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Objective Assessment of Perceptual Audio
Quality Using ViSQOLAudio

Colm Sloan, Naomi Harte, Damien Kelly, Anil C. Kokaram, and Andrew Hines

Abstract—Digital audio broadcasting services transmit
substantial amounts of data that is encoded to minimize
bandwidth whilst maximizing user quality of experience. Many
large service providers continually alter codecs to improve
the encoding process. Performing subjective tests to validate
each codec alteration would be impractical, necessitating the
use of objective perceptual audio quality models. This paper
evaluates the quality scores from ViSQOLAudio, an objective
perceptual audio quality model, against the quality scores of
PEAQ, POLQA, and PEMO-Q on three datasets containing
fullband audio encoded with a variety of codecs and bitrates.
The results show that ViSQOLAudio was more accurate than all
other models on two of the datasets and performed well on the
third, demonstrating the utility of ViSQOLAudio for predicting
the perceptual audio quality for encoded music.

Index Terms—Perceived audio quality, subjective audio quality
assessment, objective audio quality assessment, ViSQOLAudio,
ViSQOL, POLQA, PEAQ, PEMO-Q.

I. INTRODUCTION

D IGITAL audio broadcasting systems and streaming
services such as YouTube Music are popular platforms

for consuming audio media. These streaming services use
codecs to minimize bandwidth and maximize users’ quality
of experience whilst not degrading perceptual quality.

Frequent modifications are made to the codecs to fix bugs
and improve efficiency. Subjective listening tests are ideally
performed after each codec modification to assess changes
in the perceptual audio quality of audio encoded with the
modified codec. In these tests, subjects listen and assign a
perceptual quality score to each clip in a set of encoded audio
clips. The average score from all subjects is taken to create
a mean opinion score (MOS) for each clip. The effect of the
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codec modification is then be assessed by comparing the MOS
values before and after the modification.

Because subjective testing is time-consuming, objective
perceptual audio quality models are used to predict MOS
values in an automated and timely manner. A number of
objective models exist that can predict the perceptual audio
quality of an encoded audio clip given the encoded clip
and its uncompressed equivalent as reference. PEAQ [1],
POLQA [2], PEMO-Q [3] and ViSQOLAudio [4] are four
such full-reference models. Each of these models have been
used previously to rate the quality of encoded fullband
audio [3]–[6].

One model in particular, ViSQOLAudio, will be the focus
of this paper. ViSQOL [7] is a speech quality model that was
later adapted to function as a perceptual audio quality model,
yielding a prototype that delivered promising results [4].
This paper builds upon a proof of concept presented in [4]
that showed that objective speech quality metrics such as
POLQA and ViSQOL could be adapted for audio quality
prediction. POLQA Music [8] demonstrated that training with
audio data improved the performance of the speech met-
ric. In this paper, ViSQOLAudio introduces a number of
novel additions that improve upon its predecessor to pro-
duce MOS values for compressed audio. These additions
include:

• Using machine learning to create quality scores that better
match those made using human perception.

• Considering information from both channels when eval-
uating stereo audio clips.

• Compensating for subframe misalignments of the refer-
ence and degraded signals caused by encoder padding.

• Using a filter bank more suitable for fullband (music)
content.

• Outputting MOS values rather than similarity scores,
making the output more intuitive to humans.

In this paper, ViSQOLAudio is evaluated against POLQA,
PEMO-Q, and PEAQ on three datasets of music content
encoded with an assortment of bitrates and codecs used for
popular digital broadcasting and streaming services. This is
done to determine which objective models are suitable for
assessing the perceptual quality of encoded music. Models are
evaluated by the accuracy, consistency and linearity (defined
in Section V-A) of their objective perceptual quality scores.
ViSQOLAudio is, to the authors’ knowledge, this is the first
totally free and open source audio quality metric with accu-
racy comparable to models used in industry when tested upon
compressed audio.

0018-9316 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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This paper has the following structure. Section II describes
the objective quality models, focusing on POLQA, PEMO-Q
and PEAQ, and explaining why they were selected for
comparison to ViSQOLAudio. Section III describes improve-
ments made to ViSQOLAudio. Section IV gives details on
the datasets used to compare the objective quality models.
Section V describes and justifies the evaluation metrics for
comparing the objective models. Section VI gives the results
of the experiment comparing the models, leading to a discus-
sion of the results in Section VII. Section VIII then closes
with conclusions.

II. BACKGROUND

This section presents a number of objective quality mod-
els. The PEAQ [1], POLQA [2] and PEMO-Q [3] models
are given particular attention because they will be part of the
experiments described in Section VI.

Objective models for predicting perceptual audio quality
can be classified as being in two categories: parameter-
based or signal-based. Parameter-based models such as ITU-T
G.107 [9] predict quality by modeling characteristics of a
transmission channel of audio, such as packet loss rate and
delay jitter.

Signal-based models estimate quality based on information
taken from signals rather than the medium of their transmis-
sion. Signal-based models are subcategorized into no-reference
models (also known as single-ended and non-intrusive) and
full-reference models (also known as comparison-based and
intrusive). No-reference models only analyze a degraded sig-
nal when predicting the quality of that signal. No-reference
models such as ITU-T P.563 [10] analyze speech and clipping
among other techniques to estimate signal quality.

Full-reference models predict quality by comparing features
from a perfect quality reference signal to a degraded version
of that signal. This category is the focus of our research, where
the reference signal is the uncompressed audio uploaded by
a user to a streaming service, and the degraded signal is an
encoding of that uncompressed audio.

Early full-reference models, such as ITU-T P.861
(PSQM) [11] were focused on speech and predicted quality
within a narrow frequency band (300 – 3400 Hz). PSQM was
made obsolete when VoIP introduced problems such as larger
signal distortions and variable delays between the reference
and degraded signals [12]. ITU-T P.862 (PESQ) [13] fixed
many weaknesses in PSQM and widened the frequency band
of audio it could evaluate. However, PESQ had issues with
loudness loss, echoes and sidetone. These were addressed by
the successor to PESQ, ITU-T P.863 (POLQA) [2].

POLQA [2] was designed to predict the quality of speech
from narrow up to super-wideband (50 – 14000 Hz). The
POLQA quality score prediction process begins by creating
a psychophysical representation of the reference and degraded
signals. This process includes time alignment, level alignment,
time-frequency mapping, frequency warping and compressive
loudness scaling. The reference signal then undergoes an “ide-
alization” process which adjusts timbre if the signal is noisy.
POLQA then eliminates reference signal noise and suppresses

the degraded signal noise. These modified signals are passed
into a cognitive model that computes quality indicators such as
a frequency response indicator and a noise indicator, and are
combined to give a MOS value. A MOS-LQO (mean opinion
score - listening quality objective, the objective MOS) value
is the objective equivalent to a subjective MOS (MOS-LQS)
value.

Unlike POLQA, which was designed to predict percep-
tual speech quality, ITU-T BS.1387 (PEAQ) [1] was designed
for encoded audio. There are two versions of PEAQ: PEAQ-
Basic with a lower complexity model for fast quality score
predictions, and PEAQ-Advanced with a high complexity
model that takes longer to calculate. Our evaluation will focus
on PEAQ-Advanced as this is considered the most accu-
rate version by the developers of PEAQ [1] and because,
although PEAQ-Basic has been shown to perform better than
PEAQ-Advanced when targeting degraded audio [14], PEAQ-
Advanced performs better on the datasets used as part of this
work.

The PEAQ-Advanced quality prediction process begins by
passing the reference and degraded signals into an ear model
that segments the signals into auditory filter bands that, among
other steps, are passed into weighted transfer functions repre-
senting the different parts of the ear. A process then identifies
excitation patterns in loudness and modulation. These patterns
are used to calculate several psycho-acoustically based model
output variables, such as average linear distortions, that quan-
tify differences between the reference and degraded signals.
These model output variables and a set of coefficients are
inputted to an artificial neural net which outputs a distor-
tion index that is mapped to an Objective Difference Grade
(ODG). An ODG is analogous to the Subjective Difference
Grade, defined as SDG = gradedegraded − gradereference, where
the grade is the ITU-T BS.562 [15] impairment scale from 1
(very annoying) to 5 (imperceptible).

Another model for predicting perceptual audio quality,
PEMO-Q [3], was shown by its authors to predict qual-
ity more accurately than PEAQ [3]. PEMO-Q predicts quality
using time-aligned reference and degraded signals that are
level aligned before deleting silence from the signals. The
signals are input to a psychoacoustically motivated model
that transforms the signals into a three dimensional repre-
sentation, where the dimensions represent activity patterns
in time, frequency and modulation-frequency. The correla-
tions between the reference and degraded patterns are used
to create error estimations that are divided into target distor-
tion, interference and artifact components. Each component is
weighted for salience and the weights are input to a trained
non-linear mapping that produces an Overall Perception Score
(OPS) value ranging from 0 (bad quality) to 100 (excellent
quality).

III. VISQOLAUDIO

This section will present ViSQOLAudio, the full-reference
objective quality model that is the focus of this paper.
An overview of ViSQOLAudio is shown in Figure 1.
The quality score prediction process of ViSQOLAudio has
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Fig. 1. A high-level representation of ViSQOLAudio. The dotted line boxes represent processes added to since the previous version of ViSQOLAudio [4].
The dashed line boxes represent processes modified since the previous version. Bold text denotes inputs modified since the previous version.

four phases: preprocessing, pairing, comparison, and similarity
to quality mapping. A high level explanation of each phase will
be given followed by detailed explanations of the processes of
each phase.

In the preprocessing stage, the mid channel is extracted from
the reference and degraded signals to consider information
from both channels (described in more detail in Section III-A).
An alignment process is then performed on the reference and
degraded signals, compensating for subframe misalignments
caused by encoder padding (Section III-B). A spectrogram
of the reference and degraded signals is then built using a
Gammatone filter (Section III-C).

The pairing phase first segments the reference spectrogram
into patches of 30 frames. These patches are used as input into
a robust alignment process that matches each reference spec-
trogram patch with the most similar patch from the degraded
spectrogram, creating a set of most similar reference-degraded
patch pairs (Section III-D). This alignment process helps to
correct drift and warping in the degraded signal.

In the comparison stage, the similarity of each most similar
patch pair is measured (Section III-E), outputting similarity
patches representing the similarity of each of the pairs. For
each of these similarity patches, the similarity across each
frequency band is measured. This allows each of the simi-
larity of each frequency band in the degraded signal to be
considered separately, allowing a machine learning model to
find relationships between similarities across frequency bands
that are used to make more accurate quality score predictions.

The similarity to quality mapping phase inputs the mean
frequency band similarity scores of each similarity patch into
a support vector regression (SVR) model that outputs a MOS-
LQO value (Section III-F).

A. Channel Selection

Subjective studies have shown that perceptual quality of
audio output from codecs is not uniform for all musical
sounds [5]. In audio where the one channel contains more
of one instrument than the other channel, an objective model
taking information only from one channel may analyze an
input signal unrepresentative of the signal heard by the sub-
ject. Furthermore, non-expert audio users may upload a stereo
audio file containing only one audio signal.

One of our goals was to extend ViSQOLAudio to consider
information from both channels of stereo signals. A number of

approaches were attempted. ViSQOLAudio was used to eval-
uate the left and right channel signals separately and combine
the quality scores to form a single score representative of the
stereo quality. The use of the mid and side channel signals
were also considered, where mid(y) = (yleft + yright)/2 and
side(y) = yleft−yright where y is a left-right stereo input signal.

Tests revealed that considering the signals from two chan-
nels gave more accurate scores than only considering one
channel. The two most accurate model stereo configurations
came from taking the maximum predicted quality of the left
and right channel signals, and the maximum predicted quality
of the mid and side channel signals. Further analysis showed
that the maximum predicted quality of the mid-side channel
pairs almost always came entirely from the mid channel as the
side channel contained little information, which meant that it
was not necessary to consider the side channel.

A repeated-measures ANOVA test with a significance p <

0.05 was performed to confirm that there was no significant
difference between the quality scores produced by consider-
ing both the left and right channel signals or just considering
the mid channel signal. Besides requiring half of the computa-
tional power, using the mid channel signal also alleviated the
problems of having different instruments in different audio
channels and the problem where users may upload a stereo
audio file containing only one audio signal. These results led
to the incorporation of the use of the mid channel signal by
ViSQOLAudio.

B. Removing Initial Zero Padding

When audio is encoded, many popular encoders add
a buffer of zero signal samples to the beginning of the
degraded (encoded) signal during the encoding windowing
process [16], [17]. The number of samples added can be over
4000 for some codecs. These additional samples at the begin-
ning of the degraded signal causes misalignment with the
uncompressed signal it was encoded from.

In most tested cases, the patch alignment process of
ViSQOLAudio (Section III-D) was enough to compensate
for this misalignment. However, some encodings were more
affected than others, particularly MP3. This misalignment is
caused by the difference in ViSQOLAudio window size and
codec window size, which resulted in a subframe misalign-
ment. ViSQOLAudio compensates for this misalignment using
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a frequency-domain cross-correlation on the Hilbert trans-
formed envelope of the reference and degraded signals to find
the correct sample number offset for the degraded signal.

C. Building the Spectrograms

Prior to generating the spectrograms, the power level of the
degraded signal is scaled to match that of the reference sig-
nal. Following this scaling, a short-time Fourier transform is
performed with a 32 band Gammatone filter bank with a min-
imum frequency of 50 Hz and a 50% overlap with a window
of 1536 samples (16 ms). The average power of each band
across each frame is used to create spectrograms for both the
reference and degraded signals. The spectrograms are floored
to the minimum value of the reference spectrogram to level
the signals with a 0 dB reference.

D. Aligning Spectrogram Patches

The reference spectrogram is segmented into an ordered set
of grids, each 30 frames wide, and with a height equal to the
number of filter bank frequency bands, as shown in Figure 2.
Each segment is referred to as a patch. The patch alignment
process enables compensation for local time misalignments.
The goal of the process is to match each reference patch with
its most similar corresponding degraded patch, forming a patch
pair. A patch pair is denoted (Pr

i , Pd
j ), where i is the reference

patch index, j is the degraded patch index, Pr
i is a patch from

the reference spectrogram and Pd
j is a patch from the degraded

spectrogram.
The set of all degraded patches Pd in the degraded spec-

trogram consists of all possible 30 consecutive frames in the
degraded spectrogram. To find the degraded patch most similar
to a reference patch, the process iterates through each possi-
ble degraded patch and compares it to the reference patch
using the Neurogram Similarity Index Measure (NSIM) [18]
(described in Section III-E). The degraded patch with the high-
est similarity measure is selected as the degraded part of the
reference-degraded patch pair and added to the set of the best
patch pairs. The process of finding the most similar degraded
patch for a reference patch is described as:

s = argmax
d∈Pd

NSIM(Pr
i , d) (1)

where Pd is the set of all degraded patches, Pr
i is the refer-

ence patch being paired and the overbar is the mean operation.
This process is performed for all reference patches, yielding a
set of the most similar reference-degraded spectrogram patch
pairs, bestPatchPairs, that will be used during the mapping
from patch-pair similarity scores to a MOS-LQO quality score.
Before that, we discuss how the similarity scores used to pair
reference and degraded patches are generated.

E. Similarity Comparison

Structural Similarity (SSIM) [19] was originally developed
to measure the degradation of compressed JPEG images by
comparing the weighted luminescence, contrast and structure
of the uncompressed reference image and degraded (com-
pressed) image. The NSIM is a similarity measure specialized

Fig. 2. The process of creating an NSIM patch by comparing the similarity
of a reference and degraded patch pair.

for comparing spectrograms. NSIM has been shown to give
more accurate similarity measures than SSIM when comparing
spectrograms for speech audio [18].

Figure 2 shows part of a reference and degraded spectro-
gram being compared for similarity. The NSIM of a reference-
degraded patch pair, NSIM(Pr

i , Pd
j ), is calculated the same way

as SSIM index is calculated in [19], but where the lumines-
cence weight α = 1, the contrast weight β = 0, the structural
weight γ = 1, and the regularization constant regularization
constants c1 and c3 are 0.01 and 0.03 respectively (the con-
stants recommended in [19]). Using the windowing method
described in [19], a 3x3 Gaussian window with a radius of
0.5 is used when weighting pixels in the area of interest. The
NSIM of a reference and degraded patch is described as:

NSIM
(

Pr
i , Pd

j

)
= l

(
Pr

i , Pd
j , c1

)
· s

(
Pr

i , Pd
j , c3

)
(2)

where Pr
i is the reference patch, Pd

i is the degraded patch, l
is luminosity and s is structure. Each NSIM value is placed
into its respective cell, forming an NSIM patch where a cell
represents the similarity between the reference and degraded
signals for a given frame and within a given frequency band.
As such, patch columns (frames) represent information over
time and patch rows (frequency bands) represent information
over frequencies.

F. Mapping Similarity to Quality

The ViSQOLAudio process of generating a MOS-LQO
(objective quality score) from similarity patch pairs is shown
in Figure 3 and described as:

q = SVR

(
1

M

M∑
i=1

�i

)
(3)

where q is a MOS-LQO value from 1 to 5, M is the num-
ber of patches in bestPatchPairs, � is the row (similarity
scores across frequency bands) sums of the set of most sim-
ilar reference-degraded spectrogram patch pairs, and SVR is
the support vector regression (SVR) mapping function.

As shown in Figure 3, the row means � over all M patches
gives a set of vectors f, where each fi is a vector of similarity
scores (one for each frequency band). The mean of f is calcu-
lated f̄ which is input to the SVR mapping function that takes a
frequency similarity vector as input and outputs a MOS-LQO.

The SVR mapping function is an SVR model. The model is
a ν-SVR with a radial kernel, where the ν = 0.6, cost = 0.4,
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Fig. 3. The process of generating a MOS-LQO from NSIM patches. NSIM
patches have their mean similarity across frequency bands calculated, the
mean of which is input to an SVR that outputs a MOS-LQO. Variable names
are shown above their visual representation and the function that produced
the variable is shown below.

TABLE I
AUDIO SAMPLE TREATMENTS IN THE TCDAudio14 DATASET

and the remaining values are the LIBSVM [20] defaults. The
SVR is trained using f̄ as an observation and the degraded
audio clip MOS-LQS as the target. More details of the SVR
training is described in Section V-D.

IV. DATASETS

This section presents the datasets used to evaluate the
performance of the objective models in the experiment in
Section VI. These include the content of the datasets and the
conditions (treatments) under which the datasets were created.
These datasets include the TCDAudio14 [5], AACvOpus15, and
CoreSV14 [21] datasets. Each dataset was created at different
locations using different subjects and prior to the development
of this model. Each dataset differs in methodology because
each was created by different teams. Subject pool sizes for
each dataset conform to the required standard [22].

A. TCDAudio14

The TCDAudio14 dataset was created to assess the quality
of several popular formats at a variety of bitrates commonly
used by streaming services. The full list of treatments is shown
in Table I (all at constant bitrates) and includes the treat-
ments of 3.5 kHz (lowpass-filtered) narrowband and 7 kHz
(lowpass-filtered) wideband as a low and mid quality anchors
(as recommended in ITU-R BS.1534 [22]). The samples tested,
shown in Table II, were selected to capture a variety of dif-
ferent audio types and were taken from CDs and the EBU
music database [23]. With nine treatments and 12 samples,
the dataset contains a total of 108 audio clips.

TABLE II
AUDIO SAMPLES IN THE TCDAudio14 DATASET

TABLE III
AUDIO SAMPLE TREATMENTS IN THE AACvOpus15 DATASET

The subjective tests were fully compliant with the ITU-
R BS.1534 [22] standard. The subjective scores were given
using the MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) format, as recommended for audio with the
intermediate quality like that in this dataset. Ten expert asses-
sors [24], also trained according to standard [22], wore high
quality Sennheiser HD headphones and assigned quality scores
ranging from 0 (bad) to 100 (excellent) for every audio clip
in the dataset. The duration of the tests were within the lim-
its of [22] and all tests took place in a sound proof room in
Dublin, Ireland in 2014. Further details on this dataset are
found in [5].

B. AACvOpus15

The AACvOpus15 dataset was created to access the quality
of the AAC format against the Opus format at a variety of
bitrates commonly used by streaming services. The full list
of treatments is shown in Table III (all at constant bitrates)
and includes 3.5 kHz narrowband as low quality anchor. The
samples tested, shown in Table IV, were selected to capture
a variety of different audio types including the kind of audio
that might be found on YouTube. All audio clips had a frame
size of 20 and were resampled to 48 kb/s. With nine treatments
and ten samples, the dataset contains a total of 90 audio clips.

The subjective tests were based on ITU-R BS.1534 [22]
standard with MUSHRA. A total of 19 expert assessors, also
trained according to standard [22], wore high quality AKG
K550 headphones. The tests were run in a quiet room where
users gave quality scores from 0 to 100 using a Nexus 7 run-
ning the HTML-based MUSHRA program described in [5].
The duration of the tests were within the limits of [22] and
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TABLE IV
AUDIO SAMPLES IN THE AACvOpus15 DATASET

TABLE V
AUDIO SAMPLE TREATMENTS IN THE CoreSV14 DATASET

all tests took place in a sound proof room in San Francisco,
USA in 2015.

C. CoreSV14

The CoreSV14 dataset [21] was created to access the quality
of the Opus format at 96 kb/s compared to AAC and Ogg
Vorbis at 96 kb/s and MP3 at 128 kb/s at a variety of bitrates.
The full list of treatments is shown in Table V. The libfaac
at 48 kb/s and 96 kb/s are used as the low and mid quality
anchors, respectively. There are 40 different samples in total
including 5 speech samples and 35 music samples. The music
samples contain several solos but mostly excerpts from popular
songs across many genres. With six treatments and 40 samples,
the dataset contains a total of 240 audio clips.

The subjective tests used the ABC/Hidden Reference
(ABC/HR) methodology, a hidden reference variation of the
ABX methodology [25], where subjects played an uncom-
pressed reference and then rated two files: one being the
hidden reference and the other being the compressed audio.
Ratings were scored on a continuous impairment scale from
1 (very annoying) to 5 (imperceptible), as described ITU-T
BS.562 [15]. Tests were crowd sourced from 30 music enthu-
siasts of unknown assessor ability. The tests took place in
homes of each subject using a variety of sound setups and not
in a controlled environment. This dataset is included in the
experiments because it covers a wide range of samples and
treatments. Further details on the dataset can be found at [21].

V. EXPERIMENT METHODOLOGY

The experiment in Section VI sees the subjective scores in
each dataset compared to the objective scores predicted by
PEAQ, POLQA, PEMO-Q and ViSQOLAudio. These objec-
tive models were selected as each model has been shown to
accurately predict perceptual quality for musical audio [3]–[6].
Although POLQA was designed for use with speech rather
than music, tests have shown POLQA performs well when

predicting the quality of encoded audio [4]. Although a version
of POLQA designed specifically for predicting music quality
exists [8], this version is currently unavailable for commercial
use and so is not used in our experiment.

This section explains the experiment evaluation metrics, the
configuration of the objective models, the post-screening pro-
cess performed on the datasets, and the describes how the SVR
in ViSQOLAudio is trained.

A. Evaluation Metrics

It is recommend that objective models should be assessed at
least in terms of their linearity, accuracy, and consistency [26].
This section defines the metrics used to determine each of
these model properties.

Two fittings are performed as per the recommendation in
ITU-T P.1401 [26]. The two fittings are first and third order
polynomial regressions of the raw objective quality scores
to the MOS-LQSs. Monotonically increasing polynomials for
the first and third order fits are found using the Hawkins
algorithm [27]. Regression is employed with these mono-
tonic fittings to map objective scores to minimize the RMSE
and compensate for biases within the subjective data with-
out changing the rank order of the objective scores [26]. The
unmapped and mapped objective quality scores of each model
will be compared to the MOS-LQSs using the evaluation met-
rics described in Section V-A for each treatment in each dataset
(as recommended in [28] and [29]). The evaluation metrics are
defined as follows.

1) Linearity - R: Pearson’s correlation coefficient (R) is
used to measure the linear relationship between a sequence of
objective and subjective quality scores. R is calculated:

R =
∑N

i=1

(
Xi − X̄

)(
Yi − Ȳ

)
√∑N

i=1

(
Xi − X̄

)2
√∑N

i=1

(
Yi − Ȳ

)2
(4)

where Xi is the MOS-LQS for audio clip i, Yi is the MOS-LQO
(objective score) for audio clip i, X̄ is the mean MOS-LQS,
Ȳ is the mean objective score, and N is the number of audio
clips in the dataset.

2) Accuracy - ε-RMSE: The root-mean-square error
(RMSE) can be used to describe the absolute prediction error
between a sequence of MOS-LQS and objective score val-
ues. MOS-LQS values are an average of subjective scores and
do not represent variance. The epsilon insensitive root-mean-
square (ε-RMSE) can be used to describe the prediction error
between a sequence of MOS-LQS and objective score values
that accounts for variance in the subjective scores [26]. To con-
sider variance, ε is first set to the (one-sided) 95% confidence
interval of the subjective scores that compose a MOS-LQS.
An ε insensitive prediction error can then be calculated by
first predicting an objective score for an audio clip and testing
if the score falls within the range of the MOS-LQS ± ε. If
it does, the error for that MOS-LQO prediction is set to 0.
ε-RMSE is defined as:

ε-RMSE =
√√√√ 1

N − d

N∑
i=1

max(0, |Xi − Yi| − cii)2 (5)
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where d is the degree of the polynomial fit and where ci is
the 95% confidence interval of the subjective scores for audio
clip i. Determining the confidence interval per audio clip is
defined:

cii = t(0.05, Mi)
σi√
Mi

(6)

where t is the Student’s t-distribution, σi is the standard devi-
ation of the subjective scores for the audio clip i, and Mi is
the number of subjective scores for the audio clip i.

3) Consistency - Outlier Ratio: Prediction score consis-
tency is calculated using the outlier ratio (OR), as recommend
in [26], where an outlier is defined for an objective score on
an audio clip as:

oi =
{

1, if |Xi − Yi| > 2σi

0, otherwise
(7)

where 2σi is twice the standard deviation of the subjective
scores given for the audio clip i, Xi is the MOS-LQS and
Yi is the objective score for audio clip i. The outlier ratio is
therefore given as:

OR =
∑N

i=1 oi

N
(8)

where N is the number of audio clips in the dataset.

B. Objective Models Configuration

ViSQOLAudio uses the configuration described in
Section III, sampling from the mid channel of the stereo
audio and using a ν-SVR with a radial kernel. The Matlab
code for ViSQOLAudio can be found at [30]. PEAQ-
Advanced (Opera 3.5 distribution) was tested using the
default settings given in the example batch files that come
with PEAQ: static gain on, the DC filter on, and automatically
inverting the test signal. PEMO-Q was tested with the default
settings supplied in version 2.0 of the PEASS Toolkit [31],
as optimized in [32]. POLQA (version 2.4, with Opticom’s
POLQA OEM Library for 64-bit Linux, version 1.22) is run
in super-wide band mode.

C. Post-Screening of Assessors

It is recommended to remove subjective and objective data
prior to analysis if there is reason to believe the data is invalid.
The subjective data from the datasets specified in Section IV
is removed from the experiment if it meets any of the fol-
lowing criteria specified in ITU-T P.1401 [26] and ITU-R
BS.1534 [22]:

1) Data from any subject that did not understand the
instructions.

2) Data from a subject that rates the hidden reference con-
dition for more than 15% of the test items less than a
score of 90% of the maximum possible score.

3) Data from a subject that rates the mid-range anchor for
more than 15% of the test items greater than a score of
90% of the maximum possible score.

4) Data from a sample that more than 25% of the subjects
rate the mid-range anchor greater than a score of 90%
of the maximum possible score.

5) Data relating to a reference that scored below 4 MOS-
LQS.

The following number of subject results were excluded for
satisfying one of the post-screening criteria follow: three sub-
jects from TCDAudio14 for satisfying criteria 3, five subjects
from ACCvOpus15 for satisfying criteria 2, and one sub-
ject from CoreSV14 for satisfying criteria 3. The reason the
CoreSV14 dataset has so few exclusions given its large size is
because this dataset had already been screened according to
criteria detailed in [21].

PEAQ and other models have been trained on some of
the samples in the TCDAudio14 and AACvOpus15 datasets.
Therefore, none of the models are tested on these samples and
no results from these samples are be considered during evalu-
ation. These samples are: castanets, glockenspiel, harpsichord
and vega from the TCDAudio14 and AACvOpus15 datasets.
Also, as music is the use-case of interest, the samples speech
English male, speech German male and speech Korean male
are excluded from the CoreSV14 dataset.

D. Training and Testing

Each of the models has been trained on a dataset to map sig-
nal derived attributes to an objective score. Each test should be
performed with the same mapping function. A mapping func-
tion is usually trained on several datasets and tested on another.
When evaluating the audio clips in the CoreSV14 dataset,
the mapping function for ViSQOLAudio (an SVR described
in Section III-F) was trained on frequency band similarity
scores (observations) and MOS-LQS values (targets) from the
samples in the TCDAudio14 and AACvOpus15 datasets.

However, the mapping function for ViSQOLAudio when
predicting quality for audio clips in the TCDAudio14 and
AACvOpus15 datasets is different due to a scarcity of subjec-
tive score datasets. When rating a clip in the TCDAudio14 and
AACvOpus15 datasets, the mapping function will have been
trained on all samples in those datasets except for the sample
currently being tested, e.g., if predicting the quality of a boz
audio clip, the mapping function is trained on all clips except
for the boz clips. This cross-validation approach, necessitated
by the scarcity of datasets, is taken to make the mapping func-
tion as similar as possible to the one used to test CoreSV14
while not testing on the same data the model was trained on.
By not testing on anything the SVR has been trained on and
given that codecs encode different sounds and instruments with
different qualities and characteristics [5], we consider it fair to
compare the performance of ViSQOLAudio to other objective
models for the TCDAudio14 and AACvOpus15 datasets.

VI. EXPERIMENT

This section presents the results of applying ViSQOLAudio,
PEAQ, POLQA and PEMO-Q to each dataset. The qual-
ity predictions, both unmapped and mapped with polynomial
regression, are compared to the subjective scores to determine
the accuracy, consistency and linearity of each model. Mapped
quality predictions are then aggregated by group to discuss
how models performs on each audio treatment.
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Fig. 4. Subjective versus objective quality scores. First and third order polynomial fits are shown as dashed and solid lines, respectively.

A. Results

Scatter plots show the objective versus subjective scores
for each model in Figure 4, demonstrating how well each
model performed. The x-axis of each scatter plot is the MOS-
LQS of an audio clip and the y-axis is the objective quality
prediction for the same audio clip. Each solid line is a third
order polynomial fit and each dashed line is a first order fit
where the polynomial values were found using the Hawkins
algorithm [27].

These scatter plots show that ViSQOLAudio and PEMO-Q
fit well to the subjective scores for each dataset. PEAQ
consistently underestimates the quality of medium quality
audio. PEAQ performs particularly badly on the AACvOpus15
dataset, where even a third order polynomial cannot reason-
ably account for the predictions. POLQA has fair performance
on TCDAudio14, and acceptable performance on AACvOpus15
with the exception of the predictions for the low-quality anchor
clips, but struggles on CoreSV14 where poor thresholding
reduces prediction accuracy.

Table VI presents the ε-RMSE, OR (outlier ratio) and
R (Pearson correlation), respectively representing the accu-
racy, consistency and linearity of model predictions, for the
unmapped predictions and the predictions regressed with
the first and third order polynomials shown in Figure 4.
The unmapped objective predictions are scaled to MOS-LQS

(using linear interpolation) to allow a comparison of the
unmapped predictions of each model. The results for PEAQ-
Basic are included for completeness though discussion of
the results will refer exclusively to PEAQ-Advanced as it
performed better.

The unmapped results in Table VI show that ViSQOLAudio
scores correlate strongly with the subjective scores across all
datasets and that ViSQOLAudio has the lowest ε-RMSE in
two of the three datasets. The OR for PEAQ is high for
the AACvOpus15 dataset because of the accurately predicted
low pass (narrow and wideband) audio clips being poorly
fitted, and because of the poorly predicted medium qual-
ity audio. PEAQ also has the lowest ε-RMSE for the
CoreSV14 dataset. PEAQ benefits the most from the poly-
nomial fits, with ε-RMSE dropping substantially for the
TCDAudio14 and AACvOpus15 datasets. PEMO-Q performs
well on all datasets, always near to the best in each dataset.
The unmapped predictions for POLQA are reasonably accu-
rate for the high quality audio clips in TCDAudio14 and
AACvOpus15 but inaccurate for low quality clips. The pre-
dictions for CoreSV14 are particularly poor compared to
the other models, where POLQA seems unable to distin-
guish high and low quality clips. However, emphasis should
not be placed on the results of the unmapped evaluation
metrics as they do not account for potential bias in the
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TABLE VI
EVALUATION METRICS FOR OBJECTIVE MODELS ON ALL TREATMENTS

datasets, which the polynomial fittings are meant to compen-
sate for.

For mapped data, the first order polynomial regressed data
follows the same pattern as the third order regressed results.
PEAQ benefits most from the data regressions, substantially
reducing its associated ε-RMSE and OR. For third order
mapped data, the OR values for all models but PEAQ drop to
negligible values. ViSQOLAudio continues to have to lowest
ε-RMSE values in two of the three datasets. PEAQ continues
to be the most accurate for CoreSV14. POLQA does not ben-
efit as much from the mappings as the other models because
of the poor correlation between its objective score and the
subjective scores.

Table VII shows the evaluation metrics for all score
predictions but without the anchors (3.5 and 7.0 kHz treat-
ments for TCDAudio14, 3.5 kHz for AACvOpus15, and both
32 kb/s treatments for CoreSV14). For the unmapped data,
ViSQOLAudio has the best ε-RMSE for all datasets. OR val-
ues are high for PEAQ and POLQA due to the large variation
in prediction quality for high quality audio clips. Correlations
are generally poor across all datasets and models because,
without anchors, the results cluster only around the MOS-LQS
4 to 5 area, giving little direction to the mappings. This is
particularly true for POLQA, where having a negative corre-
lation made it impossible to find a monotonically increasing
fit using the fitting algorithm, which is why the mapped data
for POLQA for the AACvOpus15 and CoreSV14 datasets have
been excluded.

For the no-anchor third order polynomial regressed data,
only the metrics from TCDAudio14 and CoreSV14 should be
considered reliable as there is a reasonably large spread in
quality among the audio clips. However, for AACvOpus15,
without anchors, the fittings for all models is a nearly verti-
cal line (as opposed to the fittings with anchors shown in the
AACvOpus15 plots in Figure 4) because there is too little dif-
ference in the subjective scores of non-anchor audio clips. This
puts almost all predictions within the epsilon of the RMSE
and results in unreliable ε-RMSE values. In TCDAudio14
and CoreSV14, PEAQ performs best by nearly all metrics.
However, as seen in Figure 4 for PEAQ TCDAudio14, with the
anchors, the fitting is a steep curve, pushing the inaccurate high

quality audio clip quality predictions up to the range where
the majority of subjective scores are. PEMO-Q experiences
the same problem to a lesser extent.

Table VIII shows the evaluation metrics for ViSQOLAudio
and ViSQOLAudio as it was in 2015 [4]. Across all datasets,
mappings and metrics, ViSQOLAudio is as good or substan-
tially better than its predecessor. This affirms the benefit of
the changes to the ViSQOLAudio model.

A breakdown of the accuracy of each model by treatment
is shown in Figure 5. These box plots compare the subjective
scores to the third order polynomial regressed objective scores.
The error bars represent 95% confidence intervals.

The subjective scores in Figure 5 highlight that all treat-
ments with a bitrate above 48 kb/s for all but AAC-LC FAAC
audio clips have a score near 4.5 MOS-LQS. The figure also
shows that objective score accuracy increases with perceptual
audio quality suggesting that all models are generally reliable
for high quality audio. In all datasets, ViSQOLAudio MOS-
LQO mean values are always less than 0.5 from the MOS-LQS
mean values.

For all datasets, models were least accurate and had the
highest variation when scoring low quality treatments, such as
anchors and files with bitrates of 48 kb/s and lower.

The results from the tested datasets indicate that PEAQ is
inaccurate for predicting low-bitrate audio quality, especially
for the TCDAudio14 and AACvOpus15 anchors. PEAQ also
exhibits an unusual pattern of predicting large differences in
quality for clips with the same treatment, as clearly demon-
strated in the AACvOpus15 dataset by the large PEAQ error
bars, even at high bitrates. This large variation in quality
prediction suggests that PEAQ is quite sensitive to different
kinds of sample content, e.g., guitar samples are predicted
correctly but contrabassoon samples are predicted poorly.

PEMO-Q is accurate on all but the low quality anchors
of TCDAudio14 and AACvOpus15. The variation in PEMO-Q
scores is large at low bitrates but reduces to more acceptable
levels at greater than 4 MOS-LQS values. This variation sug-
gests that PEMO-Q becomes less sensitive to different kinds
of sample content as perceptual audio quality increases.

POLQA is inaccurate when predicting the quality of anchors
for each of the datasets. POLQA also has a consistently
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TABLE VII
EVALUATION METRICS FOR OBJECTIVE MODELS ON ALL TREATMENTS EXCLUDING THE ANCHOR TREATMENTS

TABLE VIII
EVALUATION METRICS FOR THE OLD AND NEW VERSION OF VISQOLAUDIO FOR ALL TREATMENTS

large variation in its quality predictions for samples with the
same treatment. The mean POLQA quality predictions for all
treatments with a bitrate of 48 kb/s or more is lower than
the MOS-LQS values, with the exception of FAAC 96 kb/s
AAC-LC. This is likely due to the music being interpreted as
noise because the instruments have few of the characteristics
of a voice.

VII. DISCUSSION

Before describing the findings from the objective scores, we
will first take a moment to describe the difference in the sub-
jective scores across the datasets as these have a large impact
on the evaluation metrics.

Although the subjective tests for the AACvOpus15 dataset
were based on ITU-R BS.1534 [19], it deviated from the stan-
dard by having subjects told an uncompressed reference was
among each set of degradations and that the subjects must
assign a score of 100 to at least one of audio clips per audio
clip set. This deviation did not greatly impact the subjective
scores as the scores in AACvOpus15 are close to those in
TCDAudio14 for clips with the same treatment, where subjects
for the TCDAudio14 could vote without condition.

The CoreSV14 dataset used the ITU-T BS.562 [15] impair-
ment scale from 1 (very annoying) to 5 (imperceptible)
whereas the TCDAudio14 and AACvOpus15 datasets used the
ITU-R recommendation BS. 1534-3 [33] scale of 0 (bad)
to 100 (excellent). The wording of low quality ratings may
have affected the scores, explaining why the low quality
anchor in CoreSV14 has a MOS-LQS mean around 1.2 while
the low quality anchors in TCDAudio14 and AACvOpus15
have a MOS-LQS mean around 2. The anchor scores are

made even more puzzling given that, in the opinion of the
authors, the (3.5 kHz narrowband) low quality anchor audio
in TCDAudio14 and AACvOpus15 are perceptually lower in
quality than the (32 kb/s AAC-LC) low quality anchor audio in
CoreSV14. Moreover, the low quality anchor scores are consis-
tent across the TCDAudio14 and AACvOpus15 datasets despite
using different subjects, and the low quality anchor scores in
CoreSV14 are very consistent around 1.2 MOS-LQS. However,
this kind of inconsistency is simply the nature of subjective
tests.

When considering all treatments, MOS-LQS means are gen-
erally lower in the CoreSV14 dataset than the other datasets.
This is illustrated by the MOS-LQS means of Opus and
MP3 treated audio clips present in both datasets. The MOS-
LQS mean per treatment is lower in CoreSV14 for Opus
and MP3 even at bitrates higher than those tested in the
TCDAudio14 and AACvOpus15 datasets. The low subjective
scores in CoreSV14 help explain why the models consistently
underestimate the quality of CoreSV14 audio clips.

For mapped and unmapped objective scores, with respect
to the tested data, PEAQ was inaccurate on TCDAudio14 and
AACvOpus15 when compared to PEMO-Q and ViSQOLAudio
(Table VI). We believe this may be because the bulk of PEAQ’s
training has been performed on a different scale and with very
different low quality anchors to the narrowband anchors used
in TCDAudio14 and AACvOpus15. This makes sense when
considering the accuracy of PEAQ on CoreSV14, which had
a low quality anchor with quality much higher than that of
the TCDAudio14 and AACvOpus15 low quality anchor. The
large variation in PEAQ quality predictions among high qual-
ity audio shows an undesirably strong sensitivity to sample
content.
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Fig. 5. Box plot of third order polynomial mapped data by treatment with 95% confidence intervals.

PEMO-Q performed well overall, with reasonable corre-
lation to the subjective scores for all sets on mapped and
unmapped data. PEMO-Q predictions became increasingly
accurate and had a lower variation across samples for per-
ceptually higher quality samples. PEMO-Q predictions varied
greatly for low bitrate audio, as seen in TCDAudio14. Overall,
PEMO-Q performs well in linearity, consistency and accuracy
across all datasets.

POLQA performed well for high quality audio clips in
TCDAudio14 and AACvOpus15 but not CoreSV14. POLQA
performed poorly for all other treatments, when compared to
the predictions of the other models. This is likely because
POLQA is specialized to identify and extract voice data from
audio and does not translate well to a musical domain, unlike
POLQA Music [8], which is not released at the time of this
publication.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON BROADCASTING

ViSQOLAudio performed well on the TCDAudio14 and
AACvOpus15 datasets, having the best linearity and accu-
racy on third order polynomial mapped data with anchors.
ViSQOLAudio was able to give accurate predictions for both
low and high quality audio. ViSQOLAudio also gave the most
accurate quality predictions for all but one of the anchor
treatments.

Ideally, all models would be trained and tested using
common data, however datasets used to develop PEAQ and
PEMO-Q were not available to the authors. The CoreSV14
tests with an ITU-T BS.562 [15] scale rather than MUSHRA
scale data that were used to train ViSQOLAudio’s mapping
scale revealed the robustness of ViSQOLAudio’s performance.
It can be seen in Table VIII that the improvements in corre-
lation statistics between the proof of concept ViSQOL model
adaptation [4] and the newly presented ViSQOLAudio model
is largest for the CoreSV14 dataset (i.e., the dataset not used
during training). This highlights that the improvements for all
datasets come from the other improvements to the model and
are not simply as a result of training to map from a similar-
ity measure to a MOS value. This reassured the authors that
the leave-one-out training model has not given ViSQOLAudio
an unfair advantage when evaluating performance with the
TCDAudio14 and AACvOpus15 datasets.

ViSQOLAudio was greatly enhanced by the culmination of
a number of improvements (as demonstrated in Table VIII).
Apart from being more accurate, ViSQOLAudio also has
greater utility than its predecessor as it now outputs an eas-
ily interpreted MOS-LQO value rather than just a similarity
score.

ViSQOLAudio overestimates scores in CoreSV14 as a result
of its training data. MOS-LQS values of the low quality
anchors in the datasets that ViSQOLAudio was trained on
(TCDAudio14 and AACvOpus15) were higher than the MOS-
LQS values for low quality anchor in CoreSV14, though the
CoreSV14 audio was of perceptually higher quality. As the
TCDAudio14 low quality anchors scored around 2 MOS-LQS,
the CoreSV14 low quality anchor could not be given a score
lower as they were perceptual higher in quality than the
TCDAudio14 low quality anchor. Upon removing the anchors
from each of the datasets, ViSQOLAudio then had the highest
accuracy for unmapped data across all datasets (Table VII),
including CoreSV14.

As well as limitations to the machine learning approach
given the current data, there are weaknesses to the use of mid
channel data to consider information from both channels of
a stereo signal. For example, consider a stereo file where the
left channel signal is 180 degrees out of phase with the right
channel signal, resulting in a silent mid channel. However, no
such issue was found in the tested music domain.

VIII. CONCLUSION

The goal of this paper was to determine the viability of
objective perceptual audio quality models as a tools for codec
regression testing. This was done by evaluating the accu-
racy, linearity and consistency of perceptual quality predictions
from ViSQOLAudio, PEAQ, POLQA and PEMO-Q compared

to the subjective quality scores. The evaluation was performed
on encoded musical audio with a variety of samples and treat-
ments. The results showed that ViSQOLAudio performed best
on all metrics for two of the three datasets and just short of the
best accuracy for the third dataset. These results demonstrate
that ViSQOLAudio, a free and open source objective metric,
is a powerful alternative to PEAQ, POLQA, PEMO-Q when
evaluating perceptual audio quality at a variety of bitrates mak-
ing it suitable for codec regression testing. Future work on
ViSQOLAudio will focus on finding a more robust method
for handling stereo audio and investigating wavelet transforms
in place of the Gammatone filterbank.
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