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POISSON STRUCTURES OF EQUATIONS ASSOCIATED

WITH GROUPS OF DIFFEOMORPHISMS

R. I. IVANOV‡

School of Mathematical Sciences, Dublin Institute of Technology,

Kevin Street, Dublin 8, Ireland
‡E-mail: rivanov@dit.ie

A class of equations describing the geodesic flow for a right-invariant metric

on the group of diffeomorphisms of R
n is reviewed from the viewpoint of their

Lie-Poisson structures. A subclass of these equations is analogous to the Euler
equations in hydrodynamics (for n = 3), preserving the volume element of the

domain of fluid flow. An example in n = 1 dimension is the Camassa-Holm
equation, which is a geodesic flow equation on the group of diffeomorphisms,

preserving the H
1 metric.

Keywords: Lie group, Virasoro group, group of diffeomorphisms, Lie-Poisson

bracket, vector fields

1. Camassa-Holm equation

The Camassa-Holm (CH) equation can be considered as a member of the

family of EPDiff equations, that is, Euler-Poincaré equations, associated

with the diffeomorphism group in n-dimensions.18 Let us consider first the

CH equation in the form

qt + 2uxq + uqx = 0, q = u − uxx + ω, (1)

with ω an arbitrary parameter. The traveling wave solutions of (1) are

smooth solitons5 if ω > 0 and peaked solitons (peakons) if ω = 0.4,13,14,24,28

CH is a bi-hamiltonian equation, i.e. it admits two compatible Hamil-

tonian structures4,15 J1 = −(q∂ + ∂q), J2 = −(∂ − ∂3) :

qt = J2
δH2[q]

δq
= J1

δH1[q]

δq
, (2)

H1 =
1

2

∫

qudx, (3)

H2 =
1

2

∫

(u3 + uu2
x + 2ωu2)dx. (4)
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If ω 6= 0 the invariance group of the Hamiltonian is the Virasoro group,

Vir = Diff(S1)×R and the central extension of the corresponding Virasoro

algebra is proportional to ω.10–12,19,25,30 Thus CH has various conformal

properties.21 It is also completely integrable, possesses bi-Hamiltonian form

and infinite sequence of conservation laws.4,8,9,22,32

The soliton solution has the form

q(x, t) =

∫ ∞

0

δ(x − X(ξ, t))P (ξ, t)dξ, (5)

where X(ξ, t) and P (ξ, t) are quantities well defined in terms of the scat-

tering data7,8,10 (q(x, 0) > 0 is assumed, otherwise wave breaking occurs6).

From (5) one can easily compute u = (1 − ∂2)−1(q − ω),

u(x, t) =
1

2

∫ ∞

0

e−|x−X(ξ,t)|P (ξ, t)dξ − ω. (6)

Substitution of (5) and (6) into the equation (1) and using the fact that

f(x)δ′(x − x0) = f(x0)δ
′(x − x0) − f ′(x0)δ(x − x0)

we derive a system of integral equations for X and P :

Xt(ξ, t) =

∫

G(X(ξ, t) − X(ξ, t))P (ξ, t)dξ − ω, (7)

Pt(ξ, t) = −

∫

G′(X(ξ, t) − X(ξ, t))P (ξ, t)P (ξ, t)dξ, (8)

where G(x) ≡ 1
2e−|x|. From (5) and (6) the Hamiltonian H1 can be ex-

pressed as

H1(X,P ) =
1

2

∫

G(X(ξ1, t)−X(ξ2, t))P (ξ1, t)P (ξ2, t)dξ1dξ2−ω

∫

P (ξ, t)dξ

and the equations (7) and (8) as

Xt(ξ, t) =
δH

δP (ξ, t)
, Pt(ξ, t) = −

δH

δX(ξ, t)
, (9)

i.e. these equations are Hamiltonian, with respect to the canonical Poisson

bracket

{A,B}c =

∫

( δA

δX(ξ, t)

δB

δP (ξ, t)
−

δB

δX(ξ, t)

δA

δP (ξ, t)

)

dξ. (10)

and the canonical variables are X(ξ, t), P (ξ, t):

{X(ξ1, t), P (ξ2, t)}c = δ(ξ1 − ξ2), (11)

{P (ξ1, t), P (ξ2, t)}c = {X(ξ1, t),X(ξ2, t)}c = 0. (12)
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Now we can show that (5) is a momentum map that produces the Pois-

son brackets, given by the Hamiltonian operator J1. To do this we will use

the canonical Poisson brackets (11), (12) to compute {q(x1), q(x2)}c.

Indeed

{q(x1, t), q(x2, t)}c =

{

∫ ∞

0

δ(x1−X(ξ1, t))P (ξ1, t)dξ1,

∫ ∞

0

δ(x2−X(ξ2, t))P (ξ2, t)dξ2}c =

−

∫ ∞

0

∫ ∞

0

{X(ξ1, t), P (ξ2, t)}cδ
′(x1−X(ξ1, t))P (ξ1, t)δ(x2−X(ξ2, t))dξ1dξ2

−

∫ ∞

0

∫ ∞

0

{P (ξ1, t),X(ξ2, t)}cδ(x1−X(ξ1, t))δ
′(x2−X(ξ2, t))P (ξ2, t)dξ1dξ2

= −δ′(x1−x2)

∫ ∞

0

P (ξ2, t)δ(x2−X(ξ2, t))dξ2 +

δ′(x2−x1)

∫ ∞

0

P (ξ1, t)δ(x1−X(ξ1, t))dξ1

= −q(x2, t)δ
′(x1 − x2) + q(x1, t)δ

′(x2 − x1)

= −
(

q(x1, t)
∂

∂x1
+

∂

∂x1
q(x1, t)

)

δ(x1 − x2) = J1(x1)δ(x1 − x2).

Now it is straightforward to check, using (2), that (1) can be written in a

Hamiltonian form as

qt = {q,H1}c,

with the Poisson bracket, generated by J1:

{A,B}c =

∫

δA

δq(x)
J1(x)

δB

δq(x)
dx

= −

∫

q(x)
( δA

δq(x)

∂

∂x

δB

δq(x)
−

δB

δq(x)

∂

∂x

δA

δq(x)

)

dx. (13)

A singular momentum map of type (5) is used18 for the construction of

peakon, filament and sheet singular solutions for higher dimensional EPDiff

equations.

The parallel with the geometric interpretation of the integrable SO(3)

top can be made explicit by a discretization of CH equation based on Fourier

modes expansion.23 Since the Virasoro algebra is an infinite-dimensional

algebra, the obtained equation represents an ’integrable top’ with infinitely

many momentum components.

If we compare (6) and (7) we have

Xt(ξ, t) = u(X(ξ, t), t), (14)
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i.e. X(ξ, t) is explicitly the diffeomorphism related to the geodesic

curve,10,27,30 i.e. X(x, t) is an one-parameter curve of diffeomorphisms of

R (or, with periodic boundary conditions, of the circle S
1), depending on

a parameter t and associated with a right-invariant metric given by the

Hamiltonian H1.

For the peakon solutions (ω = 0) the dependence on the scattering data

is also known. For completeness and comparison we mention the analogous

results for this case. The N -peakon solution has the form2,4

u(x, t) =
1

2

N
∑

i=1

pi(t) exp(−|x − xi(t)|), (15)

provided pi and xi evolve according to the following system of ordinary

differential equations:

ẋi =
∂H

∂pi

, ṗi = −
∂H

∂xi

, (16)

where the Hamiltonian is H = 1
4

∑N
i,j=1 pipj exp(−|xi − xj |). Now one can

see immediately the analogy between X(ξ, t) and xi(t); P (ξ, t) and pi(t)

due to the fact that the N -soliton solution with the limit ω → 0 converges

to the N -peakon solution.3

2. n-dimensional EPDiff equations

Let us consider motion in R
n with a velocity field u(x, t): R

n × R → R
n

and define a momentum variable m = Qu for some (inertia) operator Q

(for CH generalizations Q is the Helmholtz operator Q = 1− ∂i∂i = 1−∆,

where ∂i = ∂
∂xi ). The kinetic energy defines a Lagrangian

L[u] =
1

2

∫

m · u dnx. (17)

Since the velocity u = ui∂i is a vector field, m = midxi ⊗ dnx is a n + 1-

form density, we have a natural bilinear form

〈m,u〉 =

∫

m · u dnx. (18)

The The Euler-Poincaré equation for the geodesic motion is18,19

d

dt

δL

δu
+ ad∗

u

δL

δu
= 0, u = G ∗ m, (19)

where G is the Green function for the operator Q. The corresponding Hamil-

tonian is

H[m] = 〈m,u〉 − L[u] =
1

2

∫

m · G ∗ m dnx, (20)
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and the equation in Hamiltonian form (u = δH
δm

) is

∂m

∂t
= −ad∗

δH
δm

m. (21)

The left Lie algebra of vector fields is [u,v] = −(uk(∂kvp) − vk(∂kup))∂p.

For an arbitrary vector field v one can write19

〈ad∗
u
m,v〉=〈m, aduv〉 = 〈m, [u,v]〉

= −〈mldxl ⊗ dnx, (uk(∂kvp) − vk(∂kup))∂p〉

= −

∫

mp(u
k(∂kvp) − vk(∂kup))dnx

=−

∫

(∂k(mpu
kvp)−(∂kmp)u

kvp−mpv
p(∂kuk) − mpv

k(∂kup))dnx

=

∫

vp(uk(∂kmp) + mp(∂kuk) + mk(∂pu
k))dnx

= 〈((u · ∇)mp + m · ∂pu + mpdivu)dxp ⊗ dnx,v〉,

and therefore (21) has the form

∂mp

∂t
+ (u · ∇)mp + m · ∂pu + mpdivu = 0. (22)

Let us now define an one-parametric group of diffeomorphisms of R
n, with

elements that satisfy

∂X(x, t)

∂t
= u(X(x, t), t), X(x, 0) = x. (23)

Due to the invariance of the Hamiltonian under the action of the group

there is a momentum conservation law:

mi(X(x, t), t)∂jX
i(x, t) det

(∂X

∂x

)

= mj(x, 0), (24)

where
(

∂X

∂x

)

ij
= ∂Xi

∂xj is the Jacobian matrix.

The Lie-Poisson bracket is

{A,B}(m) = 〈m, [
δA

δm
,
δB

δm
]〉

= −

∫

mi

( δA

δmk

∂k

δB

δmi

−
δB

δmk

∂k

δA

δmi

)

dnx. (25)

When n = 1 clearly (25) gives (13) and the algebra, associated with

the bracket is the algebra of vector fields on the circle. This algebra admits

a generalization with a central extension, which is the famous Virasoro

algebra.10–12,19,25,30 In two dimensions, n = 2, the algebra, associated with

the bracket is the algebra of vector fields on a torus.1,16,33 This algebra also

admits central extensions.16,20
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3. Reduction to the subgroup of volume-preserving

diffeomorphisms

In the case of volume-preserving diffeomorphisms we consider vector fields,

further restricted by the condition div u = 0. Let us restrict ourselves to

the three-dimensional case (n = 3) and let us assume that m = (1 − ∆)u,

so that div m = 0 as well. According to the Helmholtz decomposi-

tion theorem for vector fields, m can be determined only by the quantity

Ω = ∇×m. Therefore we can write the Lie-Poisson brackets (25) in terms

of Ω. Indeed, one can compute that

δA

δm
= ∇×

δA

δΩ
(26)

Thus

∇ ·
δA

δm
= ∇ ·

(

∇×
δA

δΩ

)

= 0, (27)

i.e. the vector fields δA
δm

are divergence-free. Therefore

mi

δA

δmk

∂k

δB

δmi

= ∂k

(

mi

δA

δmk

δB

δmi

)

− (∂kmi)
δA

δmk

δB

δmi

and from (25) we obtain

{A,B} =

∫

(∂kmi)
( δA

δmk

δB

δmi

−
δB

δmk

δA

δmi

)

d3x

=

∫

Ω ·
( δA

δm
×

δB

δm

)

d3x

=

∫

Ω ·
((

∇×
δA

δΩ

)

×
(

∇×
δB

δΩ

))

d3x. (28)

This is the well known Poisson bracket used in fluid mechanics.1,17,26,29,31,34

The curl of the equation (22) gives the following equation for Ω:19

Ωt + (u · ∇)Ω − (Ω · ∇)u = 0, Ω = (1 − ∆)(∇× u). (29)

Note that u can be expressed through Ω:

u[Ω] = (1 − ∆)−1
(

∇×

∫

Ω(x′)

4π|x − x′|
d3x′

)

,

thus

H[Ω] =
1

2

∫

u[Ω] · (1 − ∆)u[Ω]d3x.
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The vector Ω is always perpendicular to u. The further reduction to

an equation in n = 2 dimensions is straightforward. Introducing a (scalar)

stream function ψ(x1, x2) we have

u(x1, x2) = (−∂2ψ, ∂1ψ, 0) = e3 ×∇ψ, (30)

Ω(x1, x2) = (1 − ∆)(∇× u) = (1 − ∆)∆ψe3, (31)

where e3 is the unit vector in the direction of x3. Since (Ω·∇)u = Ω∂3u = 0,

(29) leads to the equation

Ωt + (u · ∇)Ω = 0,

which produces a scalar equation for the stream function ψ due to (30) and

(31), or alternatively for Ω ≡ Ω · e3. The Poisson bracket that one can find

from (28) is

{A,B} =

∫

Ω
(

∂1

(δA

δΩ

)

∂2

(δB

δΩ

)

− ∂2

(δA

δΩ

)

∂1

(δB

δΩ

))

d2x

=

∫

Ω ·
(

∇
(δA

δΩ

)

×∇
(δB

δΩ

))

d2x (32)

and the Hamiltonian

H =
1

2

∫

∇ψ · (1 − ∆)∇ψd2x.
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