View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Arrow@dit

D E B LlN Technological University Dub.lin
- ARROW@TU Dublin

Articles School of Mathematics

2004-08-30

On the dressing method for the generalised Zakharov-Shabat
system

Rossen Ivanov
Technological University Dublin, rossen.ivanov@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart

b Part of the Mathematics Commons, Non-linear Dynamics Commons, and the Partial Differential
Equations Commons

Recommended Citation
R. Ivanov, On the dressing method for the generalised Zakharov-Shabat system, Nuclear Physics B 694,
no. 3, 30 August 2004, 509-524. doi.org/10.21427/7h4z-e280

This Article is brought to you for free and open access by

the School of Mathematics at ARROW@TU Dublin. It has

been accepted for inclusion in Articles by an authorized

administrator of ARROW@TU Dublin. For more

information, please contact

yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,

brian.widdis@tudublin.ie. T

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D U B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN



https://core.ac.uk/display/301312116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=arrow.tudublin.ie%2Fscschmatart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=arrow.tudublin.ie%2Fscschmatart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=arrow.tudublin.ie%2Fscschmatart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

arXiv:math-ph/0402031v1 12 Feb 2004

On the Dressing Method for the Generalised
Zakharov-Shabat System

Rossen Ivanov!

School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9,
Ireland?
and Institute for Nuclear Research and Nuclear Energy, 72 Tzarigradsko
chaussee, 1784 Sofia, Bulgaria

Abstract

The dressing procedure for the Generalised Zakharov-Shabat system is well
known for systems, related to si(IV) algebras. We extend the method, con-
structing explicitly the dressing factors for some systems, related to orthog-
onal and symplectic Lie algebras. We consider 'dressed’ fundamental ana-
lytical solutions with simple poles at the prescribed eigenvalue points and
obtain the corresponding Lax potentials, representing the soliton solutions
for some important nonlinear evolution equations.

PACS: 05.45.Yv, 02.20.Sv

Key Words: Inverse Scattering Method, Nonlinear Evolution Equations,
Solitons.

1 Introduction

The Non-linear evolution equations (NLEE), solvable by the inverse scattering
method (ISM) can be represented as a compatibility condition of two linear sys-
tems with spectral parameter A:

[L(A), M(AN)] =0 (1)

The ISM is based on the fact that the scattering data for the corresponding
equations satisfy linear equations, which are trivially solved [IL 2, B @, Bl 6]. One
of the simplest, but at the same time the most important systems for ISM is the
so called Zakharov-Shabat (ZS) system [1], [7].

1E-mail: Rossen.Ivanov@dcu.ie, Tel: 4+ 353-1-700 5856, Fax: + 353-1-700 5508
2address for correspondence
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Lpo(z, t, \) = (z% + qo(x,t) — )\03) Yolz, t,A) =0, (2)

q(z,t) = qtor+q o

/01 (00 /(1 0
9+ = 00/ 7 7"\L10) %% 0o -1

The class of NLEE related to Lax operators of the form () contains physically
important equations such as the non-linear Schroedinger equation (NLS), the sine-
Gordon and MKDV equations and so on. The N-wave equation requires 3 x 3
matrix-valued potential go(z,t) (see bellow). For example, if the M-operator has
the form

Muo(x,t,\) = <z% + Volz, t) + Ay (2, t) — )\203> Yolx, t, \)

and if we enforce the reduction ¢ = g+ = —(¢—) then the compatibility condition
(@ can be resolved for ¢, Vo, V1 to give the NLS equation

iqt + Gra + |Q|2(J(Ia t) =0

This construction clearly corresponds to a potential gy € su(2) and can be ex-
tended for all (semi)simple Lie algebras, leading to the so called Generalised ZS
system.

In Section 2 we briefly describe the generalised ZS system and the ZS dressing
method. The ZS dressing method [1], [8], [9] leads to a construction of a new
solution, starting from a known one. The dressing procedure like the Backlund
transform and Darboux transform creates a Lax operator, which has a new pair
of complex discrete eigenvalues at prescribed positions with respect to the orig-
inal Lax operator. This method is well known for systems, related to sl(N)
algebras [1I, [@], [I0], [I1]. The discreet spectral values of L are related to the
'reflectionless’ potentials of L and soliton solutions of the NLEE. In Section 3
we extend the method, constructing explicitly the dressing factors and the new
solutions for some important cases, related to orthogonal and symplectic Lie al-
gebras. We consider ’dressed’ fundamental analytical solutions with simple poles
at the prescribed eigenvalue points and obtain the corresponding Lax potentials,
representing the soliton solutions for some important NLEE such as N-wave and
NLS-type equations.

2 Generalised Zakharov-Shabat System

2.1 Properties of the Generalised Zakharov-Shabat System
The Lax operator of the Generalised Zakharov-Shabat System has the form

Lp(x, \) = (z% +q(x) — /\J) P(z,A) =0 (3)



where g(z) and J take values in the simple Lie-algebra g with a Cartan subalgebra
h: ¢(z) € g/h is a Schwartz-type function i.e. vanishing fast enough for |z| — oo,
J € h is areal constant regular element. The regularity of J means that a(J) > 0
for all positive roots @ € A, of g. The continuous spectrum of L @) fills up the
real line R in the complex A-plane.

Here we fix up the notations and the normalization conditions for the Cartan-Weyl
generators of g. The commutation relations are given by [T2]:

[H€k7EO¢] = (CY, ek)Eou [Eou E—a] = Hou

[Ea, E) —{ o Zingu{o}. )

where A is the root system of g , He,, k = 1,...,r are the Cartan subalgebra
generators and F,, are the root vectors of the simple Lie algebra g. Here and below
r = rank(g), and ey, a, J= > r—1 Jrer € E” are Euclidean vectors corresponding
to the Cartan elements H,, H, and J = 2221 JipH,, correspondingly. The
normalization of the basis is determined by:

(@, @)

E_ o=ET t(E_.E,) = TR
N_a—p==Nag, Nap==(p+1), (5)

where the integer p > 0 is such that o + s € A for all s = 1,...,p and
a+(p+1)5¢A.

We can define fundamental analytic solutions (FAS) x*(z, ) of L, which are
analytic functions of A for £Im A > 0 as follows:

lim eMexE (@, \) = ST,
lim e F (@A) = TT()DF() (6)

where S*(\), D¥(\) and T*()\) are the factors in the Gauss decomposition of
the scattering matrix T'(A) I}, 8]:

T(A) =T~ (ANDT(A)ST(A) =TT(A)D™ (NS~ (N). (7)

Here by ”"hat” above we denote the inverse matrix S = S5~ It is convenient to
use the following parametrization for the factors in (1)

acAy aE€A
T 24t () " 247 (V)

DF(X) = exp ! , DT(N) =exp ——H; |, (8)
= (@5, q) j:zl(%%‘) !



where H; = H,,, {a;}j_; is the set of the simple roots of g, H; = wo(H;) and
wy is the Weyl group element which maps the highest weight of each irreducible
representation to the corresponding lowest weight. The proof of the analyticity of
x*t (2, \) for any semi-simple Lie algebra and real J is given in [T3] (for sl(N) in
[T, 2, B, 8]). The upper scripts + and — in D¥(\) show that D;f(/\) and D} (A):

Di(A) = (Wi ID*Wwi) =exp (&7 (V),  wj =wol(w]), (9)

are analytic functions of A for ImA > 0 and Im A < 0 respectively. Here w;r

are the fundamental weights of g and |wj+> and |w;") are the highest and lowest

weight vectors in these representations. On the real axis x™(z,A) and x~ (z, \)
are related by

XH(@A) = x"(@,M)Go(N),  Go(h) = ST(N)S™ (), (10)

and the sewing function G(A) may be considered as a minimal set of scattering
data provided the Lax operator @) has no discrete eigenvalues. The presence
of discrete eigenvalues A means that one (or more) of the functions Dj[ (N\) will
have zeroes at AT (Im A > 0, ImA; < 0 ). The Riemann-Hilbert (RH) problem
(@) is equivalent to the system (@) for x=*.

2.2 Non-linear evolution equations

We can introduce a dependence on an additional ’time’ parameter ¢. The non-
linear evolution equations possess a Lax representation of the form () where

MO ) = (i + V(D) vt ) =0
P—-1
V(z,t,A) =
k=

Z Vi(z,t)\¥ — fpAPI, Vi €g, I € h, I = const
0

which must hold identically with respect to A. The components of I are real also.
A standard procedure generalizing the AKNS one [ allows us to evaluate V}, in
terms of g(z,t) and its z-derivatives. Here and below we consider only the class of
Schwartz-type potentials ¢(z, ) vanishing fast enough for |z| — oo for any fixed
value of ¢. Then one may also check that the asymptotic value of the potential
in M, namely f)(\) = fpAFI may be understood as the dispersion law of the
corresponding NLEE.

For example, the N—wave equation [T}, 2, 3, [ 6]

7’[‘]7 Qt] - Z[I, Qz] + [[Iv Q]7 [‘L Q]] = 07 (11)

corresponds to a generalized ZS type system with ¢(z,t) = [J,Q(x,t)] and M-
operator with P =1, fp =1, Vy(z,t) = [I,Q(x,t)] and V(x,t, \) = [I,Q(x,t)] —
M.



Example 1. Consider algebra g ~ C3. The positive roots are e; =+ es, 2e; and
2e5 and thus:

Q = QzFci—c; + QuaFe; ye, + Qri1E2e, + Qa2ko,
+QT2E*81+82 + QﬁE*fil*@ + QﬁE*QQ + QEE*QQ
The system of NLEE for the components of @ is

i(J1 = J2)Qz, —i(h — [2)Q3, + 26(Q5Q12 — Qulk) = 0
i(J1 + J2)Qu2 — i1 4+ [2) Q12,2 — 26(Q22Q13 + Q1) = 0
11Q11t — 1hQu1,x +26Q15Q12 = 0
1JoQ22,t — 112Q22,2 + 26Q7,Q12 = 0
i(J2 = J1)Q1p — 1(I2 — [1)Q1a, + 26(Q17Q12 — Q22Q73) = 0
—i(J1+ J2)Q1z, +i([1 + 12)Q1z ., + 26(QQ5 + Q@) = 0
—iJ1Qﬁ)t + iIlQﬁ@ —26QR = 0
—'L'JQQﬁ)t + iIQQﬁ@ —26Qp053 = 0 (12)
where k = J1Io — JoIp. O
The NLS-type equation [13]
g+ 007 ger — iPlg,ads 0] + 5[, (1 - Po)lg.ads gl =0, (13)

2

can be obtained, using V(x,t,\) = Vo +AVi — A2J. When J is a regular element,
ady is an invertible operator. Here Py :adjl.adJ is the projector on g/h. From
@ we have the system

dVo  .dg _
o g eVl =0
dVi
—_ -4, W = 0
ZdCC—’—[q’ l] [70]
[Vl—q,J] = 0

which can be resolved to give (@), see [13]. The NLS equations on symmetric

spaces (where J = ( 1

0 _01 )) are considered in [14].

2.3 Dressing procedure

The main goal of the dressing method is, starting from a FAS Xoi(ac, A) of a Lax
operator Lo with a potential q(g) to construct a new singular solution X1i (z,\)
of @) with singularities located at prescribed positions /\1i. The new solutions
Xli(ac, A) will correspond to a new potential, say gy of L1, with two additional

discrete eigenvalues A
The new solution is related to the initial one by a dressing factor u(x, A):

Xli (2, A) = u(z, /\)XOi (z, )‘)U:l()‘)v u_(A) = mll)r_noo u(z, A).



Then u(z, A) obviously must satisfy the equation

du
Z@ + gy (@)u(z, A) —ulz, N)go)(z) = A[J,u(z,\)] =0, (14)
and the normalization condition limy o u(z,\) = 1. xF(x,A), i = 0,1 and

u(z, \) must belong to the corresponding group G. By construction u(z, A) has
poles or/and zeroes at /\1i. All quantities bellow, related to L; (Bl with potential
q(i)(x) will be supplied with the corresponding index i. Their scattering data are
related by:

SN = u— (NS MNuZt V), Ty = ue N T, (Nuit(V), (15)

DA = us WD (Nu= (), ux(A) = lim_u(z,A). (16)

Since the limits uy () are z-independent and belong to the Cartan subgroup H

of G, so S(il)()\), T(jlt)()\) are of the form ().
If () is satisfied then one can see that Ly = uLou~! and therefore [L1, M;] =0
where

M1 = uMou_l (17)

The dressed potential g1y (w,t) satisfies the same NLEE as q(o)(z,t) since M ([0
has a potential in the same polynomial form in A as in M, due to the fact that the
dressed FAS are solutions to a RH problem of the same type ([[) for all values of
the additional parameter t.

The simplest case g ~ A, (or, rather gl(r + 1) ) is solved in the classical papers
[, @). The dressing factor is

AL — AT

- P(a), (18)

AN =14+0"N
u(A) AT

where the projector P(z) can be chosen in the form:

(@) im(a)
P = ) na))

with |n(z)) = xg (z,A\])|no), (m(z)| = (molXg (x,A]); |no), |mo) are constant
vector-columns ( (mg| = (|me))7). It can be easily checked that

a1 (7) = q0) (@) + (A = A1)V, P(2)]

In fact u(z, A) (@) belongs not to SL(r+1), but to GL(r+1). det(u) depends only
on A and it is not a problem to multiply w(z, A) by an appropriate scalar and thus
to adjust its determinant to 1. Such a multiplication easily goes through the whole
scheme outlined above. We mention also the papers by Zakharov and Mikhailov
[15] where they generalized the dressing method and derived the soliton solutions
for a number of field theory models, related to the orthogonal and symplectic
algebras.



3 Dressing factors related to the orthogonal and
symplectic cases
For the construction of the dressing factor for the case of orthogonal and sym-

plectic algebras we will assume that it contains singularities at Ali as proposed in
16, [13:

uw(@,\) =1+ (c,(N) — )mi(z) + (c;l()\) — D1 (x), (19)
where for some constant p
ZA\H
cu(N) = <;_;1_) : (20)

The two matrix-valued functions 71 (x) and 7_; (x) must satisfy a system of alge-
braic equations ensuring that u(z, A) € G, i.e.

ut(z,\) = SuT (z,\)S7! (21)

where the matrix S is

S = Y (-DMUEg + By) + (=1 Ergr g,
k=1
E=N-+1-k, N=2r+1 g~B, (22

T

S = Y (-D)"NE - By,

k=1
N =2r, k=N+1-k, g~ C,,
s = Z(_l)k+1(EkE+EEk)a
k=1
N =2r, k=N+1-—k, g ~D,. (23)

Here Ej, is an N x N matrix whose matrix elements are (Ejyp)i; = 0ixdn; and
N is the dimension of the typical representation of the corresponding algebra.
We note also the difference between the matrices S for the symplectic and the
orthogonal case, namely:

S—! = ST =S for the orthogonal groups (algebras) and
S—! = &7 = _§ for the symplectic groups (algebras).

The algebraic equations, following from the condition that {II) or, equivalently,
u(z, \)Su (z,\)S™ ' =1

should hold identically with respect to A are:



mStiS™t =n_ 1877, 87 =0, (24)
7+ Srl S —mSxt 87— SrlsT =0, (25)
7+ 87,87 —m St ST — w1 Saf ST =0 (26)

The equations for w11 (z) following from (@), [[d) keeping in mind that it should
also hold identically with respect to A (i.e. when A — Af and A — oo) are:

A 4 @)~ m @ (@) - AT m@)] = 0 (@)
LD g @)~ @ @) - N ma @] = 0 (@9)
gy (@) = go)(@) + lim AL, (eu(A) = Dmi(2) + (e, '(N) = Dm_a(2)] (29)
= qo)(@) +pAy = A m(2) — 7o (). (30)
It is possible to find solutions of @4)-E8) of the form

1 =YmT, mT_1 :SXTLTSHI. (31)
Here X, Y, n, m are N x r; rectangular matrices where r; < N and N is the
dimension of the typical representation of the corresponding algebra as in ([22) .
The system ([ZH)-(Z8) can be rewritten as
YmT(1 —nXT) -5 - XnTymyTs—1!
XnT1-mYT) = —-SA-YmT)nxTs!

and can be solved for X, Y introducing two new matrices A and B (yet arbitrary)
[15] via the relations

XBT =S5(1 -YmT)n, YAT = S(1 — Xn")m.
The solution with respect to X and Y of the algebraic equations arising from
€&4)-@d) can be written down in the form
Y = (n+Sm(p")'B)R™!, X = (m+ Snp tA)(RT)! (32)
p = min, R=p—cA(p’) 'B
where the matrices n, m, A and B must satisfy
AT = —6A, B = 0B, nT"Sn=m"Sm =0 (33)

and o is a sign determined from S™! = 5.9, see ().
For the orthogonal algebras o = 1. If we take r; = 1 then A, B are 1 x 1 matrices
and according to B3) A = B = 0. Hence w41 @) are projectors of rank 1.
Taking

m = Sxg (z,t,A\])S ™ mo), n = xa (z,t,\])|no) (34)

where |ng), |mg) are constant vector-columns ( (mg| = (Jmg))?) we have the
following result [I7] which we quote for completeness:



Proposition 1. Let g ~ B, or D,, x(jf(x,t,/\) - the FAS for the Lax-pair Ly,
My and p =1 in {Z0). Then 741 (L) and the Laz potential have the form

™1 (,T,t) =
o~ _ —1 o~ _
XJ(I’ t7 AT)|n0> (<m0|XO (Ia tv )\1 )Xg(xvta Af)|n0>) <m0|XO (‘Ivta A1 )a
m_q(x,t) = SwiS7h
quy(z,t) = quy(z,t) + (AT = AD)[J,m — 7], (35)

where |ng), |mo) are constant vectors from the typical representation, such that
(moS|mo) = (no|SIno) = 0.

Remark. my; are mutually orthogonal projectors, m; — 7_; € g and one can see
that u(z,t,A) = exp ((Iner (V) (m1 (x,t) — m-1(x, 1)) € G.

Proof: The proof is based on a direct verification of 1), @5), see [I7] for
the details and examples, related to the N-wave type equation ([[I). O
When we consider g ~ C, however, even when r; = 1, A and B are in general
not equal to zero. We state the result in the following proposition:

Proposition 2. Let g ~ C;, r; =1, Xg(a:,t,)\) - the FAS for the Lax pair L,
My and p=1in (Z0). Then 71 {IA) and the Lax potential have the form

(pn + BSm)mT

7T1($,t) p2+AB ’ (36)
S(pm + ASn)nTS—1
W71($,t) = p2+AB ) (37)
quy(z,t) = qoyle,t) + A7 = A0S, m — 7] (38)
with
n(x,t) = Xg_(xvt7/\-1i_)|n0>v
m"(z,t) = (mol|Xy (x, 8, A7),
plx,t) = mT(x,t)n(x,t),
A(Iat) = _(A; _)‘IL)<m0|5<\a(Iat7)‘1_) X(: (J?,t,)\l_)S|m0>, (39)
Bot) = (A7 = Aol X5 (@, A7) Xq (8, A7) o), (40)

==
where the dot denotes a derivative with respect to X: Xy (z,t,\) = (%\X(ﬂ): (z,t, ).

Proof: Substituting 71 from (B@) and ) into equations 7)) with m,
n and p as above, after some tedious calculations we receive that A and B must
satisfy the extra conditions

dA _ U e

Zd_:zr = —(\ - Af)<m0|xo (A1) xo (A7)S|mo)
.dB _ ~

il (AT = AN (nolSxg (A7) I xg (AT)[no)



which can be resolved, using the fact that the FAS satisfy ). We thus end up
with expressions Bd) and ). O

Example 2. Consider g ~ Cy. For the system (@) related to the N-wave
equation () Q1y(z,t) = Qo) (x,t) + (AT — AT )Po(m —7—_1) (here we ignore the
irrelevant diagonal part). If Qy(z,t) = 0 clearly

X2 (x,t, ) = exp (—iX(Jx + It)).

Let us take the typical representation of Cy with a basis |v;) = |e;), |v;) = | —es),
i=1,2 and

Ino) = mnoiln) +noz2lv2) +nezlvz) + netln)

Imo) = mo1ln) + mozly2) + meslvs) + Mgzl

with all constant parameters ng;, mg; nonzero. Then from (BX) we obtain the
following solution

Q; = Z(n01m02pei>\;zz—i)\1+z1 + noimoipe—ikle—i-i)\fzg
_n01n0§Aefi)\Ir(zlfzz) + m02m0TBefiAf(zlfzg))

Q12 = %(nmm(ﬁpe%kfzfﬁ\le _ nogm(ﬁpe*Mle’”‘T”
FnoingzAe” M G1H22) Lo o cBem A (1422

Qu = ﬁ(2no1mﬁp6_i(’\;+’\lﬂzl - 71(2J1Ae_2i’\1+21 + m?ﬁBe_%\le)

Qa2 = ﬁ@nogm@peﬂ(’\;“‘nw + ngQAe—%\fzz _ mgiBe_%\IZZ)

Qp, = %(n02m01pei>\;z1—i)\l+zz + noimoipe—i,\;zﬁi,\jzl
+7’L027IOTA€D\T(21722) — m01mO§Ber(’zlfz2))

Qp = i(noimmpempﬁmjzz _ non02pei)\IZ2+iAl+z1
+rgrnggAe™ C1H52) 4 mg mgy Bl (1))

Qs = ﬁ@noﬁmmpei(’\;H‘r)z? — 7”L§§14162i’\1+z2 + m2, Be? #2)

Qm = L(2710Tm()1p€i(>‘;'MT)ZI + ngiAe%)‘TZl — mi, Be?™ #1)

V2A

with the notations:

I = A\ =)\
A = 2il(moimyrz1 — Moamgz2z2), B = 2il(noingrz1 — no2ngz22)
p = nomoie™ + noamose®® + nggmgse™ 2 + ngymgre i1,
A = p’+ AB,
z(x,t) = Jr+It, zp(z,t) = Jpx + Iit.

10



The Cartan-Weyl generators are
Eeifej = Eij + (_1)i+j+lE3{7 E€i+8j = Ez} + (_1)i+j+1Ejfv (7’ < .])7
By, = V2E,;, H., = Ey, — E.

Note the terms A, B, linear with respect to x and ¢ due to the contributions from
(Zx0 (= t, A)s_=- The reduction
-7

AT =AY, mox = ok
leads to finite solutions since in that case
A= o2 +|AP2 £ 0.

In order to analyze the scattering data in this example we recall that our regularity
assumption «(J) > 0 for g ~ Cg implies J; > Ja > 0. Our initial solution is
Qoy(x,t) =0 and Di)(/\) = S(jg)()\) =T (\) = 1. Tt is not difficult to calculate

(0 (0)
that
m mi(z ) = |y (il = Byp, imomi(z,6) = [y)(nl = En
m 7o () =yl im 7o (2, 1) = ) (]

and thus from (6]

ur(A) = exp(x(lnci(N))He,),
DN = leexp(2(lnei(V)He,).
Since for the C, algebra wy = —1, w;-' =e1;+ ...+ ¢; from (@) we have

di

;N = dig,; N £2(ner (V) (e, w)) = £2lne (V), j=1,2.

Since we obtained soliton solutions, corresponding to a reflectionless potential,
the scattering data on the continuous spectrum remained trivial ([[3): Sﬁ)()\) =

5 =1 O
Next we examine one particular case, where m; + 7_1 = 1. We start with the
following Lemma.

Lemma 3.1. If my + n_1 = 1, the equations (ZQ)—_2) are compatible if and
only if

1. mqy =875t
2. w41 are mutually orthogonal projectors (ﬂil =7y, mm—1 =7_171 = 0)

3.u:%

11



Proof: Assume that @) holds. If m; +7_1 = 1 then ([3) is satisfied and from
E8) we have 7_; = S7¥' S~ Then mm_1 =7_1m =0 and 77 = m (1 —7_1) =
71. From () and @) provided 7_; = 1—m; we have

a1y (@) = qo) (@) + 2u(AT — AD)[J, ™1 (2)).

On the other hand, summing up @7) and (Z8) we have
41 (@) = gy (x) + (A = A))[J, m(2)] (41)

and therefore p = % O
Clearly ¢ 1 (M) is not a meromorphic function, but this is not a real problem since
in this case

w(@ ) = ') (1+(EN) - Dm(@),

W) = ) (14 (PN = 1) m(@)

and up to the irrelevant scalar multiplier ¢;*(\) the dressing factor is a meromor-
2
phic function of .

Proposition 3. If x(jf (x,t,\) are the FAS for Lo and My the projector m of rank
r (in the context of Lemma[Bl) has the form

m(z,t) = > x¢ (@t M) )Ry (m|Rg (.6, A7) (42)
ik=1

where |n}), |m&) are constant vectors from the corresponding (typical) represen-
tation, ‘

Rk (@, 1) = (mg|Xg (2,6, \7)xg (2,8, A1) |ng),
provided det(R) # 0, (m§|S|mk) = (n§|S|nk) = 0.

Remark. Since rank(m;) =rank(m_1) = r and m + 7—; = 1 the proposed con-
struction works only for algebras with 2r dimensional typical representations, i.e.
g =~ CI‘7 D’I"

Proof: m_y = Saf S~ ' =", 1 xo (;v,t,)\f)S|m0i>}A€£C<nok|S_1)?6r(x,t,/\f)
and the condition (mg;|S|mox) = (no;|S|nok) = 0 guarantees that mm_; =
m_1m = 0. Since the projectors m; and m_; commute, they can be diagonalised
simultaneously, and m; has an eigenvalue 1 at the places where 7_; has an eigen-
value 0 and vice-versa. It means that m; + 7_; = 1 if the representation space is
2r dimensional. Furthermore one can easily verify that 7 satisfies the equation

dmi - + -\t _

ZE + [Q(Q),ﬂ'l] + )\1 7T1J— )\1 J7T1 — ()\1 — )\1 )7T1J7T1 =0
which is equivalent to ([27) in the case m +7_1 = 1, taking into account {Il). O
Example 3. For the N-wave equation ([l and g ~ Ca i.e. for the system ()

12



with Qoy(x,t) = 0, if we take the typical representation of C, and

Ing) = |m)+ alye) + blyg) — ablyy),
Ing) = |m) —alv2) + clg) + aclyy),
Img) = nd), Img) = ng)

with real positive constant parameters a, b and ¢, the construction [E2) with the
reduction

AL =T (43)
gives the following solution:
Qp = 4id®(b—c)(b+c)e M=) feosh[v (2 — 29) — Inal}/A
Q2 = —8iv1a®Vbe(b+ c)e ™ E1H22) eosh(v (21 + 2z3) — InVbe]} /A
Qu = 4V2ia*Vbe(b— ¢)e”?#1# {sinh[2u 25 + In L]}/A
Vbe
Qoz = —4V2ir1a*Vbe(b — ¢)e™ 2% {sinh([2v1 21 — InaVbd]} /A
Qr, = 4i1d®(b—c)(b+ c)e™ 72 fcosh[v (21 — 22) — Ina]}/A
Qs = —8ira®Vbe(b + ¢)e™ (1722 [cosh[vy (21 + 22) — InVbe]} /A
Qp = —4V2ir1a®(b — ¢)e*™*2 {cosh[2v1 21 — Inavbe|} /A
Qr = 4V2ina(b - c)e?™ * avbe{cosh[2v, 25 + In L]}/A

Ve

The notations are as follows:

vi = Im (\) >0, p1 = Re (A) (44)
Az, t) = a*(b+c)* +a*(b— c)? cosh[2v1 (21 — 22) — Ina?]
+4a? cosh[2v1 (21 + 29) — Inbd],
Ax,t) # 0;
z(x,t) = Jx+It, zp(z,t) = Jpx + Iit.

In order to analyze the scattering data in this example we recall that J; > Js > 0.
It is not difficult to calculate that

lim 7T1(I,t) = Eﬁ + Eﬁ, lim 7T1(I,t) = E11 + E22
T——00 T—00

and thus
ut(A) = exp(*(lnci(N))(He, + He,)) s
Di)(/\) = exp(2(lnci(N))(He, + He,)) -
From (@) we have
diy;(N) = dig;, () £2(mner (V) (W) er + e2)
di(N) = £2Inei(V), df, (V) = £4lnei ().
O

Examples for the NLS-type equation (@) can be easily constructed, using the
FAS x&(x,t,\) = exp (—i\J (x + At)) when qqoy(z,t) =0 .

13



4 Generating solutions for systems, related to
subalgebras

As a byproduct of the presented general constructions for the orthogonal and
symplectic algebras, we can generate solutions for their subalgebras [I7]. As an
example we consider some s/(2) solutions for the NLS-type equation ([3) and their
relation to the dressing construction for the sl(N) algebra ([¥). If the dressed
solution has the form

q)(,t) = q(x, 1) B + Gz, t) E_q
then ¢ and ¢ must satisfy the equation (I3) related to si(2), which is of the form
iQt + W1qzq + wnga = 0

with some constant coefficients w1, ws depending on the length of the root «.

Example 4. For the NLS-type equation (&) when g (z,t) = 0, clearly
quy(z,t) = I[J,mi(x,t) — m_1(x,t)] and XE(x,t,\) = exp (—iAJ(z + \t)). Let
us take g ~ C, ( Cq is sufficient for what follows) with its typical representation.

Let the basis in this representation be |vi) = |ex), |v) = | —exr), k= 1,2,..,r
and

Ino) = mo1lm) +ngzhn,

Imo) = moiln) +mezlr)

with all constant parameters ng;, mg; nonzero. From Proposition Pl we have

Q(l)(xv t) = q(x, t)EQ(:'l + a(f, t)E72el

where
det) = D= 1 e
q(z,t) = ‘%Kl—fﬂe”+nv(1+f‘)e”+] (46)

with the following notations:

L= A=A,
Az, t) = (e(z*_zﬂ + UVe‘<Z7_Z+))2 + A frfT,
ZE(x,t) = i (z+ ),
fEat) = idil(z +2)\T),
n= Zg?, V= :% are constants. For example, under the involution #3), ) and
V=,

Az, t) = 4)n|*{cosh?[2J1v1 (z + 2u1t) — In|n|] + 4T202[(x + 2u1t)? + 40212} # 0,

14



and the solutions are nonsingular. Note the linear terms with respect to x and ¢ in
f* due to the contributions from (a%xat(:v, t, )‘))A:Ali' The solution EH) of (3

is also a solution of (EH) with coefficients: wy = (2J1)7!, we = 2/J1. The origin of
this solution can be understood if we apply two times the dressing construction
for sl(2) (&) with dressing factors

A — M\ A —\F
(V) = (1 ; ﬁP) w(N) = (1 + ﬁp)
2 1

where:

X(JJr(xv l, )\f)|n0><mo|>?5($af7 /\1_)

P molRe @ A )xg (.6 A] o)

pr— QDG (@t AD)|n0)(mo| Ko (2,6 A3 Jur (A )
im0l (2 )iy " s (M )xg (2 6 A3 ) o)

G = 05— NP+ O - ADP)

and x&(2,t,\) = exp (—iAJ (z 4+ Mt)). Now J = diag(J;, — J1). Note that we use
the same constant vectors mo = mo1le1) + mozlez) and ng = ne1le1) + nozle2)
for both projectors. If we take the limit \f — AT, then A2) = @ Ee; e, +
q”E_(c,—¢,) and the solutions gt coincide with ¢ and § up to a constant factor
V2 (it is because of the difference in the constant coefficients in the systems of
differential equations arising in both cases from ([[3)) if we identify the constants
= e, v= Z—gf It means that this solution represents a degenerate two soliton
solution, or a solution where the sl(2)-dressing factor has a pole of order two.
Solitons of the form (8] for si(INV) are also examined in [I§]. O

This simple example shows that the considered dressing constructions related to
C, cannot be obtained by the simple-pole sl(N) construction ([[J) although C,
is a subalgebra of si(2r).

5 Conclusions

We considered two constructions for the dressing factor ([Id) -one related to C.,
BD), BY) and one for C,,D, @A) and examples to each one with Cs.

It is known that the typical representation of Cs is isomorphic to the spinor
representation of Ba. It is interesting to be seen what type of solution for the
spinor representation of Bs corresponds to a solution of the form [BH) for the
typical representation of Cs.

Since the number of NLEE arising in a system is big, different reductions on the
such constructed solutions could be imposed [I9]. Some examples of reduced N-
wave equations are given in [I7], [20]. Also examples with potentials from the real
forms of the algebras or symmetric spaces [I4] can be constructed.

15



6

Acknowledgments

The author is indebted to Prof. V.S. Gerdjikov for an introduction to the problem
treated in this paper and for many valuable discussions.

References

[1]

2]

[10]
[11]

[12]

[13]

V.E. Zakharov, S.V. Manakov, S.P. Novikov and L.P. Pitaevskii, Theory of
solitons: the inverse scattering method, (Plenum, New York, 1984).

V.E. Zakharov and S.V. Manakov,Fzact theory of resonant interaction of
wave packets in nonlinear media, INF preprint 74-41, Novosibirsk, 1975 (In
Russian).

V.E. Zakharov and S.V. Manakov, Zh. FEzp. Teor. Fiz. 69 (1975) 1654-1673
(In Russian).
S.V. Manakov and V.E. Zakharov, Zh. Ezp. Teor. Fiz. 71 (1976) 203-215
(In Russian).

D.J. Kaup, Stud. Appl. Math 55 (1976) 9-44.

L.D. Faddeev and L.A. Takhtadjan, Hamiltonian approach in the theory of
solitons, (Springer Verlag, Berlin, 1987).

D.J. Kaup, A. Reiman and A. Bers, Rev. Mod. Phys. 51 (1979) 275-310.

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, Studies in Appl. Math.
53, n 4, (1974) 249-315.

A.B. Shabat, Funkt. Anal. i Pril. 9, n 3, (1975) 75-78 (In Russian).
A.B. Shabat, Diff. Equations 15 (1979) 1824-1834 (In Russian).

V.E. Zakharov and A.B. Shabat, Funkt. Anal. i Pril. 8 (1974) 43-53 (In
Russian).
V.E. Zakharov and A.B. Shabat, Funkt. Anal. i Pril. 13 (1979) 13-22 (In
Russian).

V.S. Gerdjikov and P.P. Kulish, Physica D 3, n 3, (1981) 549-564.

C.-L. Terng and K. Uhlenbeck, Commun. Pure & Appl. Math. 53 (2000)
1-75.

N. Bourbaki, Flements de mathematique, Groupes et algebres de Lie, Chap-
ters I-VIII (Hermann, Paris, 1960-1975).

M. Goto and F. Grosshans, Semisimple Lie algebras, Lecture Notes in Pure
and Applied Mathematics, vol. 38 (M. Dekker Inc, New York and Basel,
1978).

V.S. Gerdjikov, Inverse Problems 2, n 1 (1986) 51-74.

16



[14] A.P. Fordy and P.P. Kulish, Commun. Math. Phys. 89, n 4 (1983) 427-443.

[15] V.E. Zakharov and A.V. Mikhailov, Commun. Math. Phys. 74 (1980) 21-40.
V.E. Zakharov and A.V. Mikhailov, Zh. Fksp. Teor. Fiz. 74 (1978) 1953.

[16] V.S. Gerdjikov, Phys. Lett. A 126, n 3 (1987) 184-186.

[17] V.S. Gerdjikov, G.G. Grahovski, R.I. Ivanov and N.A. Kostov, Inverse Prob-
lems 17, n 4 (2001) 999-1015, nlin.SI/0009034.

[18] N. Stievenart, Higher order solitons for NLS, MSc thesis, Universite Concor-
dia, Montreal, Canada (1995).

[19] A.V. Mikhailov, Physica D 3, n 1-2 (1981) 73-117.

[20] V.S. Gerdjikov, G.G. Grahovski and N.A. Kostov J. Phys. A: Math Gen 34
(2001) 94259461, nlin.SI/0006001.

17


http://arXiv.org/abs/nlin/0009034
http://arXiv.org/abs/nlin/0006001

	On the dressing method for the generalised Zakharov-Shabat system
	Recommended Citation

	Introduction
	Generalised Zakharov-Shabat System
	Properties of the Generalised Zakharov-Shabat System
	Non-linear evolution equations
	Dressing procedure

	Dressing factors related to the orthogonal and symplectic cases
	Generating solutions for systems, related to  subalgebras
	Conclusions
	Acknowledgments

