sizes and 

timings for training and execution. For classification accuracy, the best results 

obtained by the SentiWordNet classifier using 3-fold cross validation were 69.10%. 

This compares to the 83.90% obtained using the baseline classifier based on bag-of-

word features. The SentiWordNet results are similar to the classifier based on simple 

document statistics and a list for positive and negative words presented in (Pang et al, 

2002). The table below illustrates how SentiWordNet compares to other published 

results in the area tested with the same polarity data set used by this experiment. 

Where possible, the results reported reflect an experiment using 3-fold cross 

validation. 

Method Accuracy Source 

Support Vector Machines and 

Bigrams word vector 

77.10% (Pang et al, 2002) 

Naïve Bayes + Parts of Speech 77.50% (Salvetti et al, 2004) 

Word vector with Adjectives Only 77.70% (Pang et al, 2002) 

Support Vector Machines and 

Unigrams word vector 

82.90% (Pang et al, 2002) 

Unigrams + Subjectivity Detection 87.15% (Pang et al, 2004) 

   

Positive/Negative Word Lists 69.00% (Pang et al, 2002) 

Term counting from General 

Enquirer Dictionary + Linguistic 

Features 

67.80% (Kennedy et al, 2006) 

SentiWordNet 69.10%

Table 40 - Accuracy Comparison with Published Research 

Clearly, results obtained using the SentiWordNet approach remain below the state-of-

the-art techniques, but within close range to other similar approaches. At first sight this 

may suggest an upper bound in sentiment classification techniques that rely solely on 

term polarity information. Indeed, further investigation on misclassified reviews 
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revealed some limitations of this approach, but it also revealed opportunities for 

improvement of this method. Initially, it was noticed that some of the SentiWordNet 

term scores did not carry the expected polarity. This can be attributed to the method by 

which SentiWordNet is built, which relies on WordNet glosses for making a 

classification prediction, and can lead to inaccuracies.  

It was also noticed that the current method used for extracting information was taking 

into account irrelevant terms such as films and actor names commonly referenced on 

text but of little relevant to detect author opinion. In addition, further refinements in 

capturing English expressions and acronyms would assist in detecting opinion on the 

more colloquially written reviews.  

The issue of word sense disambiguation was not addressed as part of this experiment, 

and improvements in this area can certainly assist in making the right decision for 

SentiWordNet score where terms have more than one meaning. Finally, the issue of 

thwarted expectations – where a positive expectation is built up using words with 

positive orientation, only to be frustrated by a negative opinion - was present on many 

examples, and impairs the correct prediction of reviews.  

The results obtained for training data set size revealed similar patterns for increasing 

numbers of training data, thus indicating the need for increasing the predictive power 

of the model, possibly by adding more features and improving the quality of existing 

features. 

There was no substantial gain on training times when comparing SentiWordNet with 

the baseline classifier, however the execution time required for a prediction on a new 

document to be made was much faster on SentiWordNet. This can be attributed to the 

considerably lower number of features used in the SentiWordNet model, which makes 

this model a good candidate for systems where near real time predictions are 

necessary.  

As previously discussed on Chapter 3, knowledge discovery is an iterative process, 

where findings may lead to new insights and different lines of investigation. The 

findings obtained from the SentiWordNet experiment highlighted a number of 
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challenges and potential improvements in data preparation, data mining and model 

improvement. The next sections outline key findings and additions to the body of 

knowledge in opinion mining research, and propose further research in some of the 

above aspects, along with alternative approaches for applying SentiWordNet 

information to opinion mining.    

8.4. Additions to the Body of Knowledge 

As outcomes of this dissertation’s research and experiment results, the following 

findings can be highlighted as contributions to the body of knowledge in the area of 

opinion mining. 

The key part of this project’s experiment was to perform sentiment classification using 

features built from the SentiWordNet database of term polarity scores. This project 

presents a proposed design for a set of features, and classification results obtained by 

experimentation using the polarity data set. These results can be used as reference for 

future research in the area on this class of sentiment classification technique.  

The experiment also has shown that weighting the polarity score of terms as a function 

of its location in the document has an effect on overall accuracy, as final remarks on a 

review tend to carry heavier sentiment content, further validating comments from 

(Pang et al, 2008; Pang et al, 2002) that document structure is a meaningful aspect for 

measuring a document’s sentiment orientation.  

The research has also demonstrated the connection with negation expressions in text, 

and the accuracy of final results when performing sentiment classification with 

SentiWordNet, with minor improvements obtained with a simple negation detection 

algorithm based on the work of (Chapman et al, 2001), suggesting further 

improvements in this area may lead to better results in sentiment classification. 

One potential limiting factor on the SentiWordNet approach unearthed during this 

research was the reliance on WordNet glosses, used by SentiWordNet for 

automatically building term polarity scores. This dependency could lead to 
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inaccuracies in term polarity scores depending on the gloss’s contents, and could affect 

the overall accuracy of sentiment classification when using this resource.   

8.5. Future Work & Research 

The research performed on knowledge management, data mining, opinion mining and 

SentiWordNet, along with the outcomes obtained through experimentation and the 

analysis of results have uncovered opportunities for future research which could lead 

to interesting results, and are explored in more details in this section. 

8.5.1. SentiWordNet Features 

The SentiWordNet set of features proposed in Chapter  5 and used during this 

dissertation’s experiment can be further refined by introducing word sense 

disambiguation in conjunction with SentiWordNet for more accurately scoring terms 

found in text. As discussed in the experiment results, the approach proposed in this 

research did not lead to any gains in accuracy, suggesting there is further room for 

improvement in this topic. 

Also, incorporating the detection of colloquial expressions and detection of entities 

such as actors, locations and film names are relatively straightforward approaches that 

may improve results further by removing potentially noisy scores from the data set. 

Another important aspect found during experimentation was the inclusion of 

predominantly descriptive sections of text within the final SentiWordNet scores, which 

may not carry strong opinion content but could lead to inaccuracies in the final 

classification results. Including detection of subjective text as a pre-processing step 

ahead of building the SentiWordNet data set may further improve results using this 

approach. 

It was also found during the experiment that inaccuracies stemming from incorrectly 

tagging parts of speech could lead to poor classification results, since scoring terms 

using SentiWordNet relies heavily on this information. Experimenting with different 

part-of-speech tagging techniques could also lead to improved results. 
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The negation algorithm implemented as part of the experiment is a simplified version 

of the NegEx method presented on (Chapman et al, 2001), and further improvements 

that enable the detection of more subtle negating and opinion changing expressions in 

text could lead to improved results.    

8.5.2. Classification Results 

It has been observed in (Read, 2005; Pang et al, 2008)  that training machine learning 

techniques for sentiment classification tend to be specific to a domain such as film 

reviews or editorials, and to specific topics like films or digital cameras. These are not 

immediately applicable across other domains or topics, or when applied, generate 

poorer classification results. One aspect of applying SentiWordNet is that it is based on 

WordNet synsets, and likely to be more generic and more applicable to other domains, 

and could serve as a baseline classifier when no domain or topic specific classifier 

exists. It would be interesting to assess the effects of classification performance where 

the training and validation data sets belong to different domains, since development on 

this area may lead to more widely applicable classifiers.     

By the same principle, it could be argued that whereas classification accuracies 

obtained with SentiWordNet are inferior to those of other techniques, it may contain 

important information for the detection of document sentiment that is being missed on 

other methods. Thus, combining the results of multiple classifiers might lead to 

improvements in overall performance and better methods. This is the subject of 

research in multiple classifier systems (MCS), with some techniques surveyed in 

(Kittler et al, 1998; Provost et al, 2001) and examples of such technique implemented 

in the opinion mining domain reported in (Mullen et al, 2004) and (Kennedy et al, 

2006).  

Another interesting aspect of SentiWordNet is its application to the area of 

bootstrapping classifiers when little training data is available. SentiWordNet could be 

applied as a high-precision domain-independent classifier used as the initial stage for 

the creation of larger training sets for sentiment classification.   
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Finally, the results of this experiment were obtained by carrying out a limited search 

on parameter combinations, and no extensive classifier tuning was performed. 

Potentially better results could be obtained with more extensive investigation of 

possible parameter combinations either by exhaustive searching – an approach 

potentially prohibitive in time and resources – or by applying more sophisticated 

parameter searching approaches, as described in (Hand et al, 2001). 

8.5.3. Knowledge Management Research 

Another topic that deserves further exploration relates to the less technical aspects of 

opinion mining, and their application in knowledge discovery, and suitability to 

knowledge management initiatives. For instance, due to widespread availability of text 

information in digital format, text mining applications have been surveyed in the 

literature and closely linked to knowledge management objectives (Marwick et al, 

2001; Feldman et al, 1998). Assessing the usage of an opinion mining component as a 

requirement on such applications would be beneficial not only to further encourage 

opinion mining research, but also to bring additional functionality to knowledge 

management systems. 

8.6. Conclusions 

We conclude from the results obtained by the experiment that whereas results in 

accuracy for the SentiWordNet approach were below current state-of-the-art methods, 

it also highlighted aspects where further research can generate potential improvements. 

This, coupled with the lower dimensionality of the SentiWordNet data set, and its 

relatively lower dependence on domain information could lead to more attractive 

models for real world applications.  

Knowledge discovery methodologies will no doubt play an important part in such 

developments, as attention to all aspects of discovery are needed for effective results, 

and the iterative nature of knowledge discovery will render future opportunities for 

development as more results become available. Likewise, the development of data 

mining algorithms and advances in natural language processing also have a part to play 

in the improvement of opinion mining techniques, as this is a research area that 

combines efforts from all the above fields. 
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In the context of knowledge management, it is clear that opinion information adds a 

new dimension to what can be extracted from textual data, and has the potential of 

improving an organisation’s ability to create new knowledge through knowledge 

discovery approaches. As reviewed on Chapter 2, these are crucial aspects for effective 

decision making processes and for ensuring companies remain creative and 

competitive.  

8.6.1. Final  Remarks 

The field of opinion mining is an exciting new area of research with the potential for a 

number of real world applications where discovering opinion information is relevant to 

making better decisions. The development of techniques for document sentiment 

classification is one important component of this area and further developments will 

certainly impact the quality and speed at which knowledge derived from opinion 

information can be created, with implications to companies’ ability to compete and 

respond to customer demands. 

The research presented in this dissertation has assessed the viability of performing 

document sentiment classification by using SentiWordNet as an automatically built 

lexical resource of opinion polarity in terms. The research also highlighted further 

developments in this field are possible, giving it the potential for being an attractive 

approach for a number of real world applications. 
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APPENDIX A – LANGUAGE RESOURCES 

A.1 Penn TreeBank TagSet 

The Penn Treebank Tagset (Marcus et al, 1993). 

Source: http://www.computing.dcu.ie/~acahill/tagset.html 

CC  Coordinating conjunction  

e.g. and,but,or...  

CD  Cardinal Number  

DT  Determiner  

EX  Existential there  

FW  Foreign Word  

IN  Preposision or subordinating conjunction  

JJ  Adjective  

JJR  Adjective, comparative  

JJS  Adjective, superlative  

LS  List Item Marker  

MD  Modal  

e.g. can, could, might, may...  

NN  Noun, singular or mass  

NNP  Proper Noun, singular  

NNPS  Proper Noun, plural  

NNS  Noun, plural  

PDT  Predeterminer  

e.g. all, both ... when they precede an article  

POS  Possessive Ending  

e.g. Nouns ending in 's  

PRP  Personal Pronoun  

e.g. I, me, you, he...  

PRP$  Possessive Pronoun  



204 

e.g. my, your, mine, yours...  

RB  Adverb  

Most words that end in -ly as well as degree words like quite, too and very 

RBR  Adverb, comparative  

Adverbs with the comparative ending -er, with a strictly comparative 

meaning.  

RBS  Adverb, superlative  

RP  Particle  

SYM  Symbol  

Should be used for mathematical, scientific or technical symbols  

TO  to  

UH  Interjection  

e.g. uh, well, yes, my...  

VB  Verb, base form  

subsumes imperatives, infinitives and subjunctives 

VBD  Verb, past tense  

includes the conditional form of the verb to be  

VBG  Verb, gerund or persent participle  

VBN  Verb, past participle  

VBP  Verb, non-3rd person singular present  

VBZ  Verb, 3rd person singular present  

WDT  Wh-determiner  

e.g. which, and that when it is used as a relative pronoun  

WP  Wh-pronoun  

e.g. what, who, whom...  

WP$  Possessive wh-pronoun  

WRB  Wh-adverb  

e.g. how, where why  
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A.1 Stop Word List 

a 

about 

an 

are 

as 

at 

be 

by 

for 

from 

how 

in 

is 

it 

la 

of 

on 

or 

that 

the 

this 

to 

was 

what 

when 

where 

who 

will 

with 

the 
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APPENDIX B – PYTHON CODE 

B.1 Negation Algortihm 

# 
# populates array of negated terms based on document terms 
# negation[i] indicates if term in doc[i] is negated 
# 
def getNegationArray(doc, windowsize): 

 PSEUDO = ( 'no increase', 'no wonder', 'no change' , 'not cause' , 'not only' , 'not 
necessarily' ) 
 PRENEGATION = ( 'not' , 'no' , 'n\'t' ,'cannot', 'declined' , 'denied' , 'denies' , 
'free of' , 'fails to' , 'no evidence' , 'no new' , 'no sign' , 'no suspicious' \ 
               'no suggestion' , 'rather than', 'with no' , 'unremarkable', 'without' , 
'rules out' , 'ruled out', 'rule out') 
 POSNEGATION = ( 'unlikely', 'free', 'ruled out' ) 
 ENDOFWINDOW = ( '.', ':', ',', 'but' , 'however' , 'nevertheless' , 'yet' , 'though' , 
'although' , 'still' , 'aside from' , 'except' , 'apart from') 

 # Initialise array 
 vNEG = [ 0 for t in range(len(doc)) ] 
  
 # Initialise window counters 
 winstart = 0 
 winend = min( windowsize, len(doc) - 1 ) 
 docsize = len(doc) 

 i = 0 
 found_pseudo = 0 
 found_neg_fwd = 0 
 found_neg_bck = 0 
 inwindow = 0 
  
 for i in range(docsize): 
      
     # 
     # build 1-ter and 2-term strings 
     # 
     unigram = doc[i].split('/')[0] 
     if i < (docsize - 1): 
         bigram = unigram + ' ' + doc[i+1].split('/')[0] 
     else: 
         bigram = unigram 
        
     # 
     # Search for pseudo negations 
     # 
     for negterm in PSEUDO: 
      if bigram == negterm: 
          found_pseudo=1 
          ##print 'found pseudo!', bigram, i 

     if (found_pseudo == 0): 
         # 
         # Look for pre negations 
         # 
         for negterm in PRENEGATION: 
             if unigram == negterm or bigram == negterm: 
                 found_neg_fwd = 1 

         for negterm in POSNEGATION: 
             if unigram == negterm or bigram == negterm: 
                 found_neg_bck = 1 
     # 
     # If found fwd/backw negation, then negate window 
     # 
     if (found_neg_fwd == 1): 
         ##print 'found forwards!', unigram, bigram, i 
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         # 
         # negate terms forward up to window 
         # 
         if inwindow < windowsize: 
             vNEG[i] = 1 
             inwindow+=1 
         else: 
             # out of window space 
             found_neg_fwd = 0 
             inwindow = 0 

     # 
     # backward negation 
     # 
     if (found_neg_bck == 1): 
         ##print 'found backwards!', unigram, bigram, i 
         # 
         # negate back until window start 
         # 
         for counter in range(max(winstart, i-windowsize), i): 
             vNEG[counter] = 1 

         # 
         # done with backwards negation 
         # 
         found_neg_bck = 0 

     # 
     # now move window 
     # 
     for negterm in ENDOFWINDOW: 
         if unigram == negterm or bigram == negterm: 
                 # 
                 # found end of negation, must reset windows 
                 # 
                 ##print 'found negterm!', unigram, bigram, i 
                 inwindow = 0 
                 found_neg_fwd = 0 
                 winstart = i 
                 winend = min( windowsize + i, len(doc) - 1 ) 

 return vNEG 
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