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Comparison of Non-Coherent Linear Breast Cancer
Detection Algorithms Applied to a 2-D Numerical

Breast Model
Giuseppe Ruvio, Raffaele Solimene, Antonio Cuccaro, and Max J. Ammann

Abstract—A comparative analysis of an imaging method based
on a multi-frequency Multiple Signal Classification (MUSIC)
approach against two common linear detection algorithms based
on non-coherent migration is made. The different techniques are
tested using synthetic data generated through CST Microwave
Studio and a phantom developed from MRI scans of a mostly fat
breast. The multi-frequency MUSIC approach shows an overall
superior performance compared to the non-coherent techniques.
This paper reports that this highly performing algorithm does
not require any antenna calibration or phase response estimation
and allows the use of efficient and complex antenna geometries
without difficult algorithm redefinitions.

Index Terms—Microwave detection algorithms, Breast cancer
detection.

I. I NTRODUCTION

X-ray mammography is the golden standard in breast cancer
imaging. Notwithstanding this, it has a number of drawbacks
that stimulated research towards different diagnostic meth-
ods to provide mammography. In particular, microwave-based
diagnostic methods have received much attention and many
imaging techniques have been tailored for breast diagnostics
[1]. Microwave breast tomography implies solving a non-linear
ill-posed inverse problem, since diffraction effects cannot be
ignored as in X-ray tomography. When the main objective
is to detect and localize tumors, linear scattering models can
be exploited. Currently, most of focusing algorithms in the
literature are founded on simplified linear scattering models.
Nevertheless, the problem is challenging. On one side, benign
breast tissues are the main source of clutter, which the signal
coming from the tumor must compete against. In addition, it
was shown ([2], [3]) that the benign/malign dielectric contrast
is not as high as previously believed. In [2], [3]ex vivo
breast tissues were electrically characterized across a large
part of the microwave spectrum although a more recent study
[4] indicated that the measurements performedex vivo did
not consider variations in the range of 20% to 39% for the
dielectric properties ofin vivo breast tissue. Moreover, the
use of coherent methods can be strongly limited by the large
number of uncertainties. In terms of frequency dispersion and
spatial distribution, breast tissues are at best known with a
considerable degree of uncertainty and variations from patient
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to patient. Finally, while the antenna response is known in
free-space, when in close proximity to breast tissue, this
becomes hard to predict, unless stringent approximations and
simple antenna geometries are adopted. In particular, except
for properly devised cases, generally it is not possible to run
a characterization stage before imaging in order to estimate
the antenna behavior in the presence of the breast. Therefore,
imaging methods should be developed by accounting for this
inconvenience. Those methods requiring coherence between
data acquired at different frequencies will not be considered
in this paper. In order to limit the dependence on the antenna’
response, a subspace projection method was developed in
[5]. There, a non-characterized printed Vivaldi antenna was
used to scan a very simplified breast model. The numerical
analysis showed that the detection capabilities of the method
does not suffer from unknown antenna responses. Here, the
investigation advances towards a more realistic scenario and
a more sophisticated anti-clutter rejection procedure. Hence, a
Vivaldi antenna is used to probe a realistic numerical phantom
extracted by MRI-scans and data are generated by CST
Microwave Studio. Finally, the performance of such MUSIC-
Inspired (M-I) algorithm is compared to two common linear
non-coherent detection algorithms, non-coherent migration (N-
M) [6] and standard MUSIC (S-M) [7].

II. D ETECTION SYSTEM

The proposed detection system consists of a Vivaldi antenna
scanning a2-D MRI-based phantom and a signal subspace
projection method as detection algorithm. In particular, the
antenna touches the skin layer and rotates around the phantom
in order to synthesize a multi-monostatic configuration (i.e. TX
and RX are co-located) in correspondence toN measurement
positions. Both phantom and antenna are immersed in a
coupling medium with a relative dielectric permittivityεm =
10. This medium can be easily obtained as a solution of water
and paraffin oil and it fully covers the antenna and the interface
between radiator and tissues.

A. Operating environment

The antenna used for this numerical investigation is the
antipodal planar Vivaldi antenna shown in Fig. 1 a. Its charac-
teristic parametersL and W are chosen to compromise com-
pactness, directive behavior and broad impedance matching
properties. The antenna is designed by using a computationally
efficient multiobjective evolutionary algorithm ParEGO to
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Fig. 1. a) Antenna geometry (L= 145 mm, W= 50 mm); b) Breast phantom
cross-section.

work with the antenna immersed in the coupling medium.
While this solution enables more energy to be coupled from
the antenna to the phantom, a strong degree of miniaturization
can be also achieved. A2-mm substrate extension was added
from the top edge of the tapered arms to mitigate mismatch
when the antenna touches the skin layer. Adopting2-D phan-
toms (if not 1-D) is a convenient choice for a faster but still
fair algorithm assessment and is very common in the literature
[8], [9], [10]. Phantom simplification enables a more detailed
numerical investigation when non-ideal antennas are used [11],
whereas more complex3-D models are generally considered
when using ideal sources [12]. For this investigation3 different
incoherent detection algorithms are compared by considering
the 2-D breast model displayed in Fig. 1 b. This cylindrical
phantom was constructed on the basis of the MRIs documented
in [13] and labelled with the code ID071904. The MRIs were
taken from patients in a prone position and different tissues
were expressed in terms of a3-D voxel representation. Each
cubic voxel measures0.5 mm x 0.5 mm x 0.5 mm for high
resolution and is assigned to a certain tissue type. The2-D
model considered in this paper was built starting from an
azimuthal slice which was extracted in such a way that all
the tissues are represented. The different tissue contours were
then converted into polygons that can be easily imported into
the CST simulation tool and processed with its Finite Integral
Technique (FIT). Finally, each polygon representing morpho-
logic features was converted into a surface and extruded into
an infinite cylindric structure with the corresponding elec-
tric characterization. This model presents several advantages
when compared to voxel structures as it enables editing and
convenient mesh refinement. Breast tissues were electrically
characterized starting from the realistic dispersive dielectric
properties reported by Lazebnik et al. [2], [3]. However, a
simplified model based on constant permittivity and effective
conductivity was adopted. Specifically, tissue permittivity was
calculated as the average value within percentile regions in
[2], [3] at the center frequency (2 GHz), whereas the effective
conductivity was calculated taking into account the dispersive
behavior due to the imaginary part of the permittivity. This
simplified electric characterization is justified for two reasons:

1) the detection algorithms under investigation operate on

single-frequency samples;
2) frequency samples are uniformly taken just in the spec-

trum from 1 to 3 GHz.

Finally, electric parameters for the 5-mm diameter tumor
inclusion were calculated from the curve corresponding to
the electromagnetically denser material in [3]. The overall
benign/malignant dielectric contrast is then of the order of
< 10%, which is consistent with recent literature ([8], [9],
[11]). A relaxation time of 13 ps was assumed for each
tissue model. Table I summarizes permittivity and effective
conductivity values corresponding to each tissue in the breast
model under test.

TABLE I
ELECTRIC PROPERTIES OF BREAST TISSUES

Tissue εr σeff [S/m]

Fat 1 2.42 0.0518

Fat 2 4.025 0.04786

Fat 3 6.13 0.07142

Fibroconnective 1 42.02 0.8674

Fibroconnective 2 50.5 1.365

Fibroconnective 3 59.43 1.544

Transitional 21.76 0.1565

Skin 39.25 1.247

Tumor 65.89 2.158

B. Clutter rejection and MUSIC-Inspired algorithm

N is the number of TX/RX positions(ro1, ro2, · · · , roN )
andNf the number of adopted frequencies. Accordingly, the
data can be arranged in theNf ×N scattering matrix

S = [S1 · · ·Sn · · ·SN ] (1)

whereSn is the column vector of data collected at then-th
position as the frequency varies. This data consists of contri-
butions coming from antenna internal reflection, breast tissues
and embedded malignancies. The first two contributions are a
source of clutter that tends to mask tumor signal. In order to
reduce clutter, a subspace based technique [14] is applied.

Accordingly, S is expressed through its Singular Value
Decomposition (SVD) as

S = UΛVH (2)

where U and V are unitary matrices containing the left and
right singular values, respectively, andΛ is a diagonal matrix
containing the singular valuesλ1, λ2, · · · , λP in decreasing
order, with P = min{Nf , N}. Considering that clutter
contributions are much stronger than the tumor signal, it can
be mitigated by disregarding the projection of the scattering
matrix on the singular functions corresponding to the highest
singular values. Determining how many projections to discard



SUBMITTED TO IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 102

requiresa priori information on the clutter. A conservative
choice to remove the dominant clutter contribution coming
from internal antenna reflections and skin interface is adopted
here with the first two projections being removed. Accordingly,
the de-cluttered data matrix is

Sd =
P∑

k=3

λkukvkH . (3)

with H representing the Hermitian operator.
Once clutter has been rejected the scattering data vectors

(the rows ofSd) are expressed as

Sn
d = HR(fn)A(fn)HT (fn)b(fn) (4)

wherefn is then-th working frequency,HT (fn) andHR(fn)
are the antenna responses,b(fn) is the vector of objects’
scattering coefficients andA(fn) is the propagator which maps
M (with N > M ) scatterers located at(r1, r2, · · · , rM ) to the
scattered field. In particular, itsl-th column has the form

Al(rl; fn) = [G2(ro1, rl; fn), · · · , G2(roN , rl; fn)]T (5)

G(·) being the relevant Green’s function. Note that the square
factor in (5) is due to the adopted multimonostatic config-
uration. Green’s function computation requires spatial and
dispersion information on breast tissues properties. But those
are actually nota priori known. Therefore, an equivalent
homogeneous breast medium is considered to construct the
Green’s function. This significantly simplifies the algorithm
implementation but it also is justified by an inevitably un-
known breast tissues’ distribution at a diagnostic stage. In
particular, in this analysis the dielectric permittivity of the
coupling medium is assigned to the equivalent breast medium
in the Green’s function formulation. In particular, in the
reconstructions shown in the following section an equivalent
homogeneous breast (i.e an equivalent breast permittivity
εbreast) is assumed as reference, so that the Green’s function
can be simply expressed.

As HT (fn) and HR(fn) in eq. (4) are unknown, data
cannot be coherently combined while performing detection.
However, data can be separately processed at each frequency
and the corresponding reconstructions can be then suitably
combined. Moreover, since the information concerning scat-
terers’ locations is embodied within the columns ofA(fn),
a subspace projection method like MUSIC [15] is applied
for their detection. To this end, the eigenspectrum of the
correlation matrix

R(fn) = Sn
dSnH

d (6)

can be adopted. Now, as the scattering coefficient vector is
deterministic, henceR(fn) is rank-deficient with rank one.
Therefore, the adoption of the only significant singular vector
u1(fn) of R(fn) to implement is proposed. Accordingly, the
following scheme to identify the scatterers’ locations is used

P (rk; fn) = 1/1− | < Ak(fn), u1(fn) > |2 (7)

whereAk is the steering vector evaluated at the trial position
rk with < ·, · > denoting the Hermitian scalar product.
Detection is achieved whereP (rk; fn) peaks.

Due to rank-deficiency ofR(fn) it is not expected that
(7) performs optimally. To restore the rank of the correlation
matrix some methods can be employed [16], which take ad-
vantage of multifrequency illumination or a multistatic config-
urations. However, as they require coherence between different
data acquisitions, here the detection scheme is modified to take
advantage of multifrequency data as

Pmf (rk) =
Nf∏
n=1

P (rk; fn) (8)

A detailed theoretical study of the algorithm can be found
in [18].

III. N UMERICAL COMPARISON AND CONCLUSIONS

In order to test the detection system a5-mm diameter
tumor is inserted in the phantom (see Fig. 1 b). In particular,
the tumor was located within the fibrograndular region. This
allows the assessment of the detection system for the critical
situation of reduced dielectric contrast between tumor and
surrounding tissues. Synthetic data were generated through
CST by collecting the scattered field over18 different positions
taken uniformly around the breast phantom at multiples of200,
whereas30 beating frequencies within the band1−3 GHz are
adopted. Finally, results returned by eq. (8) are compared to
those obtained by non-coherent migration, i.e.,

M(rk) =
N∑

n=1

Nf∑
m=1

|Sn∗
d (fm)G2(ron, rk; fm)|2 (9)

where ∗ means conjugation, and a multi-frequency MUSIC
implementation already present in literature [7], that is

Pf (rk) = 1/




Nf∑
n=1

1− | < Ak(fn), u1(fn) > |2

 (10)

TABLE II
RECONSTRUCTION METRICS

Method Signal-to-Clutter Signal-to-Mean Spatial

Ratio[dB] Ratio[dB] Displacement[mm]

M-I 1.0215 28.4676 1.5

N-M 1.0051 1.99427 13.1

S-M 1.0058 1.1257 1.5

Corresponding reconstructions are shown in Fig. 2. All
cases presented above were obtained by corrupting the scat-
tered field with an additive white complex Gaussian noise
with signal-to-noise ratioSNR = 10 dB. As can be seen,
those reconstructions show that under the same situation the
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Fig. 2. Reconstructions in the presence of5-mm tumor at(−10, 6) mm
(denoted as black asterisk) by: a) proposed MUSIC-Inspired method, b) non-
coherent migration, and c) standard MUSIC method.

MUSIC-inspired method presented here has superior perfor-
mance when compared to the other non-coherent methods.
Together with visual reconstruction of the detection algorithm
results, its performance was measured by suitable metrics such
as Signal-to-Clutter Ratio (SCR), Signal-to-Mean Ratio (SMR)
and Spatial Displacement (SD) as defined in [17].

The MUSIC-inspired method offers better focusing capa-
bilities and greater dynamic range between clutter and tumor
levels when compared to standard MUSIC and non-coherent
migration. Moreover, considering that the limited dielectric
contrast between tumor and fibroconnective tissues and an
a priori antenna response has not been used, the proposed
MUSIC-inspired system presents promising features for early-
stage breast cancer diagnostics.
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