
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Mathematics 

2014 

Zakharov-Shabat System with Constant Boundary Conditions. Zakharov-Shabat System with Constant Boundary Conditions. 

Reflectionless Potentials and End Point Singularities Reflectionless Potentials and End Point Singularities 

Tihomir Valchev 
Technological University Dublin, Tihomir.Valchev@tudublin.ie 

Rossen Ivanov 
Technological University Dublin, rossen.ivanov@tudublin.ie 

Vladimir Gerdjikov 
INRNE, Sofia, Bulgaria 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatcon 

 Part of the Non-linear Dynamics Commons, and the Partial Differential Equations Commons 

Recommended Citation Recommended Citation 
Valchev, T., Ivanov, R. and Gerdjikov, V.; Zakharov-Shabat system with constant boundary conditions. 
Reflectionless potentials and end point singularities. In: B. Aneva et al, (eds), “Integrability, Recursion 
Operators and Soliton Interactions”, Avangard Prima, Sofia (2014) pp. 301-324. 

This Conference Paper is brought to you for free and 
open access by the School of Mathematics at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Conference papers by an authorized administrator of 
ARROW@TU Dublin. For more information, please 
contact yvonne.desmond@tudublin.ie, 
arrow.admin@tudublin.ie, brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301312165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatcon
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatcon?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


JGSP 25 (2012) 1–25

ZAKHAROV-SHABAT SYSTEM WITH CONSTANT BOUNDARY
CONDITIONS. REFLECTIONLESS POTENTIALS AND END POINT
SINGULARITIES

TIHOMIR VALCHEV, ROSSEN IVANOV AND VLADIMIR GERDJIKOV

Communicated by XXX
Abstract. We consider scalar defocusing nonlinear Schrödinger equation with
constant boundary conditions. We aim here to provide a self contained pedagog-
ical exposition of the most important facts regarding integrability of that classical
evolution equation. It comprises the following topics: direct and inverse scattering
problem and the dressing method.

1. Introduction

The integrability of the nonlinear Schrödinger equation (NLS)

iqt + qxx ± 2|q|2q = 0 (1)

where q : R2 → C is an infinitely smooth function and subscripts mean par-
tial differentiations, was discovered in the pioneer papers by Zakharov and Sha-
bat [35, 36]. Historically, it was the second nonlinear evolution equations (NLEE)
solved by means of inverse scattering method after Gardner, Greene, Kruskal and
Muira solved the Korteweg-de Vries equation [10, 11, 25] and proved its com-
plete integrability. NLS has numerous applications in physics and mathemat-
ics. In nonlinear optics it models quasi-monochromatic wave packets propagat-
ing in nonlinear media [1] while in plasma physics it describes Langmuir waves
in plasma [9, 19]. Another application of NLS is in fluid mechanics [31] where it
appears in the context of deep water gravity waves. NLS also occurs in classical
differential geometry of curves moving in three dimensional Euclidean space [26].

Despite the fact that NLS and its multicomponent counterparts have been thor-
oughly studied [1, 7, 8, 14, 17, 22, 29, 34] they are still an attractive subject to
study [6, 15, 18, 28, 32] due to recently established applications of multicompo-
nent NLS in Bose-Einstein condensation, see for example [16, 20, 30] and refer-
ences therein. There is also increasing interest in derivation and study of nontrivial
background solutions to NLS [2, 4, 5, 18]. The latter are claimed to model extreme
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2 Tihomir Valchev, Rossen Ivanov and Vladimir Gerdjikov

physical phenomena like rogue (freak) waves [3,27]. All this motivated the authors
of the present paper to summarize the most important results on scalar NLS with
constant boundary conditions.

In the following we shall deal with the repulsive (or defocusing) NLS equation [36]

iqt + qxx − 2
(
|q|2 − ρ2

)
q = 0, ρ ∈ R+ (2)

where the extra linear term introduced above ensures that the x-asymptotics of q

lim
x→±∞

q(x, t) = ρeiθ± , θ± ∈ [0, 2π) (3)

are time independent. The purpose of that paper is to give an accessible summary
of results on inverse scattering method applied to the NLS equation (2) with bound-
ary conditions (3). In doing this the we shall try, following [13, 14, 29], to provide
a self-contained pedagogical exposition.

Our paper is organized as follows. In Section 2 we introduce basic notions and
facts needed for our further considerations. We outline the construction of the
Jost solutions and of the fundamental analytic solutions (FAS) of L. In Section
3 we derive the singularities of the Jost solutions and the FAS in the vicinity of
the points of the continuous spectrum of L. Sections 4 and Section 5 are dedi-
cated to two methods for integration of a given integrable NLEE. These are the
Gelfand-Levitan-Marchenko integral equations and the Zakharov-Shabat’s dress-
ing technique. Taking into account the form of Lax pair and the boundary condi-
tions for q(x, t) (3) one can fit both of these methods to effectively generate special
solutions, dark solitons in particular. In Section 6 we introduce the kernel of the
resolvent of L expressed in terms of the FAS and derive its singularities at the end
points of the spectrum.

2. Preliminaries. Zakharov-Shabat Spectral Problem with Constant
Boundary Conditions

In this section we are going to discuss some basic properties of the Zakharov-
Shabat (AKNS) auxiliary linear system

i∂xΨ(x, t, λ) + (Q(x, t)− λσ3)Ψ(x, t, λ) = 0 (4)

where λ ∈ C is spectral parameter and σ3 = diag (1,−1) is one of Pauli matrices.
The potential

Q(x, t) =

(
0 q(x, t)

−q∗(x, t) 0

)
(5)
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where ∗ stands for complex conjugation, is assumed to obey constant boundary
conditions

lim
x→±∞

Q(x, t) = Q± =

(
0 q±

−q∗± 0

)
, q± = ρeiθ± , θ± ∈ [0, 2π). (6)

Matrix-valued function Ψ is viewed as an arbitrary fundamental solution to (4),
i.e. its columns are given by two linearly independent solutions to the Zakharov-
Shabat linear system. It is our aim here to present the inverse scattering method
(ISM) for (4). In doing this we are going to formulate direct scattering problem for
Zakharov-Shabat systems with constant boundary conditions and analyze spectral
properties of scattering operator

L(λ) = i∂x +Q(x, t)− λσ3 (7)

introduced in (4). Our considerations shall mostly follow the ideas and the notation
used in [12, 13, 17].

The linear system (4) with boundary conditions (6) underlies the inverse scattering
method application to the defocusing NLS equation (2). It is equivalent to zero cur-
vature condition [L(λ), A(λ)] = 0 for L(λ) given by (7) and the second operator
being in the form

A(λ)Ψ(x, t, λ) = i∂tΨ+ (V0 + 2λQ− 2λ2σ3)Ψ(x, t, λ) = Ψ(x, t, λ)f(λ)

V0 =
(
ρ2 − |q|2

)
σ3 +

i

2
[σ3, Qx].

(8)

The function f(λ) will be calculated below; it determines the dispersion law of the
NLS.

Due to intrinsic U(1) symmetry of equation (2) we can set one of the phases in the
asymptotic values of Q to be zero. Thus we shall fix θ− = 0 from now on and
denote the other phase simply by θ in order to simplify our notation.

The space of allowed potentials Mρ, θ, i.e. the set of all smooth matrix-valued
functions of the form (5) satisfying boundary condition (6) for ρ and θ being
fixed, is not a linear space. However, the difference of any two allowed poten-
tials Q1(x, t) and Q2(x, t) ∈ Mρ, θ is such that Q1(x, t) − Q2(x, t) vanishes as
x → ±∞. Thus we can obtain the whole space Mρ,θ by adding up to a fixed
allowed potential any potential satisfying vanishing boundary conditions.

The form of the potential implies that it obeys the following symmetry condition

σ3Q
†(x, t)σ3 = Q(x, t) (9)

where † stands for Hermitian conjugation. Following the concepts by Mikhailov
[23, 24] one can interpret (9) in terms of a finite reduction group group acting on
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the set of solutions {Ψ(x, t, λ)} to the Zakharov-Shabat system. In our case the
reduction group is Z2 acting on the fundamental solutions in the following way:

σ3Ψ̂
†(x, t, λ∗)σ3 = Ψ(x, t, λ), (10)

where Ψ(x, t, λ) ia any of the Jost solutions of (4) and ‘hat’ means the inverse of a
matrix:

Ψ̂(x, t, λ) = [Ψ(x, t, λ)]−1 .

It proves to be convenient to introduce a gauge transform denoted by φ±(λ) to
diagonalize the asymptotic values of Q(x, t)− λσ3 when x→ ±∞, i.e. we have

φ±(λ)(Q± − λσ3)φ̂±(λ) = −j(λ)σ3 , j(λ) =
√
λ2 − ρ2. (11)

where φ± are given by

φ±(λ) =
1√

2j(λ)(λ+ j(λ))

(
λ+ j(λ) −q±
−q∗± λ+ j(λ)

)
. (12)

Thus the spectral parameter λ lives in a two-sheet Riemann surface S ≡ S+ ∪ S−
associated with j(λ). To construct S one cuts the complex plane from −∞ to −ρ
and from ρ to ∞ along real axis. The sheets S+ and S− are determined by

S+ : Im j(λ) > 0, S− : Im j(λ) < 0. (13)

The transformφ±(λ) allows one to define Jost solutions through the equality below

lim
x→∞

ψ(x, t, λ)Ê+(x, λ) = 11, lim
x→−∞

ϕ(x, t, λ)Ê−(x, λ) = 11 (14)

where
E±(x, λ) = φ̂±(λ)e

−ij(λ)σ3x (15)

are solutions to the equation

i∂xE± + (Q± − λσ3)E± = 0.

It straightforwardly follows from (15) that ψ(x, t, λ) and ϕ(x, t, λ) are unimodular
matrices. The transition matrix

T (t, λ) = ψ̂(x, t, λ)ϕ(x, t, λ) (16)

between the Jost solutions is called scattering matrix. As a result of the reduction
(10) we deduce that the scattering matrix obeys the symmetry

σ3T̂
†(t, λ∗)σ3 = T (t, λ). (17)
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From the compatibility of the linear problems (4) and (8) we find that the time
evolution of T is determined by

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t. (18)

where the dispersion law f(λ) for the NLS is given by:

f(λ) = lim
x→±∞

V (x, t, λ) = −2λj(λ)σ3. (19)

Further on in text the variable t will not be essential so we shall omit it.

Let us now discuss the spectral properties of the scattering operator. Generally
speaking the spectrum of L(λ) consists of a continuous and a discrete part. The
operator (7) is equivalent to a self-adjoint eigenvalue problem:

LΨ ≡ iσ3
∂Ψ

∂x
+ σ3Q(x)Ψ(x, λ) = λΨ(x, λ), (20)

and therefore its spectrum must be on the real axis. The continuous part of its
spectrum is determined by equality Im j(λ) = 0, i.e. it coincides with set Rρ =
(−∞,−ρ)∪ (ρ,∞). The discrete eigenvalues of L(λ) are simple and must belong
to (−ρ, ρ). The Jost solutions and the scattering matrix are defined for λ ∈ Rρ

only. To see this one needs to introduce the auxiliary functions

ξ+(x, λ) = φ+(λ)ψ(x, λ)Ê+(x, λ)φ̂+(λ)

ξ−(x, λ) = φ−(λ)ϕ(x, λ)Ê−(x, λ)φ̂−(λ)
(21)

which satisfy differential equation

i∂xξ± + Q̃+(x, λ)ξ± − j(λ)[σ3, ξ±] = 0 (22)

where
Q̃±(x, λ) = φ±(λ)(Q(x)−Q±)φ̂±(λ).

Equivalently, ξ± can be viewed as solutions to the Volterra type integral equation

ξ±(x, λ) = 11 + i

∫ x

±∞
eij(λ)σ3(y−x)Q̃±(y, λ)ξ±(y, λ)e

−ij(λ)σ3(y−x)dy. (23)

Let us consider now the function ξ+. It is easily from the integral equation that
the second column of ξ+ is analytic on S+ hence the second column of ψ(x, λ) is
analytic on S+. Similarly, the first column of ϕ(x, λ) are analytic on S+ while the
second one as well as the first column of ψ(x, λ) are analytic on S−. That is why
we will denote the Jost solutions by:

ψ(x, λ) = ||ψ−(x, λ), ψ+(x, λ)||, ϕ(x, λ) = ||ϕ+(x, λ), ϕ−(x, λ)|| (24)
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where the superscript + (resp. −) refers to the analyticity properties of the corre-
sponding column on the sheet S+ (resp. on S−).

As a result of the above considerations one can construct another pair of solutions
χ+ and χ− which are analytic in S+ and S− respectively. This is done using the
formulae below

χ+(x, λ) ≡ ||ϕ+(x, λ), ψ+(x, λ)|| = ϕ(x, λ)S+(λ) = ψ(x, λ)T−(λ)

χ−(x, λ) ≡ ||ψ−(x, λ), ϕ−(x, λ)|| = ϕ(x, λ)S−(λ) = ψ(x, λ)T+(λ)
(25)

where

S+(λ) =

(
1 −b∗(λ)
0 a(λ)

)
, T−(λ) =

(
a(λ) 0
b(λ) 1

)
(26)

S−(λ) =

(
a∗(λ) 0
−b(λ) 1

)
, T+(λ) =

(
1 b∗(λ)
0 a∗(λ)

)
. (27)

The triangular matrices S±(λ) and T±(λ) are LU-decomposition of the scattering
matrix T (λ):

T (λ) =

(
a(λ) b∗(λ)
b(λ) a∗(λ)

)
= T−(λ)Ŝ+(λ) = T+(λ)Ŝ−(λ). (28)

Due to reduction (10) it is seen that χ+ and χ− satisfy relation

σ3
[
χ̂+(x, λ∗)

]†
σ3 = χ−(x, λ). (29)

The fundamental analytic solutions satisfy the following interrelation

χ−(x, λ) = χ+(x, λ)G(λ), λ ∈ Rρ. (30)

This is a manifestation of the fact that the fundamental analytic solutions satisfy
local Riemann-Hilbert problem [17, 29, 34].

It also follows from (25)–(27) that

detχ+(x, λ) = a(λ). (31)

Therefore a(λ) is an analytic function on the whole sheet S+. In what follows
we will need to know the structure of χ+ and χ− and their inverse in the vicinity
of discrete eigenvalues {λj}Nj=1 of the operator L(λ). The discrete eigenvalues are
simple zeroes of a(λ), i.e. in vicinity of λj we have the following Taylor expansion

a(λ) = (λ− λj)

(
ȧj +

1

2
äj(λ− λj) + · · ·

)
(32)
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where dot stands for differentiation with respect to λ. Due to (31) at any point λj
the columns of χ+(x, λj) are proportional to each other, i.e. there exists bj ∈ C
such that

ϕ+j (x) = bjψ
+
j (x), ϕ−j (x) =

1

b∗j
ψ−
j (x), (33)

where ϕ±j (x) = ϕ±(x, λj and ψ±
j (x) = ψ±(x, λj . Thus we find:

χ+
j (x, λj) = ψ+

j (x)(bj , 1) = ϕ+j (x)(1, 1/bj)

χ−
j (x, λj) = ψ−

j (x)(1,−b
∗
j ) = ϕ−j (x)(−1/b∗j , 1).

(34)

In what follows we will need similar formulae also for the inverse of χ±(x, λ) for
λ ≃ λj . It is easy to see that

χ̂+(x, λ) =
1

a(λ)

(
ψ̃+

−ϕ̃+

)
, χ̂−(x, λ) =

1

a∗(λ)

(
ϕ̃−

−ψ̃−

)
(35)

where the operation ‘tilde’ applied to the vector
(
y1
y2

)
maps it onto the row

(y2,−y1). Thus we obtain:

χ̂+(x, λ) ≃
λ→λj

(
1

−bj

)
ψ̃+
j

(λ− λj)ȧj
≃
(

−1/bj
1

)
ϕ̃+j

(λ− λj)ȧj

χ̂−(x, λ) ≃
λ→λj

(
1

−1/b∗j

)
ψ̃−
j

(λ− λj)ȧ∗j
≃ −

(
b∗j
1

)
ϕ̃−j

(λ− λj)ȧ∗j

(36)

Given the potential Q(x) one can obtain the Jost solutions uniquely by solving the
integral equations (23). The Jost solutions in turn determine uniquely the scattering
matrix T (λ). Q(x) contains one independent complex-valued function q(x) of x.
Thus it is natural to expect that only one of the coefficients of T (λ) for λ ∈ Rρ,
will be independent.

At the same time the matrix elements of T (λ) (28) are determined by the complex-
valued functions a(λ) and b(λ) and their complex conjugate, satisfying the condi-
tion |a|2 − |b|2 = 1. It is important that a(λ) (resp. a∗(λ)) are analytic functions
of λ for λ ∈ S+ (resp. λ ∈ S−). This fact allows one to determine a(λ) using
its values on the cuts Rρ and the set of its zeroes λj . We assume that a(λ) has a
finite number of zeroes λj ; it is well known that a(λ) may have only simple ze-
roes [13, 14, 29]. Skipping the details we introduce two equivalent minimal sets of
scattering data:

T1 ≡ T1,c ∪ T1,d, T2 ≡ T2,c ∪ T2,d, (37)
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where
T1,c ≡ {ρ(λ), λ ∈ Rρ}, T1,d ≡ {Cj , λj}Nj=1

T2,c ≡ {τ(λ), λ ∈ Rρ}, T2,d ≡ {Mj , λj}Nj=1.
(38)

The reflection coefficients ρ(λ) and τ(λ) and the coefficients Cj and Mj are given
by:

ρ(λ) =
b(λ)

a(λ)
, τ(λ) = −b

∗(λ)

a(λ)
, Cj =

bj
ȧj
, Mj =

1

bj ȧj
. (39)

Now we need to compute the asymptotics of the FAS solutions for large values of
|λ|. The results are summarized in the tables below:

Im λ > 0, λ ∈ S+ Im λ < 0, λ ∈ S+

χ+(x, λ)eij(λ)σ3x

(
1 0
0 1

)
− i

(
0 eiθ+

e−iθ− 0

)
a+(λ) 1 ei(θ+−θ−)

(40)

Im λ > 0, λ ∈ S− Im λ < 0, λ ∈ S−

χ−(x, λ)eij(λ)σ3x − i

(
0 eiθ−

e−iθ+ 0

) (
1 0
0 1

)
a−(λ) e−i(θ+−θ−) 1.

(41)

The functions b±(λ) in general do not admit analytic continuations, however if one
considers special functional classes one can argue that [17, 29]

lim
|λ|→∞

b(λ) = 0.

3. The end points of the spectrum

The Lax operator L with constant boundary condition is one of the basic examples
of ordinary differential operator whose continuous spectrum multiplicity varies.
Obviously the continuous spectrum on the rays Rρ ≡ (−∞,−ρ) ∪ (ρ,∞) has
multiplicity 2, while on the lacuna (−ρ, ρ) it has vanishing multiplicity.

In the limit λ→ λερ the matrices φ± become singular. So in order to introduce the
Jost solutions we will need regularized definitions, see below. Besides, we have to
take into account that the eigenfunctions of Lερ,as are given by:

L±as|λ=ερEερ = 0, Eερ =

(
1 iρxeiθ±

ερe−iθ± iρεx+ 1

)
, (42)
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where ε = ±1. The inverse of Eερ is

Êερ =

(
iρεx+ 1 −ρxeiθ±
−ερeiθ± 1

)
. (43)

Thus the Jost solutions for λ = ερ may be defined by:

lim
λ→ερ

lim
x→∞

Êερψ(x, ερ) = 11, lim
λ→ερ

lim
x→−∞

Êερϕ(x, ερ) = 11. (44)

This definition shows that the Jost solutions and the FAS may develop singularities
at the end points of the spectrum. This definition is valid for the generic case,
because the Lax operator L will have two linearly independent eigenfunctions also
at the end points λ = ερ. Along with the generic case we will consider also the
possibility of virtual eigenvalues at the end points. In general both possibilities
have been analyzed in [29]. We will present slightly different approach which is
gauge covariant.

Skipping the details we collect the formulae, giving the asymptotics of the Jost
solutions, the FAS and the scattering matrix for λ→ ερ.

3.1. Generic case – asymptotics

The Jost solutions ϕ(x, λ) and ψ(x, λ) develop singularities at the end points of
the spectrum, which are consequence of the singularity of E±(x, λ). Indeed, for
λ→ ερ we have:

E±(x, λ) =

√
ρ

j(λ)

(
Eε,0 +

j(λ)

2ρ
Eε,1 +O(j2)

)
e−ij(λ)xσ3 ,

Eε,0 =

(
1 −eiθ±

−e−iθ± 1

)
, Eε,1 =

(
1 eiθ±

e−iθ± 1

)
,

(45)

In the vicinity of end points λ ≃ ερ the Jost solutions become:

ψ±(x, λ) =

√
ρ

2j(λ)

(
ψ±
ερ,0(x) + j(λ)ψ±

ερ,1(x) +O(j2)
)
,

ϕ±(x, λ) =

√
ρ

2j(λ)

(
ϕ±ερ,0(x) + j(λ)ϕ±ερ,1(x) +O(j2)

)
,

(46)

aερ =
aερ,0
j(λ)

+ aερ,1 +O(j), bερ = −ε ibερ,0
j(λ)

+ bερ,1 +O(j),

ψ−
ερ(x) = εiψ+

ερ(x), ϕ+ερ(x) = εiϕ−ερ(x),
(47)
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i.e.
lim

λ→±ρ

aερ
bερ

= εi.

Similar relations can be derived also for the asymptotic values of the FAS, namely:

χ+
ερ(x, λ) ≡ ||ϕ+ερ(x), ψ+

ερ(x)||

=

√
ρ

2j(λ)

(
χ+
ερ,0(x) + j(λ)χ+

ερ,1(x) +O(j2)
)
,

χ−
ερ(x, λ) ≡ ||ψ−

ερ(x), ϕ
−
ερ(x)||

=

√
ρ

2j(λ)

(
χ−
ερ,0(x) + j(λ)χ−

ερ,1(x) +O(j2)
)
.

(48)

as well as for their inverse:

χ̂+
ερ(x, λ) =

√
2j(λ)

ρ

(
χ̂+
ερ,0(x)− j(λ)χ̂+

ερ,0(x)χ
+
ερ,1(x)χ̂

+
ερ,0(x) +O(j2)

)
,

χ̂−
ερ(x, λ) =

√
2j(λ)

ρ

(
χ̂−
ερ,0(x)− j(λ)χ̂−

ερ,0(x)χ̂
−
ερ,1(x)χ̂

−
ερ,0(x) +O(j2)

)
.

(49)

where χ̂±
ερ,0(x) = (χ−

ερ,0(x))
−1.

3.2. Virtual eigenvalue – asymptotics

In this case the Jost solutions become degenerate for λ = ερ, i.e. the matrices
ψερ,0(x, λ) are ϕερ,0(x, λ) become degenerate

ψερ,0(x) =

√
ρ

2j(λ)
ψ−
ερ,0(x)(1, εi), ϕερ,0(x) =

√
ρ

2j(λ)
ϕ+ερ,0(x, λ)(1, εi),

(50)

Then both a(λ) and b(λ) are regular for λ→ ±ρ:

lim
λ→ερ

aερ = aερ,1, lim
λ→ερ

bερ = bερ,1. (51)

Similarly we can analyze the behavior of the FAS in the vicinity of the end points
of the spectrum. The results are:

χ+
ερ(x) =

√
ρ

2j(λ)
ψ+
ερ(x)(bερ, 1) =

√
ρ

2j(λ)
ϕ+ερ(x)(1, 1/bερ)

χ−
ερ(x, λj) =

√
ρ

2j(λ)
ψ−
ερ(x)(1,−b∗ερ) =

√
ρ

2j(λ)
ϕ−ερ(x)(−1/b∗ερ, 1).

(52)
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and

χ̂+(x, λ) ≃
λ→ερ

√
ρ

2j(λ)

(
1

−bερ

)
ψ̃+
ερ ≃

√
ρ

2j(λ)

(
−1/bερ

1

)
ϕ̃+ερ

χ̂−(x, λ) ≃
λ→ερ

−
√

ρ

2j(λ)

(
1/b∗ερ
1

)
ψ̃−
ερ ≃

√
ρ

2j(λ)

(
1
bερ

)
ϕ̃−ερ.

(53)

We will use this in Section 6 below for analyzing the singularities of the resolvent
at the end points of the spectrum.

4. Gelfand-Levitan-Marchenko Equations

An effective method to derive soliton solutions and the corresponding eigenfunc-
tions is based upon the Gelfand-Levitan-Marchenko integral equations (GLM).
Here we just briefly outline the basic facts of derivation of GLM [13, 17, 29].

Let us consider the linear problems

L0Ψ0 ≡ i∂xΨ0 + (Q0 − λσ3)Ψ0 = 0 (54)

LΨ ≡ i∂xΨ+ (Q− λσ3)Ψ = 0. (55)

where both potentials are of the form (5) and have equal asymptotic values as
x→ ∞, i.e.

lim
x→∞

Q0(x) = lim
x→∞

Q(x) = Q+. (56)

The Jost solutions of (54) and (55) by definition obey the equalities

lim
x→∞

ψ0(x, λ)Ê+(x, λ) = 11 lim
x→∞

ψ(x, λ)Ê+(x, λ) = 11. (57)

We assume now thatQ0 is known and we shall refer to it as bare (or seed) potential,
while the other one, to be found, will be called dressed potential

Remark 1 It is not possible for that the bare potential and the dressed one share
the same asymptotic values both at x → −∞ and x → ∞. For the derivation of
GLM it suffices to have consistency of just one of the asymptotics, say as x→ ∞.

The dressed Jost solution can be expressed from the bare one through the integral
transformation:

ψ(x, λ) = ψ0(x, λ) +

∫ x

∞
dy Γ+(x, y)ψ0(y, λ),

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

−∞
dy Γ−(x, y)ϕ0(y, λ),

(58)
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where the integral kernels Γ± satisfy

lim
y→∞

Γ+(x, y) = 0, lim
y→−∞

Γ−(x, y) = 0. (59)

In order for transformation (58) to be consistent the kernel must satisfy certain
differential constraints. Indeed, after substituting (58) into (55) and taking into
account that the bare Jost solution fulfils (54) one obtains the following relations

i
∂Γ±(x, y)

∂x
+ iσ3

∂Γ±(x, y)

∂y
σ3 +Q(x)Γ±(x, y)− σ3Γ±(x, y)σ3Q0(y) = 0

Q(x)−Q0(x) + i(Γ±(x, x)− σ3Γ±(x, x)σ3) = 0. (60)

Obviously the solutions of (60) will be parametrized by the scattering data of both
operators L and L.

Let us develop this idea first considering the Jost solution ψ(x, λ) and the trans-
formation operator with kernel Γ+(x, y). This transformation operator maps the
Jost solution ψ0(x, λ) of the ‘naked’ operator L0 into the Jost solution ψ(x, λ) of
the ‘dressed’ operator L. Each of these operators has its own scattering data (38):
reflection coefficients ρ0(λ) and ρ(λ) and sets of discrete eigenvalues

D0 ≡ {λ0j : a0(λ0j) = 0}N0
j=1, D ≡ {λj : a(λj) = 0}Nj=1.

Note that some of the eigenvalues of L0 may coincide with the eigenvalues of L.

The generic solution of (60) can be presented in the form:

Γ+(x, y) =
1

2π

∫
Rρ

dλ
(
c+(λ)ψ

+(x, λ)ψ̂+
0 (y, λ)− c∗+(λ)ψ

−(x, λ)ψ̂−
0 (y, λ)

)
σ3

−
∑
λj∈D

cjψ
+
j (x)ψ̃

+
0,j(y)σ3 +

∑
λj∈D0

c0jψ
+
0j(x)ψ̃

+
0,j(y)σ3, (61)

where ψ+
0j(x) = ψ+

0 (x, λj) and ψ+
j (x) = ψ+(x, λj). The coefficients cj , c0j and

the function c(λ) can be expressed in terms of the scattering data, e.g. c(λ) =
ρ(λ)− ρ0(λ).

By ψ±
0 (x, λ) and ψ±(x, λ) we mean the corresponding columns of Jost solutions

(see (24)) to (54) and (55) respectively, while ψ̃j(x) and ψ̃0,j(x) are row vectors
of inverse Jost solutions (see (35). Obviously they satisfy:

i∂xψ
±
0 (x) + (Q0(x)− λσ3)ψ

±
0 (x, λ) = 0

i∂xψ
±(x) + (Q(x)− λσ3)ψ

±(x, λ) = 0,
(62)
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and

i∂xψ̃
±
0 (x)− ψ̃±

0 (x, λ) (Q0(x)− λσ3) = 0

i∂xψ̃
±(x)− ψ̃±(x, λ) (Q(x)− λσ3) = 0,

(63)

respectively. Therefore ψ+
0j(x), ψ

+
j (x) and ψ̃+

0j(x), ψ̃
+
j (x) will be solutions to (62)

and (63) with λ = λ0j and λ = λj respectively.

Taking into account that from eq. (58) there follows

ψ±(x, λ) = ψ±
0 (x, λ) +

∫ x

∞
dy Γ+(x, y)ψ

±
0 (y, λ).,

ψ±
j (x) = ψ±

0j(x) +

∫ x

∞
dy Γ+(x, y)ψ

±
0j(y).,

(64)

we can easily rewrite eq. (61) as the well GLM equation:

Γ+(x, y) + F+(x, y) +

∫ x

∞
dz Γ+(x, z)F+(z, y) = 0, (65)

where

F+(x, y) =
−1

2π

∫
Rρ

dλ
(
c(λ)ψ+

0 (x, λ)ψ̂
+
0 (y, λ)− c∗(λ)ψ−

0 (x, λ)ψ̂
−
0 (y, λ)

)
σ3

+
∑
λj∈D

cjψ
+
0j(x)ψ̃

+
0,j(y)σ3 −

∑
λj∈D0

c0jψ
+
0j(x)ψ̃

+
0,j(y)σ3, (66)

This is the most general form of the GLM equation which relates two Lax operators
L andL0 with generic choice for their spectral data. If one knows the Jost solutions
of the ‘naked’ operator L0 then solving the GLM eq. one can construct the Jost
solutions of the ‘dressed’ operator L. However, the Jost solutions of L0 for generic
spectral data (i.e., non-vanishing ρ0(λ)) can not be evaluated explicitly. There is
however, a special class of potential – the so-called reflectionless potentials, that
can be constructed explicitly by solving the GLM eq.

Indeed, let us now assume that theQ0(x, t) = Q+. Then ψ0(x, λ) = E+(x, λ) and
the kernel F is degenerate, i.e. we have c(λ) = c0(λ) = 0, N0 = 0 and N = 1. In
this special case GLM equations reduces to a set of linear algebraic equations and
one can construct the solution explicitly. For N = 1 equations (61) and (64) lead
to the following result for the dressed solutions

ψ+
1 (x) =

(
1− c1

∫ x

∞

(
ψ̃+
0,1(y)|ψ

+
0,1(y)

))−1

ψ+
0,1(x). (67)
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Taking into account the explicit form of E+(x, λ) (see equalities (12) and (15))
one can perform the integration above to obtain

ψ+
1 (x) =

1

1 + V0(x)
ψ+
0,1(x), V0(x) =

c1ρe
−2
√

ρ2−λ2
1xeiθ

2i(ρ2 − λ21)
. (68)

After substituting (68) into (61) for the transformation operator kernel we get

Γ+(x, y) =
ρ sin θ1V0(x)e

√
ρ2−λ2

1(x−y)

1 + V0(x)

(
1 ei(θ−θ1)

e−i(θ−θ1) 1

)
. (69)

Thus we have all information needed to find the dressed potential. Making use of
relation (60) one derives the following result

Q(x) = Q+ + ic1σ3

[
ψ+
1 (x)ψ̃

+
0,1(x), σ3

]
=

ρ

1 + V0(x)

(
0 eiθ

(
1 + e−2iθ1V0(x)

)
−e−iθ

(
1 + e2iθ1V0(x)

)
0

)
.

(70)

We remind that λ1 + i
√
ρ2 − λ21 = ρeiθ1 and one can pick up the discrete eigen-

value λ1 in such a way that θ = 2θ1 is fulfilled.

Now we shall construct the 1-soliton eigenfunctions. In order to do so we substitute
(69) into (58) and perform the integration required. The result reads

ψ(x, λ) =

 A− f1
V0

1+V0
eiθ
(
B + f2

V0
1+V0

e−iθ1
)

e−iθ
(
B − f1

V0
1+V0

eiθ1
)

A+ f2
V0

1+V0

 e−ij(λ)σ3x

(71)

where

f1 =

√
ρ2 − λ21(A+Be−iθ1)

ij(λ) +
√
ρ2 − λ21

, A(λ) =

√
λ+ j(λ)

2j(λ)

f2 =

√
ρ2 − λ21(A+Beiθ1)

ij(λ)−
√
ρ2 − λ21

, B(λ) =

√
λ− j(λ)

2j(λ)
.

(72)

After an elementary transformation of expressions above the dressed Jost solution
are rewritten as follows:

ψ(x, λ) =

{
11 +

i
√
ρ2 − λ21V0(x)

(λ− λ1)(1 + V0(x))

(
1 −eiθ/2

e−iθ/2 −1

)}
E+(x, λ). (73)
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Similarly, one can use the second transformation operator Γ−(x, y) in eq. (58)
connecting the other pair of Jost solutions ϕ(x, λ) and ϕ0(x, λ), and apply the
same considerations as before. The dual’ GLM eq. is

Γ−(x, y) + F−(x, y) +

∫ x

−∞
dz Γ−(x, z)F−(z, y) = 0. (74)

If we choose a generic kernel

F−(x, y) =
1

2π

∫
Rρ

dλ
(
c−(λ)ϕ

+
0 (x, λ)ϕ̂

+
0 (y, λ)− c∗−(λ)ϕ

−
0 (x, λ)ϕ̂

−
0 (y, λ)

)
σ3

−
∑
λj∈D

c−j ϕ
+
0j(x)ϕ̃

+
0,j(y)σ3 +

∑
λj∈D0

c−0jϕ
+
0j(x)ϕ̃

+
0,j(y)σ3, (75)

then its generic solution of (60) can be presented in the form:

Γ−(x, y) =
1

2π

∫
Rρ

dλ
(
c−(λ)ϕ

+(x, λ)ϕ̂+0 (y, λ)− c∗−(λ)ϕ
−(x, λ)ϕ̂−0 (y, λ)

)
σ3

−
∑
λj∈D

c−j ϕ
+
j (x)ϕ̃

+
0,j(y)σ3 +

∑
λj∈D0

c−0jϕ
+
j (x)ϕ̃

+
0,j(y)σ3, (76)

where ϕ+0j(x) = ϕ+0 (x, λj) and ϕ+j (x) = ϕ+(x, λj). The coefficients c−j , c
−
0j and

the function c−(λ) again can be expressed in terms of the scattering data, e.g.
c−(λ) = τ(λ)− τ0(λ).

If we take the simplest nontrivial kernel with N = 1 and Q0 = Q− then the final
result for the dressed potential reads

Q(x) = Q+ + ic1σ3

[
ϕ+1 (x)ϕ̃

+
0,1(x), σ3

]
=

ρ

1 + Ṽ0(x)

(
0 1 + eiθṼ0(x)

−
(
1 + e−iθṼ0(x)

)
0

)
(77)

where

Ṽ0(x) =
c1ρe

2
√

ρ2−λ2
1x

2i(ρ2 − λ21)
. (78)

The corresponding Jost solution ϕ(x, λ) is given by

ϕ(x, λ) =

{
11 − i

√
ρ2 − λ21Ṽ0(x)

(λ− λ1)(1 + Ṽ0(x))

(
1 −eiθ/2

e−iθ/2 −1

)}
E−(x, λ). (79)

Let us now calculate the dressed scattering matrix:

T (λ) = lim
x→−∞

ψ(x, λ)ϕ(x, λ) = diag (a(λ), 1/a(λ)) (80)
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where

a(λ) =
A−Beiθ1

A−Be−iθ1
=
λ+ j − λ1 − ij1
λ+ j − λ1 + ij1

. (81)

The dressed fundamental analytic solutions are constructed through equalities:

χ+(x, λ)eijσ3x = u(x, λ)

(
A Beiθ

B A

)
(82)

where the dressing factor reads:

u(x, λ) =

{
11 +

f2(A−Beiθ1)

(1 + V0(x))

(
1

e−iθ1

)(
1, V0e

i(θ−θ1)
)}

e−ijσ3x. (83)

5. Dressing Method

The dressing method is another indirect method to solve a nonlinear evolution
equation, i.e. it allows one to find a particular solution from a known one. For
this to be done one uses substantially the existence of Lax representation and the
connection between ISM and Riemann-Hilbert problem [17, 21, 34, 37].

Let us consider once again the auxiliary linear problems (54) and (55). We shall
denote by g the dressing transform Ψ0 → Ψ. By comparing (54) and (55) we see
that g satisfies:

i∂xg +Qg − gQ0 − λ[σ3, g] = 0. (84)

We are going to use a dressing factor in the form:

g(x, λ) = 11 +
A(x)

λ− λ1
, λ1 ∈ (−ρ, ρ). (85)

Due to reduction (10) the dressing factor obeys the following symmetry condition:

σ3ĝ
†(x, λ∗)σ3 = g(x, λ). (86)

Hence the inverse factor ĝ reads

ĝ(x, λ) = 11 +
σ3A

†(x)σ3
λ− λ1

. (87)

Let us evaluate the limit |λ| → ∞ in equation (84). As a result we obtain a relation
between bare potential Q0 and dressed one Q, namely

Q = Q0 + [σ3, A]. (88)
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Thus we can find Q if we only know the residue A. As it turns out the latter can
be expressed in terms of a fundamental solution of the bare linear problem (54). In
order to find A we consider the identity gĝ = 11 which gives rise to the following
algebraic relations:

Aσ3A
† = 0 (89)

A+ σ3A
†σ3 = 0. (90)

It follows from (89) that A(x) is a degenerate matrix so there exist two vectors
X(x) and F (x) such that A = XF T . Substituting this decomposition into (89)
we obtain

F Tσ3F
∗ = 0. (91)

From (89), (90) and (91) it follows that

X = −i
σ3F

∗

α
(92)

for some real function α to be determined further on. F and α can be found if
one considers equation (84). We shall skip all technical details here and give the
final result. Both F and α are expressed through a solution Ψ0 to the bare linear
problem in the following way

F T (x) = F T
0 Ψ̂0(x, λ1) (93)

α(x) = iF T
0 Ψ̂0(x, λ1)∂λ|λ=λ1Ψ0(x, λ)C0(λ1)σ3F

∗
0 + α0 (94)

where the 2-vector1 F0 as well as α0 ∈ R are constants of integration. The constant
matrix C0(λ1) appears in the reduction condition (10), namely

C0(λ) = Ψ̂0(x, λ)σ3Ψ̂
†
0(x, λ

∗)σ3 (95)

The final step in our considerations consists in recovering the time evolution in all
quantities. To achieve this one can use the following rule

F T
0 → F T

0 e−if(λ1)t

α0 → α0 − F T
0

df

dλ
(λ1)C0(λ1)σ3F

∗
0 t.

(96)

Let us recall that f(λ) is the dispersion law of the NLEE under consideration.
Formulae (96) are derived by analyzing the equation

igt + V g − gV (0) = 0 (97)
1The vector F0 is usually called polarization vector.
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where V (0) and V are involved in the Lax operators

A0(λ) = i∂t + V (0)(x, t, λ)

A(λ) = i∂t + V (x, t, λ)

respectively. Let us illustrate this general scheme in the following example.

Example 2 Let us consider the case when the bare solution is constant, i.e. q0 = ρ.
Then the corresponding fundamental solution is given by:

Ψ0(x, λ) = φ̂0(λ)e
−ij(λ)σ3x (98)

where φ0(λ) is given by eq. (12). For our purposes it suffices to pick up the

polarization vector F0 as follows F0 =

(
0
1

)
. Then the 2-vector F and the scalar

function α acquire the form

F (x) =
e−ij(λ1)x√

2j(λ1)(λ1 + j(λ1))

(
−ρ

λ1 + j(λ1))

)
α(x) = −ρe

−2ij(λ1)x

2j2(λ1)
+ α0.

(99)

Finally substitution of all these results into (88) leads to

q(x) = ρ
1 + e2iθ1e2

√
ρ2−λ2

1(x−x0)

1 + e2
√

ρ2−λ2
1(x−x0)

tanθ1 =

√
ρ2 − λ21
λ1

, x0 =
1

2
√
ρ2 − λ21

ln
2(ρ2 − λ21)α0

ρ

(100)

for the reflectionless potential. It coincides with the result obtained in the previous
section, see (70). In order to recover the t-dependence in (100) we have to replace
x with x+ 2λ1t. Thus we have

q(x, t) = ρ
1 + e2iθ1e2

√
ρ2−λ2

1(x+2λ1t−x0)

1 + e2
√

ρ2−λ2
1(x+2λ1t−x0)

. (101)

This is the well-known dark soliton for the defocusing NLS [13, 29]. It is imme-
diately seen that asymptotic value of the dark soliton as x → −∞ coincide with
that of vacuum solution while the other asymptotic differs, i.e. Q and Q0 belong
to different phase spaces, M2θ1 and M0 respectively. This means that in general
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the dressing procedure does not respect the constant boundary conditions. This
motivates one to introduce a more general space

Mρ =
∪
θ

Mρ,θ

which is dressing invariant. The the dressing procedure describe above will map
Mρ,θ into Mρ,θ+2θ1 . �

In order to find more complicated solutions one can pursue either of the following
two ways: apply the discussed procedure to the solution already dressed and thus
generate a sequence of solutions; or use a multiple poles dressing factor in the form

g(x, t, λ) = 11 +

N∑
k=1

Ak(x, t)

λ− λk
, λk ∈ R. (102)

In the latter case the dressed solution can be obtained through the following relation

Q = Q0 +

N∑
k=1

[σ3, Ak]. (103)

As before in order to find residues of the dressing factor we consider the algebraic
relations:

Akσ3A
†
k = 0 (104)

Akσ3Ω
†
kσ3 + σ3A

†
kσ3Ωk = 0 (105)

where

Ωk(x, t) = 11 +
∑
j ̸=k

Aj(x, t)

λk − λj
.

Relation (104) means that each residue Ak(x, t) is a degenerate matrix hence there
exists couples of vectors Xk and Fk, k = 1, . . . , N such that Ak = XkF

T
k . Due to

(104) the components of Fk are not independent but satisfy the relations

F T
k σ3F

∗
k = 0. (106)

Relation (105) can be reduced to:

Ωkσ3F
∗
k = iαkXk (107)

for some matrices αk(x), yet to be determined. The system (107) can be viewed
as a linear system for the vectors Xk

σ3F
∗
k =

N∑
j=1

BkjXj , (108)
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where

Bkk = iαk, Bkj =
F T
j σ3F

∗
k

λj − λk
, k ̸= j.

This allows us to express Xk in terms of Fk and αk Similarly to the one-pole case
the Fk and αk are expressed through a seed solution as follows:

F T
k (x) = F T

k,0Ψ̂0(x, λk) (109)

αk(x) = iF T
k (x)∂λΨ0(x, λk)C0(λk)σ3F

∗
k,0 + αk,0 (110)

where Fk,0 and αk,0 are integration constants. Finally in order to recover the time
dependence one uses the following formulae:

F T
k,0 → F T

k,0e
−if(λk)t (111)

αk,0 → αk,0 − F T
k,0

df

dλ
(λk)C0(λk)σ3F

∗
k,0t. (112)

6. FAS and the Resolvent of L

The FAS play important role in analyzing the spectral properties of the Lax opera-
tor. Here we will demonstrate that the FAS can be used to construct the kernel of
the resolvent of L.

Let us now show how the resolvent R(λ) can be expressed through the FAS of
L(λ). Indeed, let us write down R(λ) in the form:

R(λ)f(x) =

∫ ∞

−∞
R(x, y, λ)f(y), (113)

where the kernel R(x, y, λ) of the resolvent is given by:

R±(x, y, λ) =
1

i
χ±(x, λ)Θ±(x− y)χ̂±(y, λ). (114)

Here

Θ+(x− y) = diag (−θ(y − x), θ(x− y))

Θ−(x− y) = diag (θ(x− y),−θ(y − x)).
(115)

Theorem 3 Let Q(x) ∈ Mθ and let −ρ < λj < ρ be the simple zeroes of the
a(λ). Then

1. R±(x, y, λ) is an analytic function of λ for λ ∈ S± having pole singularities
at λj;
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2. R±(x, y, λ) is a kernel of a bounded integral operator for λ ∈ S±;

3. R(x, y, λ) is uniformly bounded function for λ ∈ Rρ and provides a kernel
of an unbounded integral operator;

4. R±(x, y, λ) satisfy the equation:

L(λ)R±(x, y, λ) = 11δ(x− y). (116)

5. If Q(x) is such that for λ → ερ the FAS have generic behavior then the
kernel of resolvent is regular for λ→ ερ;

6. IfQ(x) is such that for λ→ ερ a(λ) and b(λ) remain finite thenR±(x, y, λ)
behaves like 1/j(λ) for λ→ ερ.

Proof:

1. is obvious from the fact that χ±(x, λ) are the FAS of L(λ);

2. Assume that λ ∈ S+ and consider the asymptotic behavior of R+(x, y, λ)
for x, y → ∞. Equation (115) can be rewritten as

R+(x, y, λ) = 1
iX

+(x, λ)e−ij(λ)σ3xΘ+(x− y)eij(λ)σ3yX̂+(y, λ)(117)

where X+(x, λ) = χ+(x, λ)eij(λ)σ3x. Note that due to eqs. (25)–(27) the
functions X+(x, λ) are bounded for λ ∈ S+ where Im j(λ) > 0. But
for Im j(λ) > 0 both exponential factors in (117) fall off exponentially for
x, y → ∞. All other possibilities are treated analogously.

3. For λ ∈ Rρ the arguments of 2) can not be applied because the exponents
in the right hand side of (117) Im j(λ) = 0 only oscillate. Thus we con-
clude that R±(x, y, λ) for λ ∈ Rρ is only a bounded function and thus the
corresponding operator R(λ) is an unbounded integral operator.

4. The proof of eq. (116) follows from the fact that L(λ)χ+(x, λ) = 0 and

∂xΘ
±(x− y) = ∓11δ(x− y). (118)

5. From eqs. (35), (47) and (48) there follows that

lim
λ→ερ

R+(x, y, λ) =
1

2iaερ,0
χ+
ερ,0(x)Θ

+(x− y)χ̃+
ερ,0(y), (119)

where χ̃+
ερ,0(y) is a non-degenerate constant matrix. The limit limλ→ερR

−(x, y, λ)
is treated analogously.
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6. In the case of virtual eigenvalue we use eqs. (35), (50) and (51). Now the
result is

lim
λ→ερ

R+(x, y, λ) ≃ 1

2ij(λ)
ψ+
ερ,0(x)ϕ̃

+
ερ,0(y) +O(1)

lim
λ→ερ

R−(x, y, λ) ≃ 1

2ij(λ)
ϕ+ερ,0(x)ψ̃

+
ερ,0(y) +O(1).

(120)

�

It is well known that applying the contour integration method on the kernel of the
resolvent one can prove the completeness relation for the Jost solutions [13, 22].
From the above theorem it is obvious that, if the potential Q(x) satisfies the virtual
eigenvalue condition, then there will be additional terms in this relations.

7. Conclusion

We have outlined the construction of the Jost solutions and the FAS for the Zakharov-
Shabat system L with constant boundary conditions. We also calculated their sin-
gularities at the end points ±ρ of the continuous spectrum of L. We also demon-
strated the derivation of the reflectionless potentials of L and the dark soliton solu-
tions for the relevant NLS equation (2) using first the GLM approach and second –
the dressing Zakharov-Shabat method. Finally we constructed the kernel of the re-
solvent of L and proved that in the regular caseR±(x, y, λ) are regular for λ→ ερ,
while in the virtual soliton case R±(x, y, λ) develop pole singularities for λ→ ερ.
The explicit form of the resolvent can be used to derive the completeness relation
for the Jost solutions. Our result shows that in the virtual soliton case this relation
will contain additional term corresponding to a discrete eigenvalue at ερ.

The results can be used also to derive the generalized Fourier transform, i.e. the
expansions over the ‘squared solutions’ of L. This will be published elsewhere.
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