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Pliska Stud. Math. 26 (2016), 99–112
STUDIA MATHEMATICA

MODELS OF INTERNAL WAVES IN THE PRESENCE

OF CURRENTS

Alan Compelli, Rossen Ivanov

A fluid system consisting of two domains is examined. The system is con-
sidered as being bounded at the bottom and top by a flatbed and wave-free
surface respectively. An internal wave propagating in one direction, driven
by gravity, acts as a free common interface between the fluids. Various cur-
rent profiles are considered. The Hamiltonian of the system is determined
and expressed in terms of canonical wave-related variables. Limiting be-
haviour is examined and compared to that of other known models. The
linearised equations as well as long-wave approximations are formulated.
The presented models provide potential applications to modelling of inter-
nal geophysical waves.

1. Introduction

In the context of surface waves wave heights of the order of tens of metres are con-
sidered large. For instance a 20.4 metre surface wave measured off the Northwest
coast of Ireland in December 2011 is the largest ever measured by Met Éireann
(the Irish meteorological service).

However, internal waves of the order of hundreds of metres often propagate
unnoticed beneath the surface. Satellite imaging now allows us to observe and
measure these waves. Waves of more than 170 metres have been observed in the
Luzon Strait between Taiwan and Luzon Island in the South China Sea whilst

2010 Mathematics Subject Classification: 35Q35, 37K05, 74J30.
Key words: Internal waves, linear equations, wave-current, Hamiltonian system, KdV equa-

tion.
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traffic passed through the busy shipping route oblivious to the massive internal
waves passing underneath.

The addition of currents to internal wave systems introduces various degrees
of complexity depending on the current profile under study. Waves-current inter-
action is of interest to various groups including marine biologists, oceanographers
and climate scientists.

The presented study draws from previous studies using Euler’s equations
beginning with Zakharov’s irrotational studies on deep water [1] and rotational
finite depth studies such as [2, 3]. The aim is to develop nonlinear models that
capture the main features of the dynamics and lend themselves to approximate
models.

Several other irrotational [4, 5, 6, 7] and rotational models [8, 9, 10, 11] and in
particular the model of 2-media systems with internal waves such as [12, 13, 14,
15, 16, 17, 18] form the framework for the presented findings. The consideration
of wave-current interactions has been explored in several recent publications [19,
20, 21, 22, 23, 24].

This paper aims to generalise the study of internal waves by considering
adjacent media which have different vorticities and current profiles. Recovery of
already known special cases will be demonstrated and approximate models will
also be formulated.

2. Preliminaries

A two-dimensional bounded system consisting of two fluids is examined as per
Figure 1. An internal wave, driven by gravity, acts as a free common interface
between the fluids. The bottom of the system is bounded by an impermeable
flat-bed. The top of the system is also considered to be a flat surface. It is
important to note that, by comparison to [19], this is not equivalent to assuming
the amplitude of the surface waves as being small. One has to keep in mind that
no matter how small the surface waves are there is a coupling between surface
and internal waves.

The function η(x, t) describes the elevation of the internal wave with the mean
of η assumed to be zero, that is

∫

R

η(x, t)dx = 0

and hence the domains Ω = {(x, y) ∈ R
2 : −h < y < η(x, t)} and Ω1 = {(x, y) ∈

R
2 : η(x, t) < y < h1} are defined.
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Figure 1: System setup. The function η(x, t) describes the elevation of the inter-
nal wave which propagates in x-direction.

The system is considered incompressible with ρ and ρ1 being the respective
constant densities of the lower and upper media and stability is given by the
immiscibility condition ρ > ρ1.

The velocity fields V(x, y, t) = (u, v) and V1(x, y, t) = (u1, v1) of the lower
and upper media respectively are defined in terms of the respective velocity po-
tentials

(1)

{

ϕ ≡ ϕ̃+ κx for Ω
ϕ1 ≡ ϕ̃1 + κ1x for Ω1.

The motivation for the decomposition (1) is the separation of the velocity
potential to wave-motion components, given by ϕ̃ and ϕ̃1, and the κx and κ1x
terms, generating constant horizontal velocity components of the flows in the
corresponding domains.

Stream functions ψ and ψ1 are introduced as

(2)















u = ϕ̃x + γy + κ = ψy

v = ϕ̃y = −ψx

}

for Ω

u1 = ϕ̃1,x + γ1y + κ1 = ψ1,y

v1 = ϕ̃1,y = −ψ1,y

}

for Ω1

where γ = uy − vx and γ1 = u1,y − v1,x are the constant non-zero vorticities (see
[19]–[24] for the reasoning behind the choices in (2)).
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The following assumption is made: η(x, t), ϕ̃(x, y, t) and ϕ̃1(x, y, t) belong to
the Schwartz class S(R) with respect to the x variable (for any y and t). The
assumption of course implies that for large absolute values of x the internal wave
attenuates and so

(3) lim
|x|→∞

η(x, t) = 0, lim
|x|→∞

ϕ̃(x, y, t) = 0 and lim
|x|→∞

ϕ̃1(x, y, t) = 0.

Effectively the current profiles in Ω and Ω1 are

U(y) = γy + κ, U1(y) = γ1y + κ1.

As the system under study is a geophysical system and we are considering
equatorial motion the following Coriolis forces per unit mass have to be taken
into account:

(4)

{

F = 2ω∇ψ for Ω
F1 = 2ω∇ψ1 for Ω1

with ω being the rotational speed of Earth.

Interface velocity potentials φ(x, t) and φ1(x, t) are introduced defined as

(5)

{

φ := ϕ̃(x, η(x, t), t) for Ω
φ1 := ϕ̃1(x, η(x, t), t) for Ω1.

The variable ξ(x, t), defined as [14]

(6) ξ := ρφ− ρ1φ1

plays the important role of momentum. It belongs to S(R).

3. Hamiltonian Formulation

The Hamiltonian H = H(η, ξ) is the total energy of the system. The dynamics
can be represented in a Hamiltonian form [2, 3, 17, 18]

(7)







ηt = δξH

ξt = −δηH − Γ

∫ x

−∞

δH

δξ(x′)
dx′

where

(8) Γ := ργ − ρ1γ1 + 2ω
(

ρ− ρ1
)

.
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We introduce the Dirichlet-Neumann operators [14, 15]

(9)

{

G(η)φ = (ϕ̃n)
√

1 + (ηx)2 for Ω

G1(η)φ1 = (ϕ̃1,n1
)
√

1 + (ηx)2 for Ω1

where ϕn and ϕ1,n1
are the normal derivatives of the velocity potentials, at the

interface, for outward normals n and n1 (noting that n = −n1).

We define

(10) µ :=
(

(γ − γ1)η + (κ− κ1)
)

ηx.

Recalling from (6) that ξ = ρφ − ρ1φ1 and defining B := ρG1(η) + ρ1G(η)
one can express the velocity potentials as

(11)

{

φ = B−1
(

ρ1µ+G1(η)ξ
)

φ1 = B−1
(

ρµ−G(η)ξ
)

.

The Hamiltonian is [23]

(12) H(η, ξ) =
1

2

∫

R

ξG(η)B−1G1(η)ξ dx−
1

2
ρρ1

∫

R

µB−1µdx

−

∫

R

(γη + κ)ξηx dx+ ρ1

∫

R

µB−1G(η)ξ dx

+
ρ

6γ

∫

R

(γη + κ)3dx−
ρ1
6γ1

∫

R

(γ1η + κ1)
3dx+

1

2
g(ρ− ρ1)

∫

R

η2dx+

∫

R

h1dx

where

h1 =
ρ1κ

3
1

6γ1
−
ρκ3

6γ
.

Considering the following case: γ1 = γ and κ1 = κ then µ = 0 then the
Hamiltonian in [21] is recovered as

(13) H(η, ξ) =
1

2

∫

R

(G(η)ξB−1G1(η))ξ dx−

∫

R

(γη + κ)ξηx dx

+
ρ− ρ1
6γ

∫

R

[(γη + κ)3 − κ3]dx+
1

2
g(ρ− ρ1)

∫

R

η2dx.
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Considering the following case: γ1 = γ = 0 and κ1 = κ then µ = 0 then the
Hamiltonian in [22] is recovered as

(14) H(η, ξ) =
1

2

∫

R

(G(η)ξB−1G1(η))ξ dx − κ

∫

R

ξηx dx +
1

2
g(ρ − ρ1)

∫

R

η2dx.

Finally, considering the case: γ1 6= γ and κ1 = κ = 0 then µ = (γ − γ1)ηηx
then the Hamiltonians in [17, 18] are recovered as

(15) H(η, ξ) =
1

2

∫

R

ξG(η)B−1G1(η)ξ dx+ ρ1(γ − γ1)

∫

R

ηηxB
−1G(η)ξ dx

−
1

2
ρρ1(γ − γ1)

2

∫

R

ηηxB
−1ηηx dx− γ

∫

R

ξηηx dx

+
1

6
(ργ2 − ρ1γ

2
1)

∫

R

η3dx+
1

2
g(ρ− ρ1)

∫

R

η2dx.

The additional complexity of surface waves is considered in [19, 20].

4. Scales and Expansions

Let a represent the average amplitude of the waves η(x, t) under consideration
and ε = a/h1 a small parameter.

The Dirichlet-Neumann operators have the following structure

(16) Ḡ = Ḡ(0) + Ḡ(1) + Ḡ(2) + . . .

where Ḡ(n) ∼ η̄n∂n+1
x̄ , i.e. Ḡ(n) =

εn

h1
G(n), and similarly for G1, and so

Ḡ(η̄) = D̄ tanh(hD̄) + D̄η̄D̄ − D̄ tanh(hD̄)η̄D̄ tanh(hD̄) +O(ε2)

Ḡ1(η̄) = D̄ tanh(h1D̄)− D̄η̄D̄ + D̄ tanh(h1D̄)η̄D̄ tanh(h1D̄) +O(ε2)

where D̄ = −i∂/∂x̄.
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The Hamiltonian, H(2), is given by:

(17) H(2) =
1

2

∫

R

ξ
D tanh(hD) tanh(h1D)

ρ tanh(h1D) + ρ1 tanh(hD)
ξ dx

+
1

2
ρρ1(κ− κ1)

2

∫

R

η
D

ρ tanh(h1D) + ρ1 tanh(hD)
η dx− κ

∫

R

ξηx dx

+ ρ1(κ− κ1)

∫

R

ηx
tanh(hD)

ρ tanh(h1D) + ρ1 tanh(hD)
ξ dx+

1

2
A1

∫

R

η2 dx

where
A1 = ργκ− ρ1γ1κ1 + g(ρ− ρ1).

This gives the linear equations

(18) ηt + κηx =
D tanh(hD) tanh(h1D)

ρ tanh(h1D) + ρ1 tanh(hD)
ξ +

ρ1(κ− κ1) tanh(hD)

ρ tanh(h1D) + ρ1 tanh(hD)
ηx

and

(19) ξt + κξx + Γ

∫ x

−∞
ηt dx

′ =
ρ1(κ− κ1) tanh(hD)

ρ tanh(h1D) + ρ1 tanh(hD)
ξx

−
ρρ1(κ− κ1)

2D

ρ tanh(h1D) + ρ1 tanh(hD)
η −A1η.

Looking for a solution which is a superposition of sine and cosine waves, we
represent η and ξ as

(20)

{

η(x, t) = η0e
−i(Ω(k)t−kx)

ξ(x, t) = ξ0e
−i(Ω(k)t−kx)

where k is the wave number and Ω(k) is the angular frequency. The wave speed
c is given by

c(k) =
Ω(k)

k
.(21)

Introducing the functions

(22)

{

T (k) = tanh(kh)
T1(k) = tanh(kh1)
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one can obtain the following quadratic equation for the wave speed

(23) (c− κ)2 +
2(κ− κ1)ρ1kT + ΓTT1

k(ρ1T + ρT1)
(c− κ)−

(A1 − κΓ)TT1
k(ρ1T + ρT1)

+
(κ− κ1)

2ρ1T (ρ1T − ρT1)

(ρ1T + ρT1)2
= 0.

For κ = κ1 we have:

A1 − κΓ = g(ρ− ρ1)− 2κω(ρ− ρ1),

which is a quantity usually close to g(ρ−ρ1) and thus positive (see the discussion
below). Then the quadratic equation becomes

(c− κ)2 +
ΓTT1

k(ρ1T + ρT1)
(c− κ)−

(A1 − κΓ)TT1
k(ρ1T + ρT1)

= 0.(24)

This has solutions:

c±(k) = κ+
1

2

[

− f1 ±
√

f21 + 4f2

]

(25)

where

f1(k) =
Γ tanh(kh) tanh(kh1)

k(ρ1 tanh(kh) + ρ tanh(kh1))
(26)

and

f2(k) =
(A1 − κΓ) tanh(kh) tanh(kh1)

k(ρ1 tanh(kh) + ρ tanh(kh1))
(27)

corresponding to right moving (c+ > κ) and left moving (c− < κ) waves with
respect to a moving observer, moving with the a velocity κ.

The reference frame for the moving observer is obtained by a Galilean trans-
formation X → x− κt, T → t,

∂T → ∂t + κ∂x, ∂X → ∂x

giving

ηT =
DT (D)T1(D)

ρT1(D) + ρ1T (D)
ξ +

ρ1(κ− κ1)T (D)

ρT1(D) + ρ1T (D)
ηx(28)
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and

(29) ξT + Γ∂−1
x ηT = (Γκ − A1)η +

ρ1(κ− κ1)T (D)

ρT1(D) + ρ1T (D)
ξx +

ρρ1(κ− κ1)
2D

ρT1 + ρ1T
η.

Consider the term (Γκ−A1)η. This evaluates to

ρ1γ1(κ1 − κ)− (ρ− ρ1)g + 2κ(ρ − ρ1)ω.(30)

Note that the term 2κ(ρ−ρ1)ω is the only term in the linearised equation that
depends on κ but does not depend on the relative velocity κ−κ1. All other terms
depend only on the difference κ − κ1. This is a consequence of the presence of
the Coriolis term representing non-inertial forces in our frame of reference. When
ω = 0 the equations, of course, depend only on the relative difference κ− κ1.

If κ−κ1 6= 0 there is a jump in the velocity component, tangent to the surface
of the internal wave y = η(x, t), i.e. there is a vortex sheet. While such a situation
is compatible with the inviscid Euler’s equations, in practical situations, where
viscosity is always present, such jumps do not occur (otherwise there will be a
vortex sheet between the two media). For this reason in our further considerations
we take κ1 = κ. This corresponds to the case where there is no vortex sheet at
the boundary between the two layers at y = η(x, t).

Recalling the Hamiltonian in (12) where, in this case, µ = (γ − γ1)ηηx

(31) H(η, ξ) =
1

2

∫

R

ξG(η)B−1G1(η)ξ dx−
1

2
ρρ1(γ − γ1)

2

∫

R

ηηxB
−1ηηx dx

−

∫

R

(κ+ γη)ξηx dx+ ρ1(γ − γ1)

∫

R

ηηxB
−1G(η)ξ dx

+
1

2
[(ρ− ρ1)g + (ργ − ρ1γ1)κ]

∫

R

η2dx+
1

6
(ργ2 − ρ1γ

2
1)

∫

R

η3dx.

5. Long Waves Approximation

We will study the equations under the additional approximation that the wave-
lengths L are much bigger than h and h1. Since

L̄ = h1L⇒
1

L
=
h1
L̄

= δ.

Thus for the wave number k = 2π/L = 2πδ we have k = O(δ). We further
assume that δ2 = O(ε). Recall that the operator D has an eigenvalue k, thus
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we shall keep in mind that D = O(δ). Moreover the x-derivative of the velocity
potentials do not get an extra factor of δ since v̄ of order ε remains unchanged.
In other words the “wave” component of u is ϕ̃x and is of order ε ∼ δ2, hence
ϕ̃x ∼ δ and ξ ∼ δ.

The Dirichlet-Neumann operators can hence be represented as

(32) G(η) = δ
(

D tanh(δhD)
)

+ εδ2
(

DηD −D tanh(δhD)ηD tanh(δhD)
)

+O(ε2δ4)

and

(33) G1(η) = δ
(

D tanh(δh1D)
)

− εδ2
(

DηD −D tanh(δh1D)ηD tanh(δh1D)
)

+O(ε2δ4).

We will keep track only of the scale variables ε, δ. The Hamiltonian has the
following expansion to order δ6:

(34) H(η, ξ) =
1

2
δ4

∫

R

ξD
(

α1 + δ2(α3η − α2D
2)
)

Dξdx+ δ4α5

∫

R

η2

2
dx

− δ4κ

∫

R

ηxξdx− δ6α4

∫

R

ηηxξdx+ δ6α6

∫

R

η3

6
dx.

We introduce the following constants:

α1 =
hh1

ρ1h+ ρh1
, α2 =

h2h21(ρh+ ρ1h1)

3(ρ1h+ ρh1)2
, α3 =

ρh21 − ρ1h
2

(ρ1h+ ρh1)2
,

α4 =
γ1ρ1h+ γρh1
ρ1h+ ρh1

, α5 = g(ρ− ρ1) + (ργ − ρ1γ1)κ and

α6 = ργ2 − ρ1γ
2
1 .

(35)

The Hamiltonian equations for the Hamiltonian (34) in terms of η and ũ = ξx
are

ηT + α1ũx + δ2α2ũxxx + δ2(α3(ηũ)x + α4ηηx) = 0

ũT + ΓηT + (ρ− ρ1)(g − 2ωκ)ηx + δ2(α3ũũx + α4(ũη)x + α6ηηx) = 0,
(36)

where for convenience ∂T = ∂t + κ∂x, that is a Galilean change of coordinates.
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Since ω = 7.3× 10−5 rad/s, κ ∼ 1 m/s, then g ≫ 2ωκ and the 2ωκ term will
be neglected.

One can also exclude ηT from the second equation, which leads to the system

ηT + α1ũx+δ
2α2ũxxx + δ2(α3(ηũ)x + α4ηηx) = 0

ũT − α1Γũx+(ρ− ρ1)gηx − δ2Γα2ũxxx

+ δ2 (α3ũũx + (α4 − Γα3)(ũη)x + (α6 − Γα4)ηηx) = 0.

(37)

The linearised equations produce wave speeds

(38) c =
1

2

(

−α1Γ±
√

α1Γ2 + 4α1(ρ− ρ1)g
)

for an observer, moving with the flow, i.e. there are left- (− sign) and right-
running (+ sign) waves. For a stationary observer the velocities are c+ κ. More-
over, in the leading approximation,

(39) η =
α1

c
ũ and ũ =

c

α1
η.

One can look for a relation between η and u at the next order of approxima-
tion:

(40) ũ =
c

α1
η + δ2σηxx + δ2µη2

for some constants σ and µ (Johnson’s transformation). Then one can express
u via η in both equations (37). The condition for the two equations to coincide
with terms to order δ2 leads to the determination of σ and µ as

σ = −
cα2(c+ Γα1)

α2
1(2c+ Γα1)

and

µ =
α1α4(c− Γα1)− cα3(c+ 2Γα1) + α2

1α6

2α2
1(2c + Γα1)

.

Thus u can be expressed with η to order δ2 and η satisfies the KdV equation,
that represents the coinciding terms of (37), that is

(41) ηT + cηx + δ2
c2α2

α1(2c + Γα1)
ηxxx + δ2

3c2α3 + 3cα1α4 + α2
1α6α2

α1(2c+ Γα1)
ηηx = 0.



110 A. Compelli, R. Ivanov

In the case when all vorticities are zero this simplifies to

(42) ηT + cηx + δ2
cα2

2α1
ηxxx + δ2

3cα3

2α1
ηηx = 0.

The KdV equation represents a balance between a nonlinearity term ηηx, and
dispersion term ηxxx. Reintroducing ε and δ, it is clear that these terms are scaled
like εηηx and δ2ηxxx, so that when ε ∼ δ2 the interplay between nonlinearity and
dispersion is producing smooth and stable in time soliton solutions.

However, there are various geophysical scales and many other situations are
possible, including δ ∼ ε2. In such case δ2 ∼ ε4 ≪ ε and instead of a KdV equation
the relevant model is the dispersionless Burgers equation (∂τ = ∂T + c∂x):

(43) ητ + ε
3c2α3 + 3cα1α4 + α2

1α6α2

α1(2c + Γα1)
ηηx = 0.

Such an equation does not support globally smooth solutions, i.e. the solu-
tions always form a vertical slope and break. Such wave-breaking phenomenon is
well known for internal waves in the ocean. This is a mechanism that causes mix-
ing in the deep ocean, with implications for biological productivity and sediment
transport.

6. Conclusions

A closed water-wave system provides a simplified model for internal geophysical
waves. The Hamiltonian form of the system and the equations of motion in terms
of phase space variables (η, ξ) can be calculated with non-canonical Hamiltonian
structure.

In particular, small amplitude and long-wave regimes are studied. There are
various geophysical scales, allowing for smooth solitons at the KdV regime as
well as breaking waves in the very large wavelengths, when the equations are
asymptotically equivalent to the dispersionless Burgers equation.

A possible limitation of the model is the assumption of a flat surface, which
apparently changes the nature of the internal waves. In the case of a free sur-
face, even in the case of very small amplitudes, the internal wave (in a linear
approximation) is usually coupled to the surface wave. This has an impact on
the possible propagation speeds.
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