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G-STRANDS ON SYMMETRIC SPACES

ALEXIS ARNAUDON1, DARRYL D. HOLM1 AND ROSSEN I. IVANOV2

Abstract. We study the G-strand equations that are extensions of the classical
chiral model of particle physics in the particular setting of broken symmetries
described by symmetric spaces. These equations are simple field theory models
whose configuration space is a Lie group, or in this case a symmetric space. In this
class of systems, we derive several models that are completely integrable on finite
dimensional Lie group G and we treat in more details examples with symmetric
space SU(2)/S1 and SO(4)/SO(3). The later model simplifies to an apparently
new integrable 9 dimensional system. We also study the G-strands on the infinite
dimensional group of diffeomorphisms, which gives, together with the Sobolev
norm, systems of 1+2 Camassa-Holm equations. The solutions of these equations
on the complementary space related to the Witt algebra decomposition are the
odd function solutions.

1. Introduction

We study a simplified field theoretical model called G-strands in which the fields
take values in a Lie groupG. TheG-strands are related to the chiral model of particle
physics, and they have been studied in the context of geometric mechanics in [HIP12,
HI13, HI14, GBHR14, HL13]. In this paper, we are considering G-strands where the
Lie group is replaced by a symmetric space. The passage from a homogeneous space
(that is, the quotient space of a Lie group by one of its subgroups) to a symmetric
space requires an involutive automorphism which provides more structure for the
equations. This sort of geometrical structure appears in the theory of complex
fluids, which is based on the concept of order parameters resulting from broken
symmetries. More precisely, the order parameter belongs to the coset space of the
broken symmetry with respect to the remaining symmetry, which is a homogeneous
space.

This definition of order parameter includes liquid crystals, He3, He4 and their
various generalisations in condensed matter theory. Here we consider models of
strands on symmetric spaces for which the dynamics will be shown to be completely
integrable. Some of these results are also compatible with well-known chiral models,
see for example [ZM78].

In our previous publications [HIP12, HI13, HI14, GBHR14, HL13] we introduced
and studied the G-strand construction, which gives rise to equations for a map
R× R into a Lie group G associated to a G-invariant Lagrangian. In the case of a
semisimple Lie group G with a Lie algebra g, various classes of integrable equations
have been found. In these cases the Lax operators take values in a loop algebra
gλ = C[λ, λ−1]⊗ g, and the resulting equations correspond to the classes of possible
loop algebras gλ. Other possibilities for the derivation of non-equivalent integrable
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2 A. ARNAUDON, D. HOLM AND R IVANOV

systems use the concept of automorphic Lie algebras, which are subalgebras of gλ.
Such subalgebras are obtained as a reduction with respect to an automorphism ϕ
of gλ, i.e. they are the ϕ-invariant part of gλ, see [LM05]. The set of all automor-
phisms of gλ forms the reduction group, as introduced in [Mik81]. Knowledge of
the reduction group is important for the classification of the integrable equations
as reductions from a given gλ. The reduction group naturally acts on all structures
related to the Lax operator, including the scattering data. Both the continuous and
discrete spectra of the Lax operator are orbits of the reduction group, see [Mik81].
Moreover, the automorphisms act naturally on the phase space and Hamiltonian
structures, thereby introducing reductions to them as well.

Here we shall address a different but related reduction of an integrable system
associated to gλ which makes use of symmetric spaces. The structure of a symmetric
space is determined by an involutive automorphism of the Lie algebra g, known as
Cartan involution, and the corresponding decomposition

g = k⊕ p ,

where k is a subalgebra, invariant under the Cartan involution, and p is a com-
plementary subspace on which the Cartan involution has an eigenvalue −1. The
classification of the symmetric spaces of the simple Lie groups is provided in the
classic monograph [Hel79]. Due to the Lie-algebraic nature of this splitting, the
Hamiltonian variables of these equations separate into sets taking values in either k
or p. Moreover, by restricting the Hamiltonian to depend only on the variables in the
space p, the reduced equations can be written on the symmetric space. We will ex-
plain how this construction is related to the concept of un-reduction of [BGBHR11]
which was extended to covariant field theories in [ALH15]. Integrable systems on
symmetric spaces of finite dimensional Lie algebras have been well studied in the
literature, see [AF87, FK83, For84, GG10, GGK05]. A more general but similar con-
struction would be on homogeneous spaces, as studied recently in [Viz15a, Viz15b]
also in the context of reduction by symmetry. This construction is different from
the semidirect product G-strands explored in [HI14] for the special Euclidean group
SE(3) := SO(3)sR3 with Lie algebra commutation relations

[so(3), so(3)] ⊂ so(3) and [so(3),R3] ⊂ R
3 ,

because for symmetric spaces, an additional commutation relation occurs involving
the complementary space p

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k .

Plan of the work. In Section 2 we give a brief account of the G-strand con-
struction, reviewing our previous works and illustrating the G-strand construction
with several simple but instructive examples. In Section 3 we construct the the-
ory of integrable G-strands on symmetric spaces for semisimple Lie algebras g,
and give examples for SU(2) and SO(4). The idea of the restriction of the phase
space of a Hamiltonian system on a symmetric space may also be useful for non-
integrable systems. For example, non-integrable G-strands arise when G is the
infinite-dimensional group of diffeomorphisms. Diff(R)-strand equations on sym-
metric spaces and their singular solutions are presented in Section 4.
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2. The G-strand equations

We describe here the construction of theG-strand equations based on the theory of
reduction by symmetry for covariant field theory in 1+ 1 dimensions. More general
systems which encompass the G-strand equations can be found, for example, in
[CLGPR01].

Let G be a Lie group and consider the map g(t, s) : R × R → G. This map has
two tangent vectors associated to the independent variables s and t. We will denote
them as ġ := ∂g

∂t
∈ TgG and g′ := ∂g

∂s
∈ TgG, respectively. Although, as we will see

later, the dynamical equations will be symmetric under s ↔ t, the time derivative
can still be interpreted as the velocity, and the space derivative as a deformation
gradient.

We will now implement the theory of reduction by symmetry, which requires the
Lagrangian density function L(g, ġ, g′) to be left G–invariant and thereby yields a
reduced Lagrangian l : g× g → R, defined by

l(g−1ġ, g−1g′) := L(g−1g, g−1ġ, g−1g′) = L(g, ġ, g′) .

Conversely, this relation defines for any reduced Lagrangian l = l(u, v) : g× g → R

a left G-invariant function L : TG× TG → R and a map g(t, s) : R× R → G such
that

u(t, s) := g−1gt(t, s) =: g−1ġ(t, s) and v(t, s) := g−1gs(t, s) =: g−1g′(t, s) . (2.1)

Theorem 2.1 (Covariant Euler-Poincaré theorem). With the preceding notation,
the following two statements are equivalent:

(1) The variational principle

δ

∫ t2

t1

L(g(t, s), ġ(t, s), g′(t, s)) ds dt = 0

holds on TG × TG, for variations δg(t, s) of g(t, s) that vanish at the end-
points in t and s. The function g(t, s) satisfies the Euler–Lagrange equation
for L on G, given by

∂L

∂g
− ∂

∂t

∂L

∂gt
− ∂

∂s

∂L

∂gs
= 0 . (2.2)

(2) The constrained variational principle

δ

∫ t2

t1

l(u(t, s), v(t, s)) ds dt = 0 (2.3)

holds on g× g, using variations of u := g−1gt(t, s) and v := g−1gs(t, s) of the
forms

δu = ẇ + aduw and δv = w
′ + advw , (2.4)

where w(t, s) := g−1δg ∈ g vanishes at the endpoints. The Euler–Poincaré

equation holds on g∗ × g∗

d

dt

δl

δu
− ad∗

u

δl

δu
+

d

ds

δl

δv
− ad∗

v

δl

δv
= 0 , (2.5)
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where ad∗ : g× g∗ → g∗ is defined via ad : g× g → g with the pairing of the
Lie algebra 〈 · , · 〉 : g∗ × g → R.

The proof of this theorem is classical and can be found in previous works, [MR99,
CLGPR01]. The reduced fields u and v have an additional property in the context
of covariant field theory which is given in the following lemma.

Lemma 2.2. The left-invariant tangent vectors u(t, s) and v(t, s) at the identity of
G satisfy zero-curvature relation

vt − us = − aduv . (2.6)

Proof. The proof is standard and follows from equality of cross derivatives gts =
gst. �

This solution of the Euler-Poincaré equation must satisfy this additional relation
(2.6) for it to correspond to a solution on the Lie group, reconstructed via the
definition of the reduced vectors (2.1). As we will work with the reduced variables
and also need the reconstruction to hold, we will always impose this relation and
solve the coupled system of Euler-Poincaré equation (2.5) and ZCR (2.6) together.
We will call these equations the G-strand equations.

Remark 2.3 (Zero curvature relation). The term zero curvature relation is not
related to the curvature of the space where the fields u and v take values. Rather, it
refers to the curvature of another geometrical construction which will briefly describe
here. The fields u and v are in fact maps u : R2 → g. These maps combine into
a single one-form ν := udt + vds, which is a section of the bundle g ⊗ R2 → R2,
mapping from the space-time (t, s) ∈ R2 to one-forms on R2 with values in g. The
zero curvature relation is the condition that the curvature of this structure vanishes
on the solution of the Euler-Poincaré equation. The curvature is expressed in term
of the covariance exterior derivative which is here Curv(ν) := dνν = dν + [ν, ν].

Remark 2.4 (Historical remark). In 1901, Poincaré [Poi01] proved that when a Lie
algebra acts locally transitively on the configuration space of a Lagrangian mechanical
system, the well known Euler-Lagrange equations are equivalent to a new system of
differential equations defined on the product of the configuration space with the Lie
algebra. These equations are now called Euler-Poincaré equations in his honour.
In modern language the content of the Poincaré’s article [Poi01] is presented for
example in [Hol11, Mar13]. An English translation of the article [Poi01] can be
found in Appendix D of [Hol11].

2.1. Lie-Poisson Hamiltonian formulation. In this section, we derive the cor-
responding G-strand equations in the Hamiltonian framework, by applying the Le-
gendre transformation to the Lagrangian ℓ(u, v) : g × g → R with respect to the
first variable only. This yields the Hamiltonian h(m, v) : g∗ × g → R, given by

h(m, v) = 〈m , u〉 − ℓ(u, v) . (2.7)

The variational derivatives of the Hamiltonian gives the useful relations

δl

δu
= m ,

δh

δm
= u and

δh

δv
= − δℓ

δv
= −n .
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The corresponding non-canonical Hamiltonian equation, or Lie-Poisson equations
are directly found to be

∂tm = ad∗

δh/δm m+ ∂s
δh

δv
− ad∗

v

δh

δv
,

∂tv = ∂s
δh

δm
− adδh/δm v .

(2.8)

Assembling these equations into Lie-Poisson Hamiltonian structure gives

∂

∂t

[
m

v

]
=

[
ad∗

�m ∂s − ad∗

v

∂s + adv 0

] [
δh/δm = u

δh/δv = −n

]
, (2.9)

where we use the notation (ad∗

�m)u = ad∗um.

The Hamiltonian matrix in equation (2.9) also appears in the Lie-Poisson brackets
for Yang-Mills plasmas, for spin glasses and for perfect complex fluids, such as liquid
crystals, see for example [HK83, Hol02, GBR09].

Remark 2.5 (On the loss of covariance). The choice of taking the Legendre trans-
form only with respect to the velocity u, destroys the symmetry or covariance of the
t and s variables in the Lie-Poisson equation. There exists an intrinsic way to apply
the Legendre transformation that preserves this symmetry, developed in [LM03], but
we will not use this method here, as we want to relate the G-strand equations to
classical Hamiltonian systems such as σ-models.

2.2. G-strand equations on semisimple Lie algebras. Denoting m := δℓ/δu ∈
g∗ and n := δℓ/δv ∈ g∗, the G-strand equations are

mt + ns − ad∗

u
m− ad∗

v
n = 0 ,

∂tv − ∂su+ aduv = 0 .
(2.10)

For a semisimple matrix Lie group G and its semisimple Lie algebra g, one has
ad∗ = − ad and these equations take the commutator form,

mt + ns + adum+ advn =0 ,

∂tv − ∂su+ aduv =0 ,
(2.11)

where we have used the ad-invariant pairing of semisimple matrix Lie algebras which
is given by the Killing form

〈m , n〉 = Tr(admadn) = ǫTr(mn) , (2.12)

where ǫ is a negative constant which depends on the Lie algebra. For example we
have ǫ = −1/2 for so(3). This pairing is non-degenerate if the Lie algebra is semi-
simple and thus allows us to identify g ∼= g∗ and the adjoint operator which is the
matrix commutator and is identified with minus the coadjoint operator. Accordingly,
the Hamiltonian structure reduces to

∂

∂t

[
m

v

]
=

[
adm ∂s + adv

∂s + adv 0

] [
δh/δm = u

δh/δv = −n

]
. (2.13)

Examples of these systems for various Lie groups are studied in [HIP12, HI14,
GBHR14].
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2.3. Example: the chiral model. For the fields m and v with values in a Lie
algebra g, we choose the quadratic Hamiltonian density

h(m, v) =
1

2
〈m , m〉+ 1

2
〈v , v〉 . (2.14)

We thus have u = m and v = −n and the Hamiltonian equations corresponds to the
well known chiral model for su(n)

vs − ut = 0 ,

vt − us + [u, v] = 0 ,
(2.15)

see for example [ZM78, FT07, NMPZ84, GVY08] and references therein. This is an
integrable model with a Lax representation

Lt −Ms + [L,M ] = 0 , (2.16)

where

L =
1

4

(
−2v + λ(u− v)− 1

λ
(u+ v)

)
(2.17)

M = −1

4

(
2u+ λ(u− v) +

1

λ
(u+ v)

)
, (2.18)

for an arbitrary complex spectral parameter λ. This equivalent formulation of the
equation (2.15) makes this model integrable by the means of the inverse scattering
method. In addition, the chiral model equations (2.15) can be rewritten in a more
familiar form, first derived in [ZM78], by doing the following. First apply the change
of space time-variables t = 1

2
(x− y) and s = 1

2
(x+ y) as well as new fields ξ = u− v

and η = u+ v. The chiral model (2.15) transforms accordingly to

∂xξ −
1

2
[ξ, η] = 0

∂yη +
1

2
[ξ, η] = 0 .

(2.19)

The Lax representation (2.18) is also modified to

L =
ξ

λ− 1
and M =

η

λ+ 1
. (2.20)

The choice of SU(2) is of particular interest because after a change of variables
shown in [NMPZ84] the equations result in a generalization of the sine-Gordon
equation. The solutions of the chiral model on SU(n) and SO(n) are also discussed
in [NMPZ84] as well as the cases of U(n) and SL(n) in [HSAS84, FT07]. For the
more general case of GL(n) we refer to [Beg90].

3. Symmetric spaces for semisimple Lie algebras

We will now formulate the G-strand equations on symmetric spaces. To begin,
we recall the definition of a symmetric space and refer the interested reader to the
monographs [Hel79, Arv03] for more details.

A homogeneous space is a manifold M on which a Lie group G acts transitively.
As a consequence, M is diffeomorphic to the coset space G/K, where K is a (closed)
Lie subgroup of G. Furthermore, in an important special case, the homogeneous
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space is reductive and its tangent space at the identity can be identified with a
subspace p of the Lie algebra g of G. A large class of homogeneous spaces have the
special geometrical properties which makes them symmetric spaces. This is the case
when K ⊂ G is also a subgroup of

Gϕ = {g ∈ G|ϕ(g) = g} , (3.1)

where ϕ : G → G is an involution, i.e ϕ2(g) = g. The involution ϕ has an induced
action ϕ̃ on g and

k = {X ∈ g, ϕ̃(X) = X} p = {X ∈ g, ϕ̃(X) = −X} , (3.2)

with

g = k⊕ p , (3.3)

where k is a subalgebra, invariant under the Cartan involution and corresponding
to the eigenvalue +1 f ϕ, and p is a complimentary subspace on which the Cartan
involution has an eigenvalue −1. The orthogonality between k and p is with respect
to the Killing form of g and the subspace k is Ad(K)-invariant. Moreover, the
following relations are fulfilled

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k . (3.4)

The first relation means that k is a Lie subalgebra, the second that p is invariant
under the action of k and the third is a characteristic of symmetric spaces which
distinguishes them from the semidirect product systems. We refer to [Hel79] for a
complete classification of symmetric spaces for matrix Lie groups.

3.1. Reduction and un-reduction. Before going into the derivation of the G-
strand equations on symmetric spaces, we want to highlight the underlying geometry
associated with group reduction in the symmetric space construction. In this con-
struction, we will select a Lagrangian, or Hamiltonian that is invariant with respect
to the action of the full group G, but we ultimately want to have a system written
on TeP = Te(G/K) and not on g. For this, there is an interesting general construc-
tion based on the reduction by symmetry which can be applied directly here. For
simplicity, we will only consider the classical mechanical setting, namely with no
space s variable. This construction was used in [BEHGB11] in the context of image
matching and extended to field theories in [ALH15]. The idea is to combine the un-
reduction scheme of [BEHGB11] with the usual reduction by symmetry to obtain a
dynamical equation on a Lie algebra rather than on the tangent bundle of a symmet-
ric space. This can be achieved only for a particular class of Lagrangians which are
symmetric with respect to both groups involved in the construction of the symmet-
ric space and which do not depend on the complementary subspace in the Cartan
decomposition. Specifically, we apply the following procedure of un-reduction and
reduction.

(1) This scheme works when the original system is described by a Lagrangian
defined on the tangent space of a symmetric space P := G/K; namely,

L : TP → R .



8 A. ARNAUDON, D. HOLM AND R IVANOV

We assume that this Lagrangian is invariant under the Lie groups G and
K. For such a system, we cannot apply any reduction by symmetry for this
Lagrangian, as TP is not the tangent space of a Lie group.

(2) To overcome this difficulty we append to TP the so-called adjoint bundle

k̃ := (G× k)/K, where the quotient is taken with respect to the group action
of K on G and the adjoint action of K on k. The Lagrangian L can then
be trivially extended to a Lagrangian on this space which does not explicitly
depend on the variable in the adjoint bundle k̃. We thus have an equivalent
system described by the Lagrangian

L : TP ⊕ k̃ → R .

(3) This extension of the original phase space TP allows us to use a more general
theory of reduction by symmetry, called Lagrange-Poincaré reduction theory
[CMR01]. Presenting this theory in detail is out of the scope of this work; so
we will just explain its main ideas. First, this theory can be applied to general
Lagrangian systems invariant under a Lie group whose dimension is smaller
than the dimension of the configuration manifold, which is the manifoldM if
the Lagrangian is written on TM . Here, the Lie group is K and it acts on a
larger configuration manifold (which happens to be a Lie group) G. Second,
the most important tool in this theory is the isomorphism α : T (G/K) →
TP⊕ k̃. This isomorphism is used to define another Lagrangian l on T (G/K)
which is equivalent to L, that is

l : (TG)/K → R .

(4) This step is the last one in the un-reduction procedure which uses the
Lagrange-Poincaré reduction in the reverse direction to obtain the equiv-
alent system on TG, with corresponding Lagrangian

L : TG→ R .

This step is described in detail in [CMR01, BEHGB11, ALH15].
(5) The Lagrangian L in the previous step is still equivalent to the original

Lagrangian L which was invariant under the action of G. We can thus use
the standard Euler-Poincaré reduction theory to reduce this last system with
Lagrangian L to a Euler-Poincaré system with reduced Lagrangian

ℓ : g → R .

The crucial property of this last Lagrangian ℓ is that it will not depend on the k,
as none of the previous Lagrangians did, but the equation of motion will involve k,
as the Euler-Poincaré reduction is done using the full group G. We will use this fact
later, starting with a Lagrangian whose resulting dynamical system can be written
on a symmetric space.

3.2. G-strand equations. In this section, we will derive the G-strand equations.
We start from the complete Lie algebra, then apply the symmetric space definition
to show that the equations reduce as expected from the previous theoretical con-
siderations. We first split the variable m and the Hamiltonian according to (3.4)
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as

m = (m−,m+) ∈ (k, p) , (3.5)

δH

δm
=

(
δH

δm−

,
δH

δm+

)
∈ (k, p) . (3.6)

Note that m± still belong to g and since k and p are mutually orthogonal we have
the direct sum decompositions m = m− +m+ and

δH

δm
=

δH

δm−

+
δH

δm+

.

The Lie-Poisson Hamiltonian structure of the G-strand equation (2.9) decomposes
accordingly, as

∂

∂t




m−

m+

v−

v+


 =




adm
−

adm+
∂s + adv

−

adv+

adm+
adm

−

adv+ ∂s + adv
−

∂s + adv
−

adv+
0 0

adv+
∂s + adv

−

0 0







δh/δm−

δh/δm+

δh/δv−
δh/δv+


 . (3.7)

As seen in the previous section, the Hamiltonian cannot depend on k in order to
obtain an equation on a symmetric space, while writing it on the Lie algebra g. The
previous system thus simplifies to

∂

∂t

[
m+

v+

]
=

[
adm

−

∂s + adv
−

∂s + adv
−

0

] [
δh/δm+

δh/δv+

]

∂

∂t

[
m−

v−

]
=

[
adm+

adv+

adv+
0

] [
δh/δm+

δh/δv+

]
.

(3.8)

This system reflects the structure of symmetric spaces. Namely, the + variables are
advected by the − variables and the evolution of the − variables only depends on
the + variables.

3.3. Reduction to an integrable σ-model. Although the system (3.8) is rather
general, it can be reduced to an integrable σ-model by using a quadratic Hamiltonian
which depends only on the symmetric space variables indexed by + in accordance
with the discussion of the section 3.1. For selected constants a and b, we set

h(m+, v+) =
1

2

∫ (
a‖m+‖2 + b‖v+‖2

)
ds , (3.9)

so that

δh

δm+

= am+ and
δh

δv+
= bv+ . (3.10)

Notice that if the Hamiltonian had included the m− term, one would still have
obtained the equation (m−)t = 0, so that we can set m− = 0. The Hamiltonian
structure for the Hamiltonian simplifies to

∂

∂t



m+

v+

v−


 =




adm
−

∂s + adv
−

adv+

∂s + adv
−

0 0
adv+

0 0






δh/δm+

δh/δv+
δh/δv− = 0


 , (3.11)
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and we arrive at the following system of equations,

∂tm+ = ∂sv+ + [v−, v+] ,

∂tv+ = ∂sm+ + [v−,m+] ,

∂tv− = [v+,m+] .

(3.12)

This is the reduction of the G-strand equation on symmetric space to an integrable
σ-model with a zero curvature relation Lt−Ms+[L,M ] = 0, given by the operators

L = −v− − λ

2
(v+ +m+)−

1

2λ
(v+ −m+)

M = −λ
2
(v+ +m+) +

1

2λ
(v+ −m+) .

(3.13)

We refer to [Sev96, STSS97] for another derivation of these equations.

We can apply the same change of variables as for the classical chiral model to
recast this system into a more familiar form. We use t = 1

2
(x− y), s = 1

2
(x+ y) and

ξ = m+ − v+, η = m+ + v+ to obtain

∂xξ = ∂yη + [v−, η − ξ]

∂xξ = −∂yη − [v−, η + ξ]

(∂x − ∂y)v− =
1

2
[η, ξ] .

(3.14)

This system can then be written as

∂xξ = −[v−, ξ]

∂yη = −[v−, η]

(∂x − ∂y)v− =
1

2
[η, ξ] ,

(3.15)

and the two fields of the relation (2.6) become

Q = −v− − λη P = −v− +
1

λ
ξ , (3.16)

with a similar zero curvature relation, i.e. Px − Qy + [P,Q] = 0. This equation is
clearly different from the su(2) model. In the case t → it we have x ≡ z = s + it,
y = z = s − it. This example was studied in [Gue97] and [HSAS84] where it is
shown that the solutions can be constructed via the dressing method.

3.4. Example: su(2) chiral model on symmetric spaces. When g is su(2) and
k is its Cartan subalgebra we have

v− = ia σ3 ∈ k, where σ3 = diag(1,−1) , (3.17)

and a(s, t) is a real scalar function. We express v+ andm+ in function of two complex
fields A1(s, t) and A2(s, t) as

v+ =

(
0 A1 + A2

−(A1 + A2) 0

)
∈ p , m+ =

(
0 A1 − A2

−(A1 −A2) 0

)
∈ p ,

(3.18)
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where the bar denotes complex conjugation. Introducing a two dimensional complex
vector A(s, t) = (A1, A2)

T and the two-dimensional cross-product A×B = A1B2 −
A2B1, the G-strand equations (3.12) become

σ3At = As + 2iaA iat = 2A×A . (3.19)

Note that the second equation can expressed as at = −4ℑ(A1A2), or att =
−4ℑ(σ3As ×A), after taking one more time derivative.

The conserved quantities can be found by computing
∫
Tr(LM)ds from the oper-

ators in the compatibility relation (2.6) and by looking separately at each term in
the expansion in the spectral parameter λ. Only two terms do not vanish and give
the conserved quantities

C1 =

∫
|A1|2ds and C2 =

∫
|A2|2ds . (3.20)

Notice that while C1 + C2 is the Hamiltonian, C1 and C2 are in fact conserved
individually. Their associated continuity equations are

∂t|A1|2 = ∂s|A1|2 and ∂t|A2|2 = −∂s|A2|2 , (3.21)

or, in the 2d vectorial form

∂t
(
AA

)
= ∂s

(
Aσ3A

)
and ∂t

(
Aσ3A

)
= ∂s

(
AA

)
, (3.22)

illustrating the underlying covariance of the equations. The real form of this example
is equivalent to the case SO(3)/SO(2) by using the isomorphism between SU(2) and
SO(3), commonly used in the theory of complex fluids.

3.5. Another example: a chiral model on SO(4)/SO(3). We now increase the
dimensions by studying an example with a semi-simple algebra of rank 2. For this,
we pick the symmetric space SO(4)/SO(3). We go directly to the equations of
motion, by using the previous theory for the general chiral model equations (3.12).
The Lie bracket of so(4) is of dimension 6 and can be written in term of vectors
(X, Y ) ∈ R6 and (X ′, Y ′) ∈ R6 as

[(X, Y ), (X ′, Y ′)] = (X ×X ′ + Y × Y ′, X × Y ′ + Y ×X ′) , (3.23)

and one can choose the first R3 for k.

Although so(4) may be decomposed as so(4) = so(3)⊕ so(3) into a direct sum of
subalgebras, this is not the Cartan decomposition of so(4); since the complimentary
space p in the Cartan decomposition is not a subalgebra. The direct sum decompo-
sition corresponds to the disentangled Lie algebra decomposition of so(4), whereas
(3.23) corresponds to the entangled Cartan decomposition so(4) = so(3) ⊕ p with
p 6= so(3) where p ⊃ Y, Y ′ is a 3-dimensional linear space. The two decompositions
are associated to different so(4) Lie algebra bases which are related via rotations in
the so(4) Lie algebra vector space. The explicit decomposition (X, Y ) from (3.23)
in matrix form is represented as

[
0 Y

−Y T so(3)

]
,
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where the 3D row vector Y ∈ p, and the subalgebra k = so(3) is parametrised by
the components of the 3D vector X in a standard way (via the “hat map”, see
[Hol11, HI14]).

Remark 3.1 (The SO(p + q)/(SO(p)× SO(q) decomposition). This construction
is similar to the decomposition of the Lie algebra so(p+ q) and the derivation of G-
Strand equation could be done for this algebra in a similar way. The algebra so(p+q)
contains matrices of the form

X =

[
X1 X2

−XT
2 X3

]
,

where X1 = −XT
1 ∈ so(p) is p × p matrix, X3 = −XT

3 ∈ so(q) is q × q, and X2 is
p× q. If S = (Ip,−Iq) with In being an identity matrix n×n, the Cartan involution
is ϕ̃(X) = SXS−1, then k = so(p) × so(q), the eigenspace of ϕ̃ with eigenvalue 1,
contains matrices of the form

[
X1 0
0 X3

]
,

and for SO(p+ q)/(SO(p)×SO(q)), the complimentary space p consists of matrices
of the form

[
0 X2

−XT
2 0

]
.

If p = 1 then X2 is a q - dimensional vector. In the SO(4)/SO(3) example, the
symmetric space consists of 3-dimensional vectors. A very good explanation is given
in [Hel79], see also [FK83] for similar constructions in the context of the nonlinear
Schrödinger equation.

For the symmetric space SO(4)/SO(4) we can choose m+ = (0, Y ), v+ = (0, Z)
and v− = (X, 0), the equations become

∂t(0, Y ) = ∂s(0, Z) + [(X, 0), (0, Z)] ,

∂t(0, Z) = ∂s(0, Y ) + [(X, 0), (0, Y )] ,

∂t(X, 0) = [(0, Z), (0, Y )] ,

(3.24)

or, in terms of X, Y, Z only,

Yt = Zs +X × Z ,

Zt = Ys +X × Y ,

Xt = Z × Y .

(3.25)

This equation has a conserved quantity

C1 =

∫
Y · Z ds , (3.26)

since

∂tC1 = ∂sC1 . (3.27)

The Hamiltonian H = Z2 + Y 2 gives the conservative form ∂tH = ∂sC1, that has
the same flux C1 as for (3.27). The complete integrability is clear from the previous
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discussion, but nevertheless, let’s rewrite the Lax pair, as it can be directly written
on so(3), with

L = −X − λ

2
(Z + Y )− 1

2λ
(Z − Y ) ,

M = −λ
2
(Z + Y ) +

1

2λ
(Z − Y ) ,

(3.28)

where the commutator of the ZCR (2.6) is the cross product. Despite the complete
integrability of this system, we observe instabilities for high frequencies. This is
found from the dispersion relation of the linearised equation around the equilibrium
solution Xe = xe1, Ye = ye1 and Ze = ze1, with x, y, x ∈ R, by

(
κ2 − ω2

) (
(ω2 + z2)2 − (κ2 − (x2 + y2))2

)
= 0 . (3.29)

Apart from ω(κ) = ±κ, there are 4 other branches

ω(κ) = ±
√

−z2 ± (κ2 − (x2 + y2)) , (3.30)

one of which shows instabilities at high wave numbers, similarly to the G-strand
equations derived in [GBHR14].

Following the approach of [Arn16] for deforming integrable systems using the
SobolevH1 norm, we may introduce nonlocality into the G-strand equations in order
to regularise them. We use the notation ΛL := (1−α2∂2s )L, and a direct application
of [Arn16] shows that Λ does not appear in the M operator. We, therefore, obtain
the following deformed equations of motion

ΛYt = Zs + (ΛX)× Z

ΛZt = Ys + (ΛX)× Y

ΛXt =
1

2
((ΛZ)× Y + Z × (ΛY )) .

(3.31)

This equation seems not to be integrable, as the λ2 and λ−2 terms do not vanish.
Interestingly, the corresponding dispersion relation becomes

ω(κ) = ±
√

−z2 ± κ4 − (x2 + A(α)y2)2

(1 + α2κ2)2
. (3.32)

The unstable branch is thus bounded from above by 1

α2 and the ill-posedness of the
original equation is replaced by an unstable wave number regime. Other regularising
terms may be added, or the limit α → ∞ may be taken in order to reduce these
instabilities. In the latter case, the upper bound for the unstable branch will tend
to 0. Notice that in this limit, the ∂s terms will disappear, and the system will be
equivalent to the finite dimensional reduction of the system explored below, which
is integrable.

Finite dimensional reduction. In the case of s-independent fields, the system
reduces to an integrable nine dimensional dynamical system given in vector form by

Xt = Z × Y, Yt = X × Z and Zt = X × Y . (3.33)
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The Hamiltonian is H = 1

2
(‖Y ‖2 + ‖Z‖2) and there are three conserved quantities

C1 = Y · Z, C2 = Y ·X, C3 = X · Z, and a Casimir C4 = ‖X‖2 + ‖Z‖2 .
(3.34)

Only the last conserved quantity is a Casimir, as one can see from the form of the
Hamiltonian structure J : R9 × R9 → R9 given by

J(X, Y, Z)∇f :=




0 Z× 0
Z× 0 X×
0 X× 0






∂Xf
∂Y f
∂Zf


 . (3.35)

The system thus lives in a eight dimensional space given as a subspace of R8 with
Casimir C4. The remaining four constants of motions give us the complete integra-
bility, provided they are in involution with respect to the Hamiltonian structure J
in (3.35). The latter fact can directly be checked and these conserved quantities can
also be computed by expanding the quantity M ·L of (3.28) in term of powers of λ.
Notice that these are not all conserved for the 1 + 1 equation, as the complete M
operator is an infinite series in λ, which we will not compute here.

Explicit solutions may be computed in term of elliptic curves directly using the
Lax pair, but we leave this exercise for elsewhere and illustrates typical orbits via
numerical integration in Figure 1. Most of the orbits are periodic, and we displayed
one which has intersecting orbits and another one which has degenerate periodic
orbits.
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Figure 1. We display here periodic orbits of the system (3.33) aris-
ing from two different initial conditions. Both cases show interesting
features. The left panel shows orbits of X and Z orbits intersecting
in four points, and the right one shows degenerate periodic orbits.

The equilibrium solutions of this system are given whenever a linear combination
of X , Y and Z vanishes. In this case, the quantity HC := H +

∑
4

i=1
µiCi has a

critical point so that δHC = 0 for a particular set of coefficients µi. Thus, the
equilibria occur when X ,Y and Z are aligned. These equilibria are stable provided
the coefficients λi are chosen so that the second variation δ2HC has a strictly definite
signature.
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4. Diff(R)-strands on symmetric spaces

We now turn to the study of G-strands on the diffeomorphism group, already
investigated in [HI13], but not in the context of symmetric spaces. The symmet-
ric space structure for the diffeomorphism groups corresponds to the even or odd
functions, thus the corresponding Diff-strand equations will show a particular inter-
action between the odd and even parts of the functions. We will start by recalling
previous results on Diff-strands, and derive the equations with the symmetric space
structure, then end with an example of strand peakon anti-peakon collisions.

4.1. Camassa-Holm equation on symmetric spaces. We first recall the
Camassa-Holm equation [CH93]

mt + 2mux +mxu = 0, m = u− uxx , (4.1)

which can be written in a Hamiltonian form

mt = {m,H1} , (4.2)

where, assuming for convenience that m is 2π periodic in x, i.e. m(x) = m(x+2π),
the Poisson bracket is

{F,G} := −
∫

2π

0

δF

δm
(m∂ + ∂m)

δG

δm
dx = −

∫
2π

0

δF

δm
ad∗

δG

δm

m dx , (4.3)

and the Hamiltonian is

H1(m) =
1

2

∫
2π

0

m
(
1− ∂2

)−1
m dx . (4.4)

Although the CH equation (4.1) is integrable and admits a bi-Hamiltonian structure,
we will not discuss its integrability here. Instead, we will exhibit its symmetric space
structure by relating the Poisson bracket (4.3) to the Witt algebra W . We refer the
interested reader to [Iva05] and references therein for more details on this topic and
in particular when a central extension is used to produce the dispersive Camassa-
Holm equation. We did not implement this extension here and leave it for future
works. First, upon imposing periodic boundary conditions on solutions of the CH
equation, we may use the Fourier series expansion of the solution m, written as

m(x, t) =
1

2π

∑

n∈Z

Ln(t)e
inx . (4.5)

Notice that the reality of m gives the relation L−n = Ln. Then, the Fourier coef-
ficients Ln form a classical Witt algebra without a central charge with respect to
the Poisson bracket (4.3). This is seen by directly computing the Poisson brackets
among the Fourier coefficients

i{Ln, Lm} = (n−m)Ln+m . (4.6)

In the Witt algebra, H0 = L0

2π
is an integral of motion and the Hamiltonian (4.4)

decomposes as

H1 =
1

4π

∑

n∈Z

LnL−n

1 + n2
. (4.7)
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One may now recognise the structure of a symmetric space, as follows. As linear
sub-spaces of the Witt algebra W ,

(1) k is spanned by L2k, k ∈ Z, and
(2) p is spanned by L2k+1; k ∈ Z.

Then the Witt algebra can be decomposed as a direct sum W = k ⊕ p and one
may check that it satisfies the commutation relation of a symmetric space given in
(3.4). This decomposition is in fact obtained by a Z2–grading of the Witt algebra
and is equivalent to the splitting of m(x, ·) into even and odd functions. Indeed, the
algebra of vector fields v on the circle with commutator

[f(x), g(x)] = fgx − fxg (4.8)

is isomorphic to the Witt algebra. This is obvious if one takes a basis ln = einx, n ∈
Z. As an infinite dimensional vector space v is the space of the 2π periodic functions,
which can be expanded in Fourier series over ln. Now, the Cartan involution

(ϕ̃m)(x) = m(x+ π) ,

splits v into subspaces of even mode functions (where ϕ̃ has eigenvalue 1) and odd
mode functions (where ϕ̃ has eigenvalue -1). Moreover, the decomposition into even
and odd modes is

mem(x) = (1/2)(m(x) +m(x+ π)) and mom(x) = (1/2)(m(x)−m(x+ π)) .

These are orthogonal with respect to the L2-inner product

(m(x), n(x)) =
1

2π

∫
2π

0

mndx⇐⇒ (ln, lk) = δn+k,0 . (4.9)

By a new variable identification eix 7→ z the subspace of the even modes is naturally
isomorphic to the subspace of even functions, and the subspace of odd modes is
isomorphic to the subspace of the odd functions. Thus, we can identify k with the
subspace of even functions, and p with the subspace of odd functions.

It is known that the CH equation admits odd solutions, including the peakon
solutions, see [Con00, CK02] and references therein. This will also be the case for
the G-strand constructions, as we will see below.

4.2. Diff(R)-strand equations on symmetric spaces. We now derive the equa-
tion of motion for the Diff(R)-strands where s denotes the strand variable and the x
coordinate labels Diff(R), where the odd or even functions are defined. For this, we
consider a Lagrangian ℓ = ℓ(u, v) depending on two fields u(s, t, x) and v(s, t, x). We
will also need to introduce the momenta m = δℓ/δu and n = δℓ/δv. The equations
arising are right-invariant Diff(R)-strand equations for maps R×R → G = Diff(R)
and in one spatial dimension they may be expressed as a system of two 2+1 PDEs
in (s, x, t),

mt + ns + ad∗

um+ ad∗

vn = 0

vt − us + advu = 0 ,
(4.10)
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or, using the explicit form of the coadjoint action,

mt + ns + umx + 2mux + vnx + 2nvx = 0

vt − us + uvx − vux = 0 .
(4.11)

The Hamiltonian structure for these Diff(R)-strand equations is obtained by the
Legendre transformation

h(m, v) = 〈m, u〉L2 − ℓ(u, v) ,

resulting in

d

dt

[
m
v

]
=

[
−ad∗

�m ∂s + ad∗

v

∂s − adv 0

] [
δh/δm = u
δh/δv = −n

]
. (4.12)

Using the odd/even decomposition introduced in the previous section, the Hamil-
tonian structure (4.12) becomes

∂

∂t




me

mo

vo

ve


 =




−ad∗

�m
o −ad∗

�m
e ad∗

ve ∂s + ad∗

vo

−ad∗

�m
e −ad∗

�m
o ∂s + ad∗

vo ad∗

ve

−adve ∂s − advo 0 0
∂s − advo −adve 0 0







δh/δme = ue

δh/δmo = uo

δh/δvo = −no

δh/δve = −ne


 .

(4.13)

In particular, when h = h(mo, vo) depends only on the symmetric space variables,
the odd and even parts of the equation decouple as

d

dt

[
mo

vo

]
=

[
−ad∗

�m
o ∂s + ad∗

vo

∂s − advo 0

] [
δh/δmo = uo

δh/δvo = −no

]
(4.14)

d

dt

[
me

ve

]
=

[
−ad∗

�m
e ad∗

ve

−adve 0

] [
δh/δmo = uo

δh/δvo = −no

]
. (4.15)

The structure of these equations reflects the known property that only odd solutions
can survive alone in the CH equation (which is the reduction u ≡ v, m ≡ n and
s ≡ t of the Diff(R)-strand equation) and are of the type peakon and anti-peakon
collisions, governed by (4.14). As soon as the solution has an even part, the dynamics
become more complicated due to the coupling with (4.15). In addition, the second
system for the even variables does not have any derivative with respect to the s
variables and the Hamiltonian structure depends only on the even variables.

4.3. Singular solutions of the Diff(R)-strand equations. We now derive the
explicit solution of the Diff(R)-strand system by reduction to a system of peakons
that still depend on two variables, s and t. For simplicity, we will make the following
choice for the Lagrangian

ℓ(u, v) =
1

2

∫
(u2x + v2x)dx , (4.16)

that corresponds to a two-component generalization of the Hunter-Saxton equation
[HS91, HZ94]. The Diff(R)-strand equations (4.10) admit peakon solutions in both
momenta

m = −uxx and n = −vxx ,



18 A. ARNAUDON, D. HOLM AND R IVANOV

with continuous velocities u and v. It can be directly checked that the Diff(R)-
strand equations (4.10) admit singular solutions expressible as a linear superposition
of Dirac delta functions in the momenta. The general form is

m(s, t, x) =
∑

a

Ma(s, t)δ(x−Qa(s, t)) , n(s, t, x) =
∑

a

Na(s, t)δ(x−Qa(s, t))

u(s, t, x) = K ∗m =
∑

a

Ma(s, t)K(x,Qa) , v(s, t, x) = K ∗ n =
∑

a

Na(s, t)K(x,Qa) ,

(4.17)

where K(x, y) = −1

2
|x − y| is the Green function of the operator −∂2x, i.e.

−∂2xK(x, 0) = δ(x). The solution parameters {Qa(s, t),Ma(s, t), Na(s, t)} with
a ∈ Z that specify the position and amplitude of singular solutions (4.17) are de-
termined by the following set of evolutionary PDEs in s and t, in which we denote
Kab := K(Qa, Qb) with integer summation indices a, b, c, e ∈ Z:

∂tQ
a(s, t) = u(Qa, s, t) =

∑

b

Mb(s, t)K
ab

∂sQ
a(s, t) = v(Qa, s, t) =

∑

b

Nb(s, t)K
ab

∂tMa(s, t) = − ∂sNa −
∑

c

(MaMc +NaNc)
∂Kac

∂Qa
(no sum on a)

∂tNa(s, t) = ∂sMa +
∑

b,c,e

(NbMc −MbNc)
∂Kec

∂Qe
(Keb −Kcb)(K−1)ae .

(4.18)

The last pair of equations in (4.18) may be solved as a system for the momenta
(Ma, Na), then used in the previous pair to update the positions Qa(t, s) of the
singular solutions. We will call these singular solutions ‘peakons’ for simplicity,
although the Green function, in this case, is unbounded and the shape is not the
usual peakon shape.

4.4. Example: Two-peakon solution of a Diff(R)-strand. We now study a
simpler system of two ‘peakon’ collisions and find explicit solutions. If we denote
the relative position of the two solutions by X(s, t) = Q1 − Q2 we can express the
Green’s function as K = K(X) and the first two equations in (4.18) imply

∂tX = −(M1 −M2)K(X) , ∂sX = −(N1 −N2)K(X) . (4.19)

The second pair of equations in (4.18) may then be written as

∂tM1 = −∂sN1 − (M1M2 +N1N2)K
′(X)

∂tM2 = −∂sN2 + (M1M2 +N1N2)K
′(X)

∂tN1 = ∂sM1 − (N1M2 −M1N2)K
′(X)

∂tN2 = ∂sM2 − (N1M2 −M1N2)K
′(X) .

(4.20)
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Assuming X > 0 we have K ′(X) = −1

2
sgn(X) = −1

2
and introducing the variable

S1,2 =M1,2 + iN1,2 we can rewrite (4.20) as

(∂t − i∂s)S1 =
1

2
S1S2 , (∂t − i∂s)S2 = −1

2
S1S2 . (4.21)

The solution for X can then be expressed formally via S1,2 from (4.19) as

X = exp

(
1

2
∆−1ℜ(S1S2)

)
,

where ∆ = ∂2t + ∂2s and ℜ(z) is the real part of z. From the system (4.21) we obtain

∆ lnS1 = −1

4
S1S2 and ∆ lnS2 = −1

4
S1S2 , (4.22)

thus ∆ lnS1 = ∆ lnS2 and S1 = S2e
h where h(s, t) is an arbitrary harmonic function,

i.e. ∆h = 0. Then for the variable Ỹ = lnS1 we have the equation

∆Ỹ = −1

4
e2Ỹ−h , (4.23)

and for Y = lnS1 − 1

2
h− 2 ln 2 + iπ we arrive at the Liouville’s 2D equation

∆Y = e2Y . (4.24)

Solutions of (4.24) are known in the form

Y =
1

2
ln
w2

s + w2
t

f(w)
,

where the function f(w) can be either w2, cos2w, sin2w or sinh2w with w being
an arbitrary harmonic function, i.e. ∆w = 0. We refer to [Cro97, Ibr95, Kis02] for
more details on the Liouville equation. From this computation, the solutions S1,2

depend on two arbitrary complex harmonic functions h, w, hence the four peakon
parametersM1,2 and N1,2 can be given in terms of four real arbitrary harmonic func-
tions. Although we lost track of the space-time symmetry of the original equations
when we applied the Legendre transformation, some flavour of it still remains, in
that the harmonic condition for the arbitrary functions w and h is symmetric in s
and t.

4.5. Two-peakon solution on the symmetric space: the peakon-antipeakon
solution. The reduction of the system (4.20) to a system with only odd functions
of x can be achieved by setting Q2 = −Q1, M2 = −M1, N2 = −N1 thus S2 = −S1

and Q1 = X/2, where

X = exp

(
−1

2
∆−1|S1|2

)
. (4.25)

We will solve this reduced system directly instead of starting from the general solu-
tion of the initial system.

The equivalent equation (4.21) becomes, after imposing the symmetry condition,
a single complex equation

(∂t − i∂s)S1 = −1

2
|S1|2 . (4.26)
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The imaginary part of (4.26) simplifies to

∂tN1 = ∂sM1 , (4.27)

and it can be solved by introducing a real scalar function ψ such that

M1 = ∂tψ and N1 = ∂sψ . (4.28)

The real part of (4.26) produces a dynamical equation for ψ

∆ψ +
1

2

(
ψ2

t + ψ2

s

)
= 0 , (4.29)

or equivalently,

∆ exp

(
1

2
ψ

)
= 0 . (4.30)

The solution is given in term of a real harmonic function h(s, t) as

ψ = ln(h2(s, t)) . (4.31)

From (4.25) and (4.28) one can derive

∆ ln |X|+ 1

2

(
ψ2

t + ψ2

s

)
= 0 , (4.32)

and thus from (4.29)

|X| = exp(ψ(s, t)) = h2(s, t) . (4.33)

From the definitions of Q1,M1 and N1, we have

Q1 =
1

2
h2(s, t), M1(s, t) =

2ht
h

and N1(s, t) =
2hs
h
. (4.34)

Similarly to the general case of the previous section, all solutions are parametrised
by an arbitrary harmonic function h(s, t). The solutions m, n are obviously odd
functions of x, as they can be written

m(s, t, x) =
2ht
h

(
δ

(
x− h2

2

)
− δ

(
x+

h2

2

))

n(s, t, x) =
2hs
h

(
δ

(
x− h2

2

)
− δ

(
x+

h2

2

))
.

(4.35)

We end this section with an illustration of these solutions, using the harmonic func-
tions indexed by k ∈ Z

hk(s, t) = rk cos(kθ), where r =
√
s2 + t2 and θ = arctan

(
t

s

)
. (4.36)

The main properties of the peakon anti-peakons are recovered, namely that they
vanish at the position of interaction, and then exchange their momenta.

We display in figure 2 a few snapshots of the collision, obtain by plotting (4.35)
with the harmonic function (4.36) with k = 3 1

1See http://wwwf.imperial.ac.uk/~aa10213/ for a video of the complete time evolution.

http://wwwf.imperial.ac.uk/~aa10213/
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Figure 2. We display the Hunter-Saxton peakon solution m(s, t) in
(4.35) for the harmonic function (4.36) with k = 3 at various times
around the collision at t = 0. The order of the harmonic function
gives the number of zeroes of the function; that is, the number of
intersecting points of the two peakon strands. Note that the solution
for n(s, t) in (4.35) is the same, thus not displayed here.

5. Conclusions

The G-strand PDEs arise from the Euler-Poincaré variational equations for a G-
invariant Lagrangian, coupled to an auxiliary zero-curvature relation. The Hamil-
tonian formulation of the equations admits a natural phase space which takes values
in the dual of a Lie algebra. This fact provides an opportunity for a further splitting
of the phase space in a way consistent with the Lie-algebraic structures.

In the present study, we have derived equations whose Hamiltonians depend on
the variables from the complementary subspaces of a symmetric space. The exam-
ples included finite dimensional G-strands, as well as the Diff-strand example for
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the infinite-dimensional diffeomorphism group. The existence of odd solutions in
the x variable, which usually appear as peakon-antipeakon solutions of the Diff-
strand equations, was shown to be rooted in the algebraic structure of the phase
space, which can be orthogonally decomposed into subspaces of even and odd func-
tions. The invariance of the complementary subspace for odd functions under special
Hamiltonian flows arises because the phase space is a symmetric space. Examples in
both finite and infinite dimensions considered here suggest topics for further stud-
ies. In particular, the finite dimensional integrable XY Z system on the coset space
SO(4)/SO(3) in section 3 deserves further investigation to determine its full solution
behaviour. Likewise, in the Diff-strand example in section 4, the remarkable reduc-
tion of the 2-peakon equations given by (4.21) to the peakon-antipeakon equation
(4.26) should raise additional interesting questions.
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