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Abstract

The testing of drug dissolution rates from solid dosage forms is a very important

area of research within the pharmaceutical industry. The ability to produce drugs

with a given dissolution rate will lead to improved performance in the treatment of

patients and will be of economic benefit to the pharmaceutical industry. However,

dissolution testing in laboratories, aimed at reflecting in-vivo conditions, can be

both time consuming and costly. Currently, most simulations of drug dissolution

take place in standardized USP (United States Pharmaceutical) apparatuses. A

number of these apparatuses exist, and it is the aim of this thesis to analyse

drug dissolution in both the USP Paddle Apparatus and the USP Flow Through

Apparatus.

The first part of this thesis examines drug dissolution from a solid dosage form

(compact) in the USP Paddle Apparatus. The process is set up as a boundary

layer problem for which there exists both a momentum boundary layer and a

concentration boundary layer. The dominant mass transfer mechanism is that of

forced convection. A semi-analytical technique is used to solve the boundary layer

equations for which velocity data has been provided from computational fluid

dynamic simulations. Wherever possible the results from this semi-analytical

approach have been compared with that of an exact solution.

The second part of the thesis concentrates on the USP Flow Through Ap-

paratus. As the process of drug dissolution in the Flow Through Apparatus is

dependent on a vertical flow, the analysis is complicated by the introduction of

buoyancy effects. Chapters five to nine analyse a number of general cases for

buoyancy driven flows on both flat and curved surfaces. Later, in chapter ten,



these general cases are then applied to the process of drug dissolution from the

surface of a compact in the USP Flow Through Apparatus. Throughout the the-

sis, the predicted dissolution rates from the theoretical approach are compared

with those of experiment.
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Nomenclature

a radius of cylinder

c concentration of dissolved particles

C non-dimensional concentration

Cs concentration saturation

D coefficient of diffusion

f(η) dimensionless distance variable

F (ξ) dimensionless distance variable

Fr Froude number

g acceleration due to gravity

g0 effect of gravity

h(η) dimensionless concentration variable

j, k arbitrary constants in stream function

p pressure

p0 stagnation point pressure

pD weight of dissolved particles

Pn Padé coefficients

Qn Padé coefficients

r radial distance

R non-dimensional radial distance

RL Reynolds number

Sc Schmidt number

T non-dimensional shear stress

u component of velocity in x direction

U∞ outer stream velocity

U0 velocity of counterflow

v component of velocity in y direction

Wi width of strips

x distance from leading edge

xsep point of boundary layer separation

X non-dimensional distance

y distance normal to surface

Greek letters

α velocity gradient

β constant

δ momentum boundary layer thickness

δc concentration boundary layer thickness

ε perturbation parameter

η similarity variable

ψ stream function

ν kinematic viscosity

ρ density

µ dynamic viscosity

τ0 surface shear stress

ξ similarity variable

Γ (n) gamma function

γ constant

λ, λ1 constant

θ angular measurement

ζ constant
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Chapter 1

Introduction

Dissolution testing is a very important area of research within the pharmaceutical

industry. The ability to produce drugs with a given dissolution rate will lead to

improved performance in the treatment of patients and will be of economic benefit

to the pharmaceutical industry. However, dissolution testing in laboratories,

aimed at reflecting in-vivo conditions, can be both time consuming and costly. A

mathematical model of the process would serve to alleviate some of these costs.

Currently, most simulations of drug dissolution take place in standardized

USP (United States Pharmaceutical) apparatuses. A number of these appara-

tuses exist, and it is the aim of this thesis to analyse drug dissolution in both the

USP Paddle Apparatus and the USP Flow Through Apparatus.

1.1 The USP Paddle Apparatus

The USP Paddle Apparatus, as shown in figure (1.1), consists of a rotating paddle

that sits a few centimetres above the bottom of a hemispherically based vessel.

A cylindrically shaped compressed mass of drug, called a compact, is positioned

on the bottom surface of the vessel with the paddle rotating at 50rpm. The

positioning of the compact on the bottom surface is very important as the velocity

of the solution increases with distance from the centre of the vessel. Also, the

curvilinear nature of these velocities becomes less important as the compact is

moved away from the central position.

1



Figure 1.1: USP Paddle Apparatus

Experimental Work

The USP Paddle Apparatus is one of the most widely used dissolution apparatuses

within the pharmaceutical industry. The apparatus is designed to mimic gastric

conditions and is mainly used to assess batch consistency. As reported by Bai

et al[10], a typical test begins with a compact being dropped into the Paddle

Apparatus, at which point it is supposed to sink and settle at the base of the

vessel in a central position. Bai et al[10] report that this is not always the

case and that the compact has a tendency to adhere to the surface at off-centre

positions, or indeed move along the bottom surface throughout the duration of

an experiment.

To investigate the effects that an off-centre position has on the dissolution rate

from the surface of the compact, experiments have been conducted by D’Arcy[6]

in which the compact is fixed to a number of positions along the bottom surface

2



of the vessel. The results of these experiments have shown that an off-centre

compact can have dissolution rates of up to 30% greater than a compact which

sits directly below the paddle. D’Arcy[6] has also conducted Computational

Fluid Dynamic (CFD) simulations in order to predict the dissolution rate from

a compact surface, the results of which have been compared with those of ex-

periment. The comparison between experimental and CFD results are somewhat

mixed. The CFD results for the curved side surface of a compact correlate well

with those of experiment; however D’Arcy[6] reports a significant underestima-

tion when predicting the dissolution rates for the top planar surface. An example

of the CFD simulation output is shown in figure (1.2). The generated velocity

data files have been kindly provided by Dr. Deirdre D’Arcy of the School of

Pharmacy and Pharmaceutical Sciences, Trinity College Dublin(TCD), for use in

this thesis.

Compacts and Compact Position

The compacts used by D’Arcy[6] throughout the experimental work are composed

of benzoic acid and are 13mm in diameter with a height of 3mm. The compacts

are positioned in three different locations. The first position, called the central

position, is at the centre of the bottom surface. Position 1 is directly adjacent to

the central position with position 2 adjacent to position 1. Chapters three and

four of this work look at the dissolution rates from both the top planar surface

and the curved side surface of the compacts in all three positions respectively.

For the central position, a compact of 8.5mm in height is also analysed.

The positioning of the compact has a significant impact on the rate of drug

dissolution. A compact in position 2 is subject to larger velocities than a compact

3



Figure 1.2: Fluent Simulations

in position 1. It can also be seen that the compact in position 2 is tilted more

towards the vertical, due to the shape of the bottom surface of the vessel. This

tilt leads to less variation in velocities from one side of the compact to the other

Image kindly provided by Dr. Deirdre D’Arcy[25]
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and will lead to more accurate results. Another thing to note when analysing

the top planar surface is that the curvilinear nature of the flow becomes less

important as the compact is moved further away from the central position.

Initial Observations

The process of drug dissolution in the USP Paddle Apparatus can be set up as a

boundary layer problem. The mathematical model consists of both a concentra-

tion boundary layer and a momentum boundary layer. The dissolution medium is

water. Jeans[23] states that in a liquid, molecules diffuse much more slowly than

does momentum. Consequently, the concentration boundary layer is an order of

magnitude thinner than the momentum boundary layer.

The concentration boundary layer only occupies the region of the momentum

boundary layer close to the compact surface in which the velocity gradient is

linear, leading to significant simplifications in the analysis. The model of the

process is therefore analogous to that of heat transfer for large Prandtl numbers,

for which an exact solution for flat plate flow exists, due to Lévêque[1]. The

existence of this exact solution serves as a standard from which the accuracy of

the approximate methods used in the analysis may be judged.

1.2 The USP Flow Through Apparatus

The USP Flow Through Apparatus, as shown in figure (1.3), consists of four main

elements; a reservoir, a pump, the flow through cell and a bath. The reservoir

holds the dissolution medium which is then forced through the flow through cell

by the pump. The pump typically delivers a flow rate of between 4 and 16 mL per

5



Figure 1.3: The USP Flow Through Apparatus

minute, although larger flow rates are achievable. The flow profile is sinusoidal

with 120 pulses per minute. The bath is for the flow through cell to sit in and is

used to maintain a temperature of 37◦C.

The flow through cell is where the compact is housed. The cell is a cylindrical

vessel with a conical base. The cone part of the vessel is usually filled with small

glass beads to promote laminar flow. The compact sits about half-way up the

cell and is held in place using a special holder. Two cell sizes are available; a

large cell of diameter 22.6mm and a small cell with a diameter of 12mm.

6



Experimental Work

In recent times much research in the pharmaceutical sector has focused on the

Flow Through Apparatus. Many commentators, including Stevens[13], Singh[12]

and Beyssac[11], believe that the apparatus holds a number of advantages over

the USP Paddle Apparatus. As reported by Stevens[13], the flow through cell

controls the placement of the compact better than the Paddle Apparatus and,

also, the hydrodynamics of the system are more clearly defined. The flow through

cell can also be used in an open configuration, which according to Singh[12], makes

it possible to maintain sink conditions. This better mimics the gastrointestinal

tract. He notes that this is of particular importance for poorly soluble drugs.

Finally, the Flow Through Apparatus allows for the dissolution media to be

changed over the course of an experiment. This creates a more realistic recre-

ation of in-vivo conditions as a compact passes through different regions of the

gastrointestinal tract (Stevens[13]).

Figure 1.4: An Image of a Compact in the USP Flow Through Apparatus

Image kindly provided by Dr. Deirdre D’Arcy[25]
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Experiments have been conducted by D’Arcy and Liu[7] using the large flow

through cell. Compacts composed of benzoic acid, and with a diameter of 13mm,

were used. The experiments where conducted for different flow rates and also for

when the pump is idle. The results of these experiments have shown that, in some

cases, an increase in the flow rate has resulted in a decrease in the dissolution

rate from the surface of the compact. Similar results have also been reported by

Beyssac[11], who states that in certain cases an increase in flow rate resulted in

no increase in the dissolution rate.

Initial Observations

As with the Paddle Apparatus, the process of drug dissolution in the USP Flow

Through Apparatus can be set up as a boundary layer problem. The obvious

approach is to first look at the case in which the pump is idle (i.e. no upward

flow). This case is one of natural convection only in which the flow, and hence

the dissolution process, will be driven purely by buoyancy effects.

Secondly, using the natural convection case as our base, the effect of the pump

will be introduced. It seems likely that this case will need to be analysed for three

distinct situations: small , intermediate and large upward velocities.

1.3 Introduction to Boundary Layer Flows

The idea of a boundary layer was first introduced in 1904 by Ludwig Prandtl. A

boundary layer can be classified as a relatively thin fluid layer close to the surface

of a body in which strong viscous effects exist. The formation of a boundary layer

is a direct consequence of the no-slip condition. The no-slip condition states that
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at the interface between a fluid and solid boundary the fluid has zero velocity

relative to the solid. As such, the boundary layer is a region of large velocity

gradients over which the velocity of the fluid changes from zero velocity relative

to the solid boundary to the velocity of the main outer flow. The edge of the

boundary layer is usually taken as the point at which the fluid velocity is 0.99

times that of the outer stream. The boundary layer discussed so far is known as

the momentum boundary layer and is illustrated in figure (1.5) for flow across

a flat plate. The equations that govern this type of flow, called the momentum

boundary layer equations, are derived from the Navier Stokes equations. As well

as momentum boundary layers, similar layers exist for processes such as heat

and mass transfer, known as the thermal and concentration boundary layers.

This work will primarily involve looking for solutions to the momentum and

concentration boundary layer equations.

Figure 1.5: Boundary Layer across a Flat Surface
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Navier-Stokes Equations

The Navier Stokes equations, named after Claude Louis Navier and George

Gabriel Stokes, are a set of equations that describe the motion of Newtonian

fluids. The equations are a set of partial differential equations, which establish

relations between acceleration and internal pressure of a fluid.

The Navier Stokes equations are derived from the basic principles of conserva-

tion of mass, momentum and energy. This thesis will not look at the derivation of

the Navier Stokes equations themselves but will use these equations as a starting

point to derive the boundary layer equations necessary to model drug dissolution.

These simplified equations are valid for incompressible flows with high Reynolds

number or very small viscosity, where the Reynolds number is the ratio of internal

forces to viscous forces. The two-dimensional Navier Stokes equations for steady

flow are

u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+ ν

[

∂2u

∂x2
+
∂2u

∂y2

]

(1.1)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

[

∂2v

∂x2
+
∂2v

∂y2

]

(1.2)

∂u

∂x
+
∂v

∂y
= 0, (1.3)

where x is the distance from the leading edge, y is the distance from the wall, u

and v are the components of velocity in the x and y directions respectively, ν is

the kinematic viscosity of the dissolution medium, ρ is the density and p is the

pressure.
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Boundary Layer Equations

The boundary layer equations are a simplified version of the Navier Stokes equa-

tions. In boundary layer theory it is assumed that outside the boundary layer

viscous effects are not important and that the thickness of the boundary layer

itself is small compared to the length of the body on which it forms. The theory

is also dependent on the no-slip condition, which states that, the fluid in contact

with the solid boundary has zero velocity with respect to the boundary.

To derive the boundary layer equations we will start by taking the full Navier

Stokes equations and reduce them by neglecting relatively small terms. The terms

to be neglected will be found using an order of magnitude analysis. Now, as the

boundary layer is thin, we can say that for all points in the boundary layer δ << x

or δ
x
<< 1, where δ is the momentum boundary layer thickness. The mainstream

velocity is denoted by U∞. u is of order U∞, so the partial derivative ∂u
∂x

has

order of magnitude U∞

x
. y is of order of magnitude δ, so the partial derivative

∂v
∂y

has order of magnitude v
δ
. Putting these approximate values for ∂u

∂x
and ∂v

∂y

into the continuity equation (1.3) we obtain v ∼ U∞δ
x

. Also, u and v vary much

more rapidly in the y-direction than the x-direction, so we can say ∂
∂x

<< ∂
∂y

.

Inserting these order of magnitudes into equations (1.1) and (1.2) gives

U2
∞

x
+
U2
∞

x
= −

1

ρ

∂p

∂x
+
νU∞

x2
+
νU∞

δ2
(1.4)

U2
∞δ

x2
+
U2
∞δ

x2
= −1

ρ

∂p

∂y
+
νU∞δ

x3
+
νU∞

δx
. (1.5)

The second viscous term in equation (1.4),
[

νU∞

δ2

]

, is much larger than the first,

namely
[

νU∞

x2

]

, so the first viscous term can be neglected with an error 0
[

δ2

x2

]

.

Assuming the larger viscous term has the same order of magnitude as the inertial
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terms we can say: νU∞

δ2
∼ U2

∞

x
. This gives the order of magnitude for the boundary

layer thickness as: δ ∼
√

νx
U∞

. From the condition δ
x
<< 1, we get x2

δ2
∼ U∞x

ν
>> 1.

i.e. RL >> 1, where RL is the Reynolds number. Therefore the term
[

νU∞

x2

]

in

equation (1.4) can be neglected with error 0
[

1
RL

]

because

ν ∂
2u
∂x2

ν ∂
2u
∂y2

∼ δ2

x2
∼ 1

RL

. (1.6)

So equation (1.1) becomes

u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+ ν

∂2u

∂y2
. (1.7)

Now, comparing equations (1.4) and (1.5), we can see that the inertial and viscous

terms in (1.2) are of order δ
x

smaller than the corresponding terms in (1.1), so they

can be neglected with error 0
[

1√
RL

]

. Therefore equation (1.2) may be written:

0 = −
1

ρ

∂p

∂y
. (1.8)

This suggests that p is a function of x only, so the partial derivative ∂p
∂x

in equation

(1.7) can be written as an ordinary derivative, so equation (1.7) becomes

u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ

dp

dx
+ ν

∂2u

∂y2
(1.9)

Since the pressure, p, is independent of y, the pressure distribution along the

boundary layer is the same as that outside the boundary layer. This suggests

that Bernoulli’s equation is valid, i.e;

p

ρ
+ U2

∞ = C1 (1.10)

where C1 is constant. Differentiating with respect to x gives

−1

ρ

dp

dx
= U∞

dU∞

dx
. (1.11)
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Substituting this into equation (1.9) gives

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+ ν

∂2u

∂y2
. (1.12)

Now, in most cases of interest to us, the mainstream velocity U∞ is constant so

the term dU∞

dx
is zero. Therefore, the two-dimensional boundary layer equations

for steady flow are

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(1.13)

∂u

∂x
+
∂v

∂y
= 0. (1.14)

In the case of mass transfer, a similar equation to the momentum equation

can be derived, called the concentration boundary layer equation. This is given

as

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
. (1.15)

where c is the concentration of dissolved particles and D is the coefficient of

diffusion of the soluble material.

1.4 Solution Methods

The boundary layer equations may be solved using several methods. The methods

used in this thesis consist of both exact and approximate methods. The advantage

of an exact solution is that an investigator can obtain a more complete view of

the properties within the boundary layer. The disadvantage is the difficulty

in solving the equations that arise from seeking an exact solution, an exercise

that very often proves to be futile. Where an exact solution is not possible, an

approximate method may be used to solve the boundary layer equations. These

methods often sacrifice a more comprehensive view of the boundary layer to focus
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instead on predicting certain characteristics such as shear stress, which in many

cases can be very useful.

Similarity Solutions

In order to seek a similarity solution to the boundary layer equations, a function

ψ = kxmf(η), where η = j y
xn , is introduced such that ψ satisfies the continuity

equation identically. That is to say: u = ∂ψ
∂y

and v = −∂ψ
∂x

. The function ψ

is called the stream function. It obtains it’s name due to the fact that lines

corresponding to ψ = constant are also the streamlines of the flow.

The introduction of the stream function in essence eliminates the continuity

equation and its substitution, along with the relevant derivatives, into the mo-

mentum equation results in an ordinary differential equation in terms of f(η).

The value of m is determined by the geometry of the flow and the value of k is

chosen in order to render the stream function dimensionless.

The similarity variable, η = j y
xn , has the property that when η is constant, u

is constant. The existence of a similarity solution is dependent on the problem

having no length scale. An example of this is flow across a flat plate which

was investigated by Blasius[3], where a similarity solution was obtained. It is

important to note that if the case involved another plate, say at a distance y1 from

the original, a similarity type of solution would be restricted by the introduction

of the length scale y1. The Blasius solution will be examined in detail in chapter

two. Again, like the stream function, the value of n depends on the geometry of

the problem and j is chosen in order to render η dimensionless.
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Asymptotic Series Solutions

On obtaining a similarity solution it is sometimes advantageous to expand this

solution further. This can be achieved by the method of asymptotic expansion.

The method involves expressing the solution as a series of f(η) in ascending

powers of x. The series is substituted into the boundary layer equations at which

point the coefficients of xi are equated. This results in a set of ordinary differential

equations which may be solved numerically.

Pohlhausen Method

The Pohlhausen method is an approximate method based on the momentum in-

tegral equation. This equation is derived by integrating the momentum boundary

layer equation over a cross section of the layer. A suitable velocity profile can

then be substituted into the momentum integral equation. This leads to an ordi-

nary differential equation that may be solved either numerically, or occasionally

analytically. To look at the derivation, we will take the case of flow across a flat

plate. The momentum boundary layer equation is

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (1.16)

Equation (1.16) may be rewritten as

∂

∂x
(u2) +

∂

∂y
(uv) = ν

∂2u

∂y2
. (1.17)

Now integrating with respect to y, across the boundary layer gives

∫ δ

0

∂

∂x
u2dy +

∫ δ

0

∂

∂y
(uv)dy = ν

∫ δ

0

∂2u

∂y2
dy. (1.18)

Now, Leibniz’s rule states:

d

dx

∫ y1

y0
f(x, y)dy = f(x, y1)

∂y1

∂x
− f(x, y0)

∂y0

∂x
+
∫ y1

y0

∂

∂x
f(x, y)dy. (1.19)
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Using Leibniz’s rule equation (1.18) can be written as

d

dx

∫ δ

0
u2dy −

∂δ

∂x

[

u2
]

y=δ
+ [uv]

δ
0 = ν

[

∂u

∂y

]δ

0

. (1.20)

Applying the boundary conditions










y = 0, u = 0, v = 0

y = δ, u = U∞

gives
d

dx

∫ δ

0
u2dy − U2

∞
∂δ

∂x
+ U∞v(δ) = −ν

[

∂u

∂y

]

y=0

. (1.21)

Now, taking the continuity equation (1.14) and integrating we get

v(δ) = −
∫ δ

0

∂u

∂x
dy. (1.22)

From Leibniz’s rule, this becomes

v(δ) = −
d

dx

∫ δ

0
dy + U∞

∂δ

∂x
. (1.23)

Substituting (1.23) into (1.21) gives

d

dx

∫ δ

0
u2dy − U2

∞
∂δ

∂x
+ U2

∞
∂δ

∂x
− U∞

d

dx

∫ δ

0
udy = −ν

[

∂u

∂y

]

y=0

. (1.24)

This can be rearranged to give the momentum integral equation for flow across

a flat plate:

d

dx

∫ δ

0
u(U∞ − u)dy = ν

[

∂u

∂y

]

y=0

(1.25)

In the case of mass transfer a similar equation may be derived yielding the con-

centration integral equation to be

d

dx

∫ δ

0
ucdy = −D

[

∂c

∂y

]

y=0

. (1.26)

Upon substitution of suitable velocity and concentration profiles, the concentra-

tion integral equation may be used to estimate the total flux along the surface.
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Padé Approximation Technique

In some circumstances, where a series solution to the boundary layer equations

has been sought, the resulting series can be found to be poorly convergent. One

way to improve on such results is by means of a Padé approximant. The Padé

technique involves rewriting the power series as a rational function. That is to

say
N
∑

i=0

Cix
i =

P0 + P1x+ P2x
2 + ....+ Pnx

n

Q0 +Q1x+Q2x2 + ...+Qmxm
(1.27)

It is most common to choose Q0 = 1 and to make sure the degree of the numer-

ator is greater than or equal to the degree of the denominator. The coefficients

P0, P1, P2, ... and Q0, Q1, Q2, ... may be found by backward substitution. The re-

sulting function usually shows better convergence than the original power series.

The Padé approximant technique is therefore useful in extending the range of

validity of a solution and is used in this thesis.
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Chapter 2

Literature review

This thesis is concerned with evaluating drug dissolution rates from the surface of

solid dosage forms in several standard apparatuses. Much of the analysis involves

flat surfaces. In order to investigate mass transfer from a flat surface we must

first examine flow across a flat plate. An exact solution to the boundary layer

equations was obtained by Blasius[3], for such a flow. The similarity solution

obtained by Blasius[3] is looked at in detail within this chapter.

Following on from Blasius, a French engineer by the name of André Lévêque[1]

observed that in the case of heat transfer for large Prandtl numbers, the thermal

boundary layer was an order of magnitude thinner than the momentum boundary

layer. For this reason, the thermal boundary layer only occupies a very thin

region close to the surface of the body across which the velocity gradient is

linear. In order to solve the problem of heat transfer from a flat plate Lévêque[1]

uses the Blasius velocity profile. Although the work of Lévêque[1] describes heat

transfer, it can be easily modified to model mass transfer. Now, a drug dissolving

into a liquid will diffuse much more slowly than momentum due to the tightly

packed nature of the molecules. This leads to a concentration boundary layer with

thickness an order of magnitude less than the momentum boundary layer. The

problem of drug dissolution is therefore analogous to the problem presented by

Lévêque[1]. This modified Lévêque solution is also examined within this chapter.

Finally, the chapter will review the case of heat transfer from the surface of

a vertical flat plate for large Prandtl numbers presented by Kuiken[2], in which

natural convection is the dominant mass transfer mechanism. As with the work
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of Lévêque[1], the case presented by Kuiken[2] can be easily adapted to model

mass transfer from the vertical flat surface of a soluble material. The problem

posed by Kuiken[2] involves two separate regions, one in which buoyancy effects

dominate and another in which the flow is categorised as one of forced convection

only.

The work of Blasius[3], Lévêque[1], and Kuiken[2] form much of the basic ideas

used in this thesis. Indeed, much of the material presented in subsequent chapters

may be directly attributed to these authors, or at least be seen as expansions of

their work.

2.1 Flow across a Flat Plate: Blasius

The case of flow across a flat plate was studied by Blasius[3]. In the case presented

by Blasius[3], the outer stream velocity, U∞, is assumed to be constant. This

means that the pressure term in the boundary layer equation (1.12), namely

dU∞

dx
, is identically zero and may be neglected. The two-dimensional boundary

layer equations for uniform flow across a flat plate are therefore given by

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(2.1)

∂u

∂x
+
∂v

∂y
= 0. (2.2)

In order to reduce this set of equations to a single equation, a stream function is

introduced that satisfies the continuity equation identically. This stream function

is defined by u = ∂ψ
∂y

and v = −∂ψ
∂x

and takes the form

ψ = kxmf(η) (2.3)
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where

η = j
y

xn
. (2.4)

The momentum equation is written in terms of the stream function as

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (2.5)

The various derivatives of the stream function are found to be

∂ψ
∂y

= kjxm−nf ′(η)

∂2ψ
∂y2

= kj2xm−2nf ′′(η)

∂3ψ
∂y3

= kj3xm−3nf ′′′(η)

∂ψ
∂x

= kmxm−1f(η) − knηxm−1f ′(η)

∂2ψ
∂x∂y

= kj(m− n)xm−n−1f ′(η) − kjnηxm−n−1f ′′(η). (2.6)

Substituting these into equation (2.5) gives

[

kjxm−nf ′(η)
] [

kj(m− n)xm−n−1f ′(η)− kjnηxm−n−1f ′′(η)
]

−
[

kmxm−1f(η) − knηxm−1f ′(η)
] [

kj2xm−2nf ′′(η)
]

= ν
[

kj3xm−3nf ′′′(η)
]

. (2.7)

Simplifying equation (2.7) leads to

[

k2j2x2m−2n−1
]

[(m− n)f ′(η)f ′(η)−mf(η)f ′′(η)] = νkj3xm−3nf ′′′(η). (2.8)

Now, in order for a similarity solution to exist, it must be possible to eliminate

the variable x from equation (2.8). This suggests

2m− 2n− 1 = m− 3n

m = 1 − n. (2.9)

Taking an order of magnitude approach to the momentum equation (2.1) gives

U2
∞

x
+
U2
∞

x
=
νU∞

δ2
. (2.10)
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To estimate the boundary layer thickness, δ, we equate terms on each side of

equation (2.10) to get

U2
∞

x
∼ νU∞

δ2
. (2.11)

This leads to

δ ∼
√

νx

U∞
. (2.12)

Now, in order for a similarity solution to exist the velocity at a point in the

boundary layer must depend only on it’s relative position in the boundary layer.

That is to say, the similarity variable, η, must have the property that when η is

constant, u is constant. Mathematically, this is expressed

u

U∞
≈ φ

(

y

δ

)

u

U∞
≈ φ



y

√

U∞

νx



 . (2.13)

This implies that

u ∝ x−
1

2 (2.14)

and hence

ψ ∝ xm ∝ x
1

2 . (2.15)

From this we have established that m = 1
2
. Substituting this value for m into

(2.9) gives n = 1
2
. Putting the values of m and n into equation (2.8) results in

νkj3f ′′′(η) +
1

2
k2j2f(η)f ′′(η) = 0. (2.16)

Equation (2.16) can be simplified to give

f ′′′(η) +
1

2
f(η)f ′′(η) = 0, (2.17)

where k = jν. The values of k and j are chosen to be

k =
√

νU∞ and j =

√

U∞

ν
(2.18)

21



in order to render both the stream function, ψ, and the similarity variable, η,

dimensionless. The stream function is given as

ψ =
√

νU∞xf(η), where η = y

√

U∞

νx
. (2.19)

The ordinary differential equation

f ′′′(η) +
1

2
f(η)f ′′(η) = 0 (2.20)

is solved subject to the boundary conditions










f(0) = f ′(0) = 0

f ′(η) → 1 as η → ∞

to obtain

f ′′(0) ≈ 0.332 . (2.21)

On solving the differential equation the following characteristics of interest may

be obtained

u = 0.332U∞

√

U∞

νx
y (2.22)

τ0 = 0.332µU∞

√

U∞

νx
, (2.23)

where u is the component of velocity in the x-direction, τ0 is the wall shear stress,

µ is the dynamic viscosity, ν is the kinematic viscosity, and U∞ is the outer stream

velocity.

2.2 Mass Transfer from a Horizontal Flat

Plate: Based on work by Lévêque[1]

The case of heat transfer from the surface of a horizontal flat plate for large

Prandtl numbers was studied by Lévêque[1]. In the case presented by Lévêque[1]
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it is observed that the thermal boundary layer is an order of magnitude thinner

than the momentum boundary layer. This means that the thermal boundary

layer only occupies a very thin region in which the velocity gradient is linear. For

this reason, it is not essential to solve the momentum boundary layer equation.

Instead, the velocity profile of Blasius[3] is inserted directly into the concentration

boundary layer equations, given as

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(2.24)

∂u

∂x
+
∂v

∂y
= 0. (2.25)

The Blasius velocity profile for flow across a flat plate is

u = βU∞

√

U∞

νx
y, (2.26)

where β ≈ 0.332. Differentiating equation (2.26) gives

∂u

∂x
= βyU∞

√

U∞

νx

(

−
1

2x

)

. (2.27)

Substituting (2.27) into the continuity equation gives

∂v

∂y
= βyU∞

√

U∞

νx

(

1

2x

)

. (2.28)

Integrating equation (2.28) leads to

v =
y2

2
βU∞

√

U∞

νx

(

1

2x

)

. (2.29)

Now, we introduce the non-dimensional concentration

C =
c

Cs
, (2.30)

where Cs is the concentration saturation. Substituting (2.30), (2.26) and (2.29)

into equation (2.24) we get


yβU∞

√

U∞

νx





∂c

∂x
+





y2

4x
βU∞

√

U∞

νx





∂c

∂y
= D

∂2c

∂y2
. (2.31)
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Seeking a similarity solution we assume

C = kxmh(η), (2.32)

where

η = j
y

xn
. (2.33)

The various derivatives of the concentration stream function, C , are found to be

∂C
∂y

= kjxm−nh′(η)

∂2C
∂y2

= kj2xm−2nh′′(η)

∂C
∂x

= kmxm−1h(η) − knηxm−1h′(η). (2.34)

Substituting (2.34) into equation (2.31) gives



βU∞

√

U∞

νx





[

ykmxm−1h(η) − yknηxm−1h′(η) +
y2

4x
kjxm−nh′(η)

]

= D
[

kj2xm−2nh′′(η)
]

.

(2.35)

From equation (2.33) we have

y =
ηxn

j
. (2.36)

Using this in equation (2.35) and simplifying leads to



βU∞

√

U∞

ν

k

j
xn+m− 3

2





[

mηh(η) − nη2h′(η) +
η2

4
h′(η)

]

= D
[

kj2xm−2nh′′(η)
]

.

(2.37)

Now, in order for a similarity solution to exist it must be possible to eliminate

the variable x from the above equation. This suggests

n +m−
3

2
= m− 2n. (2.38)

From this we obtain n = 1
2
, which like in the case of Blasius[3] is standard for

a flat plate. To obtain a value for m we must look at the concentration stream

24



function:

C = kxmh(η). (2.39)

Now at the surface, i.e. when y = 0, C = 1, that is to say a constant. For this

reason there can be no dependency on x at the wall, suggesting m = 0. Also,

as a dimensionless similarity variable will now automatically render the stream

function dimensionless, k is taken to be unity. Taking all this information into

account, equation (2.37) may be rewritten as



βU∞

√

U∞

ν





[

−
η2

4
h′(η)

]

= D
[

j3h′′(η)
]

. (2.40)

Now letting

j3 =
βU∞

12D

√

U∞

ν
, (2.41)

equation (2.40) reduces to

h′′(η) = −3η2h′(η). (2.42)

Rearranging (2.42) gives

h′′(η)

h′(η)
= −3η2. (2.43)

Integrating (2.43) leads to

ln [h′(η)] = −η3 + C1, (2.44)

where C1 is constant. Rearranging we obtain

h′(η) = Ae−η
3

. (2.45)

The differential equation (2.45) is solved subject to the boundary conditions











h(∞) = 0

h′(0) = 1.
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Integrating equation (2.45) gives

h(η) = A
∫ η

∞
e−η

3

dη. (2.46)

Applying the boundary conditions we get

−A
∫ ∞

0
e−η

3

dη = 1. (2.47)

Letting z = η3 leads to

−A
[

1

3

] ∫ ∞

0
e−zz−

2

3 dz = 1. (2.48)

The Gamma function, Γ(n) is defined by

Γ(n) ≡
∫ ∞

0
e−zzn−1dz. (2.49)

Therefore, we find

Γ
(

1

3

)

≡
∫ ∞

0
e−zz−

2

3dz. (2.50)

From the Gamma function tables Γ
(

1
3

)

≈ 2.6789. Substituting this into equation

(2.48) we find

A ≈ −1.1199. (2.51)

From before we had

h′(η) = Ae−η
3

, (2.52)

which leads to

h′(0) ≈ −1.1199. (2.53)

The flux from the surface is given by

Total Flux = −D
[

∂c

∂y

]

y=0

=
−jDCsh′(0)√

x
. (2.54)
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The total flux per unit width is given as

Flux / Unit Width =
∫ x

0

−jDCsh′(0)√
x

dx

= −2jDCsh
′(0)x

1

2 , (2.55)

where x is the length of the flat plate. Recalling that j3 = βU
3

2
∞

12Dν
1

2

and h′(0) =

−1.1199, the total flux per unit width may be expressed as

Flux / Unit Width = 0.677
U

1

2
∞D

2

3Csx
1

2

ν
1

6

, (2.56)

where U∞ is the outer stream velocity, x is the length of the flat plate, ν is the

kinematic viscosity, D is the coefficient of diffusion and Cs is the concentration

saturation.

2.3 Mass Transfer from a Vertical Flat Surface

due to Natural Convection: Based on work

by Kuiken[2]

The case of heat transfer from the surface of a vertical flat plate for large Prandtl

numbers was studied by Kuiken[2], in which flow is induced by changes in density

close to the surface due to a difference in temperature. The case presented by

Kuiken[2] can be easily adapted to model mass transfer from the flat surface of

a soluble material. The approach used is to split the problem into two regions:

a thin inner layer in which all mass transfer takes place and buoyancy forces

dominate, and an outer layer in which buoyancy forces may be neglected. The

solution to the inner layer is sought first, at which point it is possible to match

the outer layer to the inner solution.
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The Inner Layer

The boundary layer equations are

∂2u

∂y2
+
gc

ρν
= 0 (2.57)

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(2.58)

∂u

∂x
+
∂v

∂y
= 0, (2.59)

where x is the distance from the leading edge, y is the distance from the wall,

u and v are the components of velocity in the x and y directions respectively,

g is acceleration due to gravity, ν is the kinematic viscosity of the dissolution

medium, ρ is the density, c is the concentration of dissolved particles and D is

the coefficient of diffusion of the soluble material. Introducing c = CsC , where Cs

is the concentration saturation, and letting γ = gCs

ρν
, equations (2.57) and (2.58)

can be written:

∂2u

∂y2
+ γC = 0 (2.60)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(2.61)

Introducing a stream function of the form u = ∂ψ
∂y

, from the continuity equation

we obtain v = −∂ψ
∂x

. Substituting in for u and v, equations (2.60) and (2.61)

become
∂3ψ

∂y3
+ γC = 0 (2.62)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
(2.63)
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where the stream function is of the form

ψ = kx
3

4f(η) (2.64)

and

η = jyx−
1

4 . (2.65)

It is also assumed that the non-dimensional concentration, C , is a function of η

and takes the form

C = h(η). (2.66)

The various derivatives of both the stream function and the non-dimensional

concentration are found to be

∂ψ
∂y

= jkx
2

4f ′(η)

∂2ψ
∂y2

= j2kx
1

4f ′′(η)

∂3ψ
∂y3

= j3kf ′′′(η)

∂ψ
∂x

= 3
4
kx−

1

4f(η) − 1
4
kx−

1

4ηf ′(η)

∂C
∂x

= −1
4
x−1ηh′(η)

∂C
∂y

= jx−
1

4h′(η)

∂C2

∂y2
= j2x−

2

4h′′(η). (2.67)

Substituting these into equations (2.62) and (2.63) leads to

f ′′′(η) +
γ

kj3
h(η) = 0 (2.68)

h′′(η) +
3k

4Dj
f(η)h′(η) = 0. (2.69)
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Equations (2.68) and (2.69) may be simplified by taking kj3 = γ and k
Dj

= 4,

where j =
[

gCs

4Dρν

] 1

4 and k = 4D
[

gCs

4Dρν

] 1

4 . This leads to the stream function

ψ = 4D

[

gCsx
3

4Dρν

] 1

4

f(η), (2.70)

where

η = y

[

gCs
4Dρνx

] 1

4

. (2.71)

The differential equations to be solved are

f ′′′(η) + h(η) = 0 (2.72)

h′′(η) + 3f(η)h′(η) = 0. (2.73)

Equations (2.72) and (2.73) were solved by Kuiken[2] subject to the boundary

conditions










η = 0, h0(η) = 1, f0(η) = f ′
0(η) = 0

η → ∞, h0(η) → 0.

The results obtained by Kuiken[2] are given as

f ′′
0 (0) ≈ 0.825

h′0(0) ≈ −0.711

f ′
0(∞) ≈ 0.511.

The resulting flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

= −DCs
[

jh′(0)x−
1

4

]

. (2.74)
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From equation (2.74), the total flux per unit width is given by

Flux / Unit Width = −DCs [jh′(0)]
∫ x

0
x−

1

4dx

= −4

3
h′(0)DCs

[

gCs
4Dρν

] 1

4

x
3

4 . (2.75)

The Outer Layer

The boundary layer equations are

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(2.76)

∂u

∂x
+
∂v

∂y
= 0. (2.77)

Introducing a stream function of the form ψ = k1x
3

4F (ξ) where ξ = j1yx
− 1

4 ,

k1 = 4D
[

S2
c

4

]
1

4

[

gCs

4Dρν

]1

4 , j1 =
[

1
4S2

c

]1

4

[

gCs

4Dρν

] 1

4 and Sc = ν
D

, leads to the following

ordinary differential equation:

F ′′′
0 (ξ) + 3F ′′

0 (ξ)F0(ξ) − 2F ′
0(ξ)F

′
0(ξ) = 0. (2.78)

In order to match the solution with that of the inner layer, equation (2.78) was

solved for the following boundary conditions:











ξ = 0, F0(ξ) = 0, F ′
0(ξ) = f ′

0(∞) = 0.511

ξ → ∞, F0(ξ) → constant, F ′
0(ξ) → 0, F ′′

0 (ξ) → 0.

The results obtained are given as

F ′′
0 (0) ≈ −0.5628

f0(∞) ≈ 0.43.
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Velocity and Concentration Profiles

In order to plot an overall velocity profile it should be noted that η = S
1

2
c ξ. Figure

(2.1) shows the velocity profile for both the inner and outer layer for Sc = 100.

Figure (2.2) shows the concentration profile that exists within the inner layer.

Figure 2.1: Velocity Profile: Pure Natural Convection (Sc = 100)

Figure 2.2: Concentration Profile: Pure Natural Convection

32



Chapter 3

Dissolution Rates from the Top

Planar Surface of a Compact in

the USP Paddle Apparatus

This chapter examines the rate of drug dissolution from the top planar surface

of a compact in all three positions (see figure 1.1). The flow in position 1 and

position 2 is treated as flow over a flat plate. The chapter first looks at the

Pohlhausen method for flow over a flat plate using the Blasius velocity profile

with various concentration profiles. The Pohlhausen solutions are then compared

with the exact solution of Lévêque[1] to choose the most suitable concentration

profile. The approximate solution is then applied to the surface of the compact

by dividing the surface into strips.

For the compact in the central position a converging radial flow exists. Using

CFD velocity data an appropriate velocity profile is constructed and used in

conjunction with the previously constructed concentration profile. To apply the

method to the compact in the central position the compact surface is divided

into an outer annular area and an inner circular area. For the central position an

exact solution is also sought using the method of asymptotic expansions to verify

the results of the approximate method. All results obtained are then compared

with those of experiment, as conducted by D’Arcy[6].
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3.1 Determination of Suitable Concentration

Profile

As mentioned in chapter two, an exact solution to mass transfer from the surface

of a flat plate exists based on the work of Lévêque[1]. Later, in section (3.2), it will

be shown that this solution may be applied directly to the case of drug dissolution

from the top planar surface of a compact in positions 1 and 2. However, in the

case of a centrally placed compact this exact solution is not valid. For this reason

it is advantageous to derive an approximate solution, the accuracy of which will

be measured against that of the Lévêque[1] solution in the case of off-centre

compacts, that may be used in instances where an exact solution is not possible.

The approximate solution will be obtained by means of the Pohlhausen method

as discussed in chapter one. The concentration boundary layer equation is

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
, (3.1)

where (u, v) are the velocity components in the (x, y) directions, D is the coeffi-

cient of diffusion and c is the concentration of dissolved particles.

The Pohlhausen method involves integrating the boundary layer equation with

respect to y across the boundary layer. Performing this integration and applying

the boundary conditions for flow across a flat plate leads to the concentration

integral equation:

d

dx

∫ δC

0
ucdy = −D

[

∂c

∂y

]

y=0

, (3.2)

where δC is the concentration boundary layer thickness. In order to solve this

equation appropriate velocity and concentration profiles must be substituted in

for u and c respectively. In the case presented by Lévêque[1], the Blasius velocity
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Figure 3.1: Illustration of Concentration Profiles

profile for flow across a flat plate is applied. It is therefore appropriate that this

velocity profile is also applied to the approximate methods used in this section.

The Blasius profile is given as

u = 0.332yU∞

√

U∞

νx
, (3.3)

where U∞ is the outer stream velocity and ν is the kinematic viscosity.

Having chosen a suitable velocity profile it is now required that a suitable

concentration profile be chosen. Now, in the case of drug dissolution the con-

centration at the surface must be equal to that of the concentration saturation,

Cs. The concentration level must also diminish to zero as the edge of the concen-

tration boundary layer is approached. Three separate concentration profiles, as

illustrated in figure (3.1), are applied to the integral equation (3.2). The results

are then compared with that of the exact solution to obtain the concentration

profile that best fits the model.
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Linear Concentration Profile

The linear concentration profile is chosen to be

c = Cs

[

1 − y

δc

]

, (3.4)

where Cs is the concentration saturation and δc is the concentration boundary

layer thickness. Substituting (3.4), along with the Blasius velocity profile (3.3)

into the concentration integral equation (3.2) gives

d

dx

[

x−
1

2 δ2
c

]

=
6D

0.332δc

√

ν

U3
∞

. (3.5)

Performing the differentiation on the left hand side of equation (3.5) and simpli-

fying leads to the ordinary differential equation

2δ2
c

dδc
dx

−
δ3
c

2x
=

6D

0.332

√

νx

U3
∞
. (3.6)

The ordinary differential equation (3.6) is solved by means of an integrating factor

to obtain an expression for the concentration boundary layer thickness, δc. This

is found to be

δc =

[

12D

0.332

√

ν

U3
∞

]
1

3 [

x
1

2

]

. (3.7)

The total flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

=
DCs
δc

. (3.8)

Substituting in for δc, equation (3.8) becomes

Flux / Unit Area =
[

0.332

12

]
1

3





U
1

2
∞D

2

3Cs

ν
1

6x
1

2



 . (3.9)
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From equation (3.9), the flux per unit width is given as

Flux / Unit Width =
[

0.332

12

]

1

3





U
1

2
∞D

2

3Cs

ν
1

6





∫ x

0
x−

1

2 dx

= 0.605
U

1

2
∞D

2

3Csx
1

2

ν
1

6

. (3.10)

Parabolic Concentration Profile

The parabolic concentration profile is chosen to be

c = Cs

[

1 −
y

δc

]2

. (3.11)

Substituting equation (3.11) into the concentration integral equation (3.2), along

with the Blasius velocity profile gives

d

dx

[

x−
1

2 δ2
c

]

=
24D

0.332δc

√

ν

U3
∞

, (3.12)

which leads to the ordinary differential equation

3δ2
c

dδc
dx

− δ3
c

2x
=

24D

0.332

√

νx

U3
∞

. (3.13)

As in the case of the linear concentration profile, equation (3.13) is solved by

means of an integrating factor to obtain

δc =

[

48D

0.332

√

ν

U3
∞

]
1

3 [

x
1

2

]

. (3.14)

The total flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

=
2DCs
δc

. (3.15)
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Substituting in for δc, equation (3.15) becomes

Flux / Unit Area =
[

0.332

6

]

1

3





U
1

2
∞D

2

3Cs

ν
1

6x
1

2



 . (3.16)

From equation (3.16), the flux per unit width is found to be

Flux / Unit Width =
[

0.332

6

]
1

3





U
1

2
∞D

2

3Cs

ν
1

6





∫ x

0
x−

1

2 dx

= 0.762
U

1

2
∞D

2

3Csx
1

2

ν
1

6

. (3.17)

Sinusoidal Concentration Profile

The sinusoidal concentration profile is chosen to be

c = Cs

[

1 − sin
(

yπ

2δc

)]

. (3.18)

Substituting equations (3.18) and (3.3) into the concentration integral equation

(3.2) gives
d

dx

[

x−
1

2 δ2
c

]

=
Dπ3

0.332δc (π2 − 8)

√

ν

U3
∞

. (3.19)

Equation (3.19) is simplified to give the ordinary differential equation

3δ2
c

dδc
dx

− 3δ3
c

4x
=

3Dπ3

2 (0.332) (π2 − 8)

√

νx

U3
∞

. (3.20)

Again equation (3.20) is solved by means of an integrating factor to give

δc =

[

2Dπ3

0.332 (π2 − 8)

√

ν

U3
∞

] 1

3 [

x
1

2

]

. (3.21)

The total flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

=
πDCs
2δc

. (3.22)
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Substituting in for δc and integrating along the length gives the flux per unit

width as

Flux / Unit Width = 0.677
U

1

2
∞D

2

3Csx
1

2

ν
1

6

. (3.23)

Comparison of Concentration Profiles

Table (3.1) shows the comparison between the approximate method using several

concentration profiles and the exact solution based on the work of Lévêque[1].

It is clear from table (3.1) that the linear and parabolic concentration profiles

under-estimate and over-estimate the flux from the surface respectively. The flux

determined using the sinusoidal concentration profile seems to match that of the

exact solution well. Indeed, the flux obtained using the sinusoidal profile is equal

to that of the exact solution to 0.1%. The sinusoidal concentration profile may

therefore be used to calculate an approximate solution in cases where an exact

solution may not be obtained.

Table 3.1: Comparison of Approximate Methods with Exact Solution

Flux per Unit Width

Exact Solution 0.677U
1

2
∞D

2

3Csx
1

2

ν
1

6

Sinusoidal Profile 0.677U
1

2
∞D

2

3Csx
1

2

ν
1

6

Pohlhausen Method Linear Profile 0.605U
1

2
∞D

2

3Csx
1

2

ν
1

6

Parabolic Profile 0.762U
1

2
∞D

2

3Csx
1

2

ν
1

6
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3.2 Dissolution Rates from the Top Planar

Surface of a Compact in Position1 and

Position2

In this section the rate of drug dissolution from the top planar surface of a

compact in position 1 and position 2 is calculated. To achieve this the surface is

divided up into strips of width 1mm. The characteristic length of each strip is

taken down the centre. Finding the area of the strips and using the characteristic

length of each, rectangular strips of equal area and length are constructed. The

outer stream velocity for each strip is determined from CFD simulations kindly

provided by D’Arcy[25] for use in this thesis. Any required intermediate velocities

are calculated by means of linear regression.

Figure 3.2: Illustration of Surface Strips
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Experimental work

In the experimental work conducted by D’Arcy[6] the compacts used are com-

posed of benzoic acid and are 13mm in diameter. Values for the coefficient of

diffusion and the concentration saturation of benzoic acid are given as D =

1.236 × 10−5cm2/s and Cs = 4.564 × 10−3g/cm3 respectively. These values are

used throughout this chapter in determining the rate of drug dissolution from the

surface of a compact.

Outer Stream Velocities

The velocity data for each strip is obtained from CFD simulations performed by

D’Arcy[6].

Table 3.2: Outer Stream Velocity Data

Velocity (cm/s)
Strip Length (cm) Width (cm) Position 1 Position 2
7L 0.5 0.094 5 8.7
6L 0.831 0.099 5.234 8.667
5L 1.025 0.099 5.667 8.633
4L 1.153 0.099 6 8.6
3L 1.237 0.099 6.334 8.567
2L 1.285 0.099 6.667 8.533
1 1.3 0.1 7 8.5
2R 1.285 0.099 7.334 8.467
3R 1.237 0.099 7.667 8.433
4R 1.153 0.099 8 8.4
5R 1.025 0.099 8.334 8.367
6R 0.831 0.099 8.667 8.334
7R 0.5 0.094 8.998 8.3

Any intermediate velocities required are obtained by means of linear regres-

sion. Table (3.2) shows the outer stream velocity, U∞, for each strip in both
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position 1 and position 2. Also contained in table (3.2) are the length and width

of each strip.

Calculation of the Dissolution Rate from the Surface

For the top planar surface of a compact in positions 1 and 2, the process of drug

dissolution from the surface can be treated as mass transfer from a horizontal

flat plate. The solution of Lévêque[1] is therefore valid and from equation (2.56)

the flux per unit width is given as

Flux / Unit Width = 0.677
U

1

2
∞D

2

3Csx
1

2

ν
1

6

. (3.24)

Applying equation (3.24) to each strip, the total flux from the surface is given by

Total Flux = 0.677





D
2

3Cs

ν
1

6









6
∑

i=−6

U
1

2

i x
1

2

i Wi



 , (3.25)

where Ui represents the velocity , xi the length and Wi the width of each strip.

Taking the values presented in table (3.2), the flux from the surface of a com-

pact in position 1 and 2 are calculated and shown in table (3.3) along with the

experimental results of D’Arcy[6].

Table 3.3: Dissolution Rates from Top Surface of a Compact in Position 1 and 2

Compact Theoretical Results(g/s) Experimental Results(g/s)
Position 1 1.22 × 10−5 1.36 × 10−5

Position 2 1.41 × 10−5 1.40 × 10−5
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3.3 Dissolution Rates from the Top Planar

Surface of a Compact in the Central

Position

This section examines the drug dissolution rate from the top planar surface of a

compact in the central position. For the case in the central position two types of

compact are examined, the first of height 3mm and the second of height 8.5mm.

The taller compact has been used in experimental work and it is examined here

to determine the possible effect of the paddle when in close proximity to the

top planar surface. It has been noted in CFD simulations that a region of low

velocity exists directly beneath the paddle, which may lead to a decrease in mass

transfer rates from the surface. Both compacts are composed of benzoic acid and

are of diameter 13mm. Again, velocity data is obtained from CFD simulations.

For the case presented in the previous section the flow was treated as that of

flow across a flat plate. This means that the exact solution of Lévêque[1], which

depends on the Blasius velocity profile, can be applied. However, for the compact

in the central position the flow is that of a converging radial flow, for which the

Blasius velocity profile is no longer valid. A relevant velocity profile is constructed

using CFD simulation data. This velocity profile is then used in conjunction

with the sinusoidal concentration profile constructed in section (3.2) to obtain an

approximate solution based on the Pohlhausen method. In the case of the 3mm

tall compact an exact solution is also obtained by means of an asymptotic series

expansion in order to verify the approximate solution.
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Dissolution Rates from the Surface of a 3mm Tall

Compact

The velocity data obtained from CFD simulations is plotted for a 3mm tall com-

pact in the central position and is shown in figure (3.3).

Figure 3.3: Velocity Profile along Top Surface:Central Position(3mm Compact)

Figure (3.3) shows a plot of αy versus r, where α is the velocity gradient and

r is the radial distance along the compact surface. From this data a suitable

velocity profile is constructed. This is given as

u =











−αy for r1 ≤ r ≤ a

−αyr
r1

for 0 ≤ r ≤ r1

where r = a−x, a is the compact radius and r1 is the distance from the centre at

which the velocity gradient begins to diminish toward zero. This velocity profile,

along with the previously constructed sinusoidal concentration profile are used to

solve the concentration integral equation. To apply the method to the compact

the surface is divided into an outer annular area and an inner circular area.
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Outer Annular Area

The concentration integral equation in polar coordinates is

d

dr

∫ δc

0
rucdy = −rD

[

∂c

∂y

]

y=0

. (3.26)

The velocity and concentration profiles are given by

u = −αy (3.27)

c = Cs

[

1 − sin
[

πy

2δc

]]

. (3.28)

Substituting equations (3.27) and (3.28) into the concentration integral equation

(3.26) gives

d

dr

[

αr
∫ δc

0

[

y − ysin
[

πy

2δc

]]

dy

]

=
−Dπr

2δc
. (3.29)

Now, noting that
∫ δc
0

[

y − ysin
[

πy
2δc

]]

dy =
δ2c [π2−8]

2π2 and performing the differenti-

ation on the left hand side, equation (3.29) may be reduced to

3δ2
c

dδ2
c

dr
+

3δ3
c

2r
= −3Dπ

4α

[

2π2

π2 − 8

]

. (3.30)

Now letting ∆ = δ3
c , equation (3.30) is written

d∆

dr
+

3∆

2r
= −

3Dπ

4α

[

2π2

π2 − 8

]

. (3.31)

The ordinary differential equation (3.31) is solved by means of an integrating

factor to yield

∆outer =
3πDa

10α

[

2π2

π2 − 8

]





1 − R
5

2

R
3

2



 , (3.32)

where R = r
a
.
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Inner Circular Area

From equation (3.26) the concentration integral equation is

d

dr

∫ δc

0
rucdy = −rD

[

∂c

∂y

]

y=0

. (3.33)

The velocity and concentration profiles are given as

u = −
αyr

r1
(3.34)

c = Cs

[

1 − sin
[

πy

2δc

]]

. (3.35)

Substituting equations (3.34) and (3.35) into the concentration integral equation

(3.33) gives
d

dr

[

αr2

r1

∫ δc

0

[

y − ysin
[

πy

2δc

]]

dy

]

=
−Dπr

2δc
. (3.36)

Equation (3.36) may be simplified to give the ordinary differential equation

d∆

dr
+

3∆

r
= −

3Dπr1
4αr

[

2π2

π2 − 8

]

, (3.37)

where ∆ = δ3
c . Solving equation (3.37) by means of an integrating factor leads to

∆inner =
πDaR1

4α

[

2π2

π2 − 8

]

[

B

R3
− 1

]

, (3.38)

where R = r
a
. Now, at R = 0.46, ∆inner = ∆outer. Equating (3.32) and (3.38), B

is found to be 0.7945 and equation (3.38) becomes

∆inner =
πDaR1

4α

[

2π2

π2 − 8

] [

0.7945 − R3

R3

]

. (3.39)

Flux from the Surface

The flux per unit area is given as

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

=
πDCs
2δc

. (3.40)
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From equation (3.40) we obtain the total flux from the surface as

Flux =
∫ 0

a
2πr

[

πDCs
2δc

]

dr. (3.41)

This leads to

Flux =

[

π5D2C3
sa

5α

[

π2 − 8

2π2

]] 1

3

×







3

√

4

R1

∫ R1

0
R





R

[0.7945 − R3]
1

3



 dR +
3

√

10

3

∫ 1

R1

R





R
3

2

1 − R
5

2





1

3

dR





 .

(3.42)

Performing the integration in equation (3.42) and simplifying gives

Total Flux =

[

0.17442
3
√
R1

+ 2.482

]

D
2

3Csα
1

3 a
5

3 , (3.43)

where R1 = r1
a
, a is the compact radius, Cs is the concentration saturation and

D is the coefficient of diffusion.

Dissolution Rates from the Surface of an 8.5mm Tall

Compact

The CFD velocity data for a 8.5mm tall compact in the central position is plotted

and shown in figure (3.4). Figure (3.4) shows a plot of αy versus r, where α is the

velocity gradient and r is the radial distance along the compact surface. From

this a suitable velocity profile is constructed and is given as

u =











−αy for r1 ≤ r ≤ a

−αyr
r1

for 0 ≤ r ≤ r1.

The concentration profile is again taken to be

c = Cs

[

1 − sin
[

πy

2δc

]]

. (3.44)
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Figure 3.4: Velocity Profile along Top Surface:Central Position(8.5mm Compact)

The process is the same as that used for the 3mm tall compact. The only values

to change are that of R1 and α, which are given as R1 = 0.615 and α = 130. This

leads to

∆outer =
3πDa

10α

[

2π2

π2 − 8

]





1 − R
5

2

R
3

2



 (3.45)

∆inner =
πDaR1

4α

[

2π2

π2 − 8

] [

0.89776 − R3

R3

]

. (3.46)

Flux from the Surface

The flux from the surface is given by

Flux =

[

π5D2C3
sa

5α

[

π2 − 8

2π2

]] 1

3

×







3

√

4

R1

∫ R1

0
R





R

[0.89776 − R3]
1

3



 dR +
3

√

10

3

∫ 1

R1

R





R
3

2

1 − R
5

2





1

3

dR





 . (3.47)
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Performing the integration in equation (3.47) and simplifying gives

Total Flux =

[

0.3495
3
√
R1

+ 2.177

]

D
2

3Csα
1

3a
5

3 , (3.48)

where R1 = r1
a
, a is the compact radius, α is the velocity gradient, Cs is the

concentration saturation and D is the coefficient of diffusion.

Results

As before the values for the concentration saturation and the coefficient of dif-

fusion are taken to be Cs = 4.564 × 10−3g/cm3 and D = 1.236 × 10−5cm2/s

respectively. The theoretical and experimental results for the dissolution rate

from the top surface of a compact in the central position are shown in table

(3.4).

Table 3.4: Dissolution Rates from Top Surface of Compacts in Central Position

Central Position Theoretical Results(g/s) Experimental Results(g/s)
8.5mm Compact 1.15 × 10−5 0.92 × 10−5

3mm Compact 0.998 × 10−5 0.99 × 10−5

3.4 Exact Solution for the Top Surface of a

3mm Tall Compact in the Central Position

In this section an exact solution is sought by means of an asymptotic series

solution. The solution is only valid across the outer annular area of the compact

surface. The boundary layer equations are

u
∂c

∂r
+ v

∂c

∂y
= D

∂2c

∂y2
(3.49)
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∂

∂r
(ur) +

∂

∂y
(vr) = 0. (3.50)

Taking the radial velocity component as u = −αy and substituting into the

continuity equation (3.50), the axial velocity component is found to be v = αy2

2r
.

Substituting both of these into the concentration boundary layer equation (3.49)

and simplifying we obtain

y
∂C

∂X
+

[

1

2(1 −X)

]

y2∂C

∂y
=
aD

α

∂2C

∂y2
, (3.51)

where r = a− x, X = x
a

and C = c
Cs

. A concentration profile of the form

C = f0(η) + xf1(η) + x2f2(η) + x3f3(η) + ... (3.52)

is assumed, where η = jy
3
√
x
. Substituting (3.52) into equation (3.51) and equating

coefficients of x results in the following set of differential equations.

f ′′
0 (η) + 3η2f ′

0(η) = 0

f ′′
1 (η) + 3η2f ′

1(η)− 9ηf1(η) = 9
2
η2f ′

0(η)

f ′′
2 (η) + 3η2f ′

2(η)− 18ηf2(η) = 9
2
η2 [f ′

1(η) + f ′
0(η)]

f ′′
3 (η) + 3η2f ′

3(η)− 27ηf3(η) = 9
2
η2 [f ′

2(η) + f ′
1(η) + f ′

0(η)]

f ′′
4 (η) + 3η2f ′

4(η)− 36ηf4(η) = 9
2
η2 [f ′

3(η) + f ′
2(η) + f ′

1(η) + f ′
0(η)] ,

where j is chosen to be 3

√

α
9aD

. The first differential equation is solved analytically,

with the rest solved numerically subject to the boundary conditions

fi(0) = 0, fi(∞) = 0 for i ≥ 1.

The results are found to be f ′
0(0) = −1.2, f ′

1(0) = 0.3, f ′
2(0) = 0.2, f ′

3(0) = 0.13

and f ′
4(0) = 0.087. The dissolution rate from the surface is given by the expression

Total Flux =
[

6DπjCs
3
√
ax2

]

×
[

−af
′
0(0)

2
+
x

5
[f ′

0(0) − f ′
1(0))] +

x2

8a
[f ′

1(0) − f ′
2(0)] +

x3

11a2
....

]

. (3.53)
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This can be improved upon by means of a Padé approximation to give

Total Flux = 6DπjCs
3
√
ax2

[

0.39 − 1.143x+ 0.633x2

1 − 2.161x − 0.089x2

]

. (3.54)

The results for the exact solution for the dissolution rate from the outer annular

surface of the 3mm tall compact in the central position are shown in table (3.5)

alongside the approximate results obtained in the previous section.

Table 3.5: Dissolution Rates From Outer Annular Section of Top Surface

Exact Solution(g/s) Padé Solution(g/s) Pohlhausen Method(g/s)
0.977 × 10−5 0.983 × 10−5 0.912 × 10−5

3.5 Discussion

Off-Centre Compacts

The good agreement between the exact solution and the Pohlhausen solution in

the analysis of the top planar surface of the compact in position 1 and 2, means

that the Pohlhausen method can be used in cases where an exact solution is

not available. Indeed this was the case for the compact in the central position.

Comparing the results for position 1 and 2 with the experimental results of D’Arcy

[6], we see that the result for position 2 is more accurate. The error is about 1%,

compared with an error of 10% in position 1. This variation in error may arise

due to the fact that the streamlines of the flow over the top surface are in fact

curved. This would have more effect in position 1 as the curvilinear nature of

the streamlines becomes less important as the compact is moved away from the

central position. Another consideration is the tilt of the compact in position 2.

The hemispherical shape of the container causes the compact in position 2 to be
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tilted more to the vertical and this leads to less variation in the velocities from

one side of the compact to the other.

Centrally Positioned Compacts

The calculated rate of drug dissolution from the top planar surface of the 3mm

tall compact is in good agreement with the experimental data. However, for the

8.5mm tall compact the result is less accurate. The error with experimental data

is about 1% and 25% respectively. In the case of the 8.5mm tall compact the

reason for such a large error is unclear. However, it is known that the Pohlhausen

method is largely dependent on the accuracy of the velocity profile used and this

may be an area worth analysing in more detail.
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Chapter 4

An Analysis of Dissolution Rates

from the Curved Side Surface of

a Compact in the USP Paddle

Apparatus

This chapter examines the rate of drug dissolution from the curved side surface

of a compact in the USP Paddle Apparatus. The chapter first looks at the curved

side surface of a compact in the central position. An axial flow is dominant along

the curved surface and velocity data obtained from D’Arcy[25] is used to con-

struct appropriate velocity profiles which, along with the previously constructed

concentration profile, is applied to the concentration integral equation.

For the off-centre positions the flow along the curved surface is more complex

due to the tilted nature of the compacts. The CFD velocity data is analysed in

greater detail and streamlines of the flow close to the surface are constructed. The

streamlines give a clearer view as to the dominant direction of the flow around

the surface. As position 2 is the extreme case, we have chosen to examine the

compact in this position rather than position 1.
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4.1 Dissolution Rates from the Curved Side

Surface of a Compact in the Central

Position

For the curved side surface of the compact in the central position we first analyse

a compact of height 8.5mm. The CFD data in this case clearly shows boundary

layer separation at a height of 5.6mm from the base of the compact, after which

a second boundary layer forms. The surface is therefore divided into an upper

and lower section, each with it’s own velocity profile. The velocity profile is given

by

u =



















α1ysin
2

(

πx
1

2

β
1

2

1

)

for 0 ≤ x ≤ x1

α2ye
β2x for x1 ≤ x ≤ xmax

where α1 and α2 are the velocity gradients for each section, β1 = 0.56, β2 = 10.76

and x1 is the distance from the base at which boundary layer separation occurs.

These velocity profiles, along with the previously constructed concentration pro-

file were used to solve the concentration integral equation, given as

d

dx

∫ δ

0
ucdy = −D

[

∂c

∂y

]

y=0

. (4.1)

The resulting dissolution rates from each section are given as

Flux(lower) = 3
√

β1DCsa

[

2α1ζπ

3D
√
β1

] 1

3

[

√

β1sin

(

π
√
x√
β1

)

−
√
xπcos

(

π
√
y√
β1

)] 2

3

(4.2)

Flux(upper) =
3π2DCsa

β2

[

2αζβ2

3Dπ

] 1

3

[

(

e
xβ2

2 − 1
)2

3

−
(

e
x1β2

2 − 1
) 2

3

]

, (4.3)
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Figure 4.1: Velocity Profile along Curved Side Surface of an 8.5mm Tall Compact

where ζ = π2−8
2π2 .

For the 3mm tall compact in the central position, velocity data is only avail-

able at three points along the surface(base, mid-height and top). The surface

has therefore been divided into a lower and upper section, each with a separate

velocity profile which must be matched at the mid-point. The lack of substantial

velocity data leads to a somewhat simpler velocity profile and it will be interest-

ing to observe the effect that this has on the results. The velocity profiles for the

curved side surface of the 3mm tall compact are given by

u =











αxy
xmid

for 0 ≤ x ≤ xmid

αy for xmid ≤ x ≤ xmax.

Substituting these profiles into the given concentration integral equation (4.1)

results in the following expression for the dissolution rate from the surface.
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Figure 4.2: Velocity Profile along Curved Side Surface of a 3mm Tall Compact

Total Flux = aCs

[

2D2π5ζα

xmid

] 1

3



xmid +
(2xmid)

1

3

3

[

(3x − xmid)
2

3 − (2xmid)
2

3

]



 .

(4.4)

The theoretical and experimental results for the dissolution rate from the curved

side surface of a compact in the central position are shown below in Table (4.1).

Table 4.1: Dissolution Rates from Side Surface of Compacts in Central Position

Central Position Theoretical Results(g/s) Experimental Results(g/s)
8.5mm Compact 3.1989 × 10−5 3.24 × 10−5

3mm Compact 1.5152 × 10−5 1.1245 × 10−5
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4.2 Dissolution Rates from the Curved Side

Surface of a Compact in Position 2

For the curved side surface of a compact in position 2 the CFD velocity data is

examined in greater detail. Due to the complex nature of the flow, the streamlines

of the flow close to the surface have been plotted. The streamlines are shown

below in figure (4.3).

Figure 4.3: Streamlines about Curved Side Surface

We can see from the streamlines the complexity of the flow about the curved

side surface of the compact in position 2. The flow as a whole cannot be described

as either axially or tangentially dominant; there are instead different sections in

which the flow is either axially or tangentially dominant. For this reason, the

surface has been divided into a total of eighteen strips of varying length. A linear

velocity profile is constructed for each strip and is given by

u =
{

αxy for 0 ≤ x ≤ xmax,

where α is the velocity gradient for each section, x is the distance from the leading

edge, y is the distance from the wall and xmax is the maximum length of each

strip . This velocity profile, along with the previously constructed concentration

profile are used to solve the concentration integral equation, namely;
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d

dx

∫ δ

0
ucdy = −D

[

∂c

∂y

]

y=0

. (4.5)

The theoretical and experimental results for the dissolution rate from the curved

side surface of a compact in position 2 are shown in table (4.2).

Table 4.2: Dissolution Rates from the side surface of a Compact in Position 2

3mm Compact Theoretical Results(g/s) Experimental Results(g/s)
Position 2 1.174 × 10−5 1.431 × 10−5

4.3 Discussion

Following the relative success of applying the Pohlhausen method to the top

planar surface of the compact the same technique was used to analyse the curved

side surface. The analysis of the compact in the central position has mixed results.

The calculated dissolution rate from the side surface of the 8.5mm tall compact is

extremely accurate when compared with that of experiment, however the result

for the 3mm tall compact is less accurate. The respective errors are about 1.3%

and 35%. The main factor in these varying results was the CFD data available

for both compacts. For the 8.5mm compact, data was available for points along

the surface at increments of 0.5mm which allowed for a very accurate velocity

profile to be constructed. Also, the data clearly showed boundary layer separation

occurring at a height of 5.6mm along the surface, after which a second boundary

layer formed. In contrast, data was only available at three points (bottom, mid-

height and top) along the surface of the smaller compact. This led to a somewhat

estimated velocity profile and hence, a less accurate result.
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For the compact in position 2, the complexity of the flow about the surface

led to a more difficult analysis. On obtaining the streamlines about the surface

the area was divided up into numerous sections, each with it’s own linear velocity

profile based on the dominant direction (axial or tangential) of the flow in that

section. In reality, although the direction of the flow in a number of the sections

was apparent, many sections did not exhibit clear flow regimes. The error between

experimental and theoretical results was 18%.

Conclusion

In conclusion, the results for the 8.5mm compact were much more accurate then

those of the 3mm tall compact. The variation in error appears to be due to

the inaccurate velocity profile applied to the surface of the smaller compact, and

serves to show just how dependent the Pohlhausen method is on the velocity

profile. The result for the 3mm tall compact could be improved with more CFD

data for that surface. As for the analysis of the compact in position 2, the results

are relatively poor. The streamlines in figure (4.3) show the complexity of the flow

and it is not certain whether or not the results can be improved upon using the

Pohlhausen method and perhaps an alternative approach would be more suited

to this problem.
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Chapter 5

Mass Transfer from a Vertical

Flat Plate due to Natural

Convection with a Constant

Counterflow

This chapter first examines both the concentration and momentum boundary

layers formed on a vertical flat surface due to natural convection. The sur-

face is composed of a soluble material placed in a liquid medium. In a liquid,

molecules diffuse much more slowly than momentum. Consequently, the concen-

tration boundary layer is an order of magnitude thinner than the momentum

layer. This model is analogous to that of heat transfer due to natural convection

for large Prandtl numbers, for which an exact solution exists due to Kuiken[2].

The approach taken by Kuiken[2] is to divide the problem into two regions: a thin

region close to the wall in which buoyancy effects dominate and a much thicker

outer region in which buoyancy effects may be neglected. In the case of mass

transfer, the inner region is one of natural convection only in which the velocity

is generated by the weight of dissolved particles. On obtaining a solution to this

inner layer, the outer layer is treated as one of forced convection in which the

velocity is generated solely by its contact with the inner layer. This case is taken

as a first approximation.

60



Having examined this first approximation, a perturbation term is introduced

to the stream function to model a constant counterflow. In a reversal of the case

of Kuiken[2], the outer layer is treated first with its solution then matched into

the inner layer. The main aim is to examine the effect that this counterflow has

on the maximum downward velocity due to natural convection and consequently

the effect that this has on the rate of mass transfer from the surface.

5.1 Mass Transfer from a Vertical Flat Plate

due to Natural Convection: Kuiken[2]

The case of heat transfer from the surface of a vertical flat plate for large Prandtl

numbers was studied by Kuiken[2], in which flow is induced by changes in density

close to the surface due to a difference in temperature. In this section the case

presented by Kuiken[2] is adapted to model mass transfer from the vertical flat

surface of a soluble material. Kuiken[2] has divided the problem into an inner

layer, in which buoyancy forces dominate, and an outer layer in which buoyancy

forces may be neglected. The solution to the inner layer is sought first, at which

point it is possible to match the outer layer to the inner solution.

The Inner Layer

The concentration boundary layer equation is

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
, (5.1)

where x measures distance from the leading edge, y measures distance from the

wall, u and v are the components of velocity in the x and y directions respectively,
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c is the concentration of dissolved particles and D is the coefficient of diffusion

of the soluble material. The concentration layer thickness is δc and within this

thin layer the velocity gradient is taken to be α, where

α =

(

∂u

∂y

)

y=0

. (5.2)

Examining orders of magnitude in equation (5.1) gives

u ∼ αδc, v ∼ u
δc
x
,

∂

∂x
∼

1

x
,
∂

∂y
∼

1

δc
. (5.3)

Now, the convection terms on the left hand side of equation (5.1) must be of the

same order of magnitude as the diffusion term, D ∂2c
∂y2

. This gives

αδc
x

∼
D

δ2
c

, (5.4)

which leads to
αδ3

c

x
∼ D. (5.5)

The momentum boundary layer equation is

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
gc

ρ
, (5.6)

where g is acceleration due to gravity, ν is the kinematic viscosity of the dissolu-

tion medium and ρ is the density of the pure solvent. Performing a similar order

of magnitude analysis as before gives

u
∂u

∂x
∼ v

∂u

∂y
∼ α2δ2

c

x
(5.7)

and

ν
∂2u

∂y2
∼
να

δc
. (5.8)

This leads to
u∂u
∂x

ν ∂
2u
∂y2

∼
αδ3

νx
. (5.9)
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Now, from equation (5.5) we have αδ3c
x

∼ D, which gives

u∂u
∂x

ν ∂
2u
∂y2

∼ D

ν
∼ 1

Sc
, (5.10)

where Sc is the Schmidt number. Now for liquids, Sc >> 1, and therefore the

inertia terms in equation (5.6) may be neglected with error of order 1
Sc

inside the

concentration layer where the momentum boundary layer equation (5.6) reduces

to

ν
∂2u

∂y2
= −

gc

ρ
. (5.11)

Therefore, the boundary layer equations are

∂2u

∂y2
+
gc

ρν
= 0 (5.12)

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(5.13)

∂u

∂x
+
∂v

∂y
= 0. (5.14)

Introducing c = CsC , where Cs is the concentration saturation, and letting γ =

gCs

ρν
, equations (5.12) and (5.13) can be written:

∂2u

∂y2
+ γC = 0 (5.15)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
. (5.16)

Introducing a stream function of the form u = ∂ψ
∂y

, from the continuity equation

we obtain v = −∂ψ
∂x

. Substituting in for u and v, equations (5.15) and (5.16)

become

∂3ψ

∂y3
+ γC = 0 (5.17)
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∂ψ

∂y

∂C

∂x
−
∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
, (5.18)

where the stream function is of the form

ψinner = kx
3

4f0(η) (5.19)

and

η = jyx−
1

4 . (5.20)

It is also assumed that the non-dimensional concentration, C , is a function of η

and takes the form

C = h0(η). (5.21)

The various derivatives of both the stream function and the non-dimensional

concentration are found to be

∂ψ
∂y

= jkx
2

4f ′
0(η)

∂2ψ
∂y2

= j2kx
1

4f ′′
0 (η)

∂3ψ
∂y3

= j3kf ′′′
0 (η)

∂ψ
∂x

= 3
4
kx−

1

4f0(η) − 1
4
kx−

1

4ηf ′
0(η)

∂C
∂x

= −1
4
x−1ηh′0(η)

∂C
∂y

= jx−
1

4h′0(η)

∂C2

∂y2
= j2x−

2

4h′′0(η). (5.22)

Substituting these into equations (5.17) and (5.18) leads to

f ′′′
0 (η) +

γ

kj3
h0(η) = 0 (5.23)

h′′0(η) +
3k

4Dj
f0(η)h

′
0(η) = 0. (5.24)
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Equations (5.23) and (5.24) may be simplified by taking kj3 = γ and k
Dj

= 4,

where j =
[

gCs

4Dρν

] 1

4 and k = 4D
[

gCs

4Dρν

] 1

4 . This leads to the stream function

ψinner = 4D

[

gCsx
3

4Dρν

] 1

4

f0(η), (5.25)

where

η = y

[

gCs
4Dρνx

] 1

4

. (5.26)

The differential equations to be solved are

f ′′′
0 (η) + h0(η) = 0 (5.27)

h′′0(η) + 3f0(η)h
′
0(η) = 0. (5.28)

Equations (5.27) and (5.28) are solved numerically subject to the boundary con-

ditions










η = 0, h0(η) = 1, f0(η) = f ′
0(η) = 0

η → ∞, h0(η) → 0.

The results obtained are given as

Figure 5.1: Graphical Results for h′(η), f ′(η) and f ′′(η)

f ′′
0 (0) ≈ 0.825

h′0(0) ≈ −0.711

f ′
0(∞) ≈ 0.511.
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The resulting flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

= −DCs
[

jh′0(0)x
− 1

4

]

. (5.29)

From equation (5.29), the total flux per unit width is given by

Flux / Unit Width = −DCs [jh′0(0)]
∫ x

0
x−

1

4dx

= −
4

3
h′0(0)DCs

[

gCs
4Dρν

] 1

4

x
3

4 . (5.30)

The Outer Layer

Since there is no dissolved substance in the outer layer, the boundary layer equa-

tions are

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(5.31)

∂u

∂x
+
∂v

∂y
= 0. (5.32)

Introducing a stream function of the form u = ∂ψ
∂y

, from the continuity equation

we obtain v = −∂ψ
∂x

. Substituting in for u and v, equation (5.31) becomes

∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
, (5.33)

where

ψouter = k1x
3

4F0(ξ) (5.34)

and

ξ = j1yx
− 1

4 . (5.35)
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The various derivatives of the stream function are found to be

∂ψ
∂y

= j1k1x
2

4F ′
0(ξ)

∂2ψ
∂y2

= j2
1k1x

1

4F ′′
0 (ξ)

∂3ψ
∂y3

= j3
1k1F

′′′
0 (ξ)

∂ψ
∂x

= 3
4
k1x

− 1

4F0(ξ) − 1
4
k1x

− 1

4 ξF ′
0(ξ). (5.36)

Substituting these into equation (5.33) leads to

F ′′′
0 (ξ) +

3k1

4j1ν
F ′′

0 (ξ)F0(ξ) −
2k1

4j1ν
F ′

0(ξ)F
′
0(ξ) = 0. (5.37)

Equation (5.37) may be simplified by taking k1
j1ν

= 4, where j1 =
[

1
4S2

c

]1

4

[

gCs

4Dρν

]1

4 ,

k1 = 4D
[

S2
c

4

]
1

4

[

gCs

4Dρν

] 1

4 and Sc = ν
D

. This leads to the stream function:

ψouter = 4D

[

S2
c

4

] 1

4

[

gCsx
3

4Dρν

] 1

4

F0(ξ), (5.38)

where

ξ = y

[

1

4S2
c

] 1

4

[

gCs
4Dρνx

] 1

4

. (5.39)

The differential equation to be solved is

F ′′′
0 (ξ) + 3F ′′

0 (ξ)F0(ξ) − 2F ′
0(ξ)F

′
0(ξ) = 0. (5.40)

In order to match the solution with that of the inner layer, equation (5.40) was

solved for the following boundary conditions










ξ = 0, F0(ξ) = 0, F ′
0(ξ) = f ′

0(∞) = 0.511

ξ → ∞, F0(ξ) → constant, F ′
0(ξ) → 0, F ′′

0 (ξ) → 0.

The results obtained are

F ′′
0 (0) ≈ −0.5628

F ′
0(0) ≈ 0.511

F0(∞) ≈ 0.43.
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Figure 5.2: Graphical Results for F (ξ), F ′(ξ) and F ′′(ξ)

Velocity and Concentration Profiles

In order to plot an overall velocity profile it should be noted that η = S
1

2
c ξ. Figure

(5.3) shows the velocity profile for both the inner and outer layer for Sc = 100.

Figure (5.4) shows the concentration profile that exists within the inner layer.

Figure 5.3: Velocity Profile: Pure Natural Convection (Sc = 100)
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Figure 5.4: Concentration Profile: Pure Natural Convection

5.2 Mass Transfer for Natural Convection with

a Constant Counterflow

In this section a perturbation term is introduced to the stream function in order to

model a constant counterflow. The outer layer is treated first and then matched

to the inner layer. The boundary layer equations for both layers are solved

simultaneously by means of a shooting method. The velocity and concentration

profiles are plotted for Sc = 100 and compared with those for the case of natural

convection only. Finally an expression for the non-dimensional flux from the

surface is derived.

The Outer Layer

From the outer layer solution of Kuiken[2] the stream function is given by

ψouter = k1x
3

4F0(ξ), (5.41)
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where j1 =
[

1
4S2

c

] 1

4

[

gCs

4Dρν

]1

4 and k1 = 4D
[

S2
c

4

]
1

4

[

gCs

4Dρν

] 1

4 . A perturbation term is

now introduced to account for a constant counterflow to give

ψouter = k1x
3

4 [F0(ξ) − εxnF1(ξ)] , (5.42)

where ξ = j1yx
− 1

4 . Equation (5.42) is differentiated to give

u =
∂ψ

∂y
= j1k1x

1

2F ′
0(ξ) − εj1k1x

1

2
+nF ′

1(ξ). (5.43)

On examination of equation (5.43) it is noted that n = −1
2
, as the upward velocity

is constant and can therefore have no dependency on x. Also, at large values of

ξ, the perturbation term must approach U0, where U0 represents the velocity of

the counterflow. This gives

∂ψ

∂y
= j1k1x

1

2F ′
0(ξ) − U0F

′
1(ξ) (5.44)

which in turn leads to

ψouter = k1x
3

4F0(ξ) −
U0x

1

4

j1
F1(ξ), (5.45)

where the perturbation parameter is ε = U0x
−

1

2

j1k1
. This may also be written as

ε = Fr
[

ρSc

Cs

] 1

2 , where Fr is the non-dimensional Froude number, given as Fr = U0√
gx

.

The boundary layer equation for the outer layer in terms of the stream function

is
∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
, (5.46)

where the stream function is given by

ψouter = 4D

[

S2
c

4

] 1

4

[

gCsx
3

4Dρν

] 1

4

F0(ξ) − U0

[

4S2
c

1

] 1

4

[

4Dρνx

gCs

] 1

4

F1(ξ) (5.47)

and

ξ = y

[

1

4S2
c

] 1

4

[

gCs
4Dρνx

] 1

4

. (5.48)
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Introducing equation (5.47), along with the relevant derivatives, the following

differential equation is obtained for the first perturbation:

F ′′′
1 (ξ) + 3F ′′

1 (ξ)F0(ξ) − 2F ′
1(ξ)F

′
0(ξ) + F1(ξ)F

′′
0 (ξ) = 0. (5.49)

The Inner Layer

In order to match the outer and inner layer solutions, the stream function for the

inner layer is taken to be

ψinner = kx
3

4f0(η) −
U0x

1

4

j
f1(η), (5.50)

where η = jyx−
1

4 and the perturbation parameter is given as ε = U0x
−

1

2

jk
. A

similar perturbation is applied to the concentration profile to yield

C = h0(η) − εh1(η). (5.51)

The boundary layer equations for the inner layer are

∂3ψ

∂y3
+
gCCs
ρν

= 0 (5.52)

∂ψ

∂y

∂C

∂x
−
∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
. (5.53)

Substituting equations (5.50) and (5.51), along with the relevant derivatives, into

the boundary layer equations leads to the following differential equations for the

first perturbation:

f ′′′
1 (η) + h1(η) = 0 (5.54)

h′′1(η) + 2f ′
0(η)h1(η) + 3f0(η)h

′
1(η) + f1(η)h

′
0(η) = 0. (5.55)
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Velocity and Concentration Profiles

Equations (5.49), (5.54) and (5.55) are solved simultaneously using a shooting

method for the boundary conditions:

η = 0: f1(η) = 0 f ′
1(η) = 0 f ′′

1 (η) = constant

h1(η) = constant h′1(η) = constant

η → ∞: f1(η) → ∞ f ′
1(η) = F1(0) f ′′

1 (η) = 0

h1(η) = 0 h′1(η) → constant

ξ = 0: F1(ξ) = 0 F ′
1(ξ) = f ′

1(∞) F ′′
1 (ξ) = 0

ξ → ∞: F1(ξ) → ∞ F ′
1(ξ) = 1 F ′′

1 (ξ) = 0

The boundary condition F ′
1(0) = f ′

1(∞) is of particular importance, as it is the

condition that matches the outer layer and inner layer solutions. The results

obtained are

F ′
1(0) ≈ 0.388

f ′′
1 (0) ≈ 0.62

h′1(0) ≈ −0.36

h1(0) ≈ 0.692 .

The non-dimensional velocity for the inner and outer layers are

f ′(η) = f ′
0(η) −

U0x
− 1

2

jk
f ′

1(η)

F ′(ξ) = F ′
0(ξ) −

U0x
− 1

2

j1k1
F ′

1(ξ).

Taking U0 to be equal to 10% of the maximum downward velocity due to natural

convection, which is found to be Umax =
[

gCsx
ρSc

] 1

2 , and taking Sc = 100, figure

(5.5) compares the velocity profile obtained due to the counterflow with that of
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Figure 5.5: Velocity Profile: Natural Convection with Counterflow (Sc = 100)

the solution of Kuiken[2]. Similarly, figure (5.6) shows the concentration profiles

for both the case of pure natural convection and that of natural convection with

counterflow.

Flux from Surface

The flux per unit area is given by

Flux / Unit Area = −D
[

∂c
∂y

]

y=0

= −DCs
[

jx−
1

4h′0(0) − U0

k
x−

3

4h′1(0)
]

. (5.56)

Integrating equation (5.56) with respect to x, the flux per unit width is found to

be

Flux / Unit Width = −DCs
[

4

3
jx

3

4h′0(0) −
4U0

k
x

1

4h′1(0)
]

. (5.57)
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Figure 5.6: Concentration Profile: Natural Convection with Counterflow, 1st
Approx.(dashed) vs 2nd Approx.(solid)

Equation (5.57) is divided across by the flux due to natural convection to obtain

the non-dimensional flux from the surface, M̃ . This is given as

M̃ = 1 − 0.76

[

U0√
gx

]

[

ρSc
Cs

]

1

2

. (5.58)

5.3 Discussion

This work arose from problems in the pharmaceutical industry; more specifically

in the area of drug dissolution testing of solid dosage forms. In the testing of

dissolution rates the soluble material is often subject to a small vertical flow.

In such cases the role of natural convection may not be overlooked. Indeed this

chapter has taken natural convection to be the dominant mass transfer mechanism

with the counterflow introduced as a perturbation term. Figure (5.5) shows that

the outer vertical flow penetrates the inner layer leading to a significant decrease
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in the maximum downward velocity due to buoyancy effects. This deceleration

of the inner layer flow may only be attributed to a decrease in mass transfer from

the surface. Figure (5.6) shows the effect that the counterflow has on the overall

concentration of dissolved material. Also, from equation (5.58) it can be shown

that a counterflow velocity equivalent to 10% of the maximum downward velocity

due to natural convection leads to a 7.6% decrease in the mass transfer rate from

the surface of the soluble material.
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Chapter 6

Mass Transfer from a Vertical

Flat Plate due to a Constant

Upward Flow

This chapter examines the concentration boundary layer formed on a vertical flat

surface due to a constant upward flow. The surface is composed of a soluble

material placed in a liquid medium. The emphasis is on estimating the point of

separation of the boundary layer. Mass transfer will occur due to the upward

flow, leading to an increase in density of the dissolution medium close to the

surface. At some level along the surface the weight of these dissolved particles

will counteract the upward force causing boundary layer separation. For the case

of sufficiently large upward velocities separation will not occur over the height of

the plate, and as the velocity of the upward flow approaches infinity the effect of

the dissolved particles will be negligent. In the case of lower velocities, separation

will occur at some distance along the plate.

In a liquid, molecules diffuse much more slowly than momentum. Conse-

quently, the concentration boundary layer is an order of magnitude thinner then

the momentum layer. The concentration boundary layer therefore occupies the

region of the momentum boundary layer close to the surface in which the velocity

gradient is linear. This model is therefore analogous to that of heat transfer for

large Prandtl numbers, for which an exact solution for horizontal flat plate flow
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exists due to Lévêque[1]. A correction term which represents the shear stress due

to the mass of particles dissolved is introduced to give an expression for the net

shear stress. This expression is inserted into the Lévêque[1] solution and solved

to give the overall shear stress as a function of the upward distance from the

lower edge of the plate. The total mass transfer due to the upward flow is then

calculated and compared with that of a corresponding horizontal flow.

6.1 Point of Boundary Layer Separation

The concentration boundary layer equation is

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
, (6.1)

where x measures height above the leading edge, y measures distance from the

wall, u and v are the components of velocity in the x and y directions respectively,

c is the concentration of dissolved particles and D is the coefficient of diffusion

of the soluble material. The concentration layer thickness is δc and within this

thin layer the velocity gradient is taken to be α, where

α =

(

∂u

∂y

)

y=0

. (6.2)

Examining order of magnitudes in equation (6.1) gives

u ∼ αδc, v ∼ u
δc
x
,

∂

∂x
∼

1

x
,
∂

∂y
∼

1

δc
. (6.3)

Now, the convection terms on the left hand side of equation (6.1) must be of the

same order of magnitude as the diffusion term, D ∂2c
∂y2

. This gives

αδc
x

∼ D

δ2
c

(6.4)
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which leads to
αδ3

c

x
∼ D. (6.5)

The momentum boundary layer equation is

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
−
gc

ρ
, (6.6)

where g is the acceleration due to gravity, ν is the kinematic viscosity of the

dissolution medium and ρ is the density of the pure solvent. Performing a similar

order of magnitude analysis as before gives

u
∂u

∂x
∼ v

∂u

∂y
∼ α2δ2

c

x
(6.7)

and

ν
∂2u

∂y2
∼
να

δc
. (6.8)

This leads to
u∂u
∂x

ν ∂
2u
∂y2

∼
αδ3

νx
. (6.9)

Now, from equation (6.5) we have αδ3c
x

∼ D, which gives

u∂u
∂x

ν ∂
2u
∂y2

∼
D

ν
∼

1

Sc
, (6.10)

where Sc is the Schmidt number. Now for liquids, Sc >> 1, and therefore the

inertia terms in equation (6.6) may be neglected with error of order 1
Sc

inside the

concentration layer where the momentum boundary layer equation (6.6) reduces

to

ν
∂2u

∂y2
=
gc

ρ
. (6.11)

Integrating across the concentration boundary layer gives

ν

[

∂u

∂y

]δc

0

=
g

ρ

∫ δc

0
cdy (6.12)
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which in turn leads to
[

∂u

∂y

]

Blas

− α =
g

νρ

∫ δc

0
cdy, (6.13)

where
[

∂u
∂y

]

Blas
is the velocity gradient of Blasius’ flow at y = 0, taken from

Schlichting[20]. Now, taking C = c
Cs

and rearranging (6.13) gives

α =
1

3
U∞

√

U∞

νx
−
gCs
νρ

∫ ∞

0
Cdy, (6.14)

where Cs is the concentration saturation. Finally, dividing across by
[

∂u
∂y

]

Blas
and

letting T = α/
[

∂u
∂y

]

Blas
gives

T = 1 −
[

3gCs
µ

√

νx

U3
∞

]

∫ ∞

0
Cdy. (6.15)

It is clear that α decreases with increasing x and so we may introduce the method

of Lévêque[1], which gives the forced heat transfer from a horizontal plate at large

Prandtl numbers as a function of variable wall shear stress. When the appropriate

changes have been made to the Lévêque[1] solution, the following expression for

the concentration of dissolved particles for flow over a flat plate may be deduced:

C = h(η) =
3

Γ
(

1
3

)

∫ ∞

η
exp

(

−η3
)

dη, (6.16)

where η is given by

η =
y
√
α

[9D
∫ x
0

√
αdx]

1

3

. (6.17)

Introducing (6.16) and (6.17) into (6.15) gives

T = 1 −
3

Γ
(

1
3

)

[

3gCs
µ

√

νx

U3
∞

]





[9D
∫ x
0

√
αdx]

1

3

√
α





∫ ∞

0
ηexp

(

−η3
)

dη. (6.18)

Noting that
∫∞
0 ηexp (−η3) dη = 1

3
Γ
(

2
3

)

and introducing a non-dimensional unit

of length , X = U∞x
ν

, the above expression can be simplified to give

T = 1 − λ









[

∫X
0 T

1

2X− 1

4dX
] 1

3 X
3

4

T
1

2









, (6.19)
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where λ =
Γ( 2

3
)

Γ( 1

3
)

[

9gCs
3
√
ν2D

ρU3
∞

]

. Finally to eliminate λ we introduce X̃ = λX and

rearrange (6.19) to obtain

(1 − T )3 T
3

2 = X̃
9

4

∫ X̃

0
T

1

2 X̃− 1

4dX̃. (6.20)

The integral equation (6.20) is solved by expanding T in the power series T =

1 +
∑∞
n=1 anX̃

n and equating coefficients of X̃; this is extended to terms of order

X̃5. This leads to the following relationship between the non-dimensional shear

stress, T , and X̃ :

T
.
= 1 − 1.10X̃ − 0.52X̃2 − 0.69X̃3 − 1.17X̃4 − 2.24X̃5, (6.21)

neglecting terms of order X̃6. Figure 6.1 shows successive polynomial approxi-

mations of equation (6.21). These results show convergence to the curve on the

far left and indicate that separation occurs when X̃ is about one half, where

X̃ = 9

[

Γ(2
3
)

Γ(1
3
)

] [

gx

U2
∞

] [

Cs
ρ

]

[

1

Sc

]

1

3

. (6.22)

Equation (6.22) may be rearranged to give

Fr =





9Γ
(

2
3

)

Cs

Γ
(

1
3

)

ρX̃





1

2
[

1

Sc

]

1

6

. (6.23)

where Fr is the non-dimensional Froude number, defined by Fr = U∞√
gx

. Noting

that Γ
(

2
3

)

≈ 1.3541, Γ
(

1
3

)

≈ 2.6789 and that separation occurs at X̃ = 0.5, the

criterion for separation is given in terms of the Froude number as

Fr
.
= 3

[

Cs
ρ

] 1

2
[

1

Sc

]
1

6

. (6.24)
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Figure 6.1: Graph of Polynomial Approximations to Equation (6.21)

6.2 Calculation of Flux from Surface due to

Upward Flow below Separation Point

In this section the total flux due to the upward velocity is calculated. From

equation (6.16) we have

C =
3

Γ
(

1
3

)

∫ ∞

η
exp

(

−η3
)

dη. (6.25)

Differentiating with respect to y gives

∂C

∂y
=

3

Γ
(

1
3

)

∂η

∂y

d

dη

[∫ ∞

η
exp

(

−η3
)

dη
]

. (6.26)

Now the total flux from the surface is given as

Flux / Unit Area = D
[

∂c
∂y

]

y=0

= β3

[

√
α

[
∫ x

0

√
αdx]

1

3

]

, (6.27)
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where β3 = D2/3Cs
3
√

3 1

Γ( 1

3
)
. The total flux per unit width is given by

Flux / Unit Width = β3

∫ x

0

√
α

[
∫ x
0

√
αdx]

1

3

dx. (6.28)

Equation (6.28) can be integrated by substituting z =
∫ x
0

√
αdx to give

Flux / Unit Width =
3

2
β3

[∫ x

0

√
αdx

]
2

3

. (6.29)

Now, α = T
[

∂u
∂y

]

Blas
. This leads to

√
α =

√

1

3ν
U∞λ

1

4 X̃− 1

4

[

1 − 1.10X̃ − 0.52X̃2 − 0.69X̃3 − 1.17X̃4 − 2.24X̃5
]1

2 .

(6.30)

By applying the binomial expansion equation (6.30) becomes

√
α =

√

1

3ν
U∞λ

1

4

[

X̃− 1

4 − 0.55X̃
3

4 − 0.26X̃
7

4 − 0.345X̃
11

4 − 0.585X̃
15

4 − 1.12X̃
19

4

]

.

(6.31)

Substituting (6.31) into (6.29) gives

Flux / Unit Width = β4

[∫ x

0

[

X̃− 1

4 − 0.55X̃
3

4 − 0.26X̃
7

4 − 0.345X̃
11

4 − ...
]

dx
] 2

3

,

(6.32)

where β4 = 3
2
β3

3

√

U2
∞

3ν
λ

1

6 . Noting that x = νX̃
λU∞

, equation (6.32) becomes

Flux / Unit Width = β4

[

ν

λU∞

∫ X̃

0

[

X̃− 1

4 − 0.55X̃
3

4 − 0.26X̃
7

4 − 0.345X̃
11

4 − ...
]

dX̃

]
2

3

.

(6.33)

Performing the integration in equation (6.33) and substituting in for β4 gives the

total flux per unit width as

Flux / Unit Width = 0.2625

[

DCsρU
3
∞X̃

g

]

1

2
[

1.33 − 0.314X̃ − 0.095X̃2 − 0.092X̃3 − ...
]2

3 .

(6.34)
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Figure 6.2: Dependency of Flux per Unit Width on the variable X̃

6.3 Discussion

Often in the testing of dissolution rates from solid dosage forms the soluble mate-

rial is subject to a vertical flow. Typical values for a tablet composed of benzoic

acid placed in water are Cs = 4.564 × 10−3g/cm3, D = 1.236 × 10−5cm2/s and

ν = 0.7 × 10−2cm2/s, as reported by D’Arcy[6]. Using these values table (6.1)

gives the distance along the surface at which boundary layer separation occurs

for several outer stream velocities in the range 0 ≤ U∞ ≤ 10cm/s. The typical

diameter of a cylindrical tablet is about 1cm and table (6.1) shows that, for an

upward flow along a vertical flat plate of this height where mass transfer occurs,

the upward flow will only begin to have a significant effect on the surface when

the outer stream velocity is greater then 1cm/s. That is to say, for velocities

less then this value the boundary layer will separate, due to the weight of the

dissolved particles, at relatively short distances from the leading edge.
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Figure 6.3: Proportional Flux vs Non-Dimensional Velocity (U∞ ≥ U0)

For sufficiently large upward velocities separation of the boundary layer will

not occur. For the case of a benzoic acid compact of diameter 1cm dissolving

in water, the criterion to prevent separation occurring across the height of the

compact can be calculated from equation (6.24) to be Fr > 0.071. In this in-

stance, forced convection accounts for all of the mass transfer from the surface

and equation (6.34) may be used to calculate the total flux from the surface.

For a plate of given height, there exists a minimum upward velocity, namely U0,

required to prevent separation from occurring. This can be given in terms of the

non-dimensional Froude number as U0 = [gx]
1

2 Fr. Once this minimum velocity is

Table 6.1: Point of Boundary Layer Separation for Various Velocities

U∞(cm/s) 0.1 0.25 0.5 1 2.5 5 10

Sep. Point(cm) 0.002 0.0127 0.0509 0.2037 1.273 5.093 20.372
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exceeded, the mass transfer due to the upward velocity will approach the solution

of Lévêque[1] for horizontal flat plate flow, for which the flux from the surface is

given by Schlichting[20] as

Flux / Unit Width = 0.677
U

1

2
∞D

2

3Csx
1

2

ν
1

6

. (6.35)

Figure (6.3) shows the relationship between the non-dimensional velocity, U∞

U0

,

and the flux per unit width from the surface of a soluble material as a proportion

of the corresponding horizontal flow case.
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Chapter 7

Mass Transfer from the Upper

Curved Surface of a Horizontally

Aligned Cylinder: Natural

Convection

Figure (7.1) shows the top curved surface of a horizontally aligned cylinder of

radius a, where the y-axis extends radially from the surface and x measures

distance along the surface. The gravitational force acting on a dissolved particle

is therefore given as g0 = gsinθ, where g = 9.81m/s2. As a first approximation,

the surface is treated as an incline for which the gravitational effect is taken

to be g0 = g
[

x
a

]

. Using this solution as a basic approximation, a perturbation

Figure 7.1: Top Curved Surface
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term is then added to give a second approximation to the problem where the

gravitational effect is given by the first two terms of the Taylor series expansion

of sin
(

x
a

)

.

7.1 Mass Transfer from the Upper Curved

Surface of a Horizontally Aligned Cylinder:

Natural Convection

First Approximation

The boundary layer equations are

∂2u

∂y2
+
g0c

ρν
= 0 (7.1)

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(7.2)

∂u

∂x
+
∂v

∂y
= 0, (7.3)

where x measures distance along the curved surface, y is the radial distance from

the surface, u and v are the components of velocity in the x and y directions

respectively, c is the concentration of dissolved particles, D is the coefficient of

diffusion of the soluble material, ν is the kinematic viscosity, ρ is the density and

g0 is the effect due to gravity. Introducing a stream function of the form u = ∂ψ
∂y

,

from the continuity equation we obtain v = −∂ψ
∂x

. Also, introducing c = CCs,

where Cs is the concentration saturation, γ = gCs

ρνa
and g0 = g

[

x
a

]

, equations (7.1)

and (7.2) may be written as

∂3ψ

∂y3
+ γxC = 0 (7.4)
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and
∂ψ

∂y

∂C

∂x
−
∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
. (7.5)

As with the case of the vertical flat surface a similarity solution is sought, where

the stream function is of the form

ψ ≈ xmf0(η), (7.6)

where

η ≈ yx−n (7.7)

and

C ≈ h0(η). (7.8)

This leads to the following derivatives

∂ψ
∂y

= xm−nf ′
0(η)

∂2ψ
∂y2

= xm−2nf ′′
0 (η)

∂3ψ
∂y3

= xm−3nf ′′′
0 (η)

∂ψ
∂x

= mxm−1f0(η) − nηxm−1f ′
0(η)

∂C
∂y

= x−nh′0(η)

∂2C
∂y2

= x−2nh′′0(η)

∂C
∂x

= −nηx−1h′0(η).

Substituting these into equations (7.4) and (7.5) gives

f ′′′
0 (η) + γx1+3n−mh0(η) = 0 (7.9)

Dh′′0(η) +mx2n+m−1f0(η)h
′
0(η) = 0. (7.10)
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Now, in order for similarity to be achieved it must be possible to eliminate any

dependence on the length x. In order to eliminate x from equations (7.9) and

(7.10) it is required that

m = 1 and n = 0.

This leads to a stream function of the form

ψ = xf0(η), (7.11)

where

η = y. (7.12)

As in the previous chapters it is beneficial to take a more generalised form of the

stream function and similarity variable, namely

ψ = kxf0(η) (7.13)

and

η = jy, (7.14)

where j and k are arbitrary constants. Substituting this stream function, along

with the relevant derivatives, into equations (7.4) and (7.5) gives

f ′′′
0 (η) +

γ

j3k
h0(η) = 0 (7.15)

h′′0(η) +
k

jD
f0(η)h

′
0(η) = 0. (7.16)

Equations (7.15) and (7.16) may be simplified by taking j3k = γ and k
jD

= 3,

where j =
[

gCs

3Dρνa

] 1

4 and k = 4D
[

gCs

3Dρνa

]1

4 . This leads to the stream function

ψ = 4D

[

gCsx
4

3Dρνa

] 1

4

f0(η), (7.17)
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where

η = y

[

gCs
3Dρνa

] 1

4

. (7.18)

The differential equations to be solved are

f ′′′
0 (η) + h0(η) = 0 (7.19)

h′′0(η) + 3f0(η)h
′
0(η) = 0. (7.20)

Equations (7.19) and (7.20) are identical to those solved in chapter five. The

results are given as

f ′′
0 (0) ≈ 0.825

h′0(0) ≈ −0.711

f ′
0(∞) ≈ 0.511 .

The resulting flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

= −DCs [jh′0(0)] . (7.21)

From equation (7.21), the total flux per unit width is given by

Flux / Unit Width = −DCs
∫ x

0
[jh′0(0)] dx

= −h′0(0)DCs
[

gCs
3Dρνa

] 1

4

x. (7.22)
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Second Approximation

In this section a perturbation term is introduced to the gravity term to give

g0 = g

[

x

a
− x3

6a3

]

. (7.23)

The stream function and concentration profile from the first approximation are

given as

ψ = kxf0(η) (7.24)

and

C = h0(η) (7.25)

Now introducing a perturbation term leads to

ψ = kx [f0(η) − εf1(η)] (7.26)

and

C = h0(η) − εh1(η). (7.27)

where the perturbation parameter is given by ε = x2

6a2 . As with the first approxi-

mation the similarity variable, η, and the arbitrary constants, j and k, are given

as η = jy, j =
[

gCs

3Dρνa

] 1

4 and k = 4D
[

gCs

3Dρνa

] 1

4 . The various derivatives of the

stream function and the non-dimensional concentration are found to be

∂ψ
∂y

= jkxf ′
0(η)− 1

6
jk x

3

a2f
′
1(η)

∂2ψ
∂y2

= j2kxf ′′
0 (η) − 1

6
j2k x

3

a2f
′′
1 (η)

∂3ψ
∂y3

= j3kxf ′′′
0 (η) − 1

6
j3k x

3

a2f
′′′
1 (η)

∂ψ
∂x

= kf0(η) − 3
6
k x

2

a2f1(η)

∂C
∂x

= −2
6
x
a2h1(η)

∂C
∂y

= jh′0(η) − 1
6
j x

2

a2h
′
1(η)

∂C2

∂y2
= j2h′′0(η) − 1

6
j2 x2

a2h
′′
1(η).
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From equations (7.1) and (7.2) the boundary layer equations are

∂2u

∂y2
+
g0c

ρν
= 0 (7.28)

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
, (7.29)

which may be written in terms of the stream function as

∂3ψ

∂y3
+ γ

[

x− x3

6a2

]

C = 0 (7.30)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
, (7.31)

where γ = gCs

ρνa
. Inserting the stream function and the non-dimensional concen-

tration, along with the relevant derivatives, into equations (7.30) and (7.31) and

then equating coefficients of x leads to the following set of differential equations:

f ′′′
0 (η) + h0(η) = 0 (7.32)

h′′0(η) + 3f0(η)h
′
0(η) = 0 (7.33)

f ′′′
1 (η) + h1(η) + h0(η) = 0 (7.34)

h′′1(η) − 6f ′
0(η)h1(η) + 3f0(η)h

′
1(η) + 9f1(η)h

′
0(η) = 0. (7.35)

Equations (7.32) → (7.35) are solved subject to the boundary conditions:

η = 0: f0(η) = 0 f ′
0(η) = 0 f ′′

0 (η) = 0.825

f1(η) = 0 f ′
1(η) = 0

h0(η) = 1 h′0(η) = −0.711 h1(η) = 0

η → ∞: f0(η) → ∞ f ′
0(η) → constant f ′′

0 (η) = 0

f1(η) → ∞ f ′
1(η) → constant f ′′

1 (η) = 0

h0(η) = 0 h′0(η) = 0

h1(η) = 0 h′1(η) = 0 .
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The results obtained are

f ′′
1 (0) ≈ 0.577

h′1(0) ≈ −0.213 .

(7.36)

The resulting flux per unit area is given by

Flux / Unit Area = −D
[

∂c

∂y

]

y=0

= −jDCs
[

h′0(0) −
1

6

x2

a2
h′1(0)

]

. (7.37)

From equation (7.37), the total flux per unit width is given by

Flux / Unit Width = −jDCs
∫ x

0

[

h′0(0) −
1

6

x2

a2
h′1(0)

]

dx

= −DCsx
[

gCs
3Dρνa

] 1

4

[

h′0(0) −
1

18

x2

a2
h′1(0)

]

. (7.38)

7.2 Discussion

Solid dosage forms are often manufactured to be cylindrical in shape. The anal-

ysis of drug dissolution rates from the curved surface of such compacts is not as

straightforward as that for the flat surface. This chapter has analysed the mass
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transfer rates from the upper curved surface of a horizontally aligned cylinder due

to natural convection, for which the effect of gravity is no longer constant and is

instead approximated as g0 = g
[

x
a
− x3

6a3

]

. As a first approximation the effect of

gravity was taken to be that acting on a sloped surface, where g0 = x
a
, with the

perturbation parameter ε = x2

6a2 then introduced to produce a second approxima-

tion. Figure (7.2) compares the first approximation with the second and shows

a modest decrease in the overall mass transfer from the surface. From equation

(7.38) this decrease may be calculated to be about 4% for the entire upper sur-

face. This suggests that the curved surface may be adequately approximated by

a sloping flat plate.

Figure 7.2: Non-Dimensional Concentration: 1st Approx. (dashed) vs 2nd Ap-
prox. (solid)

94



Chapter 8

Mass Transfer from the Lower

Curved Surface of a Horizontally

Aligned Cylinder: Forced

Convection

Figure (8.1) shows the lower curved surface of a horizontally aligned cylinder

of radius a, where the y-axis extends radially from the surface and x measures

distance along the surface. This chapter examines the mass transfer from this

surface for forced convection due to a constant upward flow. For the case of a

constant upward flow the surface is treated as a horizontal plate. This leads to

a stagnation point flow for which an expression for the shear stress is found in

terms of the horizontal distance, x. This expression for the shear stress is then

Figure 8.1: Lower Curved Surface
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inserted into the Lévêque[1] solution, as discussed in chapter two, in order to find

the point of boundary layer separation.

8.1 Mass Transfer from the Lower Curved

Surface of a Horizontally Aligned Cylinder:

Forced Convection

The case of flow around a circular cylinder has been studied in detail by many

authors. The differential equations to be solved are taken from Schlichting[20] as

f ′
0(η)f

′
0(η) − f0(η)f

′′
0 (η) = 1 + f ′′′

0 (η) (8.1)

4f ′
0(η)f

′
1(η) − 3f ′′

0 (η)f1(η) − f0(η)f
′′
1 (η) = 1 + f ′′′

1 (η), (8.2)

where the stream function is given by

ψ =

√

ν

U1

[

U1xf0(η) − 4U3x
3f1(η)

]

(8.3)

and the similarity variable is

η =
y

a

√

2U∞a

ν
, (8.4)

where U1 = 2U∞

a
and U3 = 2U∞

6a3 . The velocity distribution is therefore given by

u = 2U∞

[

x

a
f ′

0(η) −
4x3

6a3
f ′

1(η)

]

(8.5)

and the shear stress at the surface is given as

τ0 = µ

√

8U3
∞

νa

[

x

a
f ′′

0 (0) −
4x3

6a3
f ′′

1 (0)

]

. (8.6)

Equations (8.1) and (8.2) are solved subject to the boundary conditions:
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η = 0: f0(η) = 0 f ′
0(η) = 0

f1(η) = 0 f ′
1(η) = 0

η → ∞: f0(η) → ∞ f ′
0(η) → 1

f1(η) → ∞ f ′
1(η) → 1

4
.

The results obtained are

Figure 8.2: Graphical Results for f ′(η) and f ′′(η)

f ′′
0 (0) ≈ 1.2326

f ′′
1 (0) ≈ 0.7244 .

(8.7)

Point of Boundary Layer Separation

To estimate the point of boundary layer separation the first term in the expression

for the shear stress is taken as

τ0 = µ

√

8U3
∞

νa

x

a
f ′′

0 (0). (8.8)

For convenience this is written as

τ0 = µλ1x, (8.9)
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where λ1 =
√

8U3
∞

νa

[

f ′′
0

(0)

a

]

. Now from the solution of Lévêque[1] (see chapter two),

we have

C =
3

Γ
(

1
3

)

∫ ∞

η
e−η

3

dη, (8.10)

where

η =
y
√

τ0
µ

[

9D
∫ x
0

√

τ0
µ
dx
] 1

3

. (8.11)

The weight of dissolved particles at any point along the surface is given by

pD = gCs

∫ ∞

0
Cdy. (8.12)

Substituting equations (8.10) and (8.11) into (8.12) gives

pD =
3
√

9gCsD
1

3





Γ
(

2
3

)

Γ
(

1
3

)













[

∫ x
0

√
λ1xdx

] 1

3

√
λ1x









. (8.13)

Performing the integration above and substituting in the values Γ
(

2
3

)

≈ 1.3541,

Γ
(

1
3

)

≈ 2.6789 and λ1 =
√

8U3
∞

νa

[

f ′′
0

(0)

a

]

, equation (8.13) may be written as

pD = 0.6057





gCsD
1

3a
1

2ν
1

6

U
1

2
∞



 . (8.14)

Now, the pressure distribution about a circular cylinder is given by Schlichting[20]

as

p = p0 −
1

2
ρu2, (8.15)

where p0 is the stagnation point pressure, given as p0 = 1
2
ρU∞

2 and u = 2U∞sinθ.

Separation of the boundary layer will occur at the point when the pressure is equal

to the weight of dissolved particles. Equating (8.14) and (8.15) gives

2ρU2
∞sin2θ − 1

2
ρU∞ + 0.6057





gCsD
1

3 a
1

2ν
1

6

U
1

2
∞



 = 0. (8.16)
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Now, making the substitution sin2θ ≈
[

x
a
− x3

6a3

]2
and rearranging gives

x4 − 3a2x2 +
3a4

4
− 0.9084





gCsD
1

3a
9

2ν
1

6

ρU
5

2
∞



 = 0. (8.17)

Equation (8.17) is solved by reducing it to a quadratic to obtain

xsep =

√

√

√

√

√

√

√

3a2 ±

√

√

√

√6a4 + 3.634

[

gCsD
1

3 a
9

2 ν
1

6

ρU
5

2
∞

]

2
. (8.18)

Flux from the Surface

An expression for the flux from the surface in terms of the shear stress , τ0, is

provided in chapter six. This is given as

Flux / Unit Area = D
2

3Cs

3
√

3

Γ
(

1
3

)











√

τ0
µ

[

∫ x
0

√

τ0
µ
dx
] 1

3











. (8.19)

For small values of xsep the first approximation for the shear stress may be taken

as

τ0 = µλ1x. (8.20)

Substituting equation (8.20) into (8.19) gives

Flux / Unit Area = D
2

3Cs

3
√

3

Γ
(

1
3

)λ
1

3

1









x
1

2

[

∫ x
0 x

1

2dx
] 1

3









. (8.21)

Performing the integration in equation (8.21) and simplifying gives

Flux / Unit Area = D
2

3Cs

3

√

9
2

Γ
(

1
3

)λ
1

3

1 . (8.22)

Finally integrating across the length and substituting in for λ1 gives the total

flux per unit width as

Flux / Unit Width = 0.9345
D

2

3CsU
1

2
∞x

a
1

2ν
1

6

. (8.23)
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A Note on Natural Convection from the Lower Curved

Surface

In the case of mass transfer we may neglect the effect of natural convection on

the lower curved surface of a horizontally aligned cylinder. If for a moment we

consider that a natural convection flow is present on the lower surface, the mass

of soluble material dissolved will have a force acting on it due to gravity, say Fg.

This force may be divided into two components; a tangential force (F1) and a

radial force (F2). The only other force acting on this mass would be that of the

shear stress at the surface, Fτ . This is illustrated in figure (8.3) and it is clear to

see that this would result in an imbalance of forces. Hence, no natural convection

flow can develop on the lower curved surface.

Figure 8.3: Imbalance of Forces
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8.2 Discussion

This chapter has analysed the mass transfer rates from the lower curved sur-

face of a horizontally aligned cylinder due to forced convection. For the case of

forced convection due to a constant upward flow the shear stress, τ0, is taken

from Schlichting[20] as the first approximation to flow about a circular cylinder.

This is then inserted into the expression derived in chapter six, which gives the

concentration of dissolved particles in terms of τ0. On calculation of the concen-

tration of dissolved particles, the weight of these particles is then equated with

the pressure distribution about a circular cylinder, taken from Schlichting[20].

Boundary layer separation occurs at the point at which the weight of these parti-

cles overcome the pressure. For moderate velocities the boundary layer is found

to separate at small values of x, which indicates, except for cases of very large

upward velocities, the mass transfer rate will be negligible.
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Chapter 9

Natural Convection Flow on a

Vertical Flat Plate: A

Pohlhausen Method

This chapter investigates the decelerating effect on a natural convection flow

regime caused by the introduction of a surface that lies perpendicular to the di-

rection of flow. Chapter two of this thesis explored the case of mass transfer from

a vertical flat surface due to natural convection, based on work by Kuiken[2]. In

this chapter, a Pohlhausen method is developed which models the exact solution

of Kuiken[2]. This Pohlhausen method is then altered to model the introduction

of a surface perpendicular to the direction of flow. The results are then compared

with those of the unimpeded case.

9.1 Pohlhausen Approximation to Natural

Convection Flow on a Vertical Flat Plate

In chapter five the maximum downward velocity due to natural convection was

shown to be

Umax = jkx
1

2 f ′(η), (9.1)
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where j =
[

gCs

4Dρν

] 1

4 and k = 4D
[

gCs

4Dρν

] 1

4 . This gives

Umax = 4D

[

gCs
4Dρν

] 1

2

x
1

2f ′(η). (9.2)

The Pohlhausen method was first used to model natural convection flow by

Squire[18]. In his work, Squire[18] used the following polynomial distributions

for the velocity and concentration:

u = 5.17ν
[

Sc +
20

21

]− 1

2

[

gCs
ρν2

] 1

2

x
1

2

[

y

δ

] [

1 −
y

δ

]2

(9.3)

c = Cs

[

1 −
y

δ

]2

. (9.4)

Now, for large Schmidt numbers, the velocity profile of Squire[18] may be written

as

u = [2.585] [4D]

[

gCs
4Dρν

]
1

2

x
1

2

[

y

δ

] [

1 −
y

δ

]2

(9.5)

or

u = 5.17Umax

[

y

δ

] [

1 − y

δ

]2

. (9.6)

In the work of Squire[18] it is assumed that the momentum and concentration

boundary layer thicknesses are equal, and that the maximum velocity is achieved

at y = δ
3
. From observation of figures (5.3) and (5.4) from chapter five it can

be seen that the edge of the concentration boundary layer occurs at η ≈ 3 and

that the maximum velocity is achieved at η ≈ 2.2. That is to say that the

maximum velocity is achieved at y = 11
15
δc. Amending the velocity profile taken

from Squire[18] accordingly gives

u = 3.375Ax
1

2

[

5y

11δc

] [

1 −
5y

11δc

]2

, (9.7)

where A = 4D
[

gCs

4Dρν

] 1

2 . The concentration profile is taken to be

c = Cs

[

1 −
y

δc

]2

. (9.8)
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The concentration integral equation is

d

dx

∫ δc

0
uc dy = −D

[

∂c

∂y

]

y=0

. (9.9)

Substituting equations (9.7) and (9.8) into equation (9.9) gives

d

dx

{

x
1

2

∫ δc

0

[

5y

11δc

] [

1 −
5y

11δc

]2 [

1 −
y

δc

]2

dy

}

=
2D

3.375Aδc
. (9.10)

Performing the integration in equation (9.10) and rearranging gives

d

dx

{

x
1

2 δc
}

=
23.085D

Aδc
, (9.11)

which may in turn be simplified to give the ordinary differential equation

2δc
dδc
dx

+
1

x
δ2
c =

46.17D

Ax
1

2

. (9.12)

Equation (9.12) is solved by means of an integrating factor to yield

δc =
[

30.78D

A

]

1

2

x
1

4 . (9.13)

The flux per unit area is given by

Flux / Unit Area = −D
[

∂c
∂y

]

y=0

= 2DCs
[

A
30.78D

] 1

2 x−
1

4 . (9.14)

Integrating equation (9.14) with respect to x, the flux per unit width is found to

be

Flux / Unit Width =
8

3
DCs

[

A

30.78D

]

1

2

x
3

4 . (9.15)

The total flux from the surface is therefore given as

Total Flux = 0.9613DCs

[

gCs
4Dρν

] 1

4

x
3

4W. (9.16)
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Comparing equation (9.16) with the exact solution for mass transfer from a ver-

tical flat surface, given as

Total Flux = 0.948DCs

[

gCs
4Dρν

] 1

4

x
3

4W, (9.17)

we find that the Pohlhausen method approximates the exact solution to within

2%.

9.2 Pohlhausen Approximation to Natural

Convection Flow on a Vertical Flat Plate

Approaching a Perpendicular Surface

In this section the velocity profile of the previous section is amended to model

the introduction of a perpendicular surface. Schlichting[20] reports on a family

of solutions presented by Howarth[15] and Tani[16] in which the velocity profiles

are of the form

U(x) = U∞ − axn. (9.18)

In the instance where n = 1 and a = U∞

L
the velocity profile may be used to

represent forced flow along a flat plate which abuts onto another surface placed at

right angles. Applying this method to the Pohlhausen approximation for natural

convection presented in the previous section leads to the following velocity and

concentration profiles

u = 3.375Ax
1

2

[

5y

11δc

] [

1 −
5y

11δc

]2 [

1 −
x

L

]

(9.19)

and

c = Cs

[

1 −
y

δc

]2

, (9.20)
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where L is the distance from the leading edge at which the flow meets the per-

pendicular surface. The concentration integral equation is

d

dx

∫ δc

0
ucdy = −D

[

∂c

∂y

]

y=0

. (9.21)

Substituting equations (9.19) and (9.20) into equation (9.21) leads to

d

dx

{

x
1

2

[

1 −
x

L

]

δc

}

=
23.085D

Aδc
, (9.22)

which may in turn be simplified to give the ordinary differential equation

dδc
dx

=
23.085D

Aδcx
1

2

[

L

L− x

]

−
δc
2x

+
δc

[L − x]
. (9.23)

Equation (9.23) is applied to a vertical flat plate of length 1cm and solved nu-

merically for values of L = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0. The effect on the boundary

layer thickness is shown in figure (9.1). The flux per unit area is given by

Figure 9.1: Effect on Boundary Layer Thickness due to Perpendicular Surface

Flux / Unit Area = −D
[

∂c
∂y

]

y=0

= 2DCs
[

1
δc

]

. (9.24)
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Therefore the flux per unit width is

Flux / Unit Width = 2DCs

∫ x

0

1

δc
dx. (9.25)

The effects on the total flux from a vertical flat surface composed of benzoic acid

dissolving in water, for which Cs = 4.564 × 10−3g/cm3, D = 1.236 × 10−5cm2/s

and ν = 0.7×10−2cm2/s, are shown in table (9.1) and visually presented in figure

(9.2).

Figure 9.2: Effect on Flux due to Perpendicular Surface

Table 9.1: Flux from Surface of a Vertical Flat Plate

Surface Length (cm) Unimpeded Flow(g/s) Impeded Flow(g/s)
1.0 3.207 × 10−6 1.996 × 10−6

0.8 2.712 × 10−6 1.683 × 10−6

0.6 2.186 × 10−6 1.341 × 10−6

0.4 1.613 × 10−6 0.979 × 10−6

0.2 0.959 × 10−6 0.569 × 10−6

0.1 0.570 × 10−6 0.324 × 10−6
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9.3 Pohlhausen Approximation to Natural

Convection Flow Developing at a

Stagnation Point

In this section the velocity profile of Squire[18] is again amended, this time to

model the introduction of a perpendicular surface at the top of a vertical flat

plate. The velocity and concentration profiles are

u = 3.375Ax
1

2

[

5y

11δc

] [

1 −
5y

11δc

]2 [ x

xmax

]

(9.26)

and

c = Cs

[

1 −
y

δc

]2

, (9.27)

where xmax is the length of the vertical surface. The concentration integral equa-

tion is

d

dx

∫ δc

0
ucdy = −D

[

∂c

∂y

]

y=0

. (9.28)

Substituting equations (9.26) and (9.27) into equation (9.28) leads to

d

dx

{

x
1

2

[

x

xmax

]

δc

}

=
23.085D

Aδc
, (9.29)

which may in turn be simplified to give the ordinary differential equation

2δ
dδc
dx

+ 3
δ2

x
=

56.17Dxmax

Aδcx
3

2

. (9.30)

Equation (9.30) is solved by means of an integrating factor to give

δc =
[

22.468Dxmax
A

]

1

2

x−
1

4 . (9.31)

The flux per unit area is given by:

Flux / Unit Area = −D
[

∂c
∂y

]

y=0

= 2DCs
[

A
22.468Dxmax

] 1

2 x
1

4 . (9.32)
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Integrating equation (9.32) with respect to x, the flux per unit width is found to

be

Flux / Unit Width =
8

5
DCs

[

A

22.468Dxmax

]

1

2

x
5

4 . (9.33)

The total flux from the surface is therefore given as

Total Flux = 0.6751DCs

[

gCs
4Dρν

]
1

4

x
3

4

[

x

xmax

] 1

2

W. (9.34)

The boundary layer thickness is shown in figure (9.3) alongside the case of an

unimpeded natural convection flow along a vertical flat surface composed of ben-

zoic acid of height 1cm dissolving in water.

Figure 9.3: Natural Convection Flow Developing at a Stagnation Point (solid)
against Pure Natural Convection (dashed)

9.4 Discussion

In this chapter a Pohlhausen method has been developed for natural convection

flow on a vertical flat surface. This was achieved by taking the velocity profile

109



used by Squire[18], for Schmidt numbers close to unity, and amending it to model

the case for large Schmidt numbers. The results for the Pohlhausen method

are extremely accurate and are within 2% of the exact solution. Using this

Pohlhausen method as a starting point the velocity profile was again amended

to model the introduction of a surface that was perpendicular to the direction

of flow. The solution was obtained numerically for a 1cm surface composed of

benzoic acid dissolving in water. The introduction of this perpendicular surface

accounted for almost a 40% decrease in the mass transfer rate when compared

with that of the unimpeded natural convection case.

Finally, the velocity profile used by Squire[18] was amended to model natural

convection flow developing at a stagnation point. In this instance an analytical

solution was obtained and the overall percentage decrease in mass transfer was

found to be about 29% . Overall it is clear to see from the results that the

introduction of a surface that lies perpendicular to the direction of flow, whether

at the leading edge or further down the vertical plate, leads to a significant

decrease in the mass transfer rates from the surface.
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Chapter 10

Dissolution Rates from the

Surface of a Compact in the USP

Flow Through Apparatus

In this chapter, the dissolution rate from the surface of a compact in the USP

Flow Through Apparatus is analysed. The apparatus may be assembled using

either a large 22.6mm diameter flow through cell or a smaller 12mm cell (see

figure (1.3)). The pump delivers a flow with a sinusoidal profile, with typical

volumetric flow rates of between 4 and 16mL/min, although higher flow rates are

achievable. For the purpose of estimating the dissolution rate from the surface,

a time averaged constant upward flow is taken in place of this sinusoidal profile,

for the period over which the pump is active.

Experimental results for the dissolution rates from the surface of a compact

have been produced by D’Arcy[8]. In these experiments a compact of 8.5mm in

diameter was used in the smaller flow through cell and a compact of 13mm in

diameter used for the larger cell, both with an approximate height of 3mm. In

order to apply the methods of the previous chapters to the surface of the compact,

the surface is divided into strips of 1mm for the larger compact and 0.5mm for

the smaller compact. This is illustrated in figure (10.1). Again the following

values for the concentration saturation, coefficient of diffusion and kinematic

viscosity are taken as; Cs = 4.564 × 10−3g/cm3, D = 1.236× 10−5cm2/s and ν =
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Figure 10.1: Surface Strips for Large and Small Compacts

0.7×10−2cm2/s, which correspond to benzoic acid dissolving in water. Wherever

available, the results are compared with those of experiment, as reported by

D’Arcy[8].

10.1 Dissolution Rates in the USP Flow

Through Apparatus: Pure Natural

Convection

For the case of natural convection only, the flux per unit width for each strip is

taken from equation (2.75) to be

Flux / Unit Width = 0.948DCs

[

gCs
4Dρν

] 1

4

x
3

4 , (10.1)
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where x is the length of the strip. The maximum downward velocity due to

natural convection for each individual strip is calculated as

Umax =

[

gCsx

ρSc

] 1

2

. (10.2)

The maximum downward velocities for both the large and small compacts are

shown in table (10.1). Equation (10.1) is applied to the flat surface of both the

Table 10.1: Maximum Downward Velocity due to Natural Convection

Strip Large Cell Small Cell
Number Velocities(cm/s) Velocities(cm/s)

1 0.101 0.082
2 0.101 0.082
3 0.099 0.081
4 0.096 0.079
5 0.090 0.077
6 0.081 0.074
7 0.063 0.069
8 N/A 0.062
9 N/A 0.048

large and small compacts, the results of which are shown in table (10.2).

Table 10.2: Vertical Flat Surface: Dissolution Rates due to Natural Convection

Compact Diameter (mm) Predicted Rate of Dissolution(g/s)
8.5 1.996 × 10−6

13 4.166 × 10−6

For the case of the upper curved surface the flux per unit width is taken from

equation (7.38) as

Flux / Unit Width = DCsx

[

gCs
3Dρνa

] 1

4

[

0.711 − 0.0118
x2

a2

]

. (10.3)
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For the lower curved surface the effect of natural convection is negligible, as dis-

cussed in chapter eight. The predicted dissolution rates from the curved surface

of a compact are shown in table (10.3).

Table 10.3: Total Curved Surface: Dissolution Rates due to Natural Convection

Compact Diameter (mm) Predicted Rate of Dissolution(g/s)
8.5 1.229 × 10−6

13 1.691 × 10−6

10.2 Dissolution Rates in the USP Flow

Through Apparatus: Small Upward

Velocities

This section analyses the dissolution rates from the vertical flat surface of a

compact for small upward velocities. A small upward velocity may be classified

as one that is less than 15% of the maximum downward velocity due to natural

convection, as shown in table (10.1). For velocities of this magnitude the upward

flow will not penetrate the concentration boundary layer formed due to natural

convection and will instead have the effect of a slow moving counterflow. As such

the flux per unit width is taken from equation (5.57) to be

Flux / Unit Width = 0.948DCs

[

gCs
4Dρν

] 1

4

x
3

4



1 − 0.76

[

U2
0ρSc
gCsx

] 1

2



 , (10.4)

where U0 is the velocity of the counterflow. Such small upward velocities exist

in the large flow through cell at volumetric flow rates less than 6mL/min and in

the small cell for velocities less than 2mL/min. Equation (10.4) is applied to the
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surface of a compact for several small velocities and table (10.4) compares the

results with that of natural convection.

Table 10.4: Flat Vertical Surface:Dissolution Rates for Small Upward Velocities

Volumetric Flow Rate (mL/min) Predicted Rate of Dissolution(g/s)
Large Cell

0 4.166 × 10−6

2 3.981 × 10−6

4 3.795 × 10−6

6 3.609 × 10−6

Small Cell
0 1.996 × 10−6

0.5 1.898 × 10−6

1 1.800 × 10−6

10.3 Dissolution Rates in the USP Flow

Through Apparatus: Large Upward

Velocities

In chapter six of this thesis, mass transfer from a vertical flat plate due to a

constant upward flow was investigated. It was shown that for small velocities the

boundary layer formed due to this upward flow would separate due to the weight

of dissolved particles. However, for sufficiently large upward velocities boundary

layer separation will not occur across the height of the surface and the solution will

approach that of horizontal flat plate flow. The criterion to prevent separation

occurring is Fr > 0.071, where Fr is the non-dimensional Froude number. The

required upward velocity may be calculated using

U0 = [gx]
1

2 Fr. (10.5)
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For the small and large compacts in the USP Flow Through Apparatus, this

translates to volumetric flow rates of 215 and 945mL/min respectively. Such

velocities are highly unlikely in the large cell; however, in the smaller cell these

velocities may be achievable. The flux per unit width is given by equation (6.34),

which is

Flux / Unit Width = 0.2625

[

DCsρU
3
∞X̃

g

]

1

2
[

1.33 − 0.314X̃ − 0.095X̃2 + ...
]2

3 ,

(10.6)

where X̃ = 9
[

Γ( 2

3
)

Γ( 1

3
)

]

[

gCsx
ρU2

0

] [

1
Sc

]
1

3 . Table (10.5) shows the predicted average disso-

lution rates from the vertical flat surface of a compact at several large flow rates.

Table 10.5: Flat Vertical Surface: Dissolution Rates for Large Upward Velocities

Volumetric Flow Rate (mL/min) Predicted Rate of Dissolution(g/s)
Small Cell

250 3.510 × 10−6

300 4.499 × 10−6

400 6.082 × 10−6

500 8.103 × 10−6

10.4 Dissolution Rates in the USP Flow

Through Apparatus: Intermediate

Velocities

The most interesting cases are those which involve intermediate velocities. In

such instances the upward flow will penetrate the natural convection boundary

layer; however, it will also separate under the weight of dissolved particles at
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some distance, say xsep. This means that the rate of drug dissolution below this

point may be calculated using the modified Blasius flow of chapter six, for which

the flux is given as

Flux / Unit Width = 0.2625

[

DCsρU
3
∞X̃

g

]

1

2
[

1.33 − 0.314X̃ − 0.095X̃2 + ...
]2

3 .

(10.7)

Above the separation point the flow will be that of natural convection. However,

Figure 10.2: Natural Convection Flow with Penetrating Upward Forced Flow

this natural convection flow must also separate at the same height along the

surface as the modified Blasius flow and will therefore behave like that of natural

convection on a vertical flat plate approaching a perpendicular surface. This is

illustrated in figure (10.2). This type of flow is examined in chapter nine of this

thesis and the flux per unit width is taken from equation (9.25), given by

Flux / Unit Width = 2DCs

∫ x

0

1

δc
dx. (10.8)
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where δc must be found by means of numerically solving the ordinary differential

equation:

dδc
dx

=
23.085D

Aδcx
1

2

[

L

L− x

]

− δc
2x

+
δc

[L − x]
, (10.9)

where L = x − xsep. Table (10.6) shows the results for several intermediate

velocities in both the small and large flow through cells.

Table 10.6: Predicted Dissolution Rates for Intermediate Upward Velocities

Volumetric Flow Predicted Dissolution Predicted Dissolution
Rate (mL/min) Rate (g/s) Rate (g/s)

Small Cell Large Cell
4 1.617 × 10−6 N/A
8 1.620 × 10−6 3.393 × 10−6

16 1.629 × 10−6 3.394 × 10−6

32 1.667 × 10−6 3.399 × 10−6

43 1.706 × 10−6 3.408 × 10−6

50 1.737 × 10−6 3.408 × 10−6

100 2.060 × 10−6 3.416 × 10−6

200 N/A 3.632 × 10−6

300 N/A 3.911 × 10−6

10.5 Discussion

This chapter has applied the methods of the previous chapters to the surface of a

compact in the USP Flow Through Apparatus. Table (10.7) compares a selection

of predicted dissolution rates with those of experiment in the large flow through

cell as reported by D’Arcy[7,8]. The predicted results exhibit some similarities to

those of experiment in the sense that no significant increase in the mass transfer

rate from the surface is recorded with increased volumetric flow rate. However,

all the predicted dissolution rates appear to be much larger than the reported

experimental dissolution rates.
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Table 10.7: Predicted Dissolution Rates versus Experimental Results

Volumetric Flow Predicted Dissolution Experimental Dissolution
Rate (mL/min) Rate (g/s) Rate (g/s)

0 4.166 × 10−6 2.720 × 10−6 ∗

8 3.393 × 10−6 2.078 × 10−6

16 3.394 × 10−6 2.101 × 10−6

43 3.404 × 10−6 2.255 × 10−6

Initially, especially for the case of natural convection alone, this result would

seem to be somewhat disappointing since the model is well documented histor-

ically. However, D’Arcy[7] states that for the natural convection case the ex-

periment is performed in a jar with the compact fixed to the inside of the lid.

Such a system may be better modeled by the case of a natural convection flow

developing from a stagnation point, as analysed in chapter nine. If we apply this

model to the surface of a compact the predicted rate of dissolution is 2.958×10−6.

This result is within 9% of the experimental result, which itself has a tolerance

of about ±3%. Taking this information into account it is likely that the lid of

the jar has a significant deceleration effect on the flow. The predicted results for

volumetric flow rates of 8, 16 and 43mL/min would also seem to be overestimates

when compared with those of experiment. These experiments were performed in

the large flow through cell in which the compact is suspended about half way

along the height of the cell. It would therefore not seem that any additional

boundary was present that would account for this decreased mass transfer rate,

as may be the case in the jar system. However, on further investigation it would

appear that the holder which keeps the compact in place may be responsible for

deflecting the upward flow (see figure (1.4)). Also, as the metal used to construct

the holder is 0.5mm in diameter it is possible that this impedes the natural con-

∗Natural Convection Result: Experiment not performed in Flow Through Cell.
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vection flow, as this diameter is of the same order of magnitude as the maximum

concentration boundary layer thickness of such a flow. If this is the case, a better

model for this system would be that of natural convection flow approaching a

perpendicular surface, as discussed in chapter nine. Applying this model to the

surface of a compact for volumetric flow rates of 8, 16 and 43mL/min gives the

results shown in table (10.8). These results are extremely close to the recorded

Table 10.8: Predicted Dissolution Rates versus Experimental Results

Volumetric Flow Predicted Dissolution Experimental Dissolution
Rate (mL/min) Rate (g/s) Rate (g/s)

8 2.103 × 10−6 2.078 × 10−6

16 2.104 × 10−6 2.101 × 10−6

43 2.110 × 10−6 2.255 × 10−6

experimental values of D’Arcy[8]. However further experimental data is required

to verify that the tablet holder has such an effect on the mass transfer rates from

the surface of the compact.
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Chapter 11

Conclusions and Future Work

11.1 The USP Paddle Apparatus

Boundary layer theory may be used to successfully model the process of drug

dissolution in the USP Paddle Apparatus. The model consists of a concentration

boundary layer which has thickness an order of magnitude less than that of

the momentum boundary layer. For this reason the concentration boundary

layer only occupies the region of the momentum boundary layer across which the

velocity profile is linear.

For the case of off-centre compacts the flow across the top planar surface may

be described as mass transfer from a horizontal flat plate for large Schmidt num-

bers, for which an exact solution exists due to the work of Lévêque[1]. Applying

this exact solution to the top planar surface of a compact in positions 1 and 2

produced results for the rate of dissolution that are within 1% and 10% of the

experimental results of D’Arcy[6]. The variation in error from position 1 and 2

may arise due to the fact that the streamlines of the flow are curved. The curvi-

linear nature of the streamlines becomes less important as the compact is moved

away from the centre of the vessel, leading to a more accurate result in position

2. Also, the hemispherical base of the vessel causes the compact in position 2 to

be tilted more to the vertical which leads to less variation in velocities from one

side of the compact to the other.

It is also shown in chapter three that a Pohlhausen method can be used to
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model the flow across the top planar surface. The results of the Pohlhausen

method are extremely accurate when compared with those of the exact solution.

The development of this approximate method proved invaluable as it is possible

to apply it to a compact in the central position for which the exact solution

was not valid. This is achieved by constructing a suitable velocity profile from

CFD simulation data provided by D’Arcy[25]. Using this technique for both a

3mm and 8.5mm tall compact in the central position produced mixed results.

The results for the 3mm tall compact had an error of about 1% in relation to

experimental data while the error for the 8.5mm tall compact was about 25%.

There is no obvious reason for the large error in estimating the dissolution rate

from the surface of the taller compact; however given that the Pohlhausen method

is largely dependent on the accuracy of the velocity profile used, this may be an

area worth investigating further.

The dependence that the Pohlhausen method has on the accuracy of the

velocity profile used is further highlighted in chapter four. When applied to the

curved side surface of a compact in the central position, the results for the 3mm

and 8.5mm tall compacts have errors of 35% and 1.3% respectively. The main

factor in these varying results was the CFD data available for both compacts. For

the 8.5mm compact, data was available for points along the surface at increments

of 0.5mm. In contrast, data was only available for three points along the surface of

the smaller compact. Finally, this Pohlhausen method was applied to the curved

side surface of a compact in position two. On obtaining the streamlines about

the surface it was clear that although for much of the surface the direction of the

flow was obvious, many parts of the surface did not exhibit clear flow regimes.

The error when compared with the experimental results of D’Arcy[6] was 18%.
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In conclusion it is shown in chapters three and four that boundary layer theory

may be successfully applied to the process of drug dissolution in the USP Paddle

Apparatus. In the cases where the Pohlhausen method is used it is clear that the

overall accuracy of the results depends largely on the constructed velocity profile.

11.2 The USP Flow Through Apparatus

The second part of this thesis concentrates on the USP Flow Through Apparatus.

As the process of drug dissolution in the flow through apparatus is dependent on a

vertical flow, the analysis is complicated by the introduction of buoyancy effects.

Chapters five to nine analyse a number of general cases for buoyancy driven flows

on both flat and curved surfaces. Later, in chapter ten, these general cases are ap-

plied to the process of drug dissolution from the surface of a compact in the USP

Flow Through Apparatus. Many authors, including D’Arcy[8] and Beyssac[11],

have reported a decrease, or stagnation, in dissolution rates for increased flow

rates. The assumption made by these authors is that forced convection is the

dominant mass transfer mechanism within the flow through apparatus. Chapters

five and six of this thesis challenge that assumption and instead consider natu-

ral convection as the dominant mass transfer mechanism, with the upward flow

having a decelerating effect on this flow at times when the pump is active.

Typical volumetric flow rates in the USP Flow through apparatus are between

4 and 16mL, however higher flow rates are achievable. These typical volumetric

flow rates result in extremely low upward velocities. Chapter five of this thesis

has shown that for such small velocities the upward flow will behave as that of

a slow moving counterflow. This counterflow will have a decelerating effect on

the natural convection flow and in chapter five it is shown that for a counterflow
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velocity equivalent to 10% of the maximum downward velocity due to natural

convection, a decrease in the mass transfer rate of 7.6% is obtained.

Chapter six of this thesis analyses drug dissolution rates from the surface of a

vertical flat plate due to large upward velocities. Now, a typical compact is about

1cm in diameter. For a vertical plate of height 1cm it is shown that an upward

velocity of about 2.5cm/s would be required in order to prevent the upward flow

from separating from the surface across the height of the plate. In the large flow

through cell it would take a volumetric flow rate of above 900mL/min to achieve

such upward velocities. This is outside the standard operational norms of the

apparatus, however the analysis is important to show just how large a flow rate

would be required before forced convection dominated.

The most interesting cases are those which involve intermediate velocities. In

such circumstances it is shown that the upward flow will penetrate the natural

convection boundary layer. However, this upward flow also separates from the

surface due to the weight of dissolved particles. This leads to a region below the

separation point across which forced convection dominates and a region above,

across which a decelerated natural convection flow regime exists. This decelerated

natural convection flow is examined in chapter nine by means of a Pohlhausen

method. This involves the introduction of a surface that lies perpendicular to

the direction of flow. The introduction of this surface results in a reduction of

about 38% in the mass transfer rate from the surface, Also in chapter nine, the

case of a natural convection flow developing at a stagnation point is examined,

which leads to a decrease in dissolution rates of about 29%.

At first when the predicted dissolution rates from the vertical flat surface are

compared with those of experiment, as reported by D’Arcy[8], it would seem that
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there is a large over-estimation. However, when the possible effect of the tablet

holder is taken into account the predicted results fall within 3% of those from

experiment. For the case of natural convection only, the experiments were not

performed in the flow through cell. Instead, the experiments were conducted in

a jar with the compact fixed to the underside of the lid. When the effect of the

lid is taken into account the predicted dissolution rates have an error of about

9% when compared with those of experiment.

Chapters seven and eight deal with the curved side surface of a compact in

the flow through cell. Due to the geometry of the problem it is clear that the

top curved surface of the compact is shielded from the upward flow. For this

reason the flow along the surface is one of natural convection only. In the case

of the lower curved surface it is shown in chapter eight that a natural convection

flow is not possible along this surface. Also in order for the upward flow to have

any significant effect on this surface would require large velocities which are not

normally present at the typical flow rates used in the apparatus. For these reasons

it is assumed that the lower curved surface is a relatively static region with little

or no mass transfer. There is at present no experimental data to either support

or refute this conclusion.

11.3 Recommendations for Future Work

In recent years much experimental research has concentrated on the USP Flow

Through Apparatus instead of the Paddle Apparatus. A number of authors cite

reasons for this and outline the advantages that the flow through apparatus has

over its predecessor. Stevens[13] reports that the flow through cell controls the

placement of the compact better and that the hydrodynamics of the system are
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more clearly defined, which is certainly true when we examine the case of an off-

centre compact in the paddle apparatus. The flow through cell can also be used

in an open configuration, which according to Singh[12], allows sink conditions to

be maintained. This better models the operation of the gastro-intestinal tract.

Finally, the flow through cell allows for a change in dissolution media through-

out an experiment. This better mimics in-vivo conditions as a compact passes

through different regions of the gastro-intestinal tract[13].

With regards to the USP Flow Through Apparatus, many of the the advan-

tages outlined do hold true. The position of the compact is better controlled by

the tablet holder and the hydrodynamics of the system would seem to be more

clearly defined than in the Paddle Apparatus. However, the assumption that the

dominant mass transfer mechanism is that of forced convection has been chal-

lenged in this thesis. Due to the small velocities generated within the cell it is

more likely that natural convection provides the mechanism for dissolution and

that the upward velocities have a deceleration effect on this downward flow dur-

ing the periods in which the pump is active. Also, the effects of the tablet holder

are often neglected. CFD simulations performed often do not include the tablet

holder; however, from images provided by D’Arcy[25] it is clear that the tablet

holder could possibly have an effect on both the upward flow and the buoyancy

driven flow (see figure (1.4)).

The aim of much, if not all, of the experimental and simulation work con-

ducted for both apparatuses is to better understand the hydrodynamics of the

systems and how this translates to dissolution rates from the surface of a com-

pact. Listed below are a number of recommendations for future work which may

help to achieve these goals and also improve upon the design of each apparatus.

126



The USP Paddle Apparatus

• Design of a tablet holder for the Paddle Apparatus. This would solve the

problem of compact movement along the bottom surface. The holder could

also be designed to suspend the compact above the bottom surface of the

vessel where the hydrodynamics of the system can be complicated by the

geometry of the apparatus.

• Perform CFD simulations that specifically concentrate on velocities at very

small distances from the surface of the compact. It has been shown in this

thesis that the concentration boundary layer occupies only a thin region

within the momentum layer. For this reason, it is the velocities close to the

surface of the compact that are most important. Analysing these velocities

in more detail may be achieved by designing a finer mesh close to the surface;

however, any advantages would have to be weighed against computational

expense.

• Redesign the impeller in the Paddle Apparatus. In the work of McCarthy[17]

it is noted that directly below the impeller is a region of low velocities. Off-

setting the position of the impeller in relation to the centre of the vessel

may alleviate this problem. Also, this may allow the Paddle Apparatus to

better mimic the churning motion experienced within the human stomach,

as any such movements must be generated by the walls of the organ.

The USP Flow Through Apparatus

• Suspend the compact at a distance from the lid in the jar system used

by D’Arcy[7] to simulate the case of free convection. If experiments were
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performed using this alternate set-up it would either confirm or deny the

effect of the lid that is proposed in chapter ten of this thesis.

• Redesign the tablet holder for the USP flow through apparatus. If the

tablet holder was redesigned so as to only clamp the curved side surface of

a compact, the dissolution rate from the vertical flat surface of the compact

could be analysed. The results could then be compared with those predicted

in chapter ten of this thesis, to either confirm or deny the effect of the

current holder.

• Reconfigure the system so that the pulse produced by the pump is in a

downward direction. If we consider that the dominant mass transfer mech-

anism is that of natural convection, the main direction of flow is vertically

downward. The fact that the pulsing force is in direct opposition to this

leads to a complication in the analysis of the apparatus. Reconfiguring the

apparatus so that the pulse is in the same direction as that of the natural

convection flow would lead to a simpler analysis of the problem. Also, as the

apparatus is designed to mimic the gastro-intestinal tract, a pulsing down-

ward flow should not invalidate this model as much of the gastro-intestinal

canal is orientated in this direction.
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