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Abstract

The Poisson brackets for the scattering data of the Camassa-Holm
equation are computed. Consequently, the action-angle variables are
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1 Introduction
The Camassa-Holm equation (CH)
Up — Uggt + 20U5 + ULy — 2UpUpy — Ulgpy = 0, (1)

where w is a real constant, firstly appeared in [22] as an equation with a bi-
Hamiltonian structure. In [7] it was pushed forward as a model, describing
the unidirectional propagation of shallow water waves over a flat bottom,
see also [25]. CH is a completely integrable equation [2, 6], @ 1T, 28, B3],
describing permanent and breaking waves [12, B0, [T0]. Its solitary waves are
stable solitons if w > 0 [3, I8, 26] or peakons if w = 0 [I77]. CH arises also
as an equation of the geodesic flow for the H' right-invariant metric on the
Bott-Virasoro group (if w > 0) [B1, 3] and on the diffeomorphism group (if
w=0) [14, 05]. The bi-Hamiltonian form of () is [, 22]:

my = —(0 — 53)5%@ = (2w + md + Om) M?n[zm] . )
where
m=1u— Ugy (3)
and the Hamiltonians are
Hy[m] = % /muda: (4)
Hy[m| = %/(u?’ + wu? + 2wu?)dz. (5)

The integration is from —oo to co in the case of Schwartz class functions,
and over one period in the periodic case.

In general, there exists an infinite sequence of conservation laws (multi-
Hamiltonian structure) Hy,[m], n = 0,£1,42,..., including @) and (H),
such that [29]

dH,[m] 0H,_1[m]
_ gl n 1T
(0—0°) S (2wd + MmO + Om) S (6)
The CH equation can be written as
my = {m7H1}7 (7)
where the Poisson bracket is defined as
0A 0B
{A,B} = / %(—Qw(‘) —mod — 8m)%dm, (8)



or in more obvious antisymmetric form

(A B} = — /(w + m)(%@aB 538%)@;. ()

dm  om om
CH has an infinite number of conserved quantities. Schemes for the
computation of the conservation laws can be found in 21, B3], 29, B, 23].
The equation () admits a Lax pair [7, [T]

U, = (i + A(m + w))\p (10)
U, = (%—u)\yfr“—;\mw (11)

where ~ is an arbitrary constant. We will use this freedom for a proper
normalization of the eigenfunctions.

We consider the case where m is a Schwartz class function, w > 0 and
m(z,0) + w > 0 (see [, 6] for a discussion of the periodic case). Then
m(z,t) +w >0 for all t [[1]. Let k2 = — — Jw, i.e.

(k) = —é(kﬁ + i) (12)

The spectrum of the problem (IT) under these conditions is described in
[I1]. The continuous spectrum in terms of k corresponds to k — real. The
discrete spectrum (in the upper half plane) consists of finitely many points
kp =ikn, n=1,..., N where k, is real and 0 < k,, < 1/2.

For all real k£ # 0 a basis in the space of solutions of (Il) can be intro-
duced, fixed by its asymptotic when z — oo [II] (see also [37]):

Vy(x, k) = e T 4 o(1), T — 00; (13)
Yoz, k) = e +o(1), x— o0 (14)

Another basis can be introduced, fixed by its asymptotic when z — —oc:

o1(z, k) = e 4 0(1), T — —00; (15)
oz, k) = €* 4 0(1), x — —o0. (16)

For all real k£ # 0 if W(x,k) is a solution of (), then ¥(x, —k) is also a
solution, thus

Qol(m7 k) = @2(‘% _k)7 1/11(357 k) = ¢2(IL’, _k)’ (17)

Due to the reality of m in ([[) for any k we have



901($> k) = 952($7 E)v Qz[)l(xv k) = 12}2(1‘? ]Z') (18)

The vectors of each of the bases are a linear combination of the vectors
of the other basis:

Z Ty (k)i (z, k) (19)

1=1,2

where the matrix T'(k) defined above is called the scattering matrix. For
real k # 0, instead of p1(x, k), pa(x, k), 1(z, k), Yo(x, k) due to ([IF), for
simplicity we can write correspondingly ¢(z,k), @(z, k), ¥ (z, k), ¥(x, k).
Thus T'(k) has the form

_ [ k) bk)
=5 o ) .
and clearly
(@, k) = a(k)p(z, k) + b(k)¥(z, k). (21)

The Wronskian W (f1, f2) = f10.f2 — f20, f1 of any pair of solutions of ()
does not depend on z. Therefore

W(p(z, k), ¢(x, k) = W((2, k), d(z, k) = 2ik (22)
From (Z1l) and (22)) it follows that

la(k)|* = [b(k)[* =1, (23)

i.e. det(T'(k)) = 1. Computing the Wronskians W (y,v) and W (1, ¢) and
using ([Z10), [22) we obtain:

a(k) = @ik)7 (Gola, bp(e, k) = U@ R)po(a. k), (24)
bk) = (2ik) " (ula, kY (@ k) — (@ bga(a k). (25)

In analogy with the spectral problem for the KdV equation, the quan-
tities 7 (k) = a~1(k) and R(k) = b(k)/a(k) represent the transmission and
reflection coefficients respectively. Indeed, the asymptotic of the eigenfunc-
tion p(z,k)/a(k) when z — oo is



= e L R(k)e™* 4 0(1), (26)

i.e. a superposition of incident (e~%%) and reflected (R(k)e’**) waves. For
z — —oo we have a transmitted wave:

From (E3)) it follows that the scattering matrix is unitary, i.e.

T (k)2 + [R(K)[ = 1. (28)

In what follows we will show that the entire information about 7'(k) in (20)
is provided by R(k) for k > 0 only. It is sufficient to know R(k) only on the

half line k£ > 0, since from ([[7) and 1), a(k) = a(—k), b(k) = b(—k) and

thus R(—k) = R(k). Also, from (28

la(k)* = (1 = [R(K)[*)~, (29)

ie. |R(k)| determines |a(k)|. In the next section we will show that |a(k)]
uniquely determines arg(a(k)) as well.

At the points of the discrete spectrum, a(k) has simple zeroes [L1]], there-
fore the Wronskian W (g, ) (24 is zero. Thus ¢ and v are linearly depen-
dent:

SO(‘% Z."in) = bn&(‘% _iﬁn)' (30)

In other words, the discrete spectrum is simple, there is only one (real)
eigenfunction go(”) (), corresponding to each eigenvalue ik,, and we can
take this eigenfunction to be

" (@) = p(x, irn) (31)

Moreover, one can argue (see [37]), that (cf. B0), (I¥) and 1))

The asymptotic of ¢, according to ([[H), (), @) is



PM(@) = T to(e™), - —oo; (33)
M (z) = bue T 4 o(e7 7)), x — o0. (34)

The sign of b,, obviously depends on the number of the zeroes of (™. Sup-
pose that 0 < K1 < kg < ... < Ky < 1/2. Then from the oscillation theorem
for the Sturm-Liouville problem [5], (™ has exactly n — 1 zeroes. Therefore

by = (=1)"""[bnl. (35)

The set

S={R(k) (k>0), kn, |bu|, n=1,...N} (36)

is called scattering data. In what follows we will compute the Poisson brack-
ets for the scattering data and we will also express the Hamiltonians for the
CH equation in terms of the scattering data. The derivation is similar to
that for other integrable systems, e.g. [37, 35}, 86l 19, 6.

The time evolution of the scattering data can be easily obtained as fol-
lows. From (ZII) with £ — oo one has

oz, k) = a(k)e™™ 4 b(k)e™™ 4 o(1). (37)

The substitution of ¢(z, k) into ([[Il) with z — oo gives

1
Pt =gy vste (38)

From B17), [BY) with the choice v = ik/2\ we obtain

a(k,t) = 0, (39)
b(k,t) = %b(k:,t), (40)

where the dot stands for derivative with respect to t. Thus

a(k,t) = a(k,0),  b(k,t) = b(k,0)e>"; (41)

T(k,t) =T(k,0), Rk t)=R(K0)e". (42)



In other words, a(k) is independent on ¢ and will serve as a generating
function of the conservation laws.

The time evolution of the data on the discrete spectrum is found as
follows. ik, are zeroes of a(k), which does not depend on ¢, and therefore
kn = 0. From (B2) and #{) one can obtain

4wk,

b, =
"1 —4k2

bn,. (43)

The conservation laws are expressed through the scattering data in Sec-
tion ] and the Poisson brackets for the scattering data are computed in
Section

2 Conservation laws and scattering data

The solution of (IT) can be represented in the form

T

o(x, k) = exp ( — ik + / x(y, k:)dy) (44)

—00

For Im k > 0 and x — oo, ¢(z, k)e™*® = a(k), i.e.

Ina(k) = / x(x, k)dx, Im k> 0. (45)
Since a(k) does not depend on ¢, the expressions ffooo x(z, k)dz represent
integrals of motion for all k. The equation for x(zx, k) follows from () and

(D)

1 1
Xo (2, k) + X% — 2iky = - <k2 + Z)m(m) (46)
and admits a solution with the asymptotic expansion
o Pn
x(z,k) = pik +p0+nZ::lk—n- (47)

The substitution of 7)) into [HH) gives the following quadratic equation for
b1:

m
pt — 2ip1 + o= 0, (48)
with solutions
p=i(1E 1+ (49)
w



Since f x)dz is an integral of the CH equation, presumably finite, we
take the minus sign in ([@). One can easily see that py and all p_s, are total
derivatives [23] and thus we have the expansion

Ina(k) = —iak + i In (50)

where « is a positive constant (integral of motion):

a:/oo ( 1+m(aj) —1)d:17, (51)

oo w

and I_, = ffooo p_pdx are the other integrals, whose densities, p_,, can be
obtained reccurently from @6l), (1) [23]. For example

pO_Z_Zv g=m+uw, (52)
1 Vil 1 q> Iz

S B L 53

p-1=ghitiYg [\/a \/—+4q5/2+(q3/2)x]’ (53)
etc., i.e.

2

I_l———zoz+z—/ ————|—4q5/2)d33 (54)

The asymptotic of a(k) for Im k& > 0 and |k| — oo from (B0) is a(k) —
e—iak7 or

(k) — 1,  Im k>0, |k| — oo. (55)

Now let us consider the function

= el H i, (56)

/-c—mn

This function is analytic for Im k& > 0, but does not have any zeroes there.
This is due to the fact [I1] that a(k) has at most simple zeroes at the points
of the discrete spectrum ik,,. Therefore In a (k) is analytic in the upper half
plane and due to (B8) Inai(k) — 0 for |k| — oco. Moreover, on the real
line |a; (k)| = |a(k)|, and the Kramers-Kronig dispersion relation [24] for the
function

Inai(k) =1n|a(k)| +iargai (k) (57)

gives argaj(k) (the symbol P means the principal value):

1 [ ln|a(K
arga (k) = ~~P /_ wdk’ (58)

8



Therefore, from (1), (BS), for real k:

* Infa (k)|
k' —k
With the help of the Sohotski-Plemelj formula we have (cf. [37, 24])

may (k) = In|a(k)| — %P / K (59)

— 00

1 [ Inla(k)]
Ina;(k) = " mdkla (60)

or with (Bol)

N .
, k—ik, 1 [ In|a(k')]
mak) = —iak+ 3wy s 5 [ ORI (6
n=1 " o0

We will argue that (&), (6]) are valid not only for real k, but also when
k is in the upper half plane. Indeed, from the Cauchy theorem (the closed
contour I' consists from the real axis and the infinite semicircle in the upper
half plane, where Ina;(k) = 0) for the function Ina;(k) and Im k& > 0 we
have:

1 [ lna (K

—0o0

The substitution of (B0 into (B2) gives

Inay (k) = Z(W—lz)z/oo (/Z (k,_k)(ljf“/_ k,_w))lnm(k”)uk" (63)

oo NJ
Computing the integral in the brackets with the residue theorem, the contour

" being as before (note that the pole at k' = k” — i0 is outside the contour,
since k" is real) we find

lnal(k):%/:;%, Im k> 0. (64)
Therefore, from (BO) and (64) when k is in the upper half plane:
, N ki, 1 [ ja®)]|
Ina(k) = —iak + nz_:lln - + i) ﬂdk (65)
Equation (@) can also be written in the form
Xe, k) + (x = i) = 7+ AR (m() + ) (66)

and admits a solution with the asymptotic expansion

x(x, k) = % +ik+ > paA(k)". (67)
n=1

9



Since A(i/2) = 0, then x(x,i/2) = 0 and therefore, due to [{@l) Ina(i/2) = 0.
Now (B3) for £ = i/2 gives the integral o (B]l) in terms of the scattering data:

N ~
B 14+2k,\2 8 [ Inla(k)| ~

The integral \/wa is equal to H_1, cf. (@), 29, B, 23]:

H 4

/Z (Va+m(@) - v&)de

N 2 1 ~
T T e Ve IS
n=1

1 —2kp 4k2 +1

From (29) we know that |R(k)| determines |a(k)|. But |a(k)| determines
uniquely a(k) for real k due to (&1) and (G8)). Therefore |R(k)| determines
uniquely a(k) for real k. Since b(k) is simply a(k)R(k), then as expected,
the entire information about 7'(k) (20) is provided by R(k) for k > 0.

The integrals I_,, can be expressed by the scattering data from (B and
(B3) taking the expansion at |k| — oo : I_g, = 0;

n+1 N 9 1 2% ~
I gnsr) = 2n+1 Z nt / P2 nla(B)ldk. (69)

For example, from I_;, expressed from (B4l), (6% and using (BF]), the
conservation law H_o (see (@) can be expressed by the scattering data:

1 [~ /1 1 q
IR N AP
1+ 2k, 2 [O8k2+1 o~
_mg:l:(ln(l_%n) —16/1n)—7r\/a/o Ty )R

From (86) and (@) we obtain (recall that ¢ = m + w = u — Uy, + w),

p+pi=q¢ p=u—u;+uw, (70)

which leads to the integral:
Hy = / mdz, (71)
ie.

10



/ prdx = Hy —I—/ wdx (72)

— 00 —00

The infinite contribution f_oooo dx does not make sense, but all such contri-
butions cancel the also infinite term [*_(1/2 + ik)dz from (@) when it is
substituted in (@H).

The next equation from (@8 and (&2) is

p2 +ph+pi =0, (73)

and hence, formally (recall @), ([))

/ podr = —/ pide = —2H, — 2wHy — / widz. (74)

—00 —00 —00

From (B6]) and (67) the equation for ps is

p3 + P + 2p1ps = 0, (75)

and the next conserved quantity f_oooo p3dr = —2 ffooo pipedx is (using (),
(@), @) — see the technicalities described in [23])

o0

/ padx = 4Hy + 4wH) + 6w? Hy + 2 / Widz. (76)

—00 —00

Now, let us expand Ina(k) about the point k = i/2. To this end, for
simplicity, we define a new parameter, [, such that:

k=—(1+4)Y2, A= (77)

1 l
2 W'

The expansion is now about [ = 0. Using (1) and (7) in (X)), and the
expressions (), [), [{@) we finally obtain

l 1\2 I\3 )
na(k(l)) = - Hy — (;) (2H; + 2wHp) + (;) (4Hy + dwH; + 6> Hy)

+o(I?).  (78)

Now the expansion of (63) in | ([77), taking into account (G, ([[X)) gives
the Hamiltonians in terms of the scattering data:

11



1426, 45, 16w [ Inla(k)] ~
Hy=2 1 — = dk
0 w;(nl_%nﬂ_%g) ﬁ/o o

N N N
1— 2k, 4k (14 4K2 128w? [ K21 ~
lewQZ(ln fin 4k ( +2/12n)) N 8w / /-c~n|a(k)|dk’
— 1+ 2k, (1 —4k2) ™ Jo  (4k2+1)3
(80)
1— 2k, 4mn(3+32n2 — 48k1)
H, — 3 n n
2= Z( T+ 2m, T 301—4n2)? )
7.2 7.4 7.6
8w [ (=5 + 28k + 80k + 64k5) In |a(k ) (81)
™ Jo (4k2 + 1)

In the same fashion the higher conservation laws (which are nonlocal) can
be expressed through the scattering data.

3 Poisson brackets of the scattering data

In this section our aim will be to compute the Poisson brackets between
the elements of the scattering matrix ([20). Let us consider, for example,

{a(k1), b(k2)}:
{a(k1), b(k2)} =

= Sa(ky) O 6b(ks) 6b(ks) O Sa(ky)
_/_oo q(l’)(am(l)ax 5m(2) 5 (;)%m(;))dm (82)

For the computation of da(k)/dom(x) and db(k)/dm(z) we use ([24)) and (2H):

5 (y, k) O

o100y, k) O -
om(x) (2ik) 1( dm(x) 8_g¢(y’k) ~ om(x) 8_y¢(y’k)
+oln g ) a b ). (s

The function G(z,y, k) = dp(y, k)/dm(z) satisfies the equation, obtained as
a variational derivative of (I0):

(a; —am(y) + k2)G(a;, y.k) = Ao(z — y)p(y, k). (84)

Since the source on the right hand side of (&) is zero for y < x (due to the
delta-function) and since ¢(y, k) is defined by its asymptotic when y — —oo,

12



i.e. for y — —o0, p(y, k) does not depend on m(x), the solution of (84]) must
satisfy

G(r,y,k) =0, y<u= (85)

G(z,y, k), considered as a solution of (84) is a continuous function of y for
all y, however due to the source on the right hand side (proportional to a
delta function) 0G(z,y, k)/0y has a finite jump at y = x. The value of
0G(x,y,k)/0dy for y — x 4+ 0 can be found by integrating both sides of (&)
from x — € to x + ¢ and then taking ¢ — +0:

0G(z,y, k)
8y y=x+0
Now we can make use of the fact, that the left hand side of (83]) does
not depend on y. We take y = z 4+ ¢, € > 0 and then we take ¢ — 0.
Since 9 (y, k) is defined by its asymptotic when y — oo, i.e. for y — oo,

Y(y, k) does not depend on m(x), by an analogous arguments we conclude
that 0 (y, k)/dm(x) = 0 for y > =. Then finally from (§3)) it follows:

= \p(z, k). (86)

Sa(k) A -

5m($) = —ﬂﬂ)(l‘,k‘)@(l‘,k) (87)
Similarly, we find
V) Ay, k)l ) (85)
om(x) 2k T E)-

Substituting (&), ([8F) in ([&3), we have

{a(ky), b(ks)} = % x

| ) (3 el ) (0 Rl )

— o0

(e kol ko) g (5 B ol ) ) . (89)

The expression under the integral in (B9) is a total derivative. Indeed,
let f1, g1, f2, g2 be two pairs of solutions of ([{]) with spectral parameters
k1 and ko correspondingly, i.e.

Bfro= G + A(’<¢1,2)Q(l’)) Ji,2,

Bgrz = (7 + Ak2)a(x))onz (90)

13



Then with (@) one can check easily the following identity:

Q(m)<flgl%(f292) - f292%(f191)) =

m ((918x92 — 920:91)(f102f2 — f2a“’f1))x' (91)

Now we can take f1 = ¢(z, k1), fo = ¥(2,k2), 1 = @(x, k1), g2 = @(z, k2)
and substitute in ([8Y). Then with ([@I]) and with the asymptotic representa-
tions for x — oo

Y(x, k) — e ke o(z, k) — a(k)e_ikz + b(k:)eikz, (92)

and for z — —o0

oz, k) — e ke, U(x, k) — a(k)e”*e — p(k)etr® (93)
we obtain
A(k1)A(k2)

tatkn) bh)} = ot ey (M) — AL

|:xll_>lgo ((k‘% - k’%)a(k‘l)a(kz)e—%kzx _ (k‘% _ k%)b(kl)b(kg)e%lx

+(ky + ko) 2a(k1)b(ky) — (ky + k2)2b(kl)a(k2)e2i(k1—kg)x)

T——00

- Jim ((k% — k3)a(k)a(ke)e %2 — (kT — k3)b(k1)b(ky)e 1
—(ky — k2)2a(ky)b(ka) + (k1 — k2)25(k1)a(k;Q)e—?i(kﬁkz)r)], (94)

The expression on the right hand side in ([@4) is defined only as a distribution.
ikx

Then applying the formula lim, .., P4~ = 7mid(k) and assuming k12 > 0
we have

2 2 ;
k1+k2 +7T—Z(5(k1—k2)).

{Imakn), Inbka)} = wAkDM k) ( = g + o

(95)

In the same fashion the rest of the Poisson brackets between the scat-
tering data can be computed. The result can be expressed in terms of the
quantities

p(k) = _%’&)2 mla(k),  6(k) = argb(k), k>0:  (96)

14



Their Poisson brackets have the canonical form

{o(k1), p(k2)} = 0(k1 — k2),  {d(k1), d(k2)} = {p(k1), p(k2)} =0 (97)

and thus (g6) are the action-angle variables for the CH equation, related to
the continuous spectrum. Note that from (@7) and (80) we have

¢={¢,H1} = R’ (98)
which agrees with (EII).

Let us now concentrate on the discrete spectrum. Let us denote, for
simplicity, A, = A(iky,). We will need the variational derivatives d\,/dm(x)
and b, /dm(z). Due to B2), for b, /om(x) the expression (B8) will be for-
mally used followed by taking the limit k& — ix,. In order to find 0\, /dm(x)
we proceed as follows. Differentiating the equation

1
(n) — (= (n)
o) = (7 + Mnal@)) 9, (99)
we obtain (6g = om):
005 = (0Xn)ge™ + An(5m)p™) + G + An ) 0™, (100)
From (@9) and ([[00) it follows
(™Mol — iM86™), = (BA)ale ™) + Aa(Bm) ™. (101)

The integration of () gives:

o3 [ a@le @Rz = =2 [ Gm@)e® @Rz (102)
ondn _ "M@ (103)
om(z) IZ5 )™ (y))2dy

From (I0) it is not difficult to obtain
(LPar — PepN)z = 7 (104)
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We will integrate ([04)) and then take the limit & — ik, i.e. A — \,. We
take into account that with this limit, clearly

oz, k) — bpe " 4 o(e” ), T — 00; (105)
L
oz, k) — %e””r + o(e"™7), T — 00. (106)
Therefore
iwbn(in) = [ )l )y (107)
and finally

dln X, i[p™ ()]
dm(x)  wbpa(iky,)

(108)

We compute the expression

T\
2wbykia (iky)

| at@) Jim (k)0 el )
(e, k) p(w, k) (¢, ) ). (109)

Taking f1 = g1 = p(2, kn), fo = ¥(2, ki), g2 = ¢(z, ki) in ([@I) and using the
asymptotic representations (2)), ([@3]) for x — 0o we obtain

{In A, b} =

A
I, b} = S )
(b -+ 1) ()b b(ke) — a2 k)20
lim lim (110)
r—00 k]-—>i/£]- kn - kl

Clearly, the right hand side of ([[I0) is zero if k,, # kj, since a(ik,) = 0.
However, if x,, = x;, the ’'Hospital’s rule for the limit x; — k,, gives

{In An, b} = —Anbn b (111)

If we define the quantities

16



pn = AL b = —1n |y, n=1,2,...,N, (112)

their Poisson brackets have the canonical form

{Gn, o1} = 6nts {dn, 1} ={pn. i} =0 (113)

and thus (IT3)) are the action-angle variables for the CH equation, related
to the discrete spectrum. They also commute with the variables on the
continuous spectrum (@f). Note that from [[I3) and (B0) we have

dwk,
1—4k2’

. oH
bn = {0n Hi} = {0n,hin} 5= = = (114)

which agrees with ([E3).

4 Conclusions

In this paper the action-angle variables for the CH equation are computed.
They are expressed in terms of the scattering data for this integrable system,
when the solutions are confined to be functions in the Schwartz class. The
important question about the behavior of the scattering data at £k = 0
deserves further investigation. It is possible that in the case of singular
behavior the Poisson bracket has to be modified in a way, similar to the KdV
case, as described in [20] [, 6]. The case w = 0 (in which the spectrum is
only discrete, cf. [I6]) is presented in [34]. The situation when the condition
m(z,0)+w > 0 does not hold requires separate analysis [27, 4] (if m(z,0)+w
changes sign there are infinitely many positive eigenvalues accumulating at
infinity, cf. [I1]). The action-angle variables for the periodic CH equation
and w = 0 are reported in [32].
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