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Hamiltonian model for coupled surface and internal

waves in the presence of currents

Rossen Ivanov

School of Mathematical Sciences, Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland

and
Environmental Sustainability and Health Institute (ESHI), Dublin Institute of Technology

Grangegorman, Dublin 7, Ireland

Abstract

We examine a two dimensional fluid system consisting of a lower medium
bounded underneath by a flatbed and an upper medium with a free surface.
The two media are separated by a free common interface. The gravity driven
surface and internal water waves (at the common interface between the me-
dia) in the presence of a depth-dependent current are studied under certain
physical assumptions. Both media are considered incompressible and with
prescribed vorticities. Using the Hamiltonian approach the Hamiltonian of
the system is constructed in terms of ’wave’ variables and the equations of
motion are calculated. The resultant equations of motion are then analysed
to show that wave-current interaction is influenced only by the current profile
in the ’strips’ adjacent to the surface and the interface. Small amplitude and
long-wave approximations are also presented.

Keywords: Internal waves, Equatorial undercurrent, shear flow,
Hamiltonian system, KdV equation
2000 MSC: 35Q35, 37K05, 74J30

1. Introduction

It has been known for many centuries that the ocean contains currents
that flow along generally consistent paths. The Spanish galleons transport-
ing gold and silver from Mexico to Spain made use of the Gulf Stream to
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help them return home. Since then, scientists have gained much more infor-
mation on both where currents flow and why. In the oceans currents very
often exist with undercurrents. The first undercurrent was discovered in
1951 by Townsend Cromwell who was investigating fishing techniques in the
central Pacific Ocean. Undercurrents have since been found under most ma-
jor currents. The equatorial region in the Pacific is characterised by a thin
shallow layer of warm and less dense water over a much deeper layer of cold
denser water. The two layers are separated by a sharp thermocline (where
the temperature gradient has a maximum, it is very close to the pycnocline,
where the pressure gradient has a maximum) at a depth, depending on the
location, but usually at 100 – 200 m beneath the surface. For modelling
purposes both layers are assumed homogeneous with a sharp boundary at
the thermocline/pycnocline (see [36]).

The Equatorial Undercurrent (EUC) flows in a region that is roughly
within 200 - 300 km (below 3◦ latitude) of the Equator, it is symmetric
about the Equator and extends nearly across the whole length (more than
12000 km) of the Pacific Ocean basin [34]. With speeds in excess of 1 m/s,
the EUC is one of the fastest permanent currents in the world.

The flow has nearly two-dimensional character, with small meridional
variations. While at depths in excess of about 240 m there is, essentially,
an abyssal layer of still water, the ocean dynamics near the surface is quite
complex. In this region the wave motion typically comprises surface gravity
waves with amplitudes of 1-2 m and oscillations with an amplitude of 10-20 m
at the thermocline (of mean depth between 50 m and 150 m). These waves
interact with the underlying currents. In that case the velocity is (anti-)
parallel to the Earth’s angular speed ω, so their vector product is zero. This
feature distinguishes the dynamics of the equatorial zone from the ocean
dynamics at higher latitudes.

The strong stratification confines the wind-driven currents to a shallow
near-surface region, less than 200 m deep. In the Atlantic and Pacific, the
westward trade winds induce a westward surface flow at speeds of 25-75
cm/s, while a jet-like current – the Equatorial Undercurrent (EUC) – flows
below it toward the East (counter to the surface current), attaining speeds of
more than 1 m/s at a depth of nearly 100 m. The wind-generated equatorial
current in the layer above the thermocline is with a strictly monotonic depth-
dependence and exhibits flow-reversal, while beneath the thermocline the
current simply decays with increasing depth, being irrelevant in the abyssal
region.
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While viscous theory is essential in explaining the generation of the equa-
torial current induced by wind forcing, inviscid theory is adequate for the
study of non-turbulent wave-current interactions since the relevant Reynolds
numbers are very large (see [43]).

For some general facts concerning the description of waves interacting
with currents we refer to the following reviews and monographs [10, 49, 37, 52]
and the references therein. The present study draws from previous single
medium irrotational [54], [3], [46], [47], [48] and rotational [9], [11], [10], [12],
[50], [17], [53], [42] studies as well as from studies of two-media systems such
as [1], [2], [22], [21], [18], [19], [16], [15], [4], [5],[6], [7], [20],[27],[28], [29], [41],
[44], [45].

The Hamiltonian approach to water waves dynamics has been put forward
for the first time by Zakharov [54]. The Hamiltonian formulation describing
the two-dimensional nonlinear interaction between coupled surface waves,
internal waves, and an underlying current with piecewise constant vorticity,
in a two-media fluid overlying a flat bed has been developed in [16], [15]. In
the present study we will be following a similar approach, taking into account
the shear current structure suggested in [18]. Related results for a flat surface
(effectively rigid lid) has been studied in [4] [5],[6], [7], [8].

The model equations will be presented in a canonical Hamiltonian form
and then small amplitude and long wave approximations will be derived.

2. Preliminaries

The system under study involves two-dimensional surface and internal grav-
ity water waves and a depth dependent current as per Figure 1.

The medium underneath the internal wave is defined by the domain

Ω(η) = {(x, y) ∈ R
2 : −h < y < η(x, t)}.

This medium is bounded at the bottom by an impermeable flatbed at a depth
−h. The medium above the internal wave y = η(x, t) is the domain

Ω1(η, η1) = {(x, y) ∈ R
2 : η(x, t) < y < h1 + η1(x, t)}.

This medium is regarded as being bounded on top by a surface wave at a
hight y = h1 + η1(x, t) moving around the average level y = h1. Throughout
the article the subscript 1 will be used to mean evaluation for the upper
medium Ω1, and no subscript means evaluation for the lower medium Ω.
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Figure 1: System setup. The current profile in layers I and IV is arbitrary as we are only
concerned with layers II, III and V as the internal wave is a free interface between these
layers. Continuity of U(y) is assumed in layers I and IV.
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Subscript s will be used to denote evaluation at the common interface (ther-
mocline/pycnocline), subscript s1 - evaluation at the free surface.

The velocity field is denoted byV(x, y, z) = (u, v, 0) in Ω andV1(x, y, z) =
(u1, v1, 0) in Ω1. The function η(x, t) describes the deviation of the internal
wave from its average level y = 0, i.e.

∫

R

η(x, t)dx = 0. Similarly, we define the

mean of η1 + h1 to be the unperturbed surface y = h1, i.e.
∫

R

η1(x, t)dx = 0.

A depth dependent current U(y) has the following structure:

U(y) =







































σ4 = γ1h1 + κ1 < 0 y = h1,
γ1y + κ1, m1 ≤ y (layer V),
σ3 = γ1m1 + κ1 y = m1,
σ2 = γl1 + κ y = l1,
γy + κ, −l ≤ y ≤ l1 (layers II and III),
σ1 = −γl + κ y = −l,
0 y = −h (flatbed),

(1)

for constants σ1, σ2, σ3, σ4 < 0, κ, κ1, l, l1, γ and γ1 < 0, where κ is
the time-independent current velocity at y = 0; γ and γ1 are the non-zero
constant vorticity for layers II, III and V, noting that the current is not
specified explicitly in layers I and IV, and satisfies only the condition that
in the whole fluid body U(y) is a continuous function. This setup of the
wave-current system is motivated in [18], see also [6, 7]. The wave motion on
the surface is usually confined in the top layer V′, defined for depths y such
that

V′ : m1 ≤ y ≤ h1 + η1(x, t),

and the internal wave is confined in the strip formed of layers II and III:

−l ≤ η(x, t) ≤ l1.

We define also layers II′ and III′:

II′ : − l ≤ y ≤ η(x, t),

III′ : η(x, t) ≤ y ≤ l1.
(2)

We consider a velocity field, which is defined by the wave-related velocity
potentials ϕ(x, y, t) for the domain Ω and ϕ1(x, y, t) for the domain Ω1 as
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follows:






















u1 = ϕ1,x + γ1y + κ1 (layer V′),
u1 = ϕ1,x + γy + κ (layer III′),
v1 = ϕ1,y,
u = ϕx + γy + κ (layer II′),
v = ϕy.

(3)

We note that this representation separates the wave and current contributions
to the velocity in layers II′, III′ and V′, so that the horizontal velocity field
in Ω is nominally separated to a wave and current part, i.e. u = ϕx + U(y),
and similarly u1 = ϕ1,x + U(y) for Ω1, see also [15, 16].

The respective constant densities ρ and ρ1 of the lower and upper media
satisfy the stability condition for immiscibility

ρ > ρ1. (4)

The rotationality of the layers II and III is given by constant vorticity

γ =
σ2 − σ1
l + l1

. (5)

The sign of γ is not specified and the case γ = 0 is of course possible.
We assume that for large |x| the amplitude of η attenuates and hence

make the following assumptions

lim
|x|→∞

η(x, t) = 0, lim
|x|→∞

η1(x, t) = 0, (6)

lim
|x|→∞

ϕ(x, y, t) = 0, lim
|x|→∞

ϕ1(x, y, t) = 0. (7)

Moreover, we assume

−l ≤ η(x, t) < l1, m1 ≤ h1 + η1(x, t) (8)

for all x and t. This is an assumption that the surface wave motion takes
place only in the strip of layer V′, and the internal wave motion is only in
the strip of layers II and III.
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3. Governing equations

The governing equations for an inviscid flow are the Euler’s equations
modified with terms, taking into account the Coriolis force.

Denoting with (u(x, y, t), v(x, y, t)) the velocity field in Ω ∪Ω1, the hori-
zontal component of the velocity field is

u(x, y, t) :=

{

u(x, y, t), in Ω(η),
u1(x, y, t), in Ω1(η, η1),

(9)

and the vertical component of the velocity field is

v(x, y, t) :=

{

v(x, y, t), in Ω(η),
v1(x, y, t), in Ω1(η, η1).

(10)

The mass conservation is given by

ux + vy = 0 in Ω ∪ Ω1. (11)

The equation of mass conservation (11) ensures the existence of a stream
function

ψ(t, x, y) =

{

ψ(t, x, y) in Ω,
ψ1(t, x, y) in Ω1,

determined up to an additive term that depends only on time, by

{

u = ψy, v = −ψx, in Ω,
u1 = ψ1,y, v1 = −ψ1,x, in Ω1.

(12)

For convenience we introduce also

ϕ(x, y, t) :=

{

ϕ(x, y, t), in Ω(η),
ϕ1(x, y, t), in Ω1(η, η1),

(13)

then
u = ϕx + U(y).

Considering equatorial motion the following Coriolis forces per unit mass
have to be taken into account:

F = 2ω∇ψ = 2ω(−v,u)T (14)
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with ω being the rotational speed of the Earth. Then the Euler’s equations
are

{

ut + uux + vuy + 2ωv = − 1
ρ∗
Px,

vt + uvx + vvy − 2ωu = − 1
ρ∗
Py − g,

(15)

where P = P (x, y, t) denotes the pressure, g is the gravitational acceleration
and ρ∗ denotes the density of the fluid which, in our case is assumed to be
piecewise constant, equal to ρ in Ω(η) and to ρ1 in Ω1(η, η1).

Complementing the equations of motion are the boundary conditions, of
which

P = Patm on y = η1(x) + h1, (16)

(with Patm being the constant atmospheric pressure) decouples the motion
of the water from that of the air. In addition to (16) we have the kinematic
boundary conditions which refer to the flat bed, the interface y = η(x, t), the
free surface y = h1 + η1(x, t) and reflect the impermeability of these three
surfaces. Thus, they read as

v1 = η1,t + u1η1,x on y = η1(x, t) + h1, (17)

v1 = ηt + u1ηx on y = η(x, t),
v = ηt + uηx on y = η(x, t),

(18)

and
v = 0 on y = −h. (19)

From the kinematic boundary conditions (18) one can obtain

ψ(t, x, η(x, t)) = ψ1(t, x, η(x, t)) = −
∫ x

−∞

ηt(x
′, t)dx′, (20)

i.e. ψ is a continuous function across y = η. This also implies that the normal
velocity field components are continuous across the interface y = η(x, t).

We introduce for convenience

χ(x, t) ≡ ψ(t, x, η(x, t)) = ψ1(t, x, η(x, t)). (21)

Similarly

χ1(x, t) ≡ ψ1(t, x, η1(x, t) + h1) = −
∫ x

−∞

η1,t(x
′, t)dx′. (22)
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With the velocity decompositions (3) the kinematic boundary conditions (17)
and (18) can now be written as

η1,t = (ϕ1,y)s1 − η1,x[(ϕ1,x)s1 + γ1(h1 + η1) + κ1] (23)

and respectively, as

ηt = (ϕ1,y)s − ηx[(ϕ1,x)s + γη + κ],
ηt = (ϕy)s − ηx[(ϕx)s + γη + κ],

(24)

where the subscript s1 means that we look at traces of the involved functions
on the free surface y = η1(x, t) + h1, while the subscript s denotes traces on
the interface y = η(x, t). The following notation will be used later on in the
paper. Namely, we set

Φ(x, t) = ϕ(x, η(x, t), t),
Φ1(x, t) = ϕ1(x, η(x, t), t),
Φ2(x, t) = ϕ1(x, h1 + η1(x, t), t).

(25)

The Dirichlet-Neumann operator G(η) associated to the layer Ω(η) is
defined as

G(η)Φ :=
√

1 + η2x
∂ϕ

∂n

∣

∣

∣

y=η
, (26)

where n denotes the unit outward normal vector to the layer Ω(η) along the
interface y = η(x). Recall that ϕ1 is the solution of the boundary value
problem







∆ϕ1 = 0 in Ω(η, η1),
ϕ1 = Φ1 on y = η,
ϕ1 = Φ2 on y = h1 + η1.

(27)

The Dirichlet-Neumann operator G1(η, η1) associated to the upper media
Ω1(η, η1) is defined through

G1(η, η1)(Φ1,Φ2) :=





−
√

1 + η2x
∂ϕ1

∂n

∣

∣

∣

y=η
√

1 + η21,x
∂ϕ1

∂n1

∣

∣

∣

y=η1+h1



 , (28)

where, we denote by n1 the unit outward normal vector to Ω1(η, η1) along
the free surface y = η1(x)+h1. Of course, G1(η, η1) is a matrix-operator, for
which we choose the notation

G1(η, η1) =

(

G11 G12

G21 G22

)

. (29)
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Euler’s equations can be recast by means of the stream function and of
the generalized velocity potential in the given layers in the form of Bernoulli
conservation laws as follows:

ϕ1,t +
1

2
|∇ψ1|2 − (γ1 + 2ω)ψ1 +

P

ρ1
+ gy = f̃1(t) in layer V′

where f̃1(t) is an arbitrary function of t. This is related to the freedom to
change ϕ1, if necessary, by a time-dependent factor. Making use of (16)
we can absorb the constant Patm in the arbitrary function and obtain on
y = h1 + η1(x, t)

ρ1(ϕ1,t)s1 +
ρ1
2
|∇ψ1|2s1 − ρ1(γ1 + 2ω)χ1 + ρ1g(h1 + η1) = f1(t), (30)

for another function
f1(t) = ρ1f̃1(t)− Patm. (31)

Similarly, on the interface y = η(x, t) the pressure is continuous function and
thus it follows that

ρ

[

(ϕt)s +
|∇ψ|2s
2

− (γ + 2ω)χ+ gη

]

= ρ1

[

(ϕ1,t)s +
|∇ψ1|2s

2
− (γ + 2ω)χ+ gη

]

+ f2(t),

(32)

where f2(t) is another function of t. The equality (32) can be written as

[ρϕt − ρ1ϕ1,t]s+
ρ|∇ψ|2s

2
− ρ1|∇ψ1|2s

2
− (ρ−ρ1)(γ+2ω)χ+(ρ−ρ1)gη = f2(t).

(33)
Introducing the constants

Γ1 = ρ1(γ1 + 2ω),

Γ = (ρ− ρ1)(γ + 2ω),
(34)

the variables (suggested as canonical variables in the Hamiltonian formula-
tion in [1, 2] )

ξ1(x, t) = ρ1ϕ1(x, η1(x, t) + h1, t) ≡ ρ1Φ2(x, t),

ξ = ρϕ(x, η(x, t), t)− ρ1ϕ1(x, η(x, t), t) ≡ ρΦ(x, t)− ρ1Φ1(x, t)
(35)
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and noting that

[ρϕx − ρ1ϕ1,x]s = ξx − [ρϕy − ρ1ϕ1,y]sηx, (36)

[ρϕt − ρ1ϕ1,t]s = ξt − [ρϕy − ρ1ϕ1,y]sηt, (37)

ρ1(ϕ1,t)s1 = ξ1,t − ρ1(ϕ1,y)s1η1,t, (38)

ρ1(ϕ1,x)s1 = ξ1,x − ρ1(ϕ1,y)s1η1,x, (39)

we recast (30) and (33) in terms of the velocity potentials and the current
parameters, using the relation between the stream function and the velocity
potentials that follows from (12) and (3):

ξ1,t +
ρ1
2
|∇ϕ1|2s1 − ρ1(ϕ1,y)s1[ϕ1,y − ϕ1,xη1,x]s1 + ρ1g(h1 + η1)

+ (γ1(η1 + h1) + κ1)ξ1,x +
ρ1
2
(γ1(η1 + h1) + κ1)

2 − Γ1χ1 = f1(t),
(40)

ξt−[ρϕy − ρ1ϕ1,y]s[ϕy − ϕxηx]s +
ρ|∇ϕ|2s

2
− ρ1|∇ϕ1|2s

2
+ (ρ− ρ1)gη

+ (γη + κ)ξx +
ρ− ρ1

2
(γη + κ)2 − Γχ = f2(t).

(41)

The balance of all quantities when x→ ±∞ gives

f1 = ρ1

(

gh1 +
1

2
(γ1h1 + κ1)

2

)

, f2 =
1

2
(ρ− ρ1)κ

2. (42)

Recall that in the absence of current and Coriolis force the system is
Hamiltonian and can be represented in the form

ξ1,t = −δη1H0, ξt = −δηH0,

η1,t = δξ1H0, ηt = δξH0,
(43)

where H0(η, η1, ξ, ξ1) is the corresponding Hamiltonian. H0 is evaluated in
terms of the canonical variables, see [22, 21] for details:

H0(η, η1, ξ, ξ1) =
1

2

∫

R

(

ξ
ξ1

)t(
G11B

−1G(η) −G(η)B−1G12

−G21B
−1G(η) − ρ

ρ1
G21B

−1G12 +
1
ρ1
G22

)(

ξ
ξ1

)

dx

+
1

2

∫

R

(

g(ρ− ρ1)η
2 + gρ1η

2
1 + 2gρ1h1η1

)

dx,

11



where the operator B ≡ ρ1G(η) + ρG11.
Hence we can represent all terms not related to vorticity as variational

derivatives of H0 :

ξ1,t + δη1H0 + (γ1(η1 + h1) + κ1)ξ1,x +
ρ1
2
(γ1(η1 + h1) + κ1)

2 − Γ1χ1 = f1(t),

ξt + δηH0 + (γη + κ)ξx +
ρ− ρ1

2
(γη + κ)2 − Γχ = f2(t).

(44)

In addition, (23), (24) can be written as

η1,t = δξ1H0 − [γ1(h1 + η1) + κ1]η1,x,

ηt = δξH0 − (γη + κ)ηx.
(45)

Now we are in a position to write the equations (44), (45) in the form

ξ1,t = −δη1H + Γ1χ1, ξt = −δηH + Γχ,

η1,t = δξ1H, ηt = δξH,
(46)

where

H(η, η1, ξ, ξ1) = H0 − κ

∫

R

ξηxdx−
∫

R

γηηxξdx+
ρ− ρ1
6γ

∫

R

(γη + κ)3dx

− κ1

∫

R

ξ1η1,xdx−
∫

R

γ1(η1 + h1)η1,xξ1dx+
ρ1
6γ1

∫

R

(γ1(η1 + h1) + κ1)
3dx

− f1(t)

∫

R

η1dx− f2(t)

∫

R

ηdx−H00.

(47)

H00 =
ρ− ρ1
6γ

∫

R

κ3dx+
ρ1
6γ1

∫

R

(γ1h1 + κ1)
3dx

is an integral with a constant Hamiltonian density and zero variational deriva-
tives which keeps the overall Hamiltonian density decaying to zero at x →
±∞. The ghost terms with f1,2 are un-physical (i.e. their values do not affect
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the measurable physical quantities such as velocities and elevations), since
by definition

∫

R

ηdx = 0,

∫

R

η1dx = 0.

Nevertheless their variational derivatives produce the f1,2 terms in (44) which
are also un-physical and can in principle be absorbed in the definition of the
potentials ξ, ξ1, in our case, in such a way that ξ, ξ1 tend to zero when
x → ±∞. From (42) it follows that H does not contain terms, linear in the
field variables. The lowest order terms are quadratic in the field variables
and they produce the linearised equations.

The expression for the Hamiltonian (47) can be obtained alternatively
by evaluation of the total energy of the fluid (up to a constant Hamiltonian
density):

H =

∫ ∫

Ω∪Ω1

ρ∗

{

u2 + v2

2
+ gy

}

dydx.

Taking into account the stratification of the fluid the above expression can
be rewritten as

H =
1

2

∫

R

∫ η(x,t)

−h

ρ(u2 + v2)dydx′ +
1

2

∫

R

∫ h1+η1(x,t)

η(x,t)

ρ1(u
2
1 + v21)dydx

′

+

∫

R

∫ η(x,t)

−h

gρy dydx′ +

∫

R

∫ h1+η1(x,t)

η(x,t)

gρ1y dydx
′.

(48)

The computations follow the routine from [16, 6, 7]. We mention only that
due to the two-dimensional character of the dynamics, the final expression
(47) depends only on the variables on the surface and on the interface. It is
an important feature, that there is no contribution from layers I and IV where
the wave motion on s and s1 does not take place [6, 7]. The terms related to
the internal wave are the same as in [7] where flat surface approximation is
considered.

4. Hamiltonian dynamics

The ideas for the Hamiltonian formulation of water waves coupled to a
flow with a constant vorticity originate from [17] followed by [53]. For internal
waves with vorticity the problem is studied in [16, 15, 4, 5].
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The evolution equations (46) can be written in a canonical Hamiltonian
form in terms of the variables

z = ξ + Γ
2

∫ x

−∞
η(x′, t) dx′,

z1 = ξ1 +
Γ1

2

∫ x

−∞
η1(x

′, t) dx′.
(49)

The system described by the phase space variables η, η1, z, z1 is Hamilto-
nian. More precisely,

δH

δη
= −zt,

δH

δz
= ηt,

δH

δη1
= −z1,t,

δH

δz1
= η1,t.

The proof follows the lines of the one in [16]. Since

χ(x, t) = −
∫ x

−∞

ηt(x
′, t)dx′ =

∫ x

−∞

δH

δη(x′, t)
dx′,

χ1(x, t) = −
∫ x

−∞

η1,t(x
′, t)dx′ =

∫ x

−∞

δH

δη1(x′, t)
dx′,

(50)

the system of equations (46) can be written as

ξ̇k =− δH

δηk
− Γk

∫ x

−∞

δH

δξk(x′)
dx′,

η̇k =
δH

δξk
,

(51)

where for convenience k = 0, 1, η0 ≡ η, ξ0 ≡ ξ, χ0 ≡ χ and Γ0 ≡ Γ. This is
an equivalent Hamiltonian form, in terms of the original variables and with
respect to the Poisson bracket (PB)

{A,B} =
1

∑

k=0

∫

R

(

δA

δηk(x)

δB

δξk(x)
− δA

δξk(x)

δB

δηk(x)

)

dx

− Γk

∫

R

(

δA

δξk(x)

∫ x

−∞

δB

δξk(x′)
dx′

)

dx

(52)
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i.e.

ξ̇k ={ξk, H} k = 0, 1,

η̇k ={ηk, H} k = 0, 1.
(53)

Here we have to specify the spaces where the functionals A,B may belong.
The antisymmetry of the PB requires for example

∫

R

(

δA

δξk(x)

∫ x

−∞

δB

δξk(x′)
dx′

)

dx = −
∫

R

(

δB

δξk(x)

∫ x

−∞

δA

δξk(x′)
dx′

)

dx (54)

which is possible (e.g. due to integration by parts) if and only if

∫

R

δA

δξk(x)
dx

∫

R

δB

δξk(x′)
dx′ = 0. (55)

Thus, at least one of the functionals in the PB should satisfy
∫

R

δA

δξk(x)
dx = 0. (56)

Since in (53) one of the functionals is always H and

∫

R

δH

δξk(x)
dx =

∫

R

∂tηk(x, t) = lim
x→∞

χk(x, t) = 0.

5. The pressure in the body of the fluid

The pressure in the body of the fluid can be evaluated from the functions
ϕ and ψ. They can be recovered from ξ and ξ1(x, t). In addition, there is an
interdependency between ϕ and ψ. since

ϕ+ i

(

ψ −
∫ y

−h

U(y′)dy′
)

is an analytic function of the variable z = x+ iy in the domain Ω1∪Ω. Thus,
the corresponding analytic functions in Ω and Ω1 can be recovered from their
values at the boundaries of Ω and Ω1, i.e. from Φ(x, t), Φ1(x, t) and Φ2(x, t).

From the definition of the Dirichlet-Neumann operators and (24) we have
that

G11Φ1 +G12Φ2 = ϕ1,xηx − ϕ1,y = −(ηt + (γη + κ)ηx),
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and
G(η)Φ = −ϕxηx + ϕy = ηt + (γη + κ)ηx.

Adding up the previous two relations we obtain

G11Φ1 +G12Φ2 +GΦ = 0. (57)

Using (57), and B := ρ1G(η) + ρG11 and recalling that

ξ = ρΦ− ρ1Φ1, ξ1 = ρ1Φ2

we can write Φ,Φ1,Φ2 in terms of the Hamiltonian variables ξ and ξ1 as
follows

Φ = B−1 (G11ξ −G12ξ1) , (58)

Φ1 = B−1

(

−G(η)ξ − ρ

ρ1
G12ξ1

)

, (59)

Φ2 =
1

ρ1
ξ1. (60)

In the layers with a fixed constant vorticity γ we have Bernoulli conser-
vation laws

ϕt +
1

2
|∇ψ|2 + P

ρ∗
− (γ + 2ω)ψ + gy = f̃(t). (61)

From (31) and (42) for the layer V′ we have

f̃ = f̃1 =
f1 + Patm

ρ1
=
Patm

ρ1
+ gh1 +

1

2
(γ1h1 + κ1)

2 (62)

Another possible derivation of (62) is the following one. We can evaluate f̃1
using the asymptotic values in (61) at x→ ±∞ where no wave motion takes
place (y = h1) and thus ψ1,x → 0 and ψ1,y → γ1h1 + κ1 are given by the
velocity of the current. Moreover, ψ1 on the surface is zero when x → ±∞
due to (22). Hence

P (x, y, t) =Patm − ρ1

(

ϕ1t +
1

2
|∇ψ1|2 − (γ1 + 2ω)ψ1 + g(y − h1)

)

+
ρ1
2
(γ1h1 + κ1)

2 for m1 ≤ y ≤ h1 + η1(x, t).

(63)
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We can apply the same approach in deriving the pressure in layers III′

and II′. At y = 0 and x→ ±∞ due to the lack of a wave motion the pressure
is P0 = Patm + ρ1gh1. For the layer III′ we have

P (x, y, t) =Patm − ρ1

(

ϕ1t +
1

2
|∇ψ1|2 − (γ + 2ω)ψ1 + g(y − h1)

)

+
ρ1
2
κ2

for η(x, t) ≤ y ≤ l1,

(64)

For the layer II′,

P (x, y, t) =Patm + ρ1gh1 − ρ

(

ϕt +
1

2
|∇ψ|2 − (γ + 2ω)ψ + gy

)

+
ρ

2
κ2

for − l ≤ y ≤ η(x, t).

(65)

6. Scales

Let us introduce non-dimensional variables (without bars) related to the
dimensional (barred) as follows:

t̄ =
h1√
gh1

t, x̄ = h1x, ȳ = h1y, η̄ = aη, η̄1 = aη1,

ū =
√

gh1u, ū1 =
√

gh1u1, v̄ =
√

gh1v, κ̄ =
√

gh1κ,

κ̄1 =
√

gh1κ1, γ̄ =

√
gh1
h1

γ, γ̄1 =

√
gh1
h1

γ1, ε =
a

h1
.

(66)

The constant a represents the average amplitude of the waves under con-
sideration, ε is a small parameter which will be used to separate the order of
the terms in the model.

From v̄ = η̄t̄ + ūη̄x̄ it follows

v = ε(ηt + uηx), (67)

therefore, if O(ηt) = 1 then O(v) = ε and thus the dimensional expression
with O(v) = 1 (and similar for v1) should be

v̄ = ε
√

gh1v, v̄1 = ε
√

gh1v1. (68)
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Since v is a y-derivative of the velocity potential, and with the adopted
definitions ϕ̄ = εh1

√
gh1ϕ etc. and thus

ξ̄ = ερh1
√

gh1ξ, ξ̄1 = ερh1
√

gh1ξ1. (69)

The scales for u, u1 etc. do not change - their dominant parts are the vorticity
and current components of order 1; only the ’wave’ component (which is x
derivative of ϕ) is of order ε. The Dirichlet-Neumann operators have the
following structure (e.g. any of the introduced operators G, Gij):

Ḡ = Ḡ(0) + Ḡ(1) + Ḡ(2) + . . . (70)

where Ḡ(n) ∼ η̄n∂n+1
x̄ i.e. Ḡ(n) = εn

h1

G(n):

Ḡ =
1

h1

(

G(0) + εG(1) + ε2G(2) + . . .
)

. (71)

With this scaling and ignoring the linear terms, whose average is 0, the
Hamiltonian can be expanded as

H̄ = ρgh31
(

ε2H(2) + ε3H(3) + . . .
)

(72)

where

H(2) =
1

2

∫

R

(

ξ
ξ1

)t(
G11B

−1G(η) −G(η)B−1G12

−G21B
−1G(η) − ρ

ρ1
G21B

−1G12 +
1
ρ1
G22

)(0)(
ξ
ξ1

)

dx

+
1

2
(ρ− ρ1)(g + γκ)

∫

R

η2dx+
1

2
ρ1(g + γ21h1 + γ1κ1)

∫

R

η21 dx

− κ

∫

R

ξηx dx− (κ1 + γ1h1)

∫

R

ξ1η1,x dx (73)

where the leading order, O(1) expression for the operators is (does not depend
on η, η1)

(

G11 G12

G21 G22

)(0)

=

(

D coth(h1D) −Dcsch(h1D)
−Dcsch(h1D) D coth(h1D)

)

, (74)

where D = −i∂x. The quadratic part produces the linearised equations.
Similarly
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H(3) =
1

2

∫

R

(

ξ
ξ1

)t(
G11B

−1G(η) −G(η)B−1G12

−G21B
−1G(η) − ρ

ρ1
G21B

−1G12 +
1
ρ1
G22

)(1) (
ξ
ξ1

)

dx

− γ

∫

R

ξηηx dx− γ1

∫

R

ξ1η1η1,x dx+
1

2

∫

R

(

(ρ− ρ1)γ
2 η

3

3
+ ρ1γ

2
1

η31
3

)

dx.

(75)

The order ε terms G(1) of the operators are given in [22, 21].

7. Linearised equations

The Hamiltonian equations with a Hamiltonian H(2) are the linearised
equations:

ξt =− κξx − (ρ− ρ1)(g + γκ)η − Γ∂−1ηt,

ηt =− κηx +
D tanh(hD) coth(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ +

D tanh(hD)csch(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ1,

ξ1,t =− (γ1h1 + κ1)ξ1,x − ρ1(g + γ21h1 + γ1κ1)η1 − Γ1∂
−1η1,t,

η1,t =− (γ1h1 + κ1)η1,x +
D tanh(hD)csch(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ

+
D
(

tanh(hD) coth(h1D) + ρ

ρ1

)

ρ coth(h1D) + ρ1 tanh(hD)
ξ1,

(76)

where ∂−1 is the inverse of ∂x. We can change the coordinates via a linear
transformation according to ∂T = ∂t + κ∂x:

ξT =− (ρ− ρ1)(g − 2ωκ)η − (ρ− ρ1)(γ + 2ω)∂−1ηT ,

ηT =
D tanh(hD) coth(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ +

D tanh(hD)csch(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ1,

ξ1,T =− (γ1h1 + κ1 − κ)ξ1,x − ρ1[g + γ21h1 + γ1(κ1 − κ)− 2ωκ]η1

− ρ1(γ1 + 2ω)∂−1η1,T ,

η1,T =− (γ1h1 + κ1 − κ)η1,x +
D tanh(hD)csch(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ

+
D
(

tanh(hD) coth(h1D) + ρ

ρ1

)

ρ coth(h1D) + ρ1 tanh(hD)
ξ1.

(77)
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Note that the equations contain Coriolis terms dependent on ω. Usually
κ is of magnitude several m/s, 2ω = 1.46× 10−4 s−1 and hence 2ωκ≪ g :

ξT =− (ρ− ρ1)gη − (ρ− ρ1)(γ + 2ω)∂−1ηT ,

ηT =
D tanh(hD) coth(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ +

D tanh(hD)csch(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ1,

ξ1,T =− aξ1,x − ρ1(g + aγ1)η1 − ρ1(γ1 + 2ω)∂−1η1,T ,

η1,T =− aη1,x +
D tanh(hD)csch(h1D)

ρ coth(h1D) + ρ1 tanh(hD)
ξ

+
D
(

tanh(hD) coth(h1D) + ρ

ρ1

)

ρ coth(h1D) + ρ1 tanh(hD)
ξ1,

(78)

where we introduced the notation

a = γ1h1 + κ1 − κ.

Next we search for solutions, proportional to

ei(kx−Ω0(k)T ), (79)

where Ω0(k) is the dispersion law for the wave, the wave speed is

c0(k) =
Ω0(k)

k
.

Such a solution would be an eigenfunction for D with a corresponding eigen-
value k. From the system (78) one can express ξ, ξ1 as

ξ =
i(ρ− ρ1)

k

(

γ + 2ω − g

c0(k)

)

η,

ξ1 =
iρ1
k

(

γ1 + 2ω +
2aω − g

c0(k)− a

)

η1.

(80)

The remaining two equations lead to a linear homogeneous system for η
and η1. We introduce the notations
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µ(k) =
ρ tanh(hk) coth(h1k)

ρ coth(h1k) + ρ1 tanh(hk)
,

f(k) =
ρ tanh(hk)csch(h1k)

ρ coth(h1k) + ρ1 tanh(hk)
,

θ(k) =
ρ
(

tanh(hk) coth(h1k) +
ρ

ρ1

)

ρ coth(h1k) + ρ1 tanh(hk)
.

(81)

The second equation of (78) gives

[

c0 +
(ρ−ρ1)µ(k)

ρk

(

γ+2ω− g

c0

)]

η +
ρ1f(k)

ρk

(

γ1+2ω+
2aω − g

c0 − a

)

η1 = 0.

(82)
Then the last equation of (78) leads to

(ρ− ρ1)f(k)

ρk

(

γ+2ω− g

c0

)

η +

[

c0−a+
ρ1θ(k)

ρk

(

γ1+2ω+
2aω − g

c0 − a

)]

η1 = 0.

(83)
The compatibility of the two equations gives a 4-th order equation for

c0(k):

[

c0 +
ρ− ρ1
ρ

µ(k)

k

(

γ + 2ω − g

c0

)][

c0 − a +
ρ1
ρ

θ(k)

k

(

γ1 + 2ω +
2aω − g

c0 − a

)]

=
ρ1(ρ− ρ1)

ρ2
f 2(k)

k2

(

γ + 2ω − g

c0

)(

γ1 + 2ω +
2aω − g

c0 − a

)

.

(84)

The last formula generalises the irrotational one from [21]. In addition,
from (83), (82) one can determine if η and η1 have the same or an opposite
polarity for each possible propagation speed c0. The velocity c0(k) is relative
to an observer moving together with the flow at y = 0, i.e. with velocity κ.
The wave speed for a stationary observer therefore is

c(k) = c0(k) + κ.

21



8. Long waves approximation

In the long waves approximation the physical scales are measured by the
dimensionless parameter like δ = h1

L̄
. We will study the equations under the

additional approximation that the wavelengths L are much bigger than h
and h1. Since

L̄ = h1L⇒ 1

L
=
h1
L̄

= δ.

Thus the wave number k = 2π/L = 2πδ and O(k) = δ. We further assume
that δ2 = O(ε). Recall that the operator D has an eigenvalue k, thus we
shall keep in mind that O(D) = δ. Moreover the x-derivative of the velocity
potentials do not get an extra factor of δ since O(v̄) = ε remains unchanged
and similarly v1. In other words the ’wave’ component of u let’s call it ũ = ϕx

is of order ε and similarly ũ1 = ϕ1,x is of order ε. Despite the assumption
δ2 = O(ε) we will keep both scales δ and ε in order to keep track of the origin
of the various terms. We will keep track only of the scale variables ε, δ and
not of the other dimensional factors. For example, H(2) itself contains the
following type of terms:

H(2) = ε2
1

2

∫

R

(

h

ρ
ũ2 +

2h

ρ
ũũ1 +

(

h

ρ
+
h1
ρ1

)

ũ21

)

dx

= ε2
1

2
(ρ− ρ1)(g + γκ)

∫

R

η2 dx+ ε2
1

2
ρ1(g + γ21h1 + γ1κ1)

∫

R

η21 dx

+ ε2κ

∫

R

ũη dx+ ε2(κ1 + γ1h1)

∫

R

ũ1η1 dx

+ ε2δ2
1

2

∫

R

(

− h2

3ρ2
(ρh+ 3ρ1h1)ũ

2
x −

h

3ρ2
(2ρh2 + 6ρ1hh1 + 3ρh1)ũxũ1,x

)

dx

+ ε2δ2
1

2

∫

R

(

− 1

3ρ2ρ1
(ρ2h31 + ρρ1h

3 + 3ρρ1hh
2
1 + 3ρ1h

2h1)ũ
2
1,x

)

dx.

(85)

Here H(2) is given in terms of ũ, η, ũ1, η1 which are not canonical variables.
The canonical are the variables

z = ξ +
Γ

2
∂−1
x η, z1 = ξ1 +

Γ1

2
∂−1
x η1. (86)
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It is more convenient to work however with the variables which are x-derivatives
of z and z1:

p = ũ+
Γ

2
η, p1 = ũ1 +

Γ1

2
η1. (87)

In terms of these new variables, the Hamiltonian structure changes ac-
cordingly,

d

dt









p
p1
η
η1









= −ε−2∂x









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

















δH/δp
δH/δp1
δH/δη
δH/δη1









, (88)

In terms of the old variables ũ, η, ũ1, η1

d

dt









ũ
ũ1
η
η1









= −ε−2∂x









−Γ 0 1 0
0 −Γ1 0 1
1 0 0 0
0 1 0 0

















δH/δũ
δH/δũ1
δH/δη
δH/δη1









, (89)

Since O(ε2δ2) = ε3 then already H(2) in the long wave approximation
produces terms of order ε3. For this reason we will not need terms of order
ε3δ2 ∼ ε4 from H(3). Therefore, the relevant terms from H(3) are

H(3) = ε3
1

2

∫

R

(

1

ρ
ηũ2 +

2

ρ
ηũũ1 −

ρ− ρ1
ρρ1

ηũ21 +
1

ρ1
η1ũ

2
1

)

dx

+ ε3
1

2
(ρ− ρ1)γ

2

∫

R

η3

3
dx+ ε3

1

2
ρ1γ

2
1

∫

R

η31
3
dx

+ ε3
1

2
γ

∫

R

ũη2 dx+ ε3
1

2
γ1

∫

R

ũ1η
2
1 dx.

(90)

The next assumption in our approximation is that the pair of canoni-
cal Hamiltonian variables p1 and η1 (i.e. with respect to the Hamiltonian
structure in (89)) associated to the free surface are of smaller order,

η1 → εη, p1 → εp1. (91)

Clearly ũ1 → εũ1. The approximate Hamiltonian of the system is with terms
of orders ε2 and ε3:
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Ha = ε2
1

2

∫

R

(

h

ρ
ũ2 + ε

2h

ρ
ũũ1 + (ρ− ρ1)(g + γκ)η2

)

dx

+ ε2κ

∫

R

ũη dx− ε2δ2
1

2

∫

R

h2

3ρ2
(ρh+ 3ρ1h1)ũ

2
x dx

+ ε3
1

2

∫

R

(

1

ρ
ηũ2

)

dx+ ε3
1

2
(ρ− ρ1)γ

2

∫

R

η3

3
dx+ ε3

1

2
γ

∫

R

ũη2 dx.

(92)

For the sake of simplification, let us introduce the following notations for
some constants:

a1 = (ρ− ρ1)(g + γκ),

a2 =
h2

3ρ2
(ρh + 3ρ1h1).

(93)

The equations are

ηt = −ε−2

(

δHa

δũ

)

x

,

(ũ+ Γη)t = −ε−2

(

δHa

δη

)

x

,

η1,t = −ε−2

(

δHa

δũ1

)

x

,

(ũ1 + Γ1η1)t = −ε−2

(

δHa

δη1

)

x

= 0.

(94)

Due to the last equation we have

ũ1 = −Γ1η1 (95)
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and for the other variables

ηt = −
(

h

ρ
ũ+ κη + ε

h

ρ
ũ1 + δ2a2ũxx + ε

(

1

ρ
ηũ+

γ

2
η2
))

x

, (96)

(ũ+ Γη)t = − (a1η + κũ)x − ε

(

1

2ρ
ũ2 +

(ρ− ρ1)γ
2

2
η2 + γũη

)

x

, (97)

η1,t = −εh
ρ
ũx. (98)

The leading order linear equations for ũ and η are

ηt = −
(

h

ρ
ũx + κηx

)

,

(ũ+ Γη)t = −(a1ηx + κũx).

(99)

The wavespeed c of the solutions, proportional to eik(x−ct) satisfies the
quadratic equation

(c− κ)2 +
hΓ

ρ
(c− κ) +

h

ρ
(κΓ− a1) = 0. (100)

Introducing c0(k) = c(k)− κ and noting that

a1 − κΓ = (ρ− ρ1)(g − 2ωκ) ≈ g(ρ− ρ1)

we write the equation for c0(k) in the form

c20 +
hΓ

ρ
c0 −

ρ− ρ1
ρ

gh = 0. (101)

The solution is

c0 =
1

2



−hΓ
ρ

±

√

(

hΓ

ρ

)2

+ 4
ρ− ρ1
ρ

gh



 . (102)

There are right (c0 > 0) and left (c0 < 0) running waves. We notice that in
this approximation c(k) is k-independent, i.e. constant.
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In the zero vorticity case

c→ c′ = κ±
√

ρ− ρ1
ρ

gh. (103)

Let us introduce also c′0 = c′ − κ. From (99) it also follows that in the
leading order ũ = (ρc0η)/h, i.e.

ũ =
ρc0
h
η + εq +O(ε2) (104)

for some yet unknown quantity q. Nevertheless from (98) and (104) we
determine

η1 = ε
c0
c
η +O(ε2), (105)

ũ1 = −Γ1η1 = −εΓ1c0
c
η +O(ε2). (106)

Note that O(ũ1) = ε, thus O(εũ1) = ε2 and such terms will be neglected
in (96) and (97) . The most general form for q is

εq = εb1η
2 + δ2b2ηxx +O(ε2) (107)

for some constants b1, b2. Now we are in a position to express everything in
(96) and (97) only via the variable η. This way we obtain two evolutionary
equations for η which should coincide up to O(ε). The equality of their
coefficients allows us to find

b1 =
ρc0(γ − c0

h
)− 2hω(ρ− ρ1)γ − 2Γc0

2h
(

2c0 +
hΓ
ρ

) , (108)

b2 =
−a2ρ2c0(ρc0 + hΓ)

h2 (2ρc0 + hΓ)
. (109)

η satisfies the KdV equation [39], (see also [10, 35])

ηt + cηx + δ2
(

h

ρ
b2 +

a2ρc0
h

)

ηxxx + ε

(

h

ρ
b1 +

c0
h

+
γ

2

)

2ηηx = 0 (110)

26



which, in the limit when all vorticities are zero becomes

ηt + c′ηx + δ2
ρc′0h

6ρ
(ρh + 3ρ1h1)ηxxx + ε

3c′0
2h

ηηx = 0. (111)

From η one can recover ũ and as well as η1 and ũ1:

ũ =
ρc0
h
η + εb2η

2 + δ2b3ηxx +O(ε2), (112)

η1 = ε
c0
c
η +O(ε2), (113)

ũ1 = −εΓ1c0
c
η +O(ε2). (114)

We notice that in leading order

η1
η

= ε
c0
c
∼ c0
c0 + κ

and therefore both positive and negative relative polarities for η and η1 are
possible. The KdV approximation for an internal wave coupled to a free
surface for a different configuration of the currents is derived in [15].

The KdV equation represents a balance between a nonlinearity term εηηx,
and dispersion term δ2ηxxx. In the above considerations ε and δ2, are of the
same order and as a result we can have the stable soliton solutions of the KdV
equation. However, there are various geophysical scales and other situations
are possible, including δ ∼ ε2. In such case δ2 ∼ ε4 ≪ ε and instead of
the KdV equation the relevant model is the dispersionless Burgers equation
(∂τ = ∂t + c∂x)

ητ + ε

(

h

ρ
b1 +

c0
h

+
γ

2

)

2ηηx = 0. (115)

It is well known that the solutions of this equation always form a vertical
slope and break. Such wave-breaking phenomenon is well known for internal
waves in the ocean. This is a mechanism that causes mixing in the deep
ocean, [40].

There are other integrable systems which provide an approximation of
the equations in the Boussinesq regime, such as the Kaup-Boussinesq sys-
tem investigated firstly by D.J. Kaup [38], see also [33]. Two-component
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integrable systems, that can match the model equations up to order δ2,
are the 2-component Camassa-Holm system and the Zakharov-Ito system
[14, 32, 31, 25, 23, 24].

9. Discussion and conclusions

We consider a two-media system of liquids with different densities, free
surface and a free internal surface separating the liquids. The bottom of the
system is considered horizontal and flat. We studied the surface and internal
waves driven by gravity and Coriolis forces and interacting with a current.
The underlying current is in the form of a shear flow with a specific velocity
profile. The current has constant vorticity at the horizontal strips where the
surface and internal waves are localised. The model is aimed at geophysical
applications, where a typical configuration is the one of a thin shallow layer
of warm and less dense water over a much deeper layer of cold denser water.
The governing equations are written in a canonical Hamiltonian form, which
gives rise to a systematic approach for possible approximations. In particu-
lar, small amplitude and long-wave regimes are studied. There are various
geophysical scales, allowing for smooth solitons at the KdV regime as well
as breaking waves in the very large wavelength regime, when the equations
are asymptotically equivalent to the dispersionless Burgers equation. In the
case of a free surface, even in the case of very small amplitudes, the inter-
nal wave is usually coupled to the surface wave. This has an impact on the
propagation speeds and is observed in other related models [16, 15]. Other
asymptotic regimes, e.g. related to the Nonlinear Schrödinger equation [51]
remain to be studied. The stability of the waves interacting with currents is
another important issue that needs to be addressed in the future. Related
recent works in this connection are [13, 26, 30].
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