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Abstract 

Oral squamous cell carcinoma is commonly preceded by a range of cell and tissue alterations 

termed dysplasia, which indicate an increased risk of malignant transformation. Dysplasia is 

classified according to severity into mild, moderate, severe and carcinoma in situ. The early 

diagnosis, treatment and/or surveillance of these premalignant lesions are important factors in 

preventing progression to oral cancer. The current gold standard for screening and diagnosis of 

oral cancer and premalignant lesions is through histopathological diagnosis, which is limited 

by inter and intra observer and sampling errors. Although other methods are available for 

screening, most are not sensitive enough or do not provide enough information. Hence, there 

is a requirement for a sensitive, non-invasive method that can provide real time information. 

Raman spectroscopy fulfils these criteria, as it can provide detailed information on the 

biological content of a sample, through the unique vibrations of its constituent molecules. By 

analysing mild, moderate, and severely dysplastic formalin fixed paraffin preserved archival 

tissue samples; first within the same patient (intra-patient study), then between patients (inter-

patient study), it was found that Raman spectroscopy could classify mild, moderate and severe 

dysplasia in the same patient with an accuracy of over 90% in epithelium and over 80% in 

connective tissue. The findings of the inter-patient study were that the different degrees of 

dysplasia could be identified with an accuracy of 60%, while oral squamous cell carcinoma 

could be differentiated from dysplasia and benign lesions with an accuracy of 70% in 

epithelium and 80% in connective tissue. Confounding factors of the Raman classification of 

pathology, such as smoking and inflammation, were also evaluated. In addition, protocols for 

the processing of the Raman spectra of the oral tissues, including the subtraction of the wax 

and substrate were developed.  
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"Everything that living things do can be understood in terms of the jiggling 

and wiggling of atoms” 

 

-Richard Feynman, The Feynman Lectures on Physics, 1963 
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Chapter 1: Introduction  

1.1  Thesis Outline 

This study addresses the potential of Raman spectroscopy for applications in the diagnosis of 

dysplastic and malignant oral disease, based on tissue biopsies. Patients with benign oral 

lesions, mild, moderate and severe dysplasia and oral squamous cell carcinoma (OSCC) were 

consented during their check-ups at the Dysplasia Clinic of the Dublin Dental Hospital. The 

archival formalin fixed paraffin preserved (FFPP) samples from the patients with benign 

lesions, different levels of dysplasia and OSCC were collected from the Central Pathology 

Laboratory, St James’ Hospital, Dublin where all the oral biopsies are stored. The FFPP tissue 

sections were assessed with Raman spectroscopy.  

The broad objectives of the thesis were to; 

1) investigate the Raman profiles of an oral squamous cell carcinoma (OSCC) cell line at 

different phases of the cell cycle and to correlate these with biomarker expression in 

the different phases of the cell cycle  

2) optimise the processing of the Raman spectra from the FFPP tissue sections; which 

included removing the wax and glass background. 

3) discriminate between different degrees of dysplasia from the FFPP biopsies of 

individual patients with serial biopsies (intra-patient study). 

4) discriminate between benign, different degrees of dysplasia and OSCC from the FFPP 

tissues in a cohort of patients (inter-patient study). 

5)  evaluate the influence of patient factors and clinical features on the Raman spectra of 

the FFPP tissues 

Chapter 1 of the thesis is a general introduction to oral cancer, dysplasia and Raman 

spectroscopy. 
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Chapter 2 of the thesis is a review paper on the optical diagnosis of oral cancers, published in 

the journal, Head & Neck. 

The subsequent chapters address the aims/objectives of the thesis, chapters 3, 4, 5, 6 and 7 

addressing the objectives 1, 2, 3, 4 and 5, respectively.  

Chapter 8 presents a summary of the work, its clinical relevance and future perspectives. 

1.2  Oral Squamous cell carcinoma 

1.2.1  Overview/epidemiology 

Oral cancers are prevalent worldwide, having an estimated incidence of 300,400 new cases and 

145,400 deaths in 20121. Incidence is highest in South Central Asia, Eastern Europe and some 

regions of Oceania1. Oral squamous cell carcinoma (OSCC) is the predominant malignancy in 

most cases. It is more common in males than females, having a ratio of 1.5:1, and more 

common in older persons (aged 50 or over)2. Nevertheless, there are currently changes in the 

trend, manifest as an increase in incidence in young persons, which may be due to HPV 

infection as opposed to the traditional risk factors such as smoking and tobacco3. In Ireland, 

oral and pharyngeal cancers make up 3% of all cancers in males and 1.5% in females4. 

1.2.2  Carcinogenesis 

OSCC arises in the squamous epithelium and, like all cancers, is a multi-step process in which 

cells acquire mutations that allow them to evade immune surveillance and divide 

uncontrollably. Hanahan and Weinberg5 described six biological capabilities that enable 

tumour growth and metastasis which are; sustaining proliferative signalling, evading growth 

suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and 

activating invasion and metastasis. There are three main phases in carcinogenesis; 1) Initiation, 

in which one or more mutations arise in the cells either spontaneously or as a result of exposure 

to carcinogens, which increases the susceptibility of the cells for malignant transformation. 2) 

Promotion, which involves the clonal expansion of initiated cells, producing a larger population 
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of cells at risk for malignant transformation. 3) Progression, in which successive changes in 

the transformed cells give rise to increasingly malignant sub-populations6. 

1.2.3  Causes/risk factors 

1.2.3.1  Smoking 

Smoking is implicated in the development of a number of cancers including; lung, oesophageal, 

pharyngeal and oral cancer. It is responsible for 71% of oral cancers in developed countries 

and 37% in developing countries1. Over 60 carcinogens have been identified in cigarette 

smoke, including; benzene, vinyl chloride, tobacco specific nitrosamines and aromatic 

hydrocarbons such as benzopyrene, which has been linked to damage to the tumour suppressor 

gene P537,8 . Smoking, independent of other risk factors such as alcohol consumption, has been 

associated with a likelihood ratio of 2.15 of developing oral cancer9. The risk increases with 

increased consumption and is higher in females compared to male smokers10.  

1.2.3.2  Alcohol  

As with cigarette smoking, alcohol consumption has been linked to a number of cancers such 

as; oral, pharyngeal, oesophageal, and breast cancer11. It is estimated to be responsible for 3.5% 

of cancer deaths, although the mechanisms by which it causes cancer are poorly understood12. 

It is thought that acetaldehyde, the main metabolite of ethanol, may have a genotoxic effect. 

Moreover, alcohol is believed to act as a solvent for other carcinogens which would explain 

the synergistic relationship between smoking and alcohol consumption in the development of 

oral cancer11,13. The amount and duration of alcohol consumed has a direct effect on cancer 

risk and, in the oral cavity, the most frequently affected areas were found to be those most in 

contact with the alcohol, such as the tongue, oropharynx and larynx9,11. 

1.2.3.3  Smokeless tobacco and betel quid 

Smokeless tobacco is used in either chewing or snuff form and is sometimes combined with 

other substances such as betel quid. Similar to smoked tobacco, the carcinogenicity of 
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smokeless tobacco is attributed to tobacco specific nitrosamines, although their concentrations 

are different to the smoked form14. Smokeless tobacco has been associated with a relative risk 

of 2.6% of developing oral cancer15. Betel quid chewing is prevalent in Taiwan, India, Papua 

New Guinea, South-Africa and other Southeast Asian countries. However, it is not commonly 

consumed in Ireland.  Betel quid is prepared from the betel plant leaves and can be consumed 

with or without tobacco. The areca nut extract in betel quid has demonstrated mutagenicity and 

genotoxicity in animal models with areca alkaloids believed to be the major contributors16,17 . 

1.2.3.4  Human Papilloma Virus (HPV) 

The human papilloma virus (HPV) is generally associated with warts, epithelial cysts and 

benign neoplasias. However, two subtypes, 16 and 18, have been linked to cancer development. 

23% of oral squamous cell carcinomas (OSCC) were found to be positive for HPV and, of 

these, two thirds were positive for HPV-16 and a third was positive for HPV-1818. Remarkably, 

the survival of HPV positive cancer patients was higher than their HPV negative counterparts19. 

The carcinogenicity of HPV is due to the expression of E6 and E7; two viral oncoproteins 

which deregulate the cell cycle by interfering with the functions of PRB and P53, leading to 

cell immortalisation20. 

1.2.4  Anatomic site   

The anatomic site at which oral cancer develops has been found to relate to its aetiology, as 

cigarette smoking was associated with cancers in the retromolar area and floor of the mouth, 

while alcohol was most associated with floor of the mouth cancers. The buccal mucosa was 

associated with the lowest relative risk in both alcohol and cigarette smokers21. On the other 

hand, HPV was associated with cancers in the oropharynx and base of the tongue. Anatomic 

site is also linked to prognosis, base of the tongue cancers having the lowest five year survival 

(41.6%) and labial mucosa the highest (81.5%)22. This may be related to the fact that 
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carcinogens tend to pool at the base of the tongue and, moreover, the area is not easily visible, 

so the condition is usually advanced by the time it is diagnosed.  

1.2.5  Staging 

As with most cancers, oral cancer is staged according to the TNM staging system, which is an 

anatomical classification whereby; 

T: Extent (size) of primary tumour  

N: Regional lymph node involvement (absence or presence and extent) 

      M: Distant metastasis (absence or presence) 

 

 

Table 1-1 T staging based on the size of primary tumour23 

Tx Tumour could not be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ (CIS) 

T1 Tumour < 2cm 

T2 Tumour 2- 4 cm 

T3 Tumour > 4cm 

T4a Tumour has invaded local structures such as cortical bone, muscles of the 

tongue or skin of the face 

T4b Tumour has invaded into pterygoid plates, skull base or internal carotid artery 

 

Table 1-2 N staging based on regional lymph node involvement23 

Nx Lymph nodes cannot be assessed 

N0 Absence of regional metastasis 

N1 Involvement of a single ipsilateral lymph node, no more than 3cm. 

N2 Single ipsilateral lymph node more than 3cm in size, or multiple ipsilateral or 

contralateral lymph nodes, none more than 6cm 

N3 Involvement of lymph node more than 6cm in diameter 
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Table 1-3 M staging based on distant metastasis23 

Mx Distant metastasis cannot be assessed 

M0 No distant metastasis 

M1 Distant metastasis 

 

The TNM classification is used to determine cancer stage, which is important in making 

decisions in treatment choice and patient prognosis. 

Table 1-4 TNM classification23 

Stage T stage N stage M stage 

0 Tis N0 M0 

I T1 N0 M0 

II T2 N0 M0 

III T3 N0 M0 

 T1/2/3 N1 M0 

IV T4a N0 M0 

 T1/2/3 N2/3 M0 

 T1/2/3 N1/2/3 M1 

 

Another important classification is the histological grade, whereby the carcinoma is divided 

into 4 grades depending on the proportion of the tumour resembling the tissue of origin; 

Table 1-5 Histological classification24 

Grade I Well differentiated (<25% undifferentiated cells) 

Grade II Moderately differentiated (<50% undifferentiated cells) 

Grade III Poorly differentiated (<75% undifferentiated cells) 

Grade IV Anaplastic or pleomorphic (>75% undifferentiated cells) 

 

1.2.6  Oral Cancer Biomarkers 

A number of biomarkers have been considered for the assessment of oral cancer risk, 

progression, and survival. Epidermal growth factor receptor (EGFR) expression has been 

studied in oral cancer, as EGF is involved in many cell signalling pathways such as 

proliferation, apoptosis and angiogenesis25,26. EGFR has been associated with a higher risk 

(1.18%) of oral cancer development27, higher tumour grade28, and poor survival29. P53, a 
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tumour suppressor gene, is commonly expressed in a mutated form in oral cancers30,31. Its 

expression increases according to the degree of dysplasia in premalignant lesions32. However, 

no distinct association was found between P53 expression and oral cancer patient outcome or 

survival33,34. Cyclin D1 is a protein required for the progression of the cell cycle from G1 to S 

phase35. Overexpression of cyclin D1 has been linked to recurrence and reduced overall 

survival in oral cancer patients36,37. Thus far, none of the aforementioned biomolecules has 

been established in routine clinical tests for oral cancer. There may be a need for studies with 

greater statistical power before it can be determined whether any of these biomolecules could 

serve as biomarkers for oral cancer.  

1.2.7  Diagnosis 

Oral cancer can manifest as an endophitic (inward growth) or exophytic (outward growth) that 

can be a white or red patch or an area of ulceration. Some are symptomless, while others may 

be associated with bleeding, pain and/or soreness. In the more advanced stages, patients may 

present with symptoms like difficulty swallowing and swollen/tender lymph nodes in the 

neck38. Especially at the early stages, oral cancer may resemble other benign oral lesions. 

Therefore, after eliminating the possibility of other benign conditions, a suspicious lesion is 

biopsied by the dentist and sent for histopathological examination, which is the gold standard 

for oral cancer diagnosis. Other diagnostic aids include toluidine blue staining and brush 

biopsy, which are discussed in more detail in chapter 2. Early diagnosis is very important in 

oral cancer as stage at diagnosis is the most important prognostic factor39. After the initial 

diagnosis of OSCC is made, the stage of the tumour and presence of lymph node or distant 

metastasis is determined by the use of imaging techniques such as MRI, CT, and chest X rays40. 
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1.2.8  Management 

Oral cancers are treated with surgery, radiation therapy and chemotherapy, either as single 

modalities or in combination (multimodality). Several factors affect the choice of management 

in oral cancer patients;  

1. The extent of the disease; this depends on the TNM staging system as early small 

tumours are more amenable to radiation or surgery as a single modality therapy, while 

larger, more advanced tumours require more extensive surgical approaches and are 

more likely to have lymph node involvement. These are usually treated with 

multimodality therapy, in which surgery is coupled with pre or postoperative radiation 

and/or chemotherapy40-42.   

2. Patient factors; the age of the patient, compliance, and presence of comorbidities are all 

factors in determining the course of treatment in oral cancer41. 

Postoperative surveillance or follow up is crucial in oral cancer, as the tumour may recur or the 

patient can develop second primary tumours, which are tumours that develop in a different site 

in the oral cavity and are not metastasis from the primary tumour. Up to 30% of male and 20% 

of female patients develop second primary tumours2. The recommended follow up is every 2-

3 months in the first year, every 3-4 months in the second year, every 4 months in the third 

year, and every 5 months in the fourth year. Thereafter, a yearly follow up is recommended40. 

1.3  Potentially Malignant Oral Disorders and Dysplasia 

1.3.1  Potentially Malignant Oral Lesions 

Potentially malignant lesions are defined as; ‘a morphologically altered tissue in which cancer 

is more likely to occur than its apparently normal counterpart’43. The most commonly occurring 

potentially malignant lesion is leukoplakia, defined as; ‘a predominantly white lesion of the 

oral mucosa that cannot be characterized as any other definable lesion’43. Leukoplakias are 

further classified, according to clinical appearance, into homogenous and non-homogenous 
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lesions. Homogenous lesions are usually flat and thin and have a reduced risk of malignant 

transformation compared to non-homogenous lesions. Non homogenous lesions carry an 

increased risk of malignant transformation and include; speckled, nodular and verrucous 

leukoplakia. Erythroplakia is defined as ‘a fiery red patch that cannot be characterised clinically 

or pathologically as any other definable lesion’43. Erythroplakia may be smooth or nodular and 

has the highest potential for malignant transformation of any oral lesion43. 

1.3.2  Oral dysplasia 

While leukoplakia and erythroplakia are clinical terms which describe the appearance of the 

lesions, dysplasia is a histological term which describes the cell morphology and tissue 

architecture. Depending on the degree of cellular atypia and architectural changes, dysplasia is 

classified into mild, moderate, severe and Carcinoma in situ CIN. Dysplasia indicates an 

increased risk of malignant transformation and has been reported to occur in 5-25% of oral 

leukoplakias, while almost all erythroplakias show some degree of dysplasia44,45.   

1.3.3  Potentially Malignant Oral Conditions 

Potentially malignant oral conditions are described as; ‘A generalized state associated with a 

significantly increased risk of cancer’46. A number of these conditions exist, such as; Plummer- 

Vinson syndrome, oral submucous fibrosis, syphilis, xeroderma pigmentosum and discoid 

lupus erythematosus (DLE), all of which are associated with epithelial atrophy46.  

1.3.4  Progression 

It is hard to predict which potentially malignant oral lesions will progress to OSCC, but some 

factors have been associated with an increased risk, such as the presence of leukoplakia in non-

smokers and dysplastic changes47. However, histological grade is not necessarily an indicator; 

severe dysplasia may not progress, while mild dysplasia can progress to OSCC48. Intra-oral 

site and size of the lesion were not found to be significant predictive factors either49. Molecular 
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markers such as loss of hetrozigosity (LOH) on chromosomes 3p/9p, DNA content and P53 

expression levels have, however, shown promise in predicting OSCC development49. 

1.3.5  Diagnosis 

The diagnosis of potentially malignant oral disorders is similar to that for OSCC, as it starts by 

exclusion of other differential diagnosis, followed by a biopsy and histopathological 

examination. The problem with this system is that it is subjective and prone to inter and intra 

observer errors50. Additionally, a biopsy may not be representative of the whole lesion, and 

studies looking at the histology of tumours post operatively and comparing them to the pre-

operative biopsies have found that, in a significant number of cases, a neoplasia or carcinoma 

in-situ was misdiagnosed48. 

1.3.6  Management 

The current recommendation for management of oral premalignant lesions is that moderate and 

severely dysplastic oral lesions are removed either by surgery, laser or cryotherapy, while 

lesions with no or mild dysplasia are followed up every sixth month or third month 

respectively. Nonetheless, removal of the lesion was not found to significantly reduce the risk 

of OSCC development51. 

1.4  Raman Spectroscopy 

The current methods used in the diagnosis of oral premalignant and malignant lesions have 

their limitations. The standard method which is a conventional oral exam and histopathology 

is limited by intra and inter observer errors in addition to sampling errors48,50. Moreover 

dysplasia or OSCC may develop in an area of normal looking mucosa. Adjuncts such as oral 

brush biopsy and toluidine blue staining also have their limitations as they may produce false 

negative results and there is no information as to whether they can predict the probability of 

malignant transformation52. This demonstrates the need for new techniques for screening and 



11 

 

diagnosis. Optical diagnostics techniques, such as reflectance imaging, fluorescence imaging, 

and Raman spectroscopy are fast and non-invasive. They can have potential applications in the 

diagnosis of dysplasia and cancer which is discussed in more detail in chapter 2.  

1.4.1  Theory 

When electro-magnetic (EM) radiation interacts with a sample, it may be absorbed, or 

scattered. Most scattering is elastic, named Rayleigh scatter after the physicist who first 

described it, whereby the emitted (scattered) photon has the same energy as the incident photon. 

Mie scattering, named after the German physicist who first described it, is a similar process 

which dominates when the scatterers are larger than the wavelength of the light53. In 1928, the 

Indian physicist C.V Raman demonstrated experimentally that a small amount of the scattered 

radiation, about 1 in 1x106, is of a different energy than the incident photon, and the 

phenomenon came to be known as the Raman effect54. The Raman effect is the result of 

coupling of the molecular vibrational states with the photon, via the induced polarisation. If the 

sample molecules gain energy from the incident photon, the emitted photon has less energy 

than the incident one, as a result of the generation of a vibrational quantum. This effect is called 

Stokes Raman scattering. Conversely, if the molecule is in excited higher vibrational state it 

may lose energy to the emitted photon and go back to the ground state and the emitted photon 

would have more energy than the incident one. This effect is called anti- Stokes Raman 

scattering. Whether or not a molecule is Raman active depends on the polarisability of a 

sample, which determines the degree of scattering when exposed to EM radiation54. The Raman 

scattered light can be collected by a spectrometer and displayed as a Raman spectrum, in which 

the peaks (bands) correspond to Raman frequency shifts (measured in wavenumbers cm-1) 

caused by the characteristic vibrations in the molecules of a sample.  

The presence of an electric field E induces in the molecule an electric dipole µ given by; 
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𝜇 = 𝛼𝐸  
Equation 1-1 

where α is the polarisability, If the electric field is oscillating, which is the case for photons, 

the equation is given by; 

𝜇 = 𝛼𝐸0cos (2𝜋𝜈0𝑡) 

Equation 1-2 

where E0 is the electric field strength of the incident field, and ν0 is the frequency. An oscillating 

dipole will radiate electromagnetic energy at the frequency of oscillation. Polarisability is 

related to the degree to which electrons in a molecule can be displaced relative to the nucleus 

by the electromagnetic field of a photon. This displacement is described below. 

𝑞 = 𝑞0cos (2π𝜈𝑣𝑖𝑏𝑡) 

Equation 1-3 

where q0 is the amplitude of nuclear displacement and νvib is the frequency of the vibrational 

mode. If the nuclear displacement is small, then the polarisability can be approximated using 

the following equations. 

𝛼 = 𝛼0 + (
𝜕𝛼

𝜕𝛼
) 𝑞 

Equation 1-4 

where α0 is the polarisability of a molecule in its equilibrium position and (∂α /∂q) is the rate of 

change of α with respect to the change in q, evaluated at the equilibrium position. Combining 

Equation 1-3 and Equation 1-4 produces. 

𝛼 = 𝛼0 + (
𝜕𝛼

𝜕𝛼
) 𝑞0𝑐𝑜𝑠 (2𝜋𝜈𝑣𝑖𝑏𝑡) 

Equation 1-5 

Combining Equation 1-2 and Equation 1-5 results in. 

𝜇 = 𝛼0 𝐸0cos (2𝜋𝜈0𝑡) + (
𝜕𝛼

𝜕𝛼
) 𝑞0 𝐸0𝑐𝑜𝑠  (2𝜋𝜈0𝑡)𝑐𝑜𝑠  (2𝜋𝜈𝑣𝑖𝑏𝑡)  

Equation 1-6 
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This equation can be rearranged to describe three processes. 

µ = 𝛼0 𝐸0 cos(2𝜋𝜈0𝑡) + (
𝜕𝛼

𝜕𝑞

𝑞0 𝐸0

2
) {cos [  (2𝜋(𝜈0 − 𝜈𝑣𝑖𝑏)𝑡] + cos[2𝜋(𝜈0 + 𝜈𝑣𝑖𝑏)𝑡]} 

Equation 1-7 

The first term describes Rayleigh scattering, as the scattered photon has the same frequency as 

the incident photon (ν0). The second term describes Stokes scatter, as the difference between 

incident and scattered photon frequency is ν0-νvib, while the third term describes anti-Stokes 

scatter, as the difference between incident and scattered photon is ν0+νvib. The Boltzman 

distribution determines the relative intensities of Stokes and anti-Stokes scattering, which is 

dependent on the number of molecules in an excited state compared to those in the ground 

state. At room temperature, most of the molecules are in the ground state, and hence Stokes 

scattering is much more prevalent than anti-Stokes scattering.  

1.4.2  Instrumentation 

The different components of a Raman microspectrometer are shown in schematic form in 

Error! Reference source not found.. The source of the monochromatic incident light is a laser a

nd different laser wavelengths can be used, from ultra violet through visible to near infra-red, 

the choice of wavelength depending on the application. The interference filter is a clean-up 

filter which only allows the laser output through, while the neutral density filter determines the 

laser intensity, which is adjustable. For biological samples, coupling the Raman spectrometer 

to a microscope facilitates focusing on different regions of the cell or tissue. The objective lens 

both delivers the incident laser light and collects the backscattered (emitted) light. The 

holographic notch filter reflects the same wavelength as the incident light to remove all the 

Rayleigh scattered light and everything outside this range is considered Raman scatter and is 

transmitted. The grating is used to disperse the light and the groove density (measured in 

grooves/mm) determines the spectral resolution, higher groove density corresponding to higher 

resolution. Typically, gratings between 300 and 1800 grooves/mm are used. Other 
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determinants of spectral resolution include the wavelength, longer wavelengths having a higher 

spectral resolution, and the spectrometer length, which is the distance between the grating and 

the detector, longer distances providing higher resolution. Charge coupled device (CCD) 

detectors are commonly used with Raman spectroscopy as they are very sensitive to light. They 

also allow multichannel operation, so the entire Raman spectrum can be detected in a single 

acquisition. 

 

Figure 1.1 A schematic of a Raman microspectrometer based on the Horiba Jobin Yvon 

LabRAM HR 800* 

* Raman spectrometer model used in this study. 

1.4.3  Use in Diagnostics 

There has been a lot of interest in the use of Raman spectroscopy in medical diagnostics since 

its introduction to the field of diagnostics nearly 20 years ago55.  Its qualities, such as minimal 

sample preparation, speed, non-invasiveness, label free nature, and the fact that it gives both 
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qualitative and quantitative information on the molecular content of a sample make it 

particularly suited to such applications. Raman spectroscopy has shown promise in the field of 

microbiology by not only identifying the bacterial signatures but also response to antibiotics56. 

Furthermore, it has been studied for use in the diagnosis of coronary atherosclerosis and blood 

components57,58. Surface-enhanced Raman scattering (SERS) has been studied for use in 

detecting various biomolecules such as glucose, hemoglobins and RNAs59. It can also detect 

low levels of viral pathogens60.   

1.4.4  Use in Cancer Diagnosis 

The majority of the research on the diagnostic applications of Raman spectroscopy has been 

aimed at cancer diagnosis, either through in–vitro, ex-vivo (such as cytology, histology or the 

use of biofluids) or in-vivo techniques. Raman spectroscopy was successfully used to 

differentiate between normal and neoplastic lymphocytic cell lines mainly based on changes in 

DNA and protein profiles61. Ex-vivo studies have been carried out on breast histological 

samples and one study found that Raman Spectroscopy could discriminate between breast 

cancer and normal/benign conditions with a sensitivity and specificity of 94% and 96% 

respectively62. Similarly, Raman Spectroscopy has been used in cervical pathology to identify 

cancerous and precancerous stages63. Biofluids have a number of advantages which make them 

ideal for diagnostic tests as their collection is very simple, can be done repeatedly, and is non-

invasive. SERS on serum samples was used to identify prostate specific antigen (PSA) with 

diagnostic accuracy of up to 98%64,65. SERS on saliva samples could discriminate healthy from 

OSCC with an accuracy of 73%.66 A number of studies have looked into the in-vivo 

applications of Raman spectroscopy. Theoretically, Raman spectroscopy can be a very 

powerful diagnostic aid and could be used on mucosal and epithelial surfaces such as oral, 

cervical and skin by direct contact with the Raman probe and on the visceral surfaces by use 

with a needle or an endoscopic instrument. A study used Raman spectroscopy in the diagnosis 
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of skin cancers and discriminating different cancerous and benign lesions which yielded very 

high sensitivity but lower specificity67. Another study used Raman spectroscopy during 

gastrointestinal endoscopy by coupling the fiberoptic Raman probe with the endoscopic 

instrument, and compared normal to diseased states68. A good application for in-vivo Raman 

spectroscopy could be the examination of surgical margins during cancer surgery and one study 

has found promising results with margin assessment in breast cancer surgery69. However, these 

studies are hampered by small patient numbers which in turn reduces the ability of the 

classifiers, which are based on machine learning algorithms. Nevertheless, they demonstrate 

the possibility of Raman applications for in-vivo diagnostics. 

1.4.5  Use in Oral Cancer  

There has been a lot of interest in the use of Raman spectroscopy for the diagnosis of oral 

cancers, especially as the oral cavity is very accessible which facilitates ex-vivo and in-vivo 

Raman spectroscopic diagnosis. Inadequate resection margins in oral cancer surgery increase 

the likelihood of local recurrence70. The use of Raman spectroscopy as an aid in delineation of 

OSCC surgical margins has shown that OSCC can be discriminated from surrounding normal 

structures with a high degree of accuracy though it’s more likely to misclassify with 

surrounding normal and dysplastic epithelium71. Water concentration was found to be higher 

in tumours compared to normal tissue72. An in-vivo study study by Malik et al found that 

Raman spectroscopy can predict local recurrence in oral cancers with a sensitivity of 80% and 

specificity of 30%73.  

1.4.6  Use in Oral dysplasia and premalignant lesions 

There have been relatively few studies looking at the use of Raman spectroscopy for dysplastic 

oral lesions. One study that induced dysplasia in the palate of a rat model was able to distinguish 

between normal mucosa and low and high grade dysplasia with accuracies of 85 and 100% 

respectively74. Another study looking at surgical margins in sections of OSCC found that the 
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accuracy of the Raman classification for dysplastic tissue was only 48%71. Using OSCC and 

dysplastic cell lines and comparing them to normal cells, a study has found that Raman 

spectroscopy could discriminate between malignant, dysplastic and normal cells based on 

varying nucleic acid, protein and lipid profiles75. Interestingly, in all of these studies, the 

differences between malignant and normal were very noticeable, while the dysplastic changes 

seem to fall somewhere in between. Similar results have been reported from tissue studies 

which looked at normal, inflammatory or benign, premalignant and malignant oral lesions76-78.  

Overall these studies suggest that Raman spectroscopy can discriminate between normal 

mucosa and malignancy but in the case of oral dysplasia there have been no studies to show 

the effect of the different degrees on the classification of Raman spectroscopy. The use of 

Raman spectroscopy for oral premalignant and malignant lesion diagnosis is discussed in more 

detail in chapter 2, which is a review of optical techniques in oral cancer diagnosis. 
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Chapter 2: Recent advances in optical diagnosis of oral cancers: 

review and future perspectives 

 

Adapted from ‘Singh, S.P., Ibrahim, O., Byrne, H. J., Mikkonen, J. W., Koistinen, A. P., 

Kullaa, A. M., Lyng, F. M. (2015), Recent advances in optical diagnosis of oral cancers: 

Review and future perspectives. Head Neck. doi: 10.1002/hed.24293’ 

OI contributed figures and parts of the text. 

Keywords: Raman spectroscopy, Infrared spectroscopy, Fluorescence spectroscopy, optical 

diagnosis, oral cancer, oral dysplasia 

2.1  Abstract 

Optical diagnosis techniques offer several advantages over traditional approaches, including 

objectivity, speed and cost, and these label-free, non-invasive methods have the potential to 

change the future work-flow of cancer management. The oral cavity is particularly accessible 

and thus such methods may serve as alternate/adjunct tools to traditional methods. Recently, in 

vivo human clinical studies have been initiated with a view to clinical translation of such 

technologies. A comprehensive review of optical methods in oral cancer diagnosis is presented. 

Following an introduction to the epidemiology and aetiological factors associated with oral 

cancers currently employed diagnostic methods and their limitations are presented. A thorough 

review of fluorescence, infrared absorption and Raman spectroscopic methods in oral cancer 

diagnosis is presented. The applicability of minimally invasive methods based on serum and 

saliva is also discussed. The review concludes with a discussion on future demands and scope 

of developments from a clinical point of view.  
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2.2  Oral Cancers: An Overview  

Oral squamous cell carcinoma (OSCC) ranks as the 15th most common cancer in the world and 

10th most frequent in males. It accounts for ~2.1% of total cancer cases worldwide. Incidence 

rates are high among males in south central Asia and among females in eastern and central 

Europe1. Although mortality from oral cancer has decreased in the past few decades, it is still 

high and has a five year survival rate of 50%77. Several oral lesions and conditions are 

associated with an increased potential for malignant transformation. Of these, the most 

commonly occurring is leukoplakia, defined as ‘a predominantly white lesion of the oral 

mucosa that cannot be characterized as any other definable lesion’ Figure 2.1 (B). A wide range 

of malignant transformation rates have been reported, from 0.13-36.478%, depending on the 

presence and degree of dysplasia, location in the oral cavity and maturity of the lesion3,4. 

Conversely, erythroplakia, defined as ‘a fiery red patch which cannot be characterized 

clinically or pathologically as any other definable lesion’3, is less prevalent and has a higher 

potential for malignant transformation (14.379-66.780 %)5. Oral submucous fibrosis is a 

premalignant oral condition arising mostly due to areca nut or betel quid chewing6. It has a 

reported transformation rate of 7.6%6. Oral lichen planus is an inflammatory disease of the oral 

mucosa. Like leukoplakia, it presents as a white plaque or patch. However, its malignant 

transformation rate is much lower than leukoplakia, ~1%7 Figure 2.1 (C).  

A number of risk factors are associated with oral cancer, including cigarette smoking and 

alcohol consumption, which are responsible for 42% and 16% of oral cancer deaths 

respectively8. The carcinogenicity of cigarette smoke has long been established, resulting in 

DNA damage and increase in P53 mutations9. The association between alcohol and oral cancer 

was reported to be dose dependent and a number of factors may contribute to its 

carcinogenicity, including acetaldehyde, an alcohol metabolite thought to be carcinogenic10. 

Moreover, alcohol is thought to act as a solvent for other carcinogens10. Oral habits such as 
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smokeless tobacco and betel quid chewing are also implicated in oral cancer development11. 

They are more common in the Asian population; in India, 50% of oral cancers arise due to 

smokeless tobacco chewing11. The carcinogenicity of smokeless tobacco arises from the 

production of nitrosamines11. Oral squamous cell carcinoma has also been associated with the 

Epstein Bar (EBV) and Human Papilloma (HPV) Viruses, although their putative role is 

controversial. Around 23% of OSCC were found to be positive for high risk HPV 16 and 18 

12.  

 

Figure 2.1 Clinical presentation of (A), tongue cancer (B) leukoplakia and (C) lichen planus  

2.2.1  Current Screening/Diagnostic methods and limitations: 

Screening tests or diagnostic aids presently available for oral cancer include conventional oral 

examination (COE), staining with toluidine blue, oral brush biopsy and scalpel biopsy coupled 

with histology. 

2.2.2  Conventional Oral Examination (COE):  

Conventional oral examination (COE), using normal (incandescent) light, has long been the 

standard screening method for oral abnormalities. As it is a visual method, it cannot identify 

early mucosal abnormalities that may or may not lead to oral cancer. Approximately 5-15% of 

the general population has oral mucosal abnormalities and the vast majority of these lesions 

are benign in nature 13, Furthermore, only a small percentage of leukoplakias are progressive 

or become malignant and COE cannot discriminate between these and their non-progressive 
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counterparts. Therefore, while COE may be useful in discovering some oral lesions, its 

potential in identifying all potentially premalignant or biologically relevant lesions that are 

likely to progress to cancer is questionable.  

2.2.3  Toluidine blue staining 

Toluidine blue (TB), has been used for more than 40 years as an aid to detection of mucosal 

abnormalities of the cervix and the oral cavity. TB is a metachromatic, acidophilic dye that 

binds preferentially to tissues undergoing rapid cell division (inflammatory, regenerative and 

neoplastic tissue), resulting in preferential staining of abnormal tissue. Overall, TB appears to 

be useful in detecting carcinomas, but is positive in only ~50% of lesions with dysplasia. In 

addition, it frequently stains common, benign conditions such as non-specific ulcers. The high 

rate of false positive stains and the low specificity in staining dysplasia are some of the accepted 

limitations of the technique 14.  

2.2.4  Oral brush biopsy 

 Oral brush biopsy extracts a complete trans-epithelial biopsy specimen, with cellular 

representation from each of the three layers (basal, intermediate and superficial). Because the 

brush biopsy detects only cellular atypia, positive results must be confirmed with a scalpel 

biopsy for definitive diagnosis.  This technique has therefore been criticized for adding time 

and cost to the diagnosis of oral lesions without additional benefit to the patient15.  Overall, it 

is a method of identifying unsuspected oral cancers found during a visual examination, at early 

and curable stages16.  

2.2.5  Histology 

 Histological risk stratification, currently the gold standard for oral cancer diagnosis, requires 

biopsy, staining and microscopic examination by a pathologist17. However, removal of tissue 

or biopsy is an inherently invasive procedure and carries risk of complications in the proximity 

of vital anatomy. Sampling errors in collecting or interpreting biopsies due to inter-observer 
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discrepancy can be significant. Once removed, the tissue can undergo biochemical changes 

which can lead to artifacts. In many diseases, tissue involvement is not uniform, potentially 

leading to sampling errors. Especially in oral cancers, some early lesions are clinically 

indistinguishable from benign conditions. Furthermore, histologically, identification of subtle 

changes in precancerous lesions or in normal mucosa that are indicative of early neoplastic 

transformation is subjective and can lead to inter-observer variations 18. 

It is therefore conceivable that the primary prevention of the disease would involve activities 

to reduce or eliminate the use of tobacco and alcohol. Secondary prevention includes activities 

that are aimed to detect the disease at an early stage which would lead to better prognosis and 

lower morbidity. Current methods of detection of oral cancers are based largely on visual 

observations of abnormalities in tissue or cellular morphology and are therefore limited in 

terms of sensitivity and specificity, particularly at early stages. In the following section, a 

general discussion on the application of optical spectroscopic methods as an alternate/adjunct 

diagnostic tool for oral cancer is presented. 

2.3  Optical spectroscopy in oral cancer diagnosis 

Spectroscopy is the study of the frequency dependence of the interaction of electromagnetic 

radiation (light) with matter. Generally, light interacts with matter through absorption, emission 

and scattering/reflection. In each case, the spectrum of the interaction gives information about, 

and is characteristic of, the structure and chemical content of the sample. Optical measurements 

provide quantitative information based on the spectroscopic signature of the biochemical 

constituents of the sample that can be rapidly analyzed to yield an objective diagnosis, even in 

the hands of a non-expert operator. Diagnosis is based on biochemical changes underlying the 

pathology rather than visual or microscopic changes in cellular or tissue morphology. Devices 

to make these measurements have become inexpensive, robust, and portable, because of 

advances in computing, optical, fiber-optical, and semiconductor technology. Approaches 
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based on fluorescence, Fourier-transform infrared absorption and Raman scattering 

spectroscopy have shown potential for improved detection of oral cancers. A brief introduction 

of these techniques and their potential applications in oral cancer diagnosis is presented in the 

following sub-sections. Figure 2.2 provides a schematic illustration of their typical method of 

application.  

 

 

 

Figure 2.2 A schematic of the typical application of optical spectroscopic techniques for 

diagnostic applications.  

The light source is delivered via a probe or microscope (for in-vivo or ex vivo/in-vitro 

applications respectively) to the sample (cells, tissue or biofluid). Upon excitation by an 

appropriate source, molecules can either; go to an excited state and reemit light in the form of 
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fluorescence (UV/visible lamp), absorb the light to generate vibrations within the molecules 

(Infrared lamp), or, by interaction with the vibrational modes of the molecules in the cells; the 

light is Raman scattered (visible or near infrared laser). The emitted/transmitted/scattered light 

is then collected by the probe or microscope and passed to a detector. The operator can then 

perform analysis on the resulting spectra and, using a prepared classifier, the output can for 

example be a yes, no, or maybe for the presence of cancer.  The technique can be modified 

according to the application; in-vivo, ex-vivo (histological or cytological) or in vitro.  

2.3.1  Fluorescence spectroscopy  

When a molecule is illuminated at an excitation wavelength lying within the absorption 

spectrum of that molecule, it absorbs the energy and undergoes a transition from the ground 

state to an excited state. The molecule can then relax back from the excited state to the ground 

state by emission of light at specific emission wavelengths. In the UV/visible/Near infrared 

region of the spectrum (~200-1000nm), light emission takes the form of fluorescence (or 

occasionally phosphorescence). A fluorescence emission spectrum represents the fluorescence 

intensity measured over a range of emission wavelengths at a fixed excitation wavelength and 

can provide information relating to the molecular characteristics of the fluorophore, Figure 2.3.  
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Figure 2.3 Comparison of typical fluorescence spectrum (riboflavin) and typical Raman 

spectrum of tissue (both normalised) plotted on an energy scale. 

The intrinsic bandwidth of the fluorescence feature is very broad, compared to the Raman 

spectrum, which has a multitude of narrow bands which are shifted from the source wavelength 

of 785nm (~1.6eV). The energy shift of the Raman band is a measure of the vibrational energy 

and for comparison with infra-red spectroscopy is usually expressed in wavenumbers (1/cm). 

Note the energy scales for the two spectra are different. 

 

In the late 1970s, cancer diagnosis based on auto-fluorescence (also called natural, intrinsic or 

endogenous fluorescence) of naturally occurring fluorophores such as collagen, elastin, keratin 

and NADH was initiated 19. The presence of disease can lead to changes in blood concentration, 

nuclear size, collagen content or epithelial thickness, which can alter the concentration and 

characteristics of the fluorophores. In oral cancers, it was demonstrated that the epithelial layer 

shields the strongly fluorescing collagen layer leading to a low intensity of fluorescence in 

cancers20. An ex vivo study used hamster buccal pouch as an experimental model to identify 
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spectral markers associated with different stages of oral carcinogenesis 21. Onizawa et al., 

compared fluorescence spectra from human and hamster biopsies and oral cancer cell lines, 

suggesting that variation in the riboflavin and porphyrin fluorescence can be used as a 

spectroscopic marker for normal and cancerous conditions22. Ingrams et al. further showed that 

normal and cancerous human biopsies can be discriminated based on their autofluorescence 

spectral profile23. Another ex vivo study by Muller et al., explored the feasibility of quantifying 

the spectroscopic response of different grades of malignancy24.   

The first in vivo study using autofluorescence spectroscopy by Harris et al. reported differences 

between healthy and tumor mucosa based on the porphyrin emission band25. These differences 

were attributed to microorganisms living on ulcerating or necrotic surfaces. In vivo methods 

have also been explored to understand oral cancer progression in animal models26. Gillenwater 

et al. recorded in vivo autofluorescence from oral mucosa of 8 healthy volunteers and 15 

patients with premalignant or malignant lesions27. Decreased intensity in the blue spectral 

regions, and increased porphyrin fluorescence in the red were observed. Based on the ratio 

between these, a sensitivity of 82% and specificity of 100% were reported 27. Various other 

studies have provided further evidence in support of in vivo fluorescence spectroscopy for non-

invasive oral cancer diagnosis28-30. A recent study by Shaizu et al. showed that 

autofluorescence spectroscopy can be used to identify oral cavity disorders caused by long-

term tobacco habits. Their findings suggest that lower collagen levels and increased ratios of 

flavin adenine dinucleotide (FAD) to nicotinamide adenine dinucleotide (NADH) can serve as 

prognostic markers for oral cancer risk 31.  

However, tissue contains few natural fluorophores and their spectroscopic features are broad 

and overlapping, making them poorly distinguishable, reducing the specificity of fluorescence 

spectroscopy for diagnostic applications. 
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2.3.2  Fourier-transform infrared spectroscopy  

Vibrational Spectroscopy is a subset of spectroscopy which analyses vibrations within a 

molecule (or material). The vibrations are characteristic of the molecular structure and, in 

polyatomic molecules, give rise to a spectroscopic “fingerprint”. The spectrum of vibrational 

energies or frequencies (expressed as wavenumbers, cm-1) can thus be employed to characterise 

a molecular structure, or changes to it due to the local environment or external factors 

(radiation, chemical agents). Vibrational energies fall within the mid Infrared (IR) region of 

the electromagnetic spectrum and are commonly probed through IR absorption spectroscopy. 

High energy or frequency vibrations are characteristic of light, tightly bound groups such as C-

H, N-H and O-H, whereas low frequencies are associated with heavier groups, or collective 

vibrations such as ring breathing or skeletal stretches in macromolecules (Figure 2.4). 
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Figure 2.4 Comparison of typical IR absorption and Raman spectra of human tissue samples.  

The IR spectrum is in the mid infrared region of the spectrum, and the spectrum is less rich in 

information than the Raman spectrum. The Raman spectrum is expressed as wavenumber shift 

from the source laser line, although as shown in Figure 2.3, the scattered light is in the visible 

region of the spectrum. Both show typical features of lipids (●), proteins (▲), carbohydrates 

(■) and nucleic acids (♦). Note the strong absorption due to trace water in the FTIR spectrum 

in the region of ~3300cm-1. 

 

IR spectroscopy is now a routine technique for materials characterisation and has found 

numerous applications in forensics, environmental science and pharmacology32. Applications 

to tissue samples for (cancer) diagnostic applications were first reported in the early 90s, and 

since this time a range of pathologies has been investigated33. 

Wu et al. demonstrated that, on the basis of lipid and protein content, normal and tumor oral 

tissues can be discriminated34. In another study, of 10 normal sub-gingival tissues (NST) and 

15 oral squamous cell carcinoma (SCC) tissues, Fukuyama et al. demonstrated that the normal 



36 

 

spectra are strongly influenced by the presence of collagen. They also suggested that spectra 

are influenced by keratin, which exists in the ectodermal cells35. A study using FTIR 

spectroscopy to understand oral carcinogenesis in animal models have also been reported 36. 

FTIR imaging methods have also been explored to analyze different aspects of oral cancers. A 

study by Schultz et al., to assess changes in biochemistry of well and poorly differentiated 

oral/oropharyngeal SCC by infrared microspectroscopy, demonstrated that DNA and keratin 

can provide spectral markers to differentiate between normal and SCC biopsies37. Bruni et al., 

by generating three-dimensional IR chemical maps, demonstrated that proliferating and 

regressive states of head and neck tumours can be identified38. Towards high throughput, 

automated analysis, Pallua et al. demonstrated that good quality FTIR images can be obtained 

from formalin fixed paraffin embedded tissue microarray sections providing molecular level 

information as the basis for diagnosis39.  

Compared to fluorescence, FTIR provides a detailed fingerprint of the biochemical content of 

the sample. However, although FTIR has been used for the analysis of human tissues ex vivo, 

the application of this method for in vivo diagnosis is limited, due to the short penetration depth 

and the fact that water is highly absorptive in the mid-IR range. Conventional optical fibres 

have limited transparency in the IR region, and therefore, in vivo studies are less frequent than 

fluorescence or Raman fibre optical applications. New developments based on attenuated total 

reflection (ATR) elements might help in implementing in vivo applications. 

 

 

2.3.3  Raman spectroscopy 

Raman spectroscopy is a complementary technique to FTIR and has its origin in the discovery 

of the Raman effect in 1928, for which C.V. Raman was awarded the Nobel prize in 193040. 

Similar to IR spectroscopy, Raman entails the coupling of incident radiation with molecular 

vibrations and the resultant spectrum is similarly characteristic of the material. However, 
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whereas IR spectroscopy involves the absorption of radiation, Raman spectroscopy is a 

scattering technique, whereby the incident radiation couples with the vibrating polarisation of 

the molecule and thus generates or annihilates a vibration. The differing underlying 

mechanisms results in a complementarity of the techniques. Vibrations of asymmetric, polar 

bonds thus tend to be strong in IR spectra, whereas Raman is particularly suitable as a probe 

of symmetric, nonpolar groups. Notably, O-H vibrations of water are very strong in IR spectra, 

but are extremely weak in Raman spectra, rendering Raman a potentially more suitable 

technique for in vivo applications Figure 2.3. A further implication of the differing physical 

origins of the techniques is that, whereas IR monitors the absorption of IR radiation, Raman 

scattering can be employed in the UV, visible or near IR regions of the spectrum Figure 2.2. 

Raman scattering thus offers intrinsically higher spatial resolution for mapping or profiling in 

a confocal microscopy mode, the limit of spatial resolution being determined by the wavelength 

(<1µm for Raman, ~5-10 µm for IR). The application of Raman spectroscopy to biomolecules 

was first demonstrated as early as the 1960s and by the 1970s biomedical applications were 

explored41. Whole cell, tissue and in vivo studies carried out on a range of pathologies have 

demonstrated the potential for diagnostic applications42. 

Raman spectroscopic applications in oral cancer diagnostics started with the analysis of normal 

and dysplastic tissue in a rat model by Schut et al. (2000). Dysplasia in the palate was induced 

by topical application of the carcinogen 4-nitroquinoline 1-oxide and sensitivity and specificity 

of 100% were observed43. This was followed by a study of human oral cancer biopsies by 

Venkatakrishna et al, they recorded spectra of 49 biopsies and obtained an average 

classification efficiency of 88%44. In 2004, a study carried out by Krishna et al. demonstrated 

the applicability of formalin fixed oral tissues for optical pathology, revealing significant 

differences in the epithelial region of normal and malignant samples, arising from the protein 

composition, conformational/structural changes, and possible increase in protein content in 
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malignant epithelia45. In 2006, Malini et al. demonstrated the efficacy of Raman spectroscopic 

methods in discriminating normal, cancerous, precancerous and inflammatory conditions46. 

Lipid rich features in normal conditions and prominent protein features in tumors and other 

pathological conditions were observed. Classification between different groups using 

multivariate statistical methods produced 100% sensitivity and specificity46. Raman mapping 

of tissue sections further elucidated biochemical changes within different epithelial layers 

which are associated with disease onset47. A study by Sunder et al. demonstrated that oral 

carcinomas of different pathological grades can also be differentiated on the basis of the 

relative intensities of bands associated with lipids and proteins48.  

 In vivo Raman spectroscopy using fibreoptic probes for identifying site specific 

variations in the oral cavity was reported by Guze et al. in 2009, indicating that different oral 

sites can be discriminated on the basis of level of keratinization49. Bergholt et al., (2011), 

characterized the Raman spectroscopic profiles of different oral cavity regions (inner lip, 

attached gingiva, floor, dorsal tongue, ventral tongue, hard palate, soft palate, and buccal 

mucosa)50. Fitting of reference biochemicals (hydroxyapatite, keratin, collagen, DNA, and 

oleic acid) and partial least squares-discriminant analysis (PLS-DA) were employed to assess 

the inter-anatomical variability. The findings suggest that histological and morphological 

characteristics of different sites have a significant influence on the in vivo Raman spectra, and 

different sites can be classified with an overall sensitivity and specificity of 85%50 .  Singh et 

al. demonstrated that in vivo spectra can be acquired in clinically implementable timescales 

and demonstrated the feasibility of classification of normal and pathological conditions51. This 

was followed by another study exploring tobacco induced cancer field effects in the oral 

mucosa52.  Sahu et al. demonstrated that in vivo Raman spectroscopy methods can also be 

utilized to understand age-related changes in the oral mucosa53. These findings were further 



39 

 

verified by a recent study showing anatomical variability and feasibility of identifying 

pathological conditions with in vivo Raman spectroscopy 54. 

2.4  Minimally invasive methods in oral cancer diagnosis 

 Bio fluids such as blood, urine, lymph, and saliva can provide substantial information about 

human health and are being widely investigated for clinical diagnosis of various diseases 

including oral cancers. The attraction of these specimens lies in the fact that they can be used 

for mass screening, due to ease in collection, transport and low cost55. Studies have been carried 

out on physiochemical properties of saliva using surface enhanced laser desorption and 

ionization time of flight (SELDI-TOF) coupled with mass spectrometry (MS) and high 

performance liquid chromatography (HPLC) to identify proteomic and enzymatic markers 

associated with oral cancer56. Other techniques such as laser-induced fluorescence coupled 

with HPLC, and capillary electrophoresis coupled mass spectroscopy have been employed to 

characterise salivary metabolites in oral cancer patients57,58.  

Recently, optical methods based on Raman, infrared absorption, and fluorescence 

spectroscopies have also been exploited for such investigations.  For example, enhanced levels 

of porphyrin in blood have been used as a diagnostic marker for various cancers including oral 

cancers59,60. Yuvaraj et al. characterized different salivary metabolites associated with oral 

cancers by fluorescence spectroscopy61. FTIR spectroscopy has been applied to study sputum 

in order to diagnose oral cancers and discrimination between normal and cancerous samples 

was achieved on the basis of changes in the protein and glycoprotein structure within cells62. 

Surface-Enhanced Raman spectroscopy methods (SERS) have been used to differentiate 

between normal and oral cancer patients using spectra acquired from saliva63. A recent study 

by Elumalai et al. demonstrated that Raman spectroscopy of urine samples of healthy subjects 

and oral cancer patients can offer potential diagnostic information with a discrimination 

accuracy of 94%64. The analysis of exfoliated oral cells by optical methods also holds enormous 
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promise for early disease detection and diagnosis. Diem and co-workers have carried out 

multiple studies on spectral cytopathology of oral exfoliated cells65,66. Their findings are 

suggestive of the tremendous potential of spectroscopic methods in identifying minor changes 

associated with disease onset. Nevertheless, diagnosis based on biofluids suffers from 

limitations such as low analyte concentration, longer acquisition time, prone to experimental 

errors etc. Considerable efforts have been undertaken to develop standard protocols and 

sensitive instrumentation. Signal enhancements with the help of nano-particles or surface 

coating is an active area of research 67. Concentration of samples using centrifugal filtration 

devices has been shown to offer an alternative which allows measurement of the analytes in 

the native aqueous environment68. This also allows fractionation according to molecular weight 

of the constituent analytes, potentially allowing the targeting of molecular biomarkers of a 

disease. Appropriate modification of the instrumentation, especially automation for collection 

and analysis of body fluids is also an area which requires constant development. Efforts should 

also be undertaken for large scale trials and database development to overcome inter-laboratory 

and instrument variabilities 69.  

2.5  Summary and Outlook 

Although the oral cavity is easily accessible to inspection, oral cancer patients often present at 

an advanced stage when treatment is less successful, thereby leading to high morbidity and 

mortality. Early detection is the best way to ensure patient survival and quality of life. The 

current gold standard for clinical diagnosis of oral lesions is biopsy and subsequent 

histopathological confirmation. The process is invasive, time-consuming and prone to inter-

observer variability. An alternate method of diagnosis that can enable non-invasive diagnosis 

of the oral cavity in individuals with suspicious oral lesions is warranted.  
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It is now well recognized that techniques based on optical spectroscopy can play a very 

important role towards this end. Spectroscopic measurements of tissue biochemistry, with 

sensitivity and specificity to localize changes enhanced by imaging, represent a measure of 

health (or disease) unattainable in current practice, and can provide sensitivities for early stage 

detection of biochemical, rather than simply morphological, abnormalities. Table 1 lists the 

advantages and disadvantages of the current screening/diagnostic methods and optical 

spectroscopy methods. Among the spectroscopic techniques described, fluorescence is perhaps 

the most technologically accessible, as it is simply based on the analysis of light which is 

emitted after illumination with a UV lamp. The emitted light is in the visible range and 

therefore probes can use free space or low grade, inexpensive fibre optics. The technique 

detects only the small fraction of endogenous biomolecules which are fluorescent, however, 

and relies on identifying pathology specific biomarkers amongst them. FTIR spectroscopy, on 

the other hand, produces a label free fingerprint of the complete biochemical content of the 

tissue, cell or biofluid, and this can explore more global and specific pathological changes. 

However, water is an extremely strong FTIR absorber, and so in vivo diagnostic applications 

may be limited. Raman spectroscopy provides a similar complete, label free fingerprint of the 

sample, and also couples to benefits of working in the visible region of the spectrum. Water is 

a weak Raman scatterer, and so the technique is more adaptable to routine in vivo patient 

screening or ex vivo spectral histology or cytology. The prospect is therefore of a high 

sensitivity and specificity, automatable, objective quantitative label free probe of early stage 

disease development and progression, based on the biomolecular content of the patient sample.  
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Table 2-1 Advantages and disadvantages of current screening / diagnostic methods and optical 

spectroscopy methods 

Technique Advantages Disadvantages 

Conventional 

oral 

examination  

Well accepted screening method 

No instrumentation or reagents 

required 

Rapid 

Subjective 

Requires clinical expertise and 

experience 

Unable to identify potentially pre-

malignant lesions 

Toluidine 

Blue staining 

No instrumentation required 

Rapid 

Subjective 

Requires clinical expertise and 

experience 

Reagents required 

Low specificity for dysplasia 

Oral brush 

biopsy 

Less invasive method for trans-

epithelial biopsy 

Rapid 

Subjective 

Requires clinical expertise and 

experience 

Reagents and instrumentation 

required 

Must be confirmed with scalpel 

biopsy and histology 

Histology Well accepted gold standard method 

Definitive diagnosis of tumour stage 

Stromal invasion can be determined 

Tumour margins can be determined 

Subjective 

Requires clinical expertise and 

experience 

Pre-malignant lesions difficult to 

distinguish from benign conditions 

Reagents and instrumentation 

required 

Invasive 

Inter-observer variations 

Sampling errors 

Slow 

Fluorescence 

spectroscopy 

Objective 

Can be used by non-specialists with 

suitable diagnostic algorithms 

No reagents required as based on 

intrinsic fluorescence of 

fluorophores such as collagen, 

elastin, keratin and NADH 

Can be used ex vivo or in vivo 

Can be used for cells, tissues and 

biofluids 

Instrumentation required 

Low specificity due to relatively 

few natural fluorophores with 

broad, overlapping features 

Infra Red 

spectroscopy 

Objective 

Can be used by non-specialists with 

suitable diagnostic algorithms 

No reagents required as based on a 

fingerprint of the biochemical 

composition 

Instrumentation required 

Limited use in vivo due to short 

penetration depth and interference 

from water 
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Mainly used ex vivo but in vivo may 

be possible using ATR-FTIR 

spectroscopy 

Can be used for cells, tissues and 

biofluids 

Short spectral acquisition times  

Low spatial resolution but can be 

improved with ATR-FTIR 

spectroscopy 

Multivariate data analysis needed 

to extract information from the 

spectral data 

Raman 

spectroscopy 

Objective 

Can be used by non-specialists with 

suitable diagnostic algorithms 

No reagents required as based on a 

fingerprint of the biochemical 

composition 

Can be used ex vivo or in vivo 

Can be used for cells, tissues and 

biofluids 

High spatial resolution allowing 

subcelluar imaging 

Increased penetration depth using 

SORS 

Instrumentation required 

Long spectral acquisition times 

Multivariate data analysis needed 

to extract information from the 

spectral data 

 

Variable thickness and degree of keratinisation at different sites in the oral cavity can 

influence the diagnostic efficacy of optical methods, especially for early lesions. This issue has 

been addressed extensively by the biomedical spectroscopic community. Various studies have 

successfully demonstrated the potential of spectroscopic methods in identifying anatomical 

variability due to different levels of keratinization. For example, a study by Rupananda et al. 

showed a higher fluorescence due to porphyrins in the tongue compared to other oral sites 29, 

while Guze et al found that Raman spectra can be clustered according to sites in the oral cavity 

49. Similar findings were reported by Bergholt et al.,  who found that the sites clustered into three 

groups; (1) buccal, inner lip, and soft palate; (2) dorsal, ventral tongue, and floor; (3) gingiva and 

hard palate 50. These studies have provided evidence in support of inherent differences between 

different locations and suggested that each site be treated independently. For example, spectral 

models developed using spectra from buccal mucosa cancers cannot be used for identifying 

abnormalities at tongue or palate. Most of the recent studies have been performed under these 

guidelines, where tumours of specific sites are treated separately51-54. As with all optical 

techniques, the depth sensitivity is limited by the absorption and scattering of the tissue. 
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Operation in the near infrared can optimise the depth sensitivity of Raman probes, and novel 

methodologies such as spatially offset Raman spectroscopy (SORS) promise increased 

penetration depths of several millimetres for deeper set lesions 70. Such technological advances 

potentially place Raman ahead of the field as candidate for in vivo optical diagnostic 

applications. 

In the coming years, large scale clinical trials must be conducted to gain the amount of 

site-specific data necessary for developing adequate size training and test sets for robust 

algorithm development and analysis. The standard models for each of the individual sites in 

the oral cavity should be tested rigorously, preferably double-blinded, as multi-centric studies, 

before they are considered for routine use. Several technological advances in terms of 

fiberoptic probes and miniaturization of instruments are also required for real time and routine 

diagnosis. Efficient suppression of background signal, optimization of collection optics, and 

incorporation of miniaturized interference filters in the fiber probes are some of the issues that 

are to be addressed effectively. Further improvements in data analysis algorithms are also 

required for developing less cumbersome, rapid, unambiguous, objective and user friendly 

interfaces from the point of view of routine clinical use where a clinician or a technician can 

analyze a given spectrum against all available models to diagnose a case. The prospective 

adaptation of optical spectroscopy methods for routine clinical diagnosis would decrease the 

number of follow-up clinic visits and patient anxiety by minimizing waiting times for 

histopathological diagnosis. The technology poses no known risks to the patients, and therefore 

could be a safe alternative/adjunct to the current diagnostic methods. 
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Chapter 3: Use of Raman Spectroscopy for the Study of Cell Cycle 

Phase and Biomarker Expression Levels in Oral Squamous Cell 

Carcinoma Cells 

 

3.1  Introduction 

 

The cell cycle is a highly regulated process with defined phases. G1 is the phase after the 

previous cell division during which the cell grows. The S phase is the DNA synthesis phase, in 

which the cell replicates its genetic material. In the G2 phase, transcription and translation are 

co ordinated to prepare for Mitosis (M phase). The cell cycle is associated with checkpoints in 

which the cell assesses its environment to ensure the conditions are appropriate for cell cycle 

progression. There are two checkpoints, one at the G1/S boundary and another at the G2/M 

boundary. Deregulation of the cell cycle can result in tumourogenesis1 and is often signalled 

by the overexpression of certain biomarkers, as, for example cyclin D1. Cyclin D1is one of a 

family of D type cyclins which also include D2 and D3. It is important for the G1 to S phase 

transition as it binds with the cyclin dependent kinases 4 and 6 to form an active complex that 

phosphorylates and inactivates retinoblastoma protein (RB) promoting cell cycle progression2. 

The overexpression of cyclin D1 leads to faster progression from G1 to S phase, which in turn 

results in increased proliferation and an increased propensity for the development of mutations. 

Cyclin D1 is overexpressed in a number of carcinomas such as breast, oesophageal, ovarian, 

hepatocellular, colorectal, and head and neck carcinoma3-8. Another biomarker, Proliferating 

cell nuclear antigen (PCNA), required for DNA replication, is synthesised in the late G1 and S 

phases of the cell cycle9. It acts as a polymerase clamp as well as a sliding platform for the 

recruitment of other replication proteins such as DNA helicase, ligase, nuclease, and histone 

chaperones10. Levels of PCNA have been found to correlate with increased dysplasia in oral 
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epithelial cells11,12. A thorough understanding of cell cycle dynamics is important for cancer 

research and tumour targeting. The ability to monitor the altered expression of biomarkers 

could prove valuable in cancer screening. 

Flow cytometry has been widely used in the study of cell cycle dynamics, as Propidium iodide 

(PI) is commonly used to quantify the DNA content which is characteristic of the cell cycle 

phase. Quantitative image analysis which utilizes fluorescent dyes has also been used to 

identify certain biomarkers that vary throughout the cell cycle13. Both these techniques rely on 

prior knowledge of the biomarkers to be studied and can only give information on a few 

biomarkers at a time. 

Using inhibitors to arrest the cell cycle at the various phases, previous studies have examined 

the use of Raman spectroscopy in the discrimination of the cell cycle phases. Using a prostate 

cancer cell line, and fixing the cells at the different cell cycle phases, one study found the 

greatest differences between the G2M and G1 phases and slight differences between the G1 

and S phases14. Similar findings were made by another study looking at live human 

osteosarcoma cells, although, unlike the former, where the differences were dominated by 

nucleic acids, proteins and lipids, here the differences were mainly in lipids15. Using one 

synchronous cell cycle and analysing fibroblast cells with FTIR spectroscopy in two hour 

intervals, one study found that there were differences in the lipid, and nucleic acid profiles at 

the different time intervals16. The aforementioned studies combine G2 and M phases of the cell 

cycle in the analysis, which was also the approach in this study. This is due to the fact that, in 

flow cytometry analysis, which uses DNA fluorescent markers, the phases that can be 

distinguished are G0/G1 which make up a Gaussian peak with 1x the DNA content, G2M with 

a Gaussian peak of 2x the DNA content and S phase which the population in between G0/G1 

and G2M. 
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The aim of the present study was to investigate the Raman profiles of oral squamous cell 

carcinoma cells at defined phases of the cell cycle and to correlate these with cyclin D1 and 

PCNA expression in the cells at the different cell cycle phases as assessed by flow cytometry. 

In order to assess whether label free Raman signatures can be correlated with established 

biomarkers.   

 

3.2  Materials and Methods 

 

3.2.1  Cell culture 

SCC-4 cells (ATCC, Manassas, VA), a human tongue squamous cell carcinoma cell line, were 

cultured in DMEM F-12 media (Sigma-Aldrich) supplemented with 10% (v/v) foetal bovine 

serum (FBS) (Sigma-Aldrich), 1% (v/v) Penicillin/streptomycin and 400 ng/ml hydrocortisone 

(Sigma-Aldrich). They were incubated at 37°C with 5% CO2 and regularly passaged at 80% 

confluency to maintain exponential growth. The passage number for the experiments did not 

exceed 17. Studies have shown that cells transform at high passage numbers (~40) and show 

altered expression of mRNAs involved in regulated secretion adhesion and proliferation. 

 

 

3.2.2  Cell Synchronisation 

A double thymidine block, described previously17, which arrests cells in the S phase of the cell 

cycle, was used to synchronise the cells. Excess thymidine inhibits DNA synthesis, thereby 

arresting cells in G1, prior to DNA replication, or in S phase. A double thymidine block ensures 

that any cells that were in mid or late S phase during the first block will be captured in late G1 

or early S phase in the second block. SCC-4 cells were cultured in T-125 flasks, they were 

trypsinised at 30% confluency, harvested and counted. The confluency/density of cells affects 

their proliferation rate which can slow down at confluency above 50%18. Cells were counted 
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using a coulter counter, 500,000 cells were seeded into a T-25 flask with 5 ml medium. 

Thymidine was added to the flasks to a concentration of 2 mM and incubated with the cells for 

18 hours.  The cells were then washed with PBS and fresh media was added to release them 

from the Thymidne block, they were then incubated for 9 hours. 2mM Thymidine was then 

added to the flasks for a second thymidine block and the cells were incubated for 17 hours.  

The selected time points were; at time of release from thymidine (0 hours), 6 hours after release, 

and 12 hours after thymidine release. The controls were unsynchronised cells (not treated with 

thymidine), unstained cells (no primary or secondary antibody), negative control cells (no 

primary antibody) and cells with no PI. All time points and controls were completed in 

triplicate. Experiments were performed for detecting both cyclin D1 and PCNA. 

 

M 
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S 
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6 hours 
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Figure 3.1 A schematic of the SCC4 cell cycle. SCC4 cells have an 18 hour cycle (doubling 

time) and spend 6 hours in each of the phases (G1, S, and G2M). The thymidine block arrests 

the cells at the G1/S boundary so when cells are released they enter S phase.  

3.2.3  Flow Cytometry 

Cells were harvested by trypsinisation, washed with PBS, then resuspended in ice cold 

methanol and stored at 4°C overnight. The fixed cells were pelleted and the pellet was dried to 

remove the methanol. The cells were then permeabilised with 0.2% Triton X-100 (BDH) in 

PBS (v/v), washed with PBS, then treated with a primary antibody; for cyclin D1, monoclonal 

rabbit antihuman cyclin D1 antibody (Dako) (1:50 dilution in PBS) and for PCNA, a mouse 

monoclonal [PC10] to PCNA (abcam) (1:50 dilution in PBS). After another PBS wash, for 

cyclin D1 detection,  an anti-rabbit IgG Fluorescein isothiocyanate (FITC) conjugated antibody 

(Sigma-Aldrich) (1:100 dilution in PBS)  was incubated with the cells and for PCNA detection 

a goat Anti-mouse IgG Alexa Fluor conjugated antibody (abcam) (1:100 dilution in PBS)   was 

used. Subsequently, the cells were re-suspended in 0.5 ml of   PI-RNase (BD Biosciences) and 

analysed with a BD Accuri C6 flow cyctometer. The threshold was set at 10,000 events and, 

using forward and side scatter characteristics, gates were set to exclude cell debris. The controls 

were used to determine the quadrants by determining positive signal from background 

fluoresence so the threshold for positivity could be set accordingly. PI and FITC/Alexa Flour 

were plotted in the y and x axis respectively so that cells in the lower left quadrant were 

negative for both and those in the upper right quadrant were positive for both. Cell cycle phase 

was determined by DNA content; PI intercalates with DNA and facilitates DNA quantity 

measurement in the 560-590 nm range of the spectrum using a 585/15 nm optical filter. An 

excitation wavelength of 488 nm was used and Cyclin D1 and PCNA expression was detected 

with a 533/30 nm optical filter.  
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3.2.4  Raman Spectroscopy 

125,000 cells were seeded onto calcium fluoride (CaF2) discs (Crystan, UK) for Raman 

spectroscopy, treated with thymidine and fixed at the previously described time points. The 

cells were fixed with 4% formalin, washed with PBS, then stored in 0.9% physiological saline 

at 4°C. A Horiba Jobin Yvon LabRAM HR 800 Dual Microscope Raman Spectroscope with a 

785nm laser was used to capture the cell spectra. The LabRAM system is a confocal Raman 

spectrometer with a motorised XY sample stage and interchangeable gratings of which the 300 

grooves/mm grating was used, giving a dispersion of ~1.5cm-1 per pixel. The confocal pin hole 

of the system was set to 100μm and a 16 bit dynamic range charge coupled device (CCD) 

detector was used which is Peltier cooled to reduce thermal noise. A 60X /0.9W immersion 

objective (LumplanF1 Olympus, Japan) was used to focus on the samples and collect the 

backscattered light. Point spectra were taken from the nuclei of the cells. The spectral 

acquisition time was 40 seconds per point over two accumulations, and the range over which 

the Raman scattered light was detected was 400-1800 cm-1. 74 spectra, one per cell, were 

collected overall for each time point from two independent experiments.   

 

Data Analysis 

All data analysis was carried out using Matlab (Mathworks, US), with the PLS-Toolbox 

(Eigenvector Research Inc.) and in-house algorithms. 

Spectral Pre-Processing 

The raw Raman spectra were first smoothed using a Savitzky-Golay filter (13 points, 5th order). 

Savitzky-Golay filter increases the signal to noise ratio without distorting the signal. The 

baseline was then corrected using the rubberband method19, and finally the spectra were vector 

normalised (to reduce any variability caused by the fluctuation of excitation power)19. 

Principal component analysis (PCA) 
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 PCA is a form of unsupervised multivariate analysis, which has become a standard processing 

technique for Raman Spectral data20. PCA explains the variance in the data by finding 

combinations of the original dimensions that describe the largest variance between the data 

sets. The output is in the form of a complementary set of score and loading plots termed 

principal components (PCs) 20,21.  

Linear discriminant analysis (LDA) and Classification Model 

LDA is a supervised form of multivariate analysis based on discriminant functions (LDs) which 

maximize the variance between groups and minimize the variance within groups. PCA is first 

used to reduce the data into PCs which are then used to build an LDA classification model with 

leave one out cross validation (LOOCV). In LOOCV all the spectra except for one are used as 

a training set and a prediction is made for the left out spectrum. This is repeated so that each 

spectrum is left out and predicted once22.  

 

3.3  Results 

3.3.1  Cell Cycle Analysis 

DNA content was determined by flow cytometry and related to cell cycle phase as shown in 

Figure 3.2 (representative measurement), and tabulated in Table 3-1 (average of 6 

measurements). At the time of thymidine release, most of the cells were arrested in S phase, 6 

h after release, the majority of the cells were in the G2M phase, while 12 h after release most 

of the cells were in the G1 phase of the cell cycle.  
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Figure 3.2 A representative plot showing cell cycle profile SCC-4 cells; (A) at time of 

thymidine release, (B) 6 hours after thymidine release, and (C) 12 hours after release 

respectively.  

 

Table 3-1 Mean and standard deviation of cell cycle phases at each time point 

 Flow cytometry classification (%) 
 

Time point (h) after 
thymidine release 

S G2M G1 

0 75±5 12±8 9±3 
6 24±12 67±7 9±4 

12 9±3 22±1 62±4 

 

3.3.2  Biomarker expression 

Cyclin D1 expression was assessed by FITC staining, and 3 measurements were made for each 

time point. As can be seen in Figure 3.3, Cyclin D1 expression varied according to the time 

point after release, and therefore cell cycle phase, the highest expression being observed in 

G2M, followed by G1 and the lowest expression being in the S phase. The expression of PCNA 

was assessed by an Alexa Fluor conjugated secondary antibody with 3 measurements made for 

each time point. From Figure 3.4 it appears that PCNA expression is very high in S phase 

(B) (A) 
(C) 
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(~90%) which is reduced to (~60%) in G2M phase and is at its lowest (~10%) in G1 phase of 

the cell cycle. Using one way ANOVA, which determines if three independent groups have 

significantly different means, PCNA expression was found to be significantly variable across 

the different groups (time points). That was not the case with cyclin D1 which was not found 

to have variance across the groups. However a two tailed t test revealed that S phase expression 

is significantly lower than G2M.  

 

Figure 3.3 Cyclin D1 expression at the different time points, related to cell cycle phases. 

Expression is highest at G2M, followed by G1 phase and lowest at the S phase.  A two tailed t 

test showed that S phase expression is significantly (P<0.002) lower than G2M but not G1.  
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Figure 3.4 PCNA expression at different time points, related to cell cycle phases. PCNA 

expression is highest in S phase, followed by G2M and lowest in G1. One way ANOVA test 

showed that PCNA expression is significantly different (P=0.0006) between the different time 

points. 

3.3.3  Raman Spectroscopy 

From their mean Raman spectra (Figure 3.5); differences between the release time points, 

representing the cell cycle phases, were observed. Spectral peak assignments23,24 are tabulated 

in Table 3-2. The nucleic acid (600-800 cm-1) and amide 1 regions (1600-1800 cm-1) are more 

prominent in the G2M phase, the S phase has more prominent protein and lipid features (around 

1400 cm-1), while the G1 phase falls between the S and the G2M phases.  

 

 



61 

 

Table 3-2 Peak assignments of the main Raman vibrational modes found in the spectra and 

PC loadings23,24 

Wavenumbers (cm-1) Assignments 

621 C-C twist in phenylalanine 

783 DNA/RNA ring breathing 

1004 Phenylalanine ring breathing 

1092 DNA/RNA O-P-O stretching 

1336 DNA bases 

1440 Fatty acids 

1451 Protein (C-H) bending 

1575 DNA/RNA ring mode 

1673 Amide 1 β pleated sheet 

 

PCA was performed, pairwise, on the processed Raman spectra, which revealed a distinct 

separation between the S phase and G1 and G2M phases according to PC1, which explains 

47% and 45% of the variance respectively (Figure 3.6). Figure 3.7(A) shows the loading of 

PC1 for both S vs G1 and S vs G2M. Scores that are on the positive side of a PC in the scatter 

plot reflect the positive side of the loading plot. Similarly, the negative side of the scatter plot 

is represented by the negative side of the loading plot25. For both cases, the loading is 

remarkably similar, although there are some differences. The loadings indicate that the S phase 

is higher in protein content (1451 cm-1, protein C-H bending and 1673 cm-1, Amide 1 vibration) 

than G1 and G2M and there is variability in all 3 at 783 cm-1. PC2 does not discriminate 

between the S and G phases, but does, at least partially, discriminate the G1 and G2M phases, 

for which it explains 8% of the variance. The PC2 loading (Figure 3.7 (B)) shows distinct 
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nucleic acid bands on the positive side (783cm-1, 1092 cm-1, 1336 cm-1 and 1576 cm-1), 

indicative of higher nucleic acid content in the G2M compared to the G1 phase. The band at 

1440 cm-1, on the negative side of PC2, suggests an accumulation of lipids in the G1 phase of 

the cell cycle.  

 

 

Figure 3.5 Mean Raman spectra from SCC-4 cells in each cell cycle phase G1, S, and G2M. 

The shading represents the standard deviation. 
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Figure 3.6 Two dimensional scatter plots of the first two principal components after PCA was 

performed on the spectra from fixed cell nuclei, showing (A) G1 vs S phase (B) S vs G2M and 

(C) G1 vs G2M. S phase separated from the other two phases according to PC1, while G1 and 

G2M phase separate according to PC2. 

(A) (B) 

(C) 
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Figure 3.7 (A) Loading of PC1 in G2M vs S phase PCA (black) and G1 vs S phase PCA (blue). 

S phase is positive in both (B) Loading of PC2 in G2M vs G1 phase PCA. G2M is positive 

(B) 

(A) 
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3.3.4  Classification Model 

To enhance the classification, PCA-LDA with leave one out cross validation was performed 

on the spectra. The resulting confusion matrix, shown in Table 3-3, correctly classified 71 out 

of 74 spectra (96%) at the 0 hour time point, which is consistent with the predominance of the 

S phase, 58 of 74 (78%) at the 6 hour time point, consistent with the predominance of the G2M 

phase and 46 out of 74 (62%) spectra at the 12 hour time point, which corresponds to the G1 

phase. Corroborating the flow cytometry data (Error! Reference source not found.), the p

ercentage of cells correctly classified in each phase from S through G2M then G1 decreases 

corresponding to decreasing synchronicity. Plotting the linear discriminants (Error! R

eference source not found.), a monotonic progression of LD1<LD3<LD2 is apparent in the 

negative peaks at 780 cm-1, 1092 cm-1 and 1339 cm-1, all nucleic acid related. The spectral 

profile is remarkably similar to PC2 which discriminates the G1 and G2M phases in Error! R

eference source not found. (B). LD1 discriminates between G2M and S phase, LD2 

discriminates between G1 and G2M phase and LD3 discriminates G1 and S phase, and the 

similarity of the discriminants indicates that nucleic acid content is the primary biochemical 

difference between the cell cycle phases. 

 

Table 3-3 A confusion matrix utilising LDA with leave one out cross validation of the principal 

component scores showing the Raman predicted percentage of cells at each phase of the cell 

cycle. 

 

 Raman Classification (%) 

Cell Cycle Stage S G2M G1 

S 96 0 4 

G2M 0 78 22 
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G1 7 31 62 

 

Figure 3.8 Linear Discriminants, LD1 discriminates between G2M and S phase, LD2 

discriminates between G1 and G2M phase and LD3 discriminates G1 and S phase. 

Spectra of cyclin D1 and PCNA proteins on CaF2 slides were recorded by Raman spectroscopy 

(Error! Reference source not found.) to determine whether their varying levels at the d

ifferent stages of the cell cycle could be reflected in the PC and LD loadings. The characteristic 

peaks at 812 and 1557 cm-1 of cyclin D1 and at 851 and 1446 cm-1 of PCNA were not, however, 

distinct/apparent in either the PC or LD loadings. 
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Figure 3.9 (A) Spectrum of cyclin D1 (B) Spectrum of PCNA 

 

 

(A) 

(B) 
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3.4  Discussion 

The Raman data showed a good separation between S phase and G1 and G2M phases using 

PCA. Furthermore, the LDA model showed that the classification was highest at S phase 

followed by G2M and G1 phase. This is consistent with the flow cytometry results which 

indicated that the cells were well synchronised at the time of arrest (75% S phase), while the 

synchronicity was reduced in the G2M (67%) and G1 (61%) phases. An important finding was 

that the Raman classification at each phase was higher than its flow cytometry counterpart. 

This may be due to the fact that flow cytometry classification is dependent on just the nucleic 

acid content, while Raman classification takes into account all the biological molecules within 

the nucleus. 

Previous cell cycle studies using Raman spectroscopy have used several methods to 

synchronise the cells at various phases. Matthews et al. used thymidine to synchronise the cells 

at the start of the S phase and nocodazole for synchronisation at the G2/M boundary14, while 

Swain et al. used serum starvation to arrest the cells in the G0/G1 boundary, aphidicolin to 

synchronise the cells in S phase and nocodazole to synchronise them at the G2/M boundary15. 

In this study it was decided to use one cell cycle synchronisation method as opposed to several. 

Although this results in less synchronisation in the latter stages, it eliminates any possible 

differences due to synchronisation method that can influence the analysis, notably the chemical 

signature profiles in the Raman spectra. The differences between G1 and G2M phase were 

mainly due to higher lipid (1440cm-1) content in the former and higher nucleic acids (783cm-1, 

1092 cm-1, 1336 cm-1 1576 cm-1) in the latter, which is consistent with previous findings that 

showed more lipid (700 cm-1, 1438 cm-1) in G1 phase and nucleic acids (669cm-1, 784cm-1, 

1100cm-1, 1340cm-1, 1577 cm-1) in G2M phase14. It is important to note that flow cytometry 

preparations involve a cell permeabilisation step which could lead to alterations in 
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phospholipids. The linear discriminants show a similar progression whereby the nucleic acid 

related peaks (780 cm-1, 1092 cm-1 and 1339 cm-1) are highest in G2M followed by G1 phase 

and lowest in S phase. This is expected, as the DNA condenses in the G2M phase in preparation 

for cell division. The main differences between the S phase and the other two phases, G1 and 

G2M, were in the protein content (1451cm-1, 1672cm-1). This may be due to the fact that the 

expression of many proteins changes throughout the cell cycle so that the differences could 

relate to the changes in specific proteins as opposed to global protein change. 

The Raman spectral profiles in the different cell cycle phases show little evidence of 

contributions of the biomarkers Cyclin D1 and PCNA. Cyclin D1 levels are moderately higher 

in G2M and G1, compared to S phase of the cell cycle. This pattern of cyclin D1 expression 

has been reported previously, yet its cause is not well understood26-28. An explanation could be 

that cyclin D1 levels are lowest in S phase as the result of proteasomal degradation following 

phosphorylation of Thr-286, which occurs specifically in S phase28. On the other hand, PCNA 

is synthesised in late G1 and reaches its maximum in S phase9,29. The localization of PCNA 

within the nucleus reportedly changes throughout the cell cycle. While its equally distributed 

in the nucleus in the G1 and G2 phases, in S phase it aggregates into foci at sites of replication30.  

A previous study has shown a Raman signature of PCNA with similar peaks at 483, 675, 849, 

922 and 1466 cm-1 31. While no previous studies have examined the Raman spectrum of cyclin 

D1, a study by Kumar et al., showing oral tissue with different degrees of cyclin D1 and relating 

it back to Raman spectroscopy using a range of 1200-1800 cm-1 found that the tissues with 

higher cyclin D1 expression had prominent peaks at 1454 cm-1 and 1560-1583 cm-1 consistent 

with the cyclin D1 Raman spectrum measured in his study32.  Cyclin D1 and PCNA are proteins 

with no specific distinguishing moieties which might give them a distinctive Raman signature, 

compared to other proteins. Thus, it is concluded that, in the absence of more refined data-
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mining algorithms, they cannot be used as specific spectroscopic markers for deregulation of 

the cell cycle. 

In summary this study found that Raman spectroscopy can be used to identify the different 

phases of the cell cycle and is perhaps only limited by the efficacy of the cell cycle block. 

Furthermore, data on lipid, protein and nucleic acid profiles of the cells can be generated as 

opposed to other methods which are limited in the information they provide. However, changes 

in particular biomarkers could not be demonstrated with Raman spectroscopy, perhaps due to 

the fact that hundreds of proteins are up or down regulated at different points in the cell cycle 

which makes it difficult to assess particular ones with an unlabelled method. 

The major differences between the phases in the cell cycle are due to variations in nucleic acid 

and protein content of the cells, which are similar to the differences between the degrees of 

dysplasia. Hence, its ability to discriminate the different phases of the cell cycle gives an 

indication of the precision of Raman Spectroscopy in identifying biomolecular changes in the 

SCC4 cells which can later be translated to oral tissue samples to identify differences between 

pathologies. In the next chapter the protocols for pre-processing Raman spectra of oral FFPP 

tissue sections are discussed.   
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Chapter 4: Improved protocols for pre-processing Raman spectra 

of formalin fixed paraffin preserved tissue sections 

Adapted from ‘Ibrahim O, Maguire A, Meade AD, Flint S, Toner M, Byrne HJ, Lyng FM. 

Improved protocols for pre-processing Raman spectra of formalin fixed paraffin preserved 

tissue sections. Analytical Methods 2017;9:4709-4717’ 

OI contribution; experimentation, data analysis and write up. 

 

4.1  Abstract 

Although formalin fixed paraffin preserved (FFPP) tissues are a major resource for 

retrospective studies of disease progression, their use in vibrational spectroscopy studies has 

been undermined by issues of contributions of substrate and paraffin wax which persist in the 

spectra and can compromise spectral analysis. Recognising the microcrystalline nature of the 

wax in the tissue, which are inhomogeneously oriented with respect to the polarisation of the 

Raman source laser, in this study, we have developed a novel method for removing the paraffin 

wax contributions to the spectra using matrices of multiple wax spectra.  FFPP tissue sections 

from the oral mucosca were obtained and, with no further chemical processing, the Raman 

spectral analysis of two regions, epithelium and connective tissue were compared. Matrices of 

multiple wax spectra were collected from different regions and subtracted from the epithelial 

and connective tissue spectra using a least squares analysis with non-negative constraints. 

Spectra of multiple cell components such as DNA and RNA were used in fitting the least 

squares model to reduce the residual error. The use of a data matrix of multiple wax spectra, as 

opposed to a single spectrum, results in a more accurate removal of the wax, hence reducing 

its contribution to spectral analysis. In unprocessed FFPP tissue sections, the contribution of 
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the glass substrate is seen to be minimised in comparison to chemically dewaxed FFPP tissue 

sections. Contributions of the glass substrate were also successfully removed digitally using 

the same methodology. The combined results indicate that direct analysis of FFPP tissue 

sections is feasible using Raman spectroscopy, avoiding the need for chemical dewaxing. 

Additionally, the ability to use glass slides is very important in translation to the clinic. 

4.2  Introduction 

The standard method used in histopathological tissue processing is formalin fixation followed 

by paraffin wax embedding. The tissue is first dehydrated through different grades of ethanol, 

then infiltrated with paraffin wax. In this way, the samples are stabilized and can be stored for 

years. These formalin fixed paraffin preserved (FFPP) archival tissue libraries can potentially 

be a vast resource for retrospective studies of patient history and disease progression. 

Vibrational spectroscopy, including Raman scattering and infra-red absorption, has emerged 

as a promising candidate for rapid, label free automated screening of tissue pathologies, and 

the term spectral histopathology has been coined1. However, paraffin wax poses a difficulty in 

vibrational spectroscopic studies of biological tissues, as the wax peaks are prominent and tend 

to interfere with either FTIR or Raman spectroscopic analysis2,3. A number of different 

approaches to remove the paraffin wax have been tested. Chemical dewaxing agents such as 

xylene, hexane, and histoclear were found to reduce but not completely eliminate the presence 

of wax and the reduction was seen to be proportional to the time the tissue remained in the 

dewaxing agent, resulting in long (up to 18 hours) processing times for optimised protocols3. 

The amount of residual wax was also found to be influenced by the choice of substrate and 

tissue type. Abnormal tissue, such as metastatic tissue, was found to retain more wax after 

dewaxing than normal tissue, while calcium fluoride substrates were seen to retain more wax 

than low E slides4. Another disadvantage of chemical dewaxing is that chemical dewaxing 
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agents have been shown to modify the tissue composition and therefore spectra5,6. The process 

of formalin fixation gives rise to formalin peaks appearing in the spectra at 1041 cm-1 and 1492 

cm-1 which can be removed by washing in PBS7. As the molecular structure of paraffin wax is 

very similar to that of tissue lipids, the Raman spectral profile of the wax overlaps significantly 

with that of the tissue lipids, especially in the region 1000 cm-1 to 1700 cm-1. Because of the 

structural similarities, the process of dewaxing can result in modification of the tissue lipidic 

content6. Digital wax removal methods such as independent component analysis and non-

negatively constrained least squares analysis (NNLS) have been shown to be a promising 

alternative approach. However, these methods tend to introduce artefacts in the spectra due to 

over or underestimation of the wax contribution8,9.  

Another consideration in the spectral analysis of biological tissue is substrate choice. As the 

Raman spectrum of biological samples can be influenced by the optical properties of the 

substrate10. For research purposes, spectroscopists prefer to use spectrally neutral substrates 

such as calcium fluoride or magnesium fluoride, as they contribute a much lower background 

signal compared to glass11. However, they are significantly more expensive and therefore not 

a feasible option for routine diagnostic use11,12. Glass is commonly used in histopathological 

diagnosis as it is the clinical standard, is inexpensive and allows the processing of hundreds of 

samples a day. Its use in Raman spectroscopy, however, is hampered by the fact that glass 

exhibits a strong fluorescence emission under 785nm excitation11 , overlaps with the biological 

spectra in the fingerprint region12 and its contribution was found to vary with cellular 

morphology13. Notably, the glass contribution is significantly lower at 532nm than at the 

commonly employed 785nm, making it the wavelength of choice for such clinically oriented 

studies. Additionally, a shorter wavelength means greater confocality, higher intensity and a 

higher scattering efficacy11. A number of different methodologies have been proposed for 

removal of the glass contribution, including iterative subtraction of a polynomial14 or glass 
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reference spectrum12 and Kerr et al. have recently performed a comparison of EMCS based 

techniques15 to such iterative techniques, suggesting that the former are more effective13.  

The aim of this study was to explore improved methodologies of digitally removing the wax 

contributions to Raman spectra, for the example of oral tissue sections, thereby retaining the 

clinically established tissue processing protocols. The improved methodology is based on a 

recognition that the wax in the tissue has a microcrystalline structure. While this is not a 

significant factor for macro- or unpolarised micro-spectroscopy, as commonly the case for 

FTIR, in the case of Raman microspectroscopy, the microcrystalline domains are randomly 

oriented with respect to the polarisation of the source laser and so contribute inhomogeneously 

to the response, depending on the sampled spot. This inhomogeneity is accounted for by a 

matrix of multiple wax spectra used to digitally process the spectra. The same methodology 

was applied to removal of the glass substrate contributions, illustrating that spectroscopic 

differentiation of tissue regions can be achieved using Raman spectroscopy, free from 

confounding factors of wax and substrate contributions.  

4.3  Materials and Methods 

 

4.3.1  Sample preparation  

Following ethical approval from the Research Ethics Committee, St James’ Hospital, Dublin, 

Ireland, informed consent was obtained from 3 patients who had undergone an oral biopsy 

which was diagnosed as benign oral hyperplasia. Tissue blocks from these patients were 

obtained, for use in the study. 10µm parallel sections were cut from the FFPP tissue blocks and 

mounted on glass slides for Raman spectroscopy.  
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For the chemical dewaxing of tissue sections, routine xylene dewaxing was performed, which 

involves sequentially immersing the FFPP tissue sections in two baths of xylene, two of ethanol 

and one bath of industrial methylated spirits for 5,4,3,2 and 1 minute respectively3. Routine 

Hematoxylin and Eosin (H&E) was performed on parallel tissue sections to aid in the 

delineation of the different regions in the tissues16. 82 component spectra were available from 

an-in house library of spectra of pure biological macromolecules. Matrigel which is a 

solubilised basement membrane preparation, was also trialled as a multicomponent reference 

biological spectrum, at it has previously been employed as such in background correction 

procedures for FTIR 17. Cell components were purchased from Sigma Aldrich. The components 

were placed on calcium fluoride disks prior to Raman spectroscopy measurement. All the 

components were measured in powder form except for DNA, RNA, cytochrome C, stearic acid, 

and collagen which were measured in an aqueous solution. The spectra of the 20 components 

(listed in table 1) selected by the Data Analysis procedure are presented in Supplementary Fig 

1. For the Matrigel measurements; matrigel (Sigma Aldrich) was placed on a calcium fluoride 

disk prior to Raman recording of a matrix of 300 spectral points. 

 

4.3.2  Instrumentation 

A confocal Horiba Jobin Yvon LabRam HR 800 Raman (upright) spectroscopic microscope 

was used to record the spectra of the tissue and biochemical components. The microscope has 

an automated xyz stage and is coupled to a Peltier cooled CCD detector. A 50mW diode laser 

with 532 nm wavelength was used and the grating was set at 600 grooves/mm, while the 

confocal hole was set at 100µm.  For mapping acquisition, the regions to map were selected 

using a 100X objective (MPLAN N Olympus, Japan), which also collected the backscattered 

light. The spectra were acquired over two accumulations, totalling 20 seconds per spectrum. 

The step size was set at 5µm and the spectral range was 400-1800cm-1. The spectra of the cell 
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components were acquired between 10-30 seconds and over 2-3 accumulations depending on 

the quality of the signal from the specific sample.   

 

4.3.3  Data Analysis 

All the data analysis was carried out using Matlab (Mathworks, US) with the PLS-Toolbox 

(Eigenvector Research Inc.) and in-house algorithms. The spectra were preprocessed by first 

smoothing using a Savitsky Golay filter (5th order, 13 points). They were then rubberbanded 

to correct the baseline and vector normalised18. Principal component analysis (PCA), an 

unsupervised multivariate technique, was used to reduce the dimensionality of the data by 

calculating principal components which describe the greatest variance in the dataset19. PCA 

was employed to demonstrate the spectral differentiation of regions of epithelium and 

connective tissue, and the PC loadings were examined to elucidate the biochemical origin of 

the differentiation, as well as contributions of wax or substrate spectral features. 

Classical least squares (CLS) fitting is a supervised technique used to estimate the weighted 

contributions of a set of input spectra to a sample spectrum. It assumes that any complex 

spectrum is the weighted sum of all the base components that contribute to the spectrum as 

described in Equation 120.    

                  Equation 4-1 

where A represents a sample spectrum, a1, a2 and a3 are component spectra and C1, C2 and 

C3 are the weighting coefficients, or concentrations, applied to each component spectrum in 

the summation. If one then considers the case of Raman spectroscopy in which a large number 

of variables are recorded and not all contributing spectral components are known, then there is 
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an error (residual) associated with the estimation which will equate to the difference between 

the sample spectrum and the sum of the weighted spectra: 

     Equation 4-2 

Where Ej is the error associated with the intensity of the jth term (or jth wavenumber). The 

least squares method aims to minimise the error in fitting the sample spectrum, A. The 

minimum error occurs when the differentiation of the sum of squared errors is equal to zero21. 

Differentiation of Equation 4-2 with respect to each of the coefficients results in a set of 

equations which can be solved using simultaneous equations or matrix mathematics. Non 

negatively constrained least squares analysis (NNLS) is a technique similar to that of CLS. 

NNLS is used to estimate the weighted contributions of a set of input spectra in a sample 

spectrum. However, unlike CLS, NNLS introduces non-negative constraints on the weighting 

co-efficients of the input spectra22. 

For this study, in lieu of using an average spectrum of wax or glass, matrices acquired from 

maps of the wax and glass were used. The wax maps were taken from regions in the samples 

with no tissue, while the glass maps were taken from a clean glass slide. The matrices included 

about 300 spectral points and were processed in a similar fashion to the sample spectra. To 

account for spectral drift from day to day, the wax spectra were interpolated to every quarter 

wavenumber. Interpolated spectra were then shifted in both directions in increments of 0.25cm-

1 to a maximum of +/-1cm-1, and then added to the original matrix of wax. Using an in-house 

Matlab algorithm, whereby the Raman spectra of 82 cell components (details in supplementary 

table 1) were iteratively tested to represent the tissue for NNLS and the combination of 

components associated with the least residual error was selected for use in the wax and glass 

subtraction, as listed in Table 4-1 Cell components (Sigma Aldrich) used as inputs for NNLSTable 
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4-1. The wax and glass matrices were then subtracted from the original processed spectra. The 

steps are summarised in Figure 4.1 The NNLS procedure weighted the contributions of each in 

an unsupervised fashion. However, the intention was to optimise the wax removal protocol, 

rather than to model the tissue analytically, based on the relative contributions of the specific 

components. Least Squares analysis, either supervised or unsupervised, has previously been 

used in a number of studies as a spectral analysis protocol23,24. CLS was used to determine the 

wax contribution to the first principal component of the unprocessed, chemically processed and 

digitally processed tissue. 

 

Table 4-1 Cell components (Sigma Aldrich) used as inputs for NNLS 

 

Cell Components 

Proteins Lipids Nucleic 
acids 

Nucleic bases Glycosaminoglycans Other 

Actin 

Collagen 

Cytochrome C 

L-Histidine 

L-Serine 

L-Theronine 

Peroxidase 

Ubiquitin 

Apo E2 

Stearic acid 

P-Choline 

P-Ethanolamine 

RNA 

DNA 

 

Thymidine 

Uracil 

Guanine 

Heparin 

Hyauloronic acid 

Taurin 
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Figure 4.1 Summary of the processing steps for the Raman spectra. 

 

4.4  Results 

Figure 4.2 shows a H&E stained FFPP tissue section, highlighting the epithelium and 

connective tissue regions. Raman maps were taken of the epithelium and connective tissue 

regions in the unprocessed FFPP tissues, the mean and standard deviation of which can be seen 

in Fig 3. Initially, PCA was performed on the tissue spectra without removing the glass and 

wax contributions (Figure 4.4 (A)). The first principal component (PC1), which explained 59% 

of the variance, does not differentiate the two tissue types, and is dominated by wax peaks at 

1063, 1134, 1172, 1296, 1419, 1441 and 1464 cm-1 (Figure 4.4 (B)), which account for 38% of 

the loading. The broad streaking of the datasets indicates a significant variability of these 

contributions across both datasets. The second principal component (PC2), according to which 

the epithelium and connective tissue spectra are differentiated, explained 5% of the variance 

(Fig 4 (C)). The datasets are more tightly clustered with respect to PC2 and the loading has 

strong peaks at 815, 857, 875, 920 and 1245 cm-1. These relate to collagen type 1 which, 

together with fibroblast cells, is the main component of the connective tissue25,26. The loading 

of PC2 also contains contributions from wax, but notably, some of them contribute negatively 
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to the loading (1419, 1438 cm-1), while some contribute positively (1136, 1296 cm-1) indicating 

that the spectrum of the wax itself is not uniform across the tissue section. Glass peaks do not 

appear in the first or second principal component (Figure 4.4 (C)) indicating that the glass 

contribution to the spectra is not significant. Thus, the differentiation, using Raman 

microspectroscopy, of the two clearly biochemically distinct regions of tissue is based on their 

wax content, rather than their biochemical composition, which does not bode well for the 

potential to distinguish differing pathologies in the same tissue regions. 

 

 

 

Figure 4.2 Bright field image of H&E stained FFPP tissue showing the epithelium and 

connective tissue regions. 
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Figure 4.3 Mean Raman spectra of epithelium and connective tissue in the unprocessed tissue 

sample. Shading denotes the standard deviation. 

The chemically dewaxed tissue sections were visually different from the unprocessed tissue 

sections, as they appeared whiter, indicating increased scatter which may be due to increased 

porosity as the wax and some of the lipidic content is removed in the dehydration process. 

Raman analysis of the chemically dewaxed tissue sections showed that, although the wax peaks 

at 1063cm-1 1134cm-1, 1172cm-1, 1296cm-1, 1419cm-1, 1441cm-1  and 1464cm-1 were reduced 

in comparison to the unprocessed tissue, they were not eliminated. Furthermore, the glass 

contribution in the chemically processed FFPP tissues was higher compared to the unprocessed 

tissues (Figure 4.5 (A)). Acquiring the spectra for connective tissue was problematic, as many 

of the spectra were saturated. This may be due to the increased scattering of the tissue after 

dewaxing, a phenomenon which can be reduced in a water immersion measurement protocol27. 

The epithelium appears to retain more wax and has a higher glass contribution in comparison 

to the connective tissue (Figure 4.5 (B)). 
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Figure 4.4 (A) PCA scatter plot of unprocessed epithelium and connective tissue shows a clear 

separation on the second principal component with even distribution along the first principal 

component. (B) The first principal component is dominated by wax spectral peaks. (C) The 

second principal component is mainly collagen type 1 associated peaks on the positive side, 

relating to connective tissue, and protein associated peaks on the negative side, relating to 

epithelium. 

(C) 

(B) (A) 
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Figure 4.5 (A) Mean Raman spectra of epithelium in the unprocessed (black) and chemically 

dewaxed (blue) tissue sample and mean Raman spectrum of glass (red). Compared to the 

unprocessed epithelial tissue, the chemically dewaxed tissue has less wax contribution and 

more glass. (B) Mean Raman spectra of epithelium and connective tissue in chemically 

dewaxed FFPP tissue section. Shading denotes the standard deviation. The black arrows 

highlight peaks from wax. The epithelium has more wax and glass contribution than the 

connective tissue. 

PCA of the epithelium and connective tissue showed that the collagen and protein related peaks 

815, 857, 875, 920 and 1245 cm-1 had been promoted to the first principal component which 

explains 75% of the variance (Figure 4.6). However, although the contribution has been 

significantly reduced, there was still 32% wax contribution in the loading of the first PC, which 

positively discriminates the epithelium. Additionally, the two broad peaks of glass can be 

discerned in the loading of the first PC. This is to be expected, as there was a higher contribution 

of wax and glass in the epithelium.   

 

(B) (A) 
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Figure 4.6 (A) PCA scatter plot of chemically dewaxed epithelium and connective tissue shows 

a separation on the first principal component. (B) On the positive side of the first principal 

component, collagen type 1 related peaks (red arrows) can be distinguished. While some wax 

(black arrows) and protein peaks can be distinguished on the negative side. 

The spectral dataset for the FFPP sections, in which the wax contribution was removed digitally 

(using NNLS), were analysed. Wax removal with a single wax spectrum was found to be 

insufficient, as most of the wax peaks were either over or underestimated. PCA of the matrix 

of wax spectra clearly illustrates the variability of the spectral signature of the nominally single 

chemical constituent, as shown in the scatterplot in Figure 4.7 (A). Notably, rather than 

exhibiting a widely scattered cluster centred about zero, the curved distribution is suggestive 

of an interdependence of PC1 (Figure 4.7 (B)) and PC2 (Figure 4.7 (C)), each indicating the 

degree of variability of the wax spectrum on a microscopic level. Although, macroscopically, 

paraffin is an amorphous wax, on the microscopic scale of the Raman laser spot, it presents a 

microcrystalline structure28, and, as the laser is polarised, the registered spectrum is 

significantly variable, depending on the relative orientation of the laser polarisation and the 

microcrystalline structures. A single or averaged spectrum does not represent the specific 

(B) (A) 
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spectral contributions at any point on the tissue, and therefore a subtraction protocol based on 

such results in incomplete removal of the spectral contributions of the paraffin.  

 

 

Figure 4.7 (A) PCA scatter plot of Wax matrix. (B) The first Principal component which 

explains 85% of the variance (C) The second principal component (D) Comparison of digital 

wax removal in epithelial tissue using a matrix of wax vs a single wax spectrum. Note, although 

the NNLS protocol constrains the weightings co-efficients to be non-negative, the component 

spectra can have negative contributions. 

(B) (A) 

(D) (C) 
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Rather than averaging; a matrix of 300 individual spectra retains the intrinsic variability of the 

wax contributions, each of which is individually weighted in NNLS subtraction. The protocol 

resulted in much more efficient wax removal, as shown in Figure 4.7 (D). The resultant spectra 

of epithelium and connective tissue appear more uniform and have reduced wax contribution 

(Figure 4.8). This was also reflected in the PCA of epithelium and connective tissue, as the 

wax contribution to the loading of the first PC, which accounted for 90% of the variance, was 

reduced to 10%. The collagen and protein related peaks at 815 cm-1, 857, 875, 920 and 1245 

cm-1 can be clearly distinguished in the first PC.  Additionally, the spectra were tightly grouped 

according to PC1 in the PCA scatter plot, suggesting reduced variability within the groups and 

greater uniformity (Figure 4.9), although considerable point to point sample variability is 

evident by the spread according to PC2, particularly for the case of the connective tissue. 

 

Figure 4.8 Mean Raman spectra of epithelial and connective tissue after digital wax removal. 

Shading denotes the standard deviation. 
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Figure 4.9 (A) PCA scatter plot of epithelium and connective tissue after digital wax removal 

using the cell components as a model. Epithelium is made up of tightly packed cells whereas 

connective tissue contains collagen fibrils, fibroblasts, blood vessels and oil ducts leading to a 

greater variability in the latter according to PC2 (B) First PC after digital wax removal. Wax 

contribution, black arrows, is reduced. The red arrows refer to 815, 857, 875, 920 and 1245 

cm-1 which are collagen related peaks. 

For the glass removal, NNLS was also used. In a similar fashion to the wax removal, the glass 

contribution was reduced without affecting the integrity of the spectra (Figure 4.10). However, 

in contrast to the case of wax, where the use of a matrix conferred a marked improvement, 

there was no real difference between the use of a glass matrix or single spectrum in glass 

removal, indicating that the glass spectrum is more spatially homogenous (Figure 4.10 (B)). 

This is confirmed by the spectra being equally dispersed around the PC1 and PC2 axes, and 

showing no systematic variability (Figure 4.10 (C)). 

(B) (A) 
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Figure 4.10 (A) Mean Raman spectra of chemically dewaxed epithelial tissue before and after 

digital glass removal. (B) Mean Raman spectra of chemically dewaxed epithelial tissue with 

glass removal using a matrix and a single spectrum. (C) PCA scatter plot of the glass matrix. 

 

4.5  Conclusions 

One of the advantages of using vibrational spectroscopy techniques, such as Raman 

spectroscopy, to analyse biological tissues is that they require minimal sample preparation. In 

this study, chemical dewaxing, which increases the processing time and alters the composition 

of the tissue, has been substituted by an improved protocol for digital dewaxing. The demand 

(B) (A) 

(C) 



92 

 

for an improved protocol for spectroscopic analysis of the FFPP tissue sections had been 

previously highlighted29. As demonstrated in Figure 4.4 the contributions from the wax 

significantly influence spectral analysis, which establishes the importance of subtracting it. 

From the results, it is clear that this method of digital removal greatly reduces the spectral 

contribution of wax, as the variance from the wax contribution to the first principal component 

is reduced from 38% and 32% in unprocessed and chemically processed samples respectively 

to 10% in the digitally dewaxed samples. Furthermore, the chemically dewaxed FFPP tissue 

samples had more glass background in the epithelium and more scattering background in the 

connective tissue compared to their unprocessed counterparts. This is most likely due to 

refractive index matching between the wax and glass resulting in reduced scattering of the 

incident light and Raman bands themselves in the unprocessed samples. The superiority of 

digital versus chemical wax removal has also previously been reported in FTIR spectroscopy, 

whereby modified extended multiplicative signal correction (EMSC) was used for the wax 

removal30. Because of the variability between, and within, different types of tissue, while using 

a single mean cellular spectrum as a model or reference, such as has been previously reported 

for EMSC, is effective for cytology samples, it underestimates the complexity of 

histopathological tissue samples which can include epithelium and connective tissue, as well 

as different types of pathology13. Similarly, both EMSC and Independent component analysis 

rely on a definitive model of wax (such as a three source model8) which does not take into 

account the variability of the paraffin wax spectrum, accentuated in Raman spectroscopy due 

the polarisation dependence of commonly employed instruments. The use of multiple spectral 

components for the reference and wax contributions provides flexibility to account for the 

observed point to point variations of both. 
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This study is the first to utilize cell components and a wax matrix in the digital removal 

of wax from FFPP tissue sections. As the wax spectrum is composed of a number of 

peaks, and the ratio between these peaks is variable from one wax spectrum to another; 

using a matrix of wax captures this variability which therefore reduces the residual error 

in the NNLS model and results in improved estimated spectra. Paraffin wax is made up 

of linear hydrocarbon molecules which can form crystallites on a microscopic scale21. 

As these can be randomly oriented with respect to the laser polarisation, their 

contribution to the Raman spectrum of the tissue can be highly spatially variable. 

Polarisation dependent studies are frequently employed to study the orientation of, for 

example, molecules in liquid crystals31  and have been employed to study the 

constituents of bone32. A study conducted, exploiting the polarisation dependence in 

biological tissues, has shown that in probing the deeper layers of the tissues the 

backscattered light has a greater chance of being depolarised by diffusion compared to 

the more superficial layers33. 

In contrast, glass has two broad peaks in the fingerprint region. Almost no difference 

was observed in the subtraction of glass using a single glass spectrum and using a glass 

matrix. However, this may be due to the fact that the glass contribution was not high in 

these samples and more or less uniform across the sample, so the matrix subtraction may 

be more effective in samples which show greater variability. 

The cell components were selected from a pool of 82 components based on their fit of 

the NNLS model and, similar to the wax matrix, they confer a significant improvement 

on the wax subtraction. Choosing whether to use a single, commercially available 

component such as Matrigel or collections of biomolecules as representation of tissue 

constituents can depend on the application and the expected variability of the samples 

under investigation. For the application demonstrated here, the cell components gave 
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superior performance in the removal of wax contributions to the spectra as the residual 

error was reduced from 18% when Matrigel was used in the NNLS correction to 8% 

when the cell components were used. A further improvement in the efficacy of removal 

could potentially be achieved by a more representative choice of cellular constituent 

spectra, targeted at specific tissue types. 

By interpolating the wax spectra to every quarter wavenumber and shifting in both 

directions, the small spectral drifts from day to day calibration were accounted for 

resulting in a more accurate wax removal. 

For a diagnostic technique to be translatable into routine clinical use it has to be 

affordable, and reliable. Effective digital subtraction of glass contribution from spectra 

means that glass could be used for FFPP or cytological samples, making vibrational 

spectroscopy techniques more affordable. The digital subtraction of wax using a matrix, 

decreases the processing time and involves less modification of the samples resulting in 

more reliable results.  
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Chapter 5: Raman spectroscopy for the identification of dysplastic 

changes in FFPP oral tissues (an intra-patient study) 

 

5.1  Introduction 

 

OSCC is commonly preceded by a range of cell and tissue alterations, described in Table 5-2, 

which are similar to the changes seen in carcinoma, but restricted to the surface epithelium. 

These changes, termed dysplasia, have been classified by the World Health Organisation 

(WHO), according to their severity, as1; 

Table 5-1 WHO classification of oral dysplasia 

Degree of dysplasia Features 

Mild dysplasia Architectural (tissue) changes limited to the 

lower third of the epithelium with minimum 

cellular atypia 

Moderate dysplasia Architectural changes extend to the middle 

third of the epithelium with cellular atypia 

Severe dysplasia Architectural changes that cover more than 

two thirds of the epithelium with marked 

cellular atypia 

Carcinoma in situ Architectural changes that extend to the full 

thickness of the epithelium with marked 

cellular atypia. The difference between 
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carcinoma in situ and OSCC is the presence 

of invasion in OSCC. 

 

The WHO classification system is the most widely used, although other classification systems 

have been devised, such as the one by Smith and Pindborg which classifies dysplasia as; none, 

present, or marked2. The oral intraepithelial neoplasia (OIN) System classifies dysplasia as 

none, OIN 1 and 2 which correspond to mild and moderate dysplasia respectively and OIN 3 

which corresponds to severe and/or carcinoma in situ3. 

Table 5-2 Cellular and tissue features of oral epithelial dysplasia4 

Cellular changes Tissue changes 

Increased nuclear/cytoplasmic ratio Loss of polarity of the basal cells 

Increased number and size of nucleoli Drop shaped rete ridges 

Cellular pleomorphism (variations in size and 

shape) 

Disordered maturation from basal to squamous 

cells 

Nuclear pleomorphism Increased cellular density 

Increased number of mitotic figures Basal cell hyperplasia 

Abnormal mitotic figures (abnormal in shape 

or location) 

Dyskeratosis (premature keratinization and 

keratin pearls deep in epithelium) 

Hyperchromatic nuclei Loss of intercellular adherence 
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However, as mentioned in section 1.3.5 , histopathological classification is prone to inter- and 

intra- observer errors and the progression of dysplasia is not a linear process, so the degree of 

dysplasia is not necessarily a predictor for malignant transformation5,6. A previous ex-vivo 

study used Raman spectroscopy to classify oral lesions as normal, benign, premalignant and 

OSCC7. An in-vivo study was able to discriminate between normal, premalignant and 

malignant oral mucosa with an accuracy of 85%8.  Another in-vivo study discriminating 

between premalignant lesions, normal mucosa and the mucosa of habitual tobacco users could 

classify the premalignant lesions with an accuracy of 80% using LOOCV and only 50% using 

an independent test set9. However, none of these studies took into account the presence or 

degree of dysplasia in the premalignant lesions.  

The aim of the current study is to use Raman spectroscopy to discriminate between mild, 

moderate and severe dysplasia in FFPP tissues from biopsies of 4 patients who had undergone 

multiple biopsies over time. Studying the range and progression of dysplasia in the same 

patients reduces the differences due to genetic variability and can help understand the 

progression of the disease. Two methods were trailed for classification purposes, PCA-LDA 

which has been described in section 3.3.5 and partial least squares regression discriminate 

analysis (PLSDA). Data for progression in one patient is shown below.  

5.2  Methodology 

5.2.1  Sample preparation 

Ethical approval from the Research Ethics Committee, St James’ Hospital, Dublin, Ireland, and 

informed consent was obtained from a patient who had undergone multiple oral biopsies. 10µm 

sections were cut from the FFPP biopsies and mounted on glass slides. On the slide, the regions 

with the different pathologies (such as mild or moderate dysplasia) were marked by the 

pathologist. 
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5.2.2  Instrumentation 

A confocal Horiba Jobin Yvon LabRam HR 800 Raman (upright) spectroscopic microscope 

with a 532 nm wavelength laser was used. The properties of the spectroscope and mapping 

details were described in chapter 4, section 4.3.3 . Two maps were taken for each pathology, 

one of epithelium and one of connective tissue. Each consisted of 200 spectral points taken at 

10µm intervals.  

5.2.3  Data Analysis 

All the data analysis was carried out using Matlab (Mathworks, US) with the PLS-Toolbox 

(Eigenvector Research Inc.) and in-house algorithms. Two quality control steps were 

employed. In the first, before processing, spectra with excess scatter/background were 

eliminated by setting a maximum intensity. Processing involved smoothing with a Savitsky 

Golay filter (5th order, 13 points) then correcting the baseline with a rubberband function, and 

finally vector normalisation. The second quality control step involved removing the spectra 

with excess wax and low biological content. This was achieved using k-means clustering which 

is used to partition data into groups such that variation is minimized within groups but 

maximized between groups. Most of the current versions are based on the algorithm developed 

by Hartigan and Wong in 197910. It assigns data points to their closest centre points which are 

updated (changed) with each iteration until optimal convergence is met10. The next step was 

subtracting the wax and glass backgrounds; which was done using the NNLS method described 

in section4.3.3 . Figure 5.1illustrates the spectral preprocessing steps. 

PCA of the data was performed to elucidate whether there is discrimination between the 

different pathologies and the basis for that discrimination. 

PCA-LDA: Information from the first 10 principal components was used to build an LDA 

model with LOOCV.  
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PLSDA: mean centering (dividing all the variables by the mean) was performed on the 

processed spectra before PLSDA modelling. This serves to adjust for the variance between 

large and small unit variables, leaving only the relevant variance (that between the samples) 

for analysis. Partial least squares regression (PLSR) is a generalization of multiple linear 

regression (MLR) in which a set of dependent variables y is regressed against independent 

predictor variables X11. PLSDA is a supervised form of multivariate analysis which works as 

a linear classifier that aims to separate the data into groups using a hyperplane, similar to LDA; 

it aims to maximise the variance between groups and minimise the variance within groups. It 

is based on PLSR. Whereas, in classic PLSR, y is a matrix of continuous variables, in PLSDA 

it is categorical and used to assign the observations into classes. The loadings of the 

discriminate hyperplanes or latent variables (LV)s can be plotted to give more information on 

the source of the variance12. The data was divided into y classes from 1 to 3, corresponding to 

mild, moderate and severe dysplasia. 
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Figure 5.1 Spectral processing steps (A) Raw spectra. (B) Spectra after first quality control 

step, smoothing, baseline correction and normalization. (C) Spectra after k-means grouping; 

the spectra in red have high wax and low biological content while those in blue have higher 

biological content and less wax. (D) Spectra after glass and wax subtraction. 

 

 

 

 

 

(B) (A) 

(D) (C) 
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Table 5-3 Raman peak assignments, adapted from Movasaghi et al.13
. 

Wavenumber (cm-1) Assignment 

484-90 Glycogen 

599/600 Nucleotide conformation 

666 G,T (ring breathing modes in DNA bases) 

752 Symmetric breathing mode of tryptophan 

782 DNA 

811/12 RNA O-P-O stretch 

814 C-C stretching (collagen assignment) 

838 Deformative vibrations of amine groups  

855 Ring breathing in tyrosine/C-C stretching in proline 

919 C-C stretch of Proline ring/ glucose lactic acid C-C, proline 

ring (collagen assignment) 

934/935 Protein/C-C backbone (collagen assignment) 

937/8 Proline, hydroxyproline (C-C) skeletal of collagen backbone 

1001/2 Phenylalanine ring breathing 

1030-34 Phenylalanine of collagen 

1128/9 Skeletal C-C stretch in lipids 

1131 Fatty acid 

1237 Amide III 

1245-8 Amide III of collagen 

1265 Amide III 

1278 Proteins including collagen I 

1285 Differences in collagen 

1315-17 Guanine 

1333 Guanine 

1336 Polynucleotide chain (DNA purine bases) 

1368 Guanine TRP protein, porphrin, lipids 

1373 T,A,G (ring breathing modes of the DNA/RNA bases) 

1437 CH2 deformation (lipid) 

1441 Wax 

1449/50 C-H vibration lipids 

1460 CH2/CH3 deformation in Lipids 

1554 Amide II 

1572-78 Guanine adenine 

1650 Amide I 

1652-55 Lipid C=C (lipids) / Amide I 

1666-8 Protein / collagen 

1674 C=C stretch in cholesterol 

1700-50 Amino acids aspartic and glutamic acid 
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5.3  Results 

 

According to their mean spectra, mild, moderate and severe dysplasia appear similar (Figure 

5.2), which is why multivariate methods are employed to better observe the differences. 

 

 

 Figure 5.2 Mean Raman spectra of mild, moderate and severely dysplastic epithelial tissue. 

Shading denotes standard deviation. 

PCA showed a good discrimination between mild and severe dysplasia according to PC1 

(Figure 5.3 (A) (B)). Negative peaks in PC1 relating to the mild dysplasia are attributed to lipid 

(1128) and protein (935, 1652 cm-1, 1462 cm-1) contributions (Figure 5.3 (B)). On the positive 

side of the PC loading, relating to severe dysplasia, the most prominent peaks are attributed to 

nucleic acids (666, 1375 cm-1) and protein (1555, 1709 cm-1). Similar results were obtained in 

discriminating moderate and severe dysplasia (Figure 5.3 (C) (D)). Negative peaks in PC1 at 
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666, 1375 cm-1, 1555, and 1709 cm-1 relate to the severely dysplastic epithelium. Positive peaks 

at 715, 934, 1129, 1296, 1445 and 1655 cm-1 relate to the moderately dysplastic epithelium. 

The peak at 1296 cm-1 is a paraffin wax feature whose variance, although reduced, is not 

eliminated. No discrimination was found between mild and moderate dysplasia in PCA (Figure 

5.3 (E) (F)). This suggests that lipids and proteins are more prominent in the mildly and 

moderately dysplastic tissue, while nucleic acids and proteins are more prominent in the 

severely dysplastic tissue. 

According to their mean spectra, differences between mild / moderate and severe connective 

tissue are observable, especially in the regions 800-1000 cm-1 and 1200-1400 cm-1 (Figure 5.4). 
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Figure 5.3 Results of PCA in epithelium (A) PCA scatter plot of mild vs severe dysplasia (B) 

Loading of PC1 which explains 42% of the variance (C) PCA scatter plot of moderate vs severe 

dysplasia (D) PC1 which explains 42% of the variance (E) PCA scatter plot of mild vs moderate 

dysplasia (F) PC1 which explains 31% of the variance. 

 

(A) (B) 

(C) (D) 

(E) (F) 
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Figure 5.4 Mean Raman spectra of Mild, Moderate and severely dysplastic connective tissue. 

Shading denotes standard deviation. 

 

A good discrimination between mild and severly dysplastic connective tissue was 

demonstrated with PCA (Figure 5.5 (A)). The negative side of PC1, which relates to the mildy 

dysplastic connective tissue, was dominated by collagen related peaks at (814, 856, 939, 1034, 

1243 and 1667 cm-1), while, the positive side, relating to severe dysplasia, was dominated by 

nucleic acid contributions (1314, 1335 and 1365 cm-1) (Figure 5.5 (B)). Similar results were 

found on discriminating moderate and severe dysplasia (Figure 5.5 (C)(D)). PCA showed no 

discrimination between the mild and moderately dysplastic connective tissue. 
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Figure 5.5 Results of PCA in connective tissue (A) PCA scatter plot of mild vs severe dysplasia 

(B) Loading of PC1 which explains 75% of the variance (C) PCA scatter plot of moderate vs 

severe dysplasia (D) PC1 which explains 73% of the variance (E) PCA scatter plot of mild vs 

moderate dysplasia (F) PC1 which explains 41% of the variance.  

(A) (B) 

(C) (D) 

(E) (F) 
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Table 5-4 summarises the sensitivity and specificity values obtained from the PCA-LDA 

classification with LOOCV. For both epithelium and connective tissue, severe dysplasia has 

the highest accuracy of discrimination in Raman followed by mild then moderate dysplasia. 

The discrimination in epithelium is better overall than that in connective tissue.  Table 5-4 

displays the sensitivity and specificity values obtained from the PLSDA classification with 

LOOCV. It follows the same trend as the PCA-LDA classification although the sensitivity and 

specificity values are higher overall. 

 

Table 5-4 Sensitivity and specificity values obtained for the PCA-LDA classification model  

 Epithelium Connective Tissue 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

Severe 100 99 98 98 

Moderate 88 95 63 89 

Mild 92 95 79 82 

 

 

Table 5-5 Sensitivity and specificity values obtained for the PLSDA classification model  

 Epithelium Connective Tissue 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

Severe 100 99 98 98 

Moderate 96 95 78 84 

Mild 97 95 91 71 

 

 

5.4  Discussion 

Discriminating between low grade dysplasia (mild and moderate) and high grade (severe and 

CIS) is important, as it determines both the management course and patient prognosis. High 

grade dysplasia have a higher risk of transformation and thus are treated more radically, while 

low grade dysplasia, depending on location and extent, may just be monitored. In this study, of 

interest are the changes taking place in epithelium and connective tissue during mild, moderate 
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and severe dysplasia, as identified by Raman spectroscopy. The choice to study each part of 

the tissue (epithelium and connective tissue) independently was made in order to better 

understand/identify the changes taking place in each. While it was expected to find 

discrimination between severe, mild and moderate in the epithelium, as the epithelial cells are 

undergoing morphological and biochemical changes, significant differences in connective 

tissue between the pathologies was not expected.   

In the epithelium, the most prominent feature in the severely dysplastic epithelium was an 

increase in the nucleic acid related peak at 1375 cm-1 and a reduction in the peaks at 1128 and 

1462 cm-1, which relate to skeletal C-C stretch and CH2/CH3 deformation in lipids, 

respectively, in comparison to the mild and moderately dysplastic tissue. This has previously 

been reported in relation to OSCC14 and can be explained by the higher replication rate and the 

relative increase in nuclear to cytoplasmic ratio in the more severe dysplasia. The spectral 

profile of the tissues in relation to proteins, however, is more complex, as peaks at 934 and 

1650 cm-1, which relate to protein C-C backbone and Amide I/lipids respectively, were higher 

in the mild and moderately dysplastic epithelium compared to severely dysplastic. Similar 

results were found by Cals et al. when comparing OSCC to surrounding normal squamous 

epithelium, as these peaks were higher in the normal epithelium15. On the other hand, severely 

dysplastic epithelium had higher peaks at 752 cm-1 (tryptophan) and 1555 cm-1 (Amide II). 

This suggests fewer proteins in the α helix conformation16 in severely dysplastic epithelium, 

which may be due to disordered protein structure resulting from weakened bonds or a change 

in the amino acid microenvironment17. Increased Amide II may be due to upregulation of some 

proteins in the dysplastic progression, while increased tryptophan, an important amino acid in 

metabolic activities, has been reported previously in malignant cells17-19.  

The most significant change in connective tissue is in the collagen related bands (Table 5-3), 

which is reduced in the more severely dysplastic tissue. This has previously been described in 
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gastric dysplasia and ascribed to changes in matrix metalloproteinases which cleave collagen20. 

It may also be relative to an increase in cellularity in the severely dysplastic tissue. Mild and 

moderately dysplastic tissue did not show a good discrimination on PCA which is not very 

surprising as the categories are sometimes confused by the pathologists especially in borderline 

cases. More supervised classifiers, in this case LDA, and PLSDA were required to find the 

variance.  

Overall, these results suggest that Raman spectroscopy can identify differences in mild, 

moderate, and severely dysplastic tissue which relate to relative changes in nucleic acid, lipid 

and protein content. By analysing these changes in a single patient, any differences due to 

genetic variability have been reduced. In Figure 5.6 the loading of LV-1 from the PLSDA of 

epithelium in each of the 4 patients (A-D) shows the progression from mild through moderate 

and severe. From the loadings it is apparent that while A and B have similar signatures, C and 

D are different.  

 

Figure 5.6 Loading of LV-1 from the PLSDA model for 4 patients A-D 

(C) (D) 

(B) (A) 
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This suggests that there may be some interpatient variability when it comes to progression from 

mild, through moderate to severe dysplasia. Hence doing an interpatient study, where the 

patients are grouped according to class (pathology) can be more informative, this is presented 

in chapter 6. 
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Chapter 6: Raman spectroscopy for the identification of dysplastic 

and malignant FFPP oral tissues (inter-patient study). 

 

6.1  Introduction 

 

In this study, the work from the previous chapter is expanded on by studying the differences 

between benign, mild, moderate, severely dysplastic and OSCC FFPP tissue in a cohort of 

patients. The archival FFPP patient samples were obtained from St James’ Hospital, Dublin. 

The benign category was made up of benign lesions, such as fibroepithelial polyp, squamous 

papilloma and benign hyperplasia. Fibroepithelial polyps are reactive lesions with an 

underlying aetiology of trauma or irritation. They are characterised by a small growth which 

can occur anywhere in the oral cavity, although they are most commonly found in the gingiva, 

tongue and lip1. Similarly, squamous papillomas are exophytic asymptomatic growths, 

although their pathogenesis is assumed to be viral, as they have been tentatively linked to HPV 

types 6 and 112. Hyperplastic lesions are benign lesions that are keratotic but show no cellular 

atypia. Raman spectroscopic measurements were taken of the tissues and partial least squares 

regression discriminate analysis (PLSDA) was used to classify the tissue samples into classes 

of benign, mild, moderate, severe dysplasia and OSCC. PLSDA was chosen over other 

multivariate techniques, such as PCA-LDA and support vector machine (SVM), for a number 

of reasons. Firstly, the results of chapter 5 revealed that it was better at discriminating between 

mild, moderate and severe oral dysplasia. Furthermore,  unlike LDA, it can analyse data with 

numerous x variables, and it works well with data that is noisy or has highly collinear x 

variables3. A study comparing PCA-LDA and PLSDA models for colorectal cancer diagnosis 

found that PLSDA could discriminate between normal and cancerous tissue with a higher 
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accuracy than PCA-LDA4. PLSDA is not without its limitations, however, as it can tend to 

overfit the model, meaning it can classify training data well but not new data5. This can be 

overcome by using a validation data set or, as in this case where there are a small number of 

samples, by using cross validation. 

6.2  Methodology 

6.2.1  Sample Preparation 

 

Archival oral FFPP tissues for each cohort were obtained following ethical approval from St 

James’ Hospital Ethics Committee and informed written consent from patients. In total, 57 

patients were included, from which 72 pathologies were identified. 17 were benign lesions, 20 

mildly dysplastic, 20 moderately dysplastic, 10 severely dysplastic and 5 invasive SCC. The 

H&E stained sections from the different pathologies were examined by a consultant oral and 

maxillofacial pathologist in St James’ Hospital, who then edited the images to mark the areas 

of pathology (Figure 6.1). The FFPP tissue blocks and corresponding images were then taken 

to the RESC laboratory where10µm sections were cut from the FFPP tissues and mounted on 

glass slides. One of the sections from each sample was dewaxed, stained with haematoxylin 

and eosin, and a parallel unstained section (which was not dewaxed) was used for Raman 

spectroscopy measurement. 
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Figure 6.1 Representative H&E images showing the regions of dysplasia marked by the 

pathologist. 

 

6.2.2  Instrumentation 

 

A confocal Horiba Jobin Yvon LabRam HR 800 Raman (upright) spectroscopic microscope 

with a 532 nm laser was used. The instrument and mapping properties are described in section 

4.3.2. For every pathology section, 200 spectral points were taken from epithelium and the 

same from connective tissue at 10 µm intervals. 
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6.2.3  Data Analysis 

 

All the data analysis was carried out using Matlab (Mathworks, US) with the PLS-Toolbox 

(Eigenvector Research Inc.) and in-house algorithms. The spectral pre-processing steps are 

described in section 5.2.3.  

PLSDA with leave one patient out cross validation (LOPOCV) was used to build the classifier. 

LOPOCV is similar to LOOCV except, in this instance, in place of leaving one spectrum out, 

one patient is left out so that all the spectra of the patient are left out and predicted.  

Receiver operating characteristic (ROC) curves were graphed for each class. ROCs are a plot 

of the true positive rate (sensitivity) against the false positive rate (1-specificity) over a 

continuous range (from 0 to 1) of cut-points of a classifier. Each point on the ROC curve 

represents a sensitivity/specificity pair corresponding to a particular decision threshold. 

Accuracy is measured by the area under the ROC curve (AUC), so that, the closer the curve 

tends to the left and top borders, the more accurate the classifier. Conversely, the closer the 

curve is to the diagonal (baseline), the higher the misclassification rate and the lower the 

accuracy6.The baseline is at 0.5, while a perfect classifier would have an AUC of 1.In general, 

an AUC of 0.5 is considered to have no discrimination, while 0.7 to 0.8 is considered 

acceptable. 0.8 to 0.9 is considered excellent while over 0.9 is considered outstanding7. A 

schematic of an ROC curve is shown in Figure 6.2. 
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Figure 6.2 Schematic of an ROC curve. Sensitivity is plot on the y axis and 1-specificity on the 

x axis. Accuracy is increased as the curve goes towards the left and top borders (increasing the 

AUC) and decreases as the curve goes inwards towards the baseline (decreasing the AUC). 

6.3  Results 

 

6.3.1  Epithelial tissue 

 

The mean spectra of the benign, mild, moderate and malignant epithelial tissues all appear 

similar (Figure 6.3), demonstrating the need for more sophisticated multivariate analytical 

techniques, such as PLSDA, to differentiate the tissue pathologies based on the spectral 

signatures of their differing biochemical constituents.  
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Figure 6.3 Mean Raman spectra of benign, mild, moderate and severely dysplastic epithelial 

tissue. The spectra have been offset for clarity and shading denotes standard deviation. 

The results of the PLSDA classification do not show a very good discrimination across the 

groups (Table 6-1). The estimated ROC curves are based on predicted class for each spectrum. 

Sensitivity is calculated from the fraction of in class spectra while the specificity is calculated 

from the fraction not in class for a given threshold. The cross validated ROC curves follow the 

same method except the class predicted when the spectra are left out during cross validation is 

used. From the ROC curves (Figure 6.4) it appears that the classifier has the highest accuracy 

for SCC (AUC=0.71) and lowest for mildly dysplastic epithelium (AUC=0.46). 
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Table 6-1 Sensitivity and specificity values obtained from PLSDA classification with 

LOPOCV of epithelial tissue.  

  Benign Mild  Moderate  Severe OSCC 

Sensitivity (%) 74 67 39 69 65 

Specificity (%) 49 38 86 57 76 

 

To assess whether it affects the classification, different combinations of the pathologies were 

assessed. Combining the severely dysplastic and SCC group did not have much effect on the 

overall model (Table 6-2). However, combining the mild and moderate groups leads to an 

improved classification in the other groups (benign, severe and SCC), but a low classification 

in the mild/moderate group (Table 6-3). 

Table 6-2 PLSDA classification combining the severe and SCC groups 

  Benign Mild  Moderate  Severe/SCC 

Sensitivity (%) 75 67 39 66 

Specificity (%) 49 38 86 75 

 

Table 6-3 PLSDA classification combining the mild and moderate groups 

  Benign Mild/Moderate Severe SCC 

Sensitivity (%) 77 38 74 71 

Specificity (%) 49 86 52 72 
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Figure 6.4 ROC curves for (A) Benign (B) Mild (C) Moderate (D) Severe and (E) SCC 

epithelial tisssues. The blue line is the estimated and the green the cross validated ROC curve. 

AUC is a measure of the accuracy of the classifier, (C) is the calibrated and (CV) is the 

crossvalidated AUC. The red dot(s) represents the calculated sensitivity and 1-specificty on the 

y and x axis respectively. So for eaxample for (A) sensitivity is 0.74 (CV) and 1-specificity = 

(1-0.49)=0.51. 

(E) 

(C) (D) 

(A) (B) 
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To better elucidate the variability between the different classes, their scores on the first latent 

variable (LV-1) were plotted. This shows a large intra-class spread, the greatest spread being 

observed in the moderate group and the smallest in the SCC (Figure 6.5). 

 

Figure 6.5 A plot of the PLSDA scores according to LV-1 

 

Plotting the means and standard deviations of the scores on LV-1 (Figure 6.6) does not show 

an obvious progression, but it can be assumed from their means that the benign and mild are 

mostly negative for LV-1 while moderate, severe and SCC are mostly positive. 
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Figure 6.6 Mean and standard deviation of PLSDA scores of LV-1 

 

LV-1 (Figure 6.7), which is reponsible for 26.23% of the variance, has positive peaks at 783, 

1371 and 1576 cm-1, which relate to nucleic acids (Table 5-3). Negative peaks are observed at 

934, and 1282 cm-1 (relating to protein/collagen) and the amide 1 band at 1650 cm-1.  
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Figure 6.7 LV-1 of the PLSDA model which included all the classes 

 

 

 Connective tissue 

 

From their mean spectra, (Figure 6.8) the most notable difference between benign, mild, 

moderate, severe and SCC connective tissue appears to be in the regions (800-1000 cm-1) and 

(1200-1400 cm-1), similar to the findings of chapter 5 (Figure 5.5). 
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Figure 6.8 Mean Raman spectra of benign, mild, moderate severely dysplastic and SCC 

connective tissue. The spectra have been offset for clarity and shading denotes standard 

deviation. 

 

The results of the PLSDA classification (Table 6-4) show high sensitivities for benign and SCC 

compared to the dysplasia classes. However, the specificity for benign was low, indicating a 

high false positive rate. The classifier has the best accuracy among the classes for SCC 

according to the ROC curve (Figure 6.9). 
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Table 6-4 Sensitivity and specificity values obtained from PLSDA classification with 

LOPOCV of connective tissue 

  Benign Mild  Moderate  Severe SCC 

Sensitivity (%) 81 67 42 59 88 

Specificity (%) 44 46 61 67 72 

 

Plotting the scores of LV-1 shows the greatest intra-class spread in the mild group and the 

smallest in the SCC (Figure 6.10). Plotting the means and standard deviations of the scores of 

LV-1 (Figure 6.11) shows a progression from benign to SCC on LV-1. The means of the benign 

and mild are negative in LV-1 while those of moderate, severe and SCC are positive.  

Positive peaks of LV-1 can be observed at 1005, 1131, 1218, 1337, 1435 and 1581 cm-1 LV-

1(Figure 6.12). The peaks at 1005 and 1581 cm-1 relate to phenylalanine, while those at 1131, 

1218 and 1435 cm-1 relate to lipids and that at 1337 cm-1 relates to nucleic acids. On the other 

hand, negative peaks can be observed; at 811, 855, 938, 1241, 1453 and 1672 cm-1. The peaks 

at (855, 938 and 1241 cm-1) relate to collagen while 1453 and 1672 relate to lipid contributions. 
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Figure 6.9 ROC curves for (A) Benign (B) Mild (C) Moderate (D) Severe and (E) SCC 

connective tisssues. The blue line is the estimated and the green is the cross validated ROC 

curve. AUC is a measure of the accuracy of the classifier. 
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Figure 6.10 A plot of the PLSDA scores of LV-1 

 

 

 

Figure 6.11 Mean and standard deviation of PLSDA scores of LV-1 
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Figure 6.12 Loading of LV-1 of the PLSDA model which included all the classes 

 

6.4  Discussion 

 

The use of benign lesions as a control category was for logistical reasons (as it is difficult to 

get archival FFPP samples of patients with normal pathology). Besides, since clinicians do not 

usually biopsy normal looking mucosa, it is important to differentiate dysplasia or cancer from 

benign lesions. It was elected not to use the normal areas of dysplastic or SCC tissues because 

previous studies have shown that the cells at the periphery of a malignant lesion may be subject 

to cancer field effects, meaning that they appear histologically normal but have undergone 

molecular changes8,9. LOOCV can tend to overfit the model and overestimate the accuracy of 
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the classifier. Hence LOPOCV, which is better at evaluating classifier performance on new 

samples, was used. 

Results from the PLSDA show a similar trend to the results of chapter 5, indicating increasing 

nucleic acid contributions and lower protein and lipid contributions as dysplasia progresses in 

the epithelium. According to the ROC curves, the accuracy of the classifier was highest for the 

SCC class (AUC=0.71), intermediate (~0.6 AUC) for the benign, moderate and severe classes, 

and lowest (AUC=0.46) for the mild. This is likely due to the fact that the mild is not a very 

well defined category for the classifier leading it to misclassify with benign and moderate. 

Moreover, the fact that combining the mild and moderate categories improves the classification 

in the other categories reinforces that fact that there is considerable overlap between these 

categories. The moderate group had the lowest sensitivity in the PLSDA classification and the 

greatest spread in LV-1, suggesting a higher variability in this group compared to the others.  

In connective tissue, nucleic acid peaks were more prominent with progressive dysplasia and 

collagen peaks were less prominent. Connective tissue associated with SCC could be classified 

from that associated with dysplasia and benign with a high sensitivity and specificity. This is 

to be expected as, due to epithelial mesenchymal transition10; the boundary between epithelium 

and connective tissue in SCC is often lost as a result of islands of epithelium invading the 

connective tissue11. 

When building a machine learning system or classifier, it is expected to be better than or match 

the current state of the art, which in this case is histopathological diagnosis. The findings of 

this study do not fulfil this standard which may be due to a number of factors. Firstly, the small 

sample size makes it harder to build a representative model12, especially when the differences 

between categories is small, as in this case with different degrees of dysplasia. Secondly, this 

model is based on histopathological diagnosis but, as discussed in sections 1.3.5 and 5.1 ; 
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morphological changes are not necessarily predictive of malignant transformation13. In fact, it 

is now emerging that genetic alterations such as abnormalities in the number of chromosomes 

(aneuploidy), losses at 3p, 9p and 17p and mutations in the P-53 gene can be a more important 

prognostic marker14,15. Finally, factors other than the degree of dysplasia can have an influence 

on the Raman spectrum and hence classification. These factors are investigated in chapter 7.  
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Chapter 7: Influence of patient factors and clinical features on 

Raman classification 

7.1   Introduction 

 

Following on from the work of chapter 6, patient factors and clinical features that may have an 

influence on the classification using Raman spectroscopy are explored. Tobacco smoke 

contains carcinogens and has a well-studied connection with the development of both 

dysplastic1 and malignant2 oral lesions, as has been discussed in detail in section 1.2.3.1 . 

Similarly, alcohol consumption has been associated with the development of both oral 

dysplasia1 and cancer2, as detailed in section 1.2.3.2 . The incidence of oral cancer is higher in 

males than females3,4, which is likely due to habits such as smoking and alcohol consumption 

rather than a genetic predisposition, although the prognosis is the same5. Gender was not found 

to have an association with the development of oral dysplastic lesions1. Further variability can 

arise because of the different sites of anatomical origin of the lesion. Oral cancer refers to any 

cancer in the oral cavity proper which includes; the tongue, labial and buccal mucosa, hard and 

soft palate, gingiva, alveolar ridges and floor of the mouth. These areas vary in degree of 

keratinization, vascularity and lymphatic drainage5 and thus anatomic site may also influence 

the spectroscopic signatures upon which a classification is to be based. As the interpatient study 

was based on a heterogeneous group of patients with different gender, age, habits, medical 

histories and lesion clinical features, the aim of this chapter was to discern whether these factors 

have an influence on the classification using Raman spectroscopy.   
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7.2   Methodology 

 

7.2.1  Sample Preparation 

The archival FFPP tissue samples detailed in section 6.2.1 were used in this study. 

7.2.2  Instrumentation 

Instrument and mapping properties were described in section 4.3.2 . The maps taken for section 

6.2.2 were used in this study.  

7.2.3   Data analysis 

Metadata on the patients included in chapter 6 is provided in Table 7-1. This was used to divide 

all the patients, regardless of histopathological diagnosis, into groups according to gender, 

smoking habits, alcohol consumption and site of lesion. The spectral maps, acquired for the 

study of chapter 6, were analysed using PLSDA with LOPOCV, as described in section 6.2.3  

Table 7-1 Information on patient factors and clinical features 

Patient Gender Age Smoking Alcohol 

Consumption 

Site of Lesion 

1 M 59 No Yes Retromolar area 

2 F 38 n/a n/a Tongue 

3 M 86 No Yes Tongue 

4 F 75 No Yes/rarely Buccal mucosa 

5 M 50 n/a n/a Tongue 

6 F 66 No Yes Hard palate 

7 F 45 N/A n/a Premolar ridge 

8 F 32 Ex-smoker No Tongue 

9 F 59 No Yes/2-3 

units/fortnight 

Buccal mucosa 

10 F 61 Yes 8-10 

cpd/week 

No Hard palate 

11 F 62 15-20 cpd No Soft palate 

12 M 71 Ex-smoker n/a Gingiva 

13 F 62 No Yes/occasionally Labial mucosa 

14 M 21 n/a n/a Tongue 
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15 F 62 Ex-smoker No Floor of the mouth 

16 F 69 Yes 10 cpd Yes Tuberosity 

17 M 67 Ex-smoker Yes Tongue 

18 M 37 Yes No Buccal mucosa 

19 M 57 1-2 cpw 10 units/week Soft palate 

20 F 65 n/a 1-2 units/week Buccal mucosa 

21 M 60 Ex-smoker n/a Hard palate 

22 M 81 Ex-smoker 2-3 units/week Tongue 

23 M 69 30 cpd 4 units/day Floor of the mouth 

24 M 55 No n/a Maxilla 

25 F 77 No 6 units/week Gingiva 

26 F 47 15 cpd 10-12 units/week Tongue 

27 F 63 Ex-smoker 2 units/week Tongue 

28 F 55 n/a n/a Labial mucosa 

29 F 44 No 5-6 units/week Tongue 

30 M 74 n/a n/a  

31 M 68 Ex-smoker 5 units/week Tongue 

32 M 66 n/a n/a Soft palate 

33 M 58 15 cpd 15 units/week Labial mucosa 

34 M 56 20 cpd 5-6 units/week Buccal mucosa 

35 F 53 n/a n/a Buccal mucosa 

36 F 53 15 cpd Yes 3 units/week Floor of the mouth 

37 M 38 Ex-smoker Yes Buccal mucosa 

38 F 63 No n/a Tongue 

40 F 71 No No Tongue 

41 F 61 No Yes Labial mucosa 

42 F 66 Ex-smoker Yes Soft palate 

43 M 54 Yes 30 cpd No Alveolus 

44 F 51 Ex-smoker Yes Buccal mucosa 

45 F 41 n/a Yes 1 unit/week Buccal mucosa 

46 F 73 n/a Yes Tongue 

47 M  n/a n/a Tongue 

48 M 30 Yes 1 cpd Yes 20-30 units/week Tongue 

49 F 61 Ex-smoker Yes Tongue 

50 F 71 No No Buccal mucosa 

51 F 64 Ex-smoker Yes Tongue 

52 M 47 Yes Yes Buccal mucosa 

53 F 76 Ex-smoker Yes Alveolus 

54 M 53 Ex-smoker Yes Labial mucosa 

55 M 31 Yes No Tongue 

56 F 50 Ex-smoker No Tongue 

57 F 56 Ex-smoker No Tongue 

 

n/a, information was not available 

cpd, cigarettes per day 

cpw, cigarettes per week 
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7.3   Results 

 

7.3.1  Gender 

 

The data of all the patients (Table 7-1) was split according to gender into females and males. 

PLSDA results, expressed in terms of ROC curves, of epithelium (AUC =0.43) and connective 

tissue (AUC=0.47) (figure 7.1) show no discrimination based on gender. The female vs male 

sensitivity and specificity values were 22% and 77% respectively in epithelium. In connective 

tissue the sensitivity was 62% and specificity was 44%. 

 

 

 

Figure 7.1 ROC curves for (A) Epithelium and (B) Connective tissue of Female vs Male. The 

blue line is the estimated and the green the cross validated ROC curve. AUC is a measure of 

the accuracy of the classifier, (C) is the calibrated and (CV) is the crossvalidated AUC. 

 

 

 

(A) (B) 
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7.3.2  Smoking  

 

According to smoking status, the patients in table 7-1 were divided into 3 groups; non-smoker, 

ex-smokers (previous smokers) and smokers. 

 

Table 7-2 Sensitivity and specificity values from PLSDA with LOPOCV for smoking status in 

epithelium  

  Non smoker Ex-smoker Smoker 

Sensitivity (%) 83 81 52 

Specificity (%) 46 38 88 

 

The PLSDA results showed high classification sensitivity for Non-smokers and Ex-smokers 

but lower specificities. On the other hand, the classification sensitivity was lower for smokers 

but the specificity was higher (Table 7-2). The ROC curve (Figure 7.2) shows a significant 

accuracy (AUC=0.76) of the classifier for smokers. To further understand the source of the 

variance, non-smoker and ex-smokers were combined and the scores of LV-1 and LV-2 were 

plotted against smokers (Figure 7.3). While there is some overlap, smokers are mainly negative 

in LV-1 while non-smoker/ex-smokers are mainly positive. According to LV-1, negative bands 

at 667, 784, 1372, and 1573 cm-1 suggest higher nucleic acids in the epithelium of smokers. 

Non-smoker/ex-smokers had a more prominent amide I band at 1651 cm-1 and protein band at 

934 cm-1 (Figure 7.4).     
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Figure 7.2 ROC curves for (A) Non-smoker (B) Ex-smokers and (C) Smokers epithelium. The 

blue line is the estimated and the green the cross validated ROC curve. AUC is a measure of 

the accuracy of the classifier, (C) is the calibrated and (CV) is the crossvalidated AUC. 

(A) (B) 

(C) 
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Figure 7.3 Scores of Smokers and Non-smoker/Ex-smokers on the latent variables from the 

PLSDA model. 

 

Figure 7.4 Loading of LV-1 from PLSDA of Smokers vs Non-smoker and Ex-smokers in 

epithelial tissue. 
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In connective tissue, while there is some degree of classification ( 

Table 7-3), according to the ROC curves for non-smoker (AUC=0.43) ex-smokers (AUC=0.51) 

and smokers (AUC=0.64), the accuracy is not significant (Figure 7.2). 

 

Table 7-3 Sensitivity and specificity values from PLSDA with LOPOCV for smoking status in 

connective tissue 

  Non smoker Ex-smoker Smoker 

Sensitivity (%) 70 39 54 

Specificity (%) 39 69 71 
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Figure 7.5 ROC curves for connective tissue of (A) Non-smoker (B) Ex-smokers and (C) 

Smokers. The blue line is the estimated and the green the cross validated ROC curve. AUC is 

a measure of the accuracy of the classifier, (C) is the calibrated and (CV) is the crossvalidated 

AUC. 

 

7.3.3  Alcohol 

Alcohol consumption in the patient group was varied (Table 7-1). For the sake of simplicity, 

as the patient numbers were not large, they were divided into 2 main groups; alcohol consuming 

and non-alcohol consuming. According to this grouping, PLSDA was performed on epithelium 

(AUC=0.57) and connective tissue (AUC=0.63). No significant discrimination was found in 

either based on alcohol consumption (Figure 7.6). 

(A) (B) 

(C) 
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Figure 7.6 ROC curves for (A) Epithelium and (B) Connective tissue of Alcohol consuming vs 

Non-alcohol consuming. The blue line is the estimated and the green the cross validated ROC 

curve. AUC is a measure of the accuracy of the classifier, (C) is the calibrated and (CV) is the 

crossvalidated AUC. 

7.3.4  Anatomical Site of lesion 

The lesions come from different anatomical sites in the oral cavity, as detailed in Table 7-1. 

Raman spectra of lesions from the tongue, buccal mucosa, soft palate, hard palate and labial 

mucosa were assessed using PLSDA with LOPOCV. 

Table 7-4 Sensitivity and specificity values from PLSDA with LOPOCV for oral site in 

epithelium 

  Tongue Buccal 

mucosa 

Soft palate Hard palate Labial 

mucosa 

Sensitivity (%) 81 50 32 40 72 

Specificity (%) 31 83 72 41 27 

 

While the sensitivity values for tongue and labial mucosa were high, 81 and 72% respectively, 

(Table 7-4), the ROC curves (Figure 7.7) were not significant for any of the oral sites (all AUC 

(A) (B) 
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values were less than 0.7). Similarly, in connective tissue the hard palate and the labial and 

buccal mucosa could be classified with a high sensitivity (Table 7-5) but again AUC values 

were not significant (Figure 7.8). Note that, in Figure 7.7(C) (D) and (E), there is a large 

difference between the cross validated and estimated ROCs. This is likely due to the small 

number of patients with lesions in these sites hence when one patients spectra are taken out this 

is equivalent to a quarter of the dataset of that site which results in an unstable model6.  

 

Table 7-5 Sensitivity and specificity values from PLSDA with LOPOCV for oral site in 

connective tissue 

  Tongue Buccal 

mucosa 

Soft palate Hard palate Labial 

mucosa 

Sensitivity (%) 47 75 51 83 87 

Specificity (%) 78 27 25 54 56 

 

 

Grouping according to keratinised (Tongue and hard palate) and non ketatinised (soft palate, 

buccal and labial mucosa) did not show a good discrimination, sensitivity of 33% and 

specificity of 88% in epithelium and 35 and 75% sensitivity and specificity in connective tissue 

respectively. 
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Figure 7.7 ROC curves for (A) Tongue (B) Buccal mucosa (C) Soft palate (D) Hard palate and 

(E) Labial mucosa of epithelial tissue. The blue line is the estimated and the green is the cross 

validated ROC curve. AUC is a measure of the accuracy of the classifier, (C) is the calibrated 

and (CV) is the crossvalidated AUC. 

 

(A) (B) 

(E) 

(C) (D) 
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Figure 7.8 ROC curves for (A) Tongue (B) Buccal mucosa (C) Soft palate (D) Hard palate and 

(E) Labial mucosa of connective tissue. The blue line is the estimated and the green is the cross 

validated ROC curve. AUC is a measure of the accuracy of the classifier, (C) is the calibrated 

and (CV) is the crossvalidated AUC. 

(A) (B) 

(E) 

(C) (D) 
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7.3.5   Presence of inflammation 

 

All the pathologies were evaluated for the presence of inflammation (H&E stained slides were 

evaluated under a bright-field microscope by the investigator). Table 7-6 shows the number of 

inflamed samples per class. PLSDA was used to classify inflamed vs non-inflamed for all the 

pathologies combined. The results show that inflamed tissue can be classified from non-

inflamed tissue with sensitivity and specificity values of 68% and 70%, respectively, in 

epithelium and 77% and 86%, respectively, in connective tissue. The AUCs were significant, 

at 0.72 for epithelium and 0.84 for connective tissue (Figure 7.9).  

 

Table 7-6 Number of inflamed samples per class 

Class Benign 

(n=17) 

Mild 

(n=20) 

Moderate 

(n=20) 

Severe 

(n=10) 

SCC 

(n=5) 

Number 

Inflamed 

2 3 9 7 5 
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Figure 7.9 ROC curves for (A) Epithelium and (B) Connective tissue of Inflamed vs Non-

inflamed in all classes. The blue line is the estimated and the green the cross validated ROC 

curve. AUC is a measure of the accuracy of the classifier, (C) is the calibrated and (CV) is the 

crossvalidated AUC. 

To ensure that the results obtained are due to the presence of inflammation rather than the 

pathology (as most of the severe and SCC samples were inflamed which could skew the 

results), inflamed vs non-inflamed was assessed in the moderate category. The results show a 

very high accuracy in connective tissue (AUC=0.94) and, to a lesser extent, in epithelium 

(AUC=0.69) (Figure 7.10). Plotting the scores of the latent variables shows a good separation 

based on LV-1, the majority of inflamed spectra having negative scores while the majority of 

non-inflamed spectra have positive scores on LV-1 (Figure 7.11). Note, the group of non- 

inflamed that are outside the 95% confidence interval are likely from one patient who was 

misclassified due to increased variability from the rest of the non-inflamed group. The loading 

of LV-1 (Figure 7.12) shows positive peaks at 813, 855, 939, 1031, and 1245 cm-1 which relate 

to collagen (Table 5-3), while the negative peaks relate to nucleic (1334, 1580 cm-1) and fatty 

acids (1132, 1438 cm-1).  

  

 

(A) (B) 
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Figure 7.10 ROC curves for (A) epithelium and (B) connective tissue of inflamed vs non-

inflamed in the moderately dysplastic lesions. The blue line is the estimated and the green the 

cross validated ROC curve. AUC is a measure of the accuracy of the classifier, (C) is the 

calibrated and (CV) is the crossvalidated AUC. 

 

Figure 7.11 Scores obtained from the PLSDA model of inflamed and non-inflamed moderately 

dysplastic connective tissue on the latent variables.  

(A) (B) 
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Figure 7.12 Loading of LV-1 from the PLSDA model of inflamed vs non-inflamed connective 

tissue  

7.4  Discussion 

The findings of the current study suggest that no clear Raman classification could  be made 

based on gender, alcohol consumption or site of lesion. The link between alcohol consumption 

and carcinogenesis is not well understood, for, while alcohol can act as a synergistic agent for 

other carcinogens, its main metabolite, acetaldehyde, is believed to have a role in DNA 

damage9. Previous studies suggest that the risk of developing oral cancer increases with 

quantity of alcohol intake10. Unfortunately this study was limited in that information on alcohol 

intake quantities was not available for all patients. To date, no studies have looked at the effect 

of alcohol on the oral mucosa using Raman spectroscopy. Previous studies have investigated 

Raman classification of oral mucosal sites. Bergholt et al. found that the sites in normal/healthy 

oral mucosa can be clustered into three groups; (1) buccal, inner lip, and soft palate; (2) dorsal, 

ventral tongue, and floor; (3) gingiva and hard palate7. Sahu et al., studying normal, and 



152 

 

malignant oral mucosa found that while the tongue and buccal mucosa could be classified by 

Raman spectroscopy in healthy mucosa with some degree of accuracy, classification could not 

be achieved in malignancy8.  

From the results, it is apparent that some factors other than the degree of dysplasia can influence 

the Raman classification. Smoking status was seen to impact on the classification of epithelial 

tissue (AUC=0.76). This is consistent with previous work by Singh et al., who have shown that 

the oral buccal mucosa of smokers is more likely to misclassify with that of premalignant 

lesions than that of non-smokers11,12. This is likely due to the fact that smoking is an 

aetiological factor in developing oral dysplasia, and hence biochemical changes occurring in 

the mucosa of smokers are similar to those occurring in dysplastic lesions. 

What was found to have a significant influence on the Raman classification, however, was the 

presence of inflammation in connective tissue (AUC=0.94). Reduced collagen features and 

increased nucleic acid features in the Raman spectra of inflamed connective tissue were the 

main findings. The nucleic acid features may be due to increased cellularity caused by the 

inflammatory cells infiltrating the tissue. The reduction of collagen features is likely due to the 

breakdown of collagen by matrix metalloproteinases (especially MMP-8) which are 

upregulated in inflammation13. In this study, most of the severely dysplastic and SCC tissue 

was found to be inflamed, which is consistent with a previous study that has shown increasing 

inflammatory cell infiltration with increasing severity of oral dysplasia and SCC14. The 

presence of inflammation in the tumour microenvironment has been well documented15,16 and 

is due to multiple factors. The environmental factors that prompt carcinogenesis, such as 

alcohol and smoking, have been shown to trigger an inflammatory response17. Furthermore, 

the tumour cells release inflammatory mediators which generate an inflammatory 

microenvironment that promotes cancer growth, invasion and metastasis18. A study looking at 

OSCC surgical margins found that inflamed connective tissue was more likely to misclassify 
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with SCC than non-inflamed connective tissue19. Of note is the fact that the FFPP tissue from 

chapter 5 (Figure 5.5) also showed inflammation which would explain the similar signature in 

connective tissue. 

While it has been reported that age related physiological changes can be discriminated with 

Raman spectroscopy11, most of the patients in this cohort were between 50-60 years, and hence 

there was not enough variation to study age related factors. Other patient factors and clinical 

features which have not been considered, due to lack of metadata, can still have an influence 

on the Raman classification. These include HPV and candida status of the patients, the size of 

the lesions, and the degree of differentiation in the SCC lesions.   

To sum up, these findings suggest that it is important when studying tissue pathologies to 

consider them in the context of patient factors and clinical features which emphasises the need 

for large scale studies with more representative patient samples. 
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Chapter 8: Conclusions and future work 

8.1  Conclusions 

8.1.1  Summary of findings 

The primary objective of this thesis was to evaluate the potential of Raman spectroscopy in 

diagnosing premalignant oral lesions. The first two chapters act as an introduction to the thesis, 

Chapter 1:introducing clinical aspects of OSCC and dysplasia, while Chapter 2: places the 

emphasis on diagnostic techniques. In Chapter 3: the aim was to establish whether Raman 

spectroscopy can differentiate the different phases of the cell cycle in an oral squamous cell 

carcinoma cell line and how that correlates with biomarker expression levels. The findings 

were that Raman spectroscopy could differentiate the different phases of the cell cycle based 

on nucleic acid, protein and lipid content. However it was not possible to correlate the 

expression levels of cyclin D1 and PCNA to the Raman profiles. This may be due to the fact 

that a Raman profile of a cell carries a great deal of information and, as many molecular 

processes take place inside the cell, it is difficult to extract information on one particular 

biomarker. This demonstrates both the strengths and weaknesses of Raman spectroscopy for 

biological samples as it is sensitive in that it can detect small changes in the cell as it moves 

through the cell cycle, but because it is a label free technique, distinguishing information on 

one variable is more difficult. In Chapter 4:the aim was to optimise the FFPP tissue processing 

for Raman spectroscopy. One of the main difficulties in performing Raman spectroscopy on 

FFPP tissues is that the paraffin wax, in which the tissues are embedded, has a very intense 

Raman signal and is hard to remove with the routine chemical dewaxing  techniques which 

change the composition of the tissue. The same is true of glass, which is generally used in 

histopathology laboratories as a substrate for FFPP tissues .To solve the issues with the glass 

and wax background; a novel method was developed whereby cell components were used as 

inputs for NNLS subtraction and glass and wax matrices were digitally subtracted from the 
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spectra. The use of matrices captures the variability in the wax or substrate spectra which 

improves the subtraction. In Chapter 5:, the different levels of dysplasia; mild, moderate and 

severe were assessed in the FFPP tissue sections within the same patients. This was done in 

order to gain insight into the differences between the different levels of dysplasia without 

influence from other patient variables. Using PCA-LDA with LOOCV, it was found that 

Raman spectroscopy could classify the different levels of dysplasia with an accuracy of over 

90% in epithelium and over 76% in connective tissue. In Chapter 6: benign, mild, moderate, 

and severely dysplastic and SCC FFPP tissues were assessed in a cohort of patients using 

Raman spectroscopy. PLSDA with LOPOCV was used for classification. The results showed 

that SCC could be classified from the other pathologies with over 70% accuracy in epithelium 

and connective tissue. However, the accuracy of Raman spectroscopy for differentiating 

between different levels of dysplasia was lower. In Chapter 7: other variables which could have 

an influence on classification based on the Raman spectra were assessed. From the results, it 

was clear that smoking had the greatest influence in epithelium while the presence of 

inflammation had the greatest influence in connective tissue. 

8.1.2  Clinical relevance 

Currently, there is a lot of interest in using Raman spectroscopy as a diagnostic aid. However, 

a number of factors need to be evaluated before it can be translated into clinical use. For ex-

vivo studies, using inexpensive substrates is of paramount importance. The novel method 

developed in Chapter 4: for removing the substrate background has been used for a number of 

varied studies1-4. The method is both reproducible and adaptable, as the pure components can 

be selected based on the constituents of the cells/tissues/fluid under study. Furthermore, the 

method of validation of the classifier is very important in determining how well it can classify 

future (unseen) samples. For the interpatient studies, chapters 6 and 7, it was elected to use 

LOPOCV as, although it has been shown to give lower accuracies than LOOCV5, due to the 
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presence of biochemical differences between patients, it is better at evaluating classifier 

performance on new samples as it avoids overtraining the model. While this study used ex-vivo 

samples, the results can guide the development of the technique for in-vivo use. Having a 

diagnostic aid such as Raman spectroscopy that can be developed for use chairside, would not 

only aid in selecting the region to biopsy in large lesions, but can also reduce the number of 

biopsies needed for monitoring. Important factors to consider in clinical translation include 

instrument properties. The Raman instrument should be; small, easily transportable, 

inexpensive, easily aligned and calibrated, and have an optical probe that is sterilisable6. The 

finding that Raman spectroscopy can differentiate between cancer and dysplasia is very 

important, as the management and prognosis is different for both. Dysplasia is a common 

finding in tumour borders and regenerative changes which mimic dysplasia can often be found 

in the margins of resected tumours7. The balance between being conservative and maintaining 

as much of the tissue as possible, which is important both aesthetically and functionally, and 

removing enough of the tumour to prohibit recurrence is a difficult one in oral cancer surgery. 

Hence the ability of Raman spectroscopy to discriminate between cancerous and dysplastic 

and/or healthy tissue can be important in striking that balance8. 

8.2  Future perspectives 

A more comprehensive study with a larger sample size9 which takes into account inherent 

patient variability in addition to other variables such as age, smoking, alcohol consumption, 

site of lesion, presence of inflammation etc. may result in a better classifier. The use of a larger 

sample size would also allow for an independent validation set which can better evaluate the 

performance of the classifier. The dataset in the current study did not include any dysplastic 

lesions that had transformed into OSCC. However, a study looking at such lesions and 

comparing them with dysplastic lesions that did not progress to OSCC in a given time period, 

for example in a 5 year period, can be more informative, as morphology is not a predictor of 
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malignant transformation. Hence, a study of transformed lesions could be of more value. As 

Raman spectroscopy identifies molecular bonds that are common to many different 

biomolecules as opposed to identifying individual biomolecules, changes with dysplasia/cancer 

are often subtle and spectrally distributed, requiring full spectral scanning10. However, if 

biomolecules are identified that both have an enhanced Raman signal and vary with increasing 

dysplasia they can act as label free spectral markers which could make the Raman classification 

faster and more accurate. Additionally, the Raman spectrum can be open to different 

interpretations as to the source of the peaks. Although previous studies have explored the 

biochemistry behind the various peak assignments there is still no accepted standardised 

database for Raman peak assignments. Finally, it is difficult to compare Raman spectroscopic 

studies of the oral mucosa as the sample collection, spectral processing and data analysis 

techniques differ between laboratories, an international standardisation of protocols would go 

a long way to taking Raman spectroscopy closer to clinical translation. 
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Appendices 

Appendix 1 Cell protocols 

Cell Passaging 

Cells were cultured in sterile vented culture flasks of size (25, 75 or 125cm2) depending on the 

experiment. For passaging; 

1. 3 ml of trypsin/EDTA solution are added to the flask to detach the adherent cells and 

incubated for 3-5 minutes.  

2. Once the cells have detached 7 ml of media are added to stop the trypsin and the cell 

suspension is then transferred onto a sterile universal tube and centrifuged for 5 minutes 

at 1200 rpm.  

3. After centrifugation the supernatant is discarded carefully without disturbing the cell 

pellet. 

4. For a 1:10 split 10 ml of media is added to the cells which are then carefully 

resuspended in the media. 

5. In a new sterile cell culture flask 20 ml of media is added together with 1 ml of the cell 

suspension from step 4. 

Cell Counting 

A Z series Coulter counter (Beckman Coulter Life Sciences) was used for cell counting. To 

count the cells; 

1. Cells are trypsinised and media added as in steps 1-2 of passaging.  

2. 1 ml of the cell suspension is added to 20 ml of Isoton electrolyte solution in a vial 
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3. Following set-up the vial is placed on the stage of the coulter counter and the stage is 

moved up to the probe 

4. To do the cell count press set up then start 

5. A reading is displayed showing the number of cells/ml 
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Appendix 2  

Dewaxing protocol 

1. Place slides in 1st xylene for 5 minutes 

2. Transfer slides to 2nd xylene and leave for 4 minutes 

3. Transfer slides to 1st ethanol and leave for 3 minutes 

4. Transfer slides to 2nd ethanol and leave for 2 minutes 

5. Transfer slides to IMS and leave for 1 minute 

6. Transfer to water for 1 minute 

H&E protocol  

After step 6 of dewaxing; 

1. Add a few drops of haematoxilyn to the tissue section (enough to cover the tissue) and 

leave for 3 minutes 

2. Rinse in running tap water for 5 minutes 

3. Add a few drops of eosin and leave for 3 minutes 

4. Rinse in tap running tap water for 2 minutes 

Rehydrate and clear by passing through; 

5. IMS for 3 minutes 

6. Transfer to 1st ethanol for 3 minutes 

7. Transfer to 2nd ethanol for 3 minutes 

8. Transfer to 1st xylene for 3 minutes 

9. Transfer to 2nd xylene for 3 minutes 

10. Add a few drops of dpx mountant to the cover slip 

11. Carefully place the slide over the cover slip 
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