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Optical diagnosis techniques offer several advantages over traditional approaches, including 

objectivity, speed and cost, and these label-free, non-invasive methods have the potential to change 

the future work-flow of cancer management. The oral cavity is particularly accessible and thus such 

methods may serve as alternate/adjunct tools to traditional methods. Recently, in vivo human clinical 

studies have been initiated with a view to clinical translation of such technologies. A comprehensive 

review of optical methods in oral cancer diagnosis is presented. Following an introduction to the 

epidemiology and aetiological factors associated with oral cancers currently employed diagnostic 

methods and their limitations are presented. A thorough review of fluorescence, infrared absorption 

and Raman spectroscopic methods in oral cancer diagnosis is presented. The applicability of 

minimally invasive methods based on serum/saliva is also discussed. The review concludes with a 

discussion on future demands and scope of developments from a clinical point of view.  

 

 

  



3 
 

Oral Cancers: An Overview  

Oral squamous cell carcinoma (OSCC) ranks as the 15
th
 most common cancer in the world and 10

th
 

most frequent in males. It accounts for ~2.1% of total cancer cases worldwide. Incidence rates are 

high among males in south central Asia and among females in eastern and central Europe
1
. Although 

mortality from oral cancer has decreased in the past few decades, it is still high and has a five year 

survival rate of 50%
2
. Several oral lesions and conditions are associated with an increased potential 

for malignant transformation. Of these, the most commonly occurring is leukoplakia, defined as ‘a 

predominantly white lesion of the oral mucosa that cannot be characterized as any other definable 

lesion’ (Figure 1B). A wide range of malignant transformation rates have been reported, from 0.13-

36.43%, depending on the presence and degree of dysplasia, location in the oral cavity and maturity of 

the lesion
3,4

. Conversely, erythroplakia, defined as ‘a fiery red patch which cannot be characterized 

clinically or pathologically as any other definable lesion’
3
, is less prevalent and has a higher potential 

for malignant transformation (14.35-66.76 %)
5
. Oral submucous fibrosis is a premalignant oral 

condition arising mostly due to areca nut or betel quid chewing
6
. It has a reported transformation rate 

of 7.6%
6
. Oral lichen planus is an inflammatory disease of the oral mucosa. Like leukoplakia, it 

presents as a white plaque or patch. However, its malignant transformation rate is much lower than 

leukoplakia, ~1%
7
 (Figure 1C).  

A number of risk factors are associated with oral cancer, including cigarette smoking and alcohol 

consumption, which are responsible for 42% and 16% of oral cancer deaths respectively
8
. The 

carcinogenicity of cigarette smoke has long been established, resulting in DNA damage and increase 

in P53 mutations
9
. The association between alcohol and oral cancer was reported to be dose dependent 

and a number of factors may contribute to its carcinogenicity, including acetaldehyde, an alcohol 

metabolite thought to be carcinogenic
10

. Moreover, alcohol is thought to act as a solvent for other 

carcinogens
10

. Oral habits such as smokeless tobacco and betel quid chewing are also implicated in 

oral cancer development
11

. They are more common in the Asian population; in India, 50% of oral 

cancers arise due to smokeless tobacco chewing
11

. The carcinogenicity of smokeless tobacco arises 

from the production of nitrosamines
11

. Oral squamous cell carcinoma has also been associated with 



4 
 

the Epstein Bar (EBV) and Human Papilloma (HPV) Viruses, although their putative role is 

controversial. Around 23% of OSCC were found to be positive for high risk HPV 16 and 18 
12

.  

Current Screening/Diagnostic methods and limitations: 

Screening tests or diagnostic aids presently available for oral cancer include conventional oral 

examination (COE), staining with toluidine blue, oral brush biopsy and scalpel biopsy coupled with 

histology. 

Conventional Oral Examination (COE): Conventional oral examination (COE), using normal 

(incandescent) light, has long been the standard screening method for oral abnormalities. As it is a 

visual method, it cannot identify early mucosal abnormalities that may or may not lead to oral cancer. 

Approximately 5-15% of the general population has oral mucosal abnormalities and the vast majority 

of these lesions are benign in nature 
13,

 Furthermore, only a small percentage of leukoplakias are 

progressive or become malignant and COE cannot discriminate between these and their non-

progressive counterparts. Therefore, while COE may be useful in discovering some oral lesions, its 

potential in identifying all potentially premalignant or biologically relevant lesions that are likely to 

progress to cancer is questionable.  

Toluidine blue staining: Toluidine blue (TB), has been used for more than 40 years as an aid to 

detection of mucosal abnormalities of the cervix and the oral cavity. TB is a metachromatic, 

acidophilic dye that binds preferentially to tissues undergoing rapid cell division (inflammatory, 

regenerative and neoplastic tissue), resulting in preferential staining of abnormal tissue. Overall, TB 

appears to be useful in detecting carcinomas, but is positive in only ~50% of lesions with dysplasia. In 

addition, it frequently stains common, benign conditions such as non-specific ulcers. The high rate of 

false positive stains and the low specificity in staining dysplasia are some of the accepted limitations 

of the technique 
14

.  

Oral brush biopsy: Oral brush biopsy extracts a complete trans-epithelial biopsy specimen, with 

cellular representation from each of the three layers (basal, intermediate and superficial). Because the 

brush biopsy detects only cellular atypia, positive results must be confirmed with a scalpel biopsy for 

definitive diagnosis.  This technique has therefore been criticized for adding time and cost to the 
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diagnosis of oral lesions without additional benefit to the patient
15

.  Overall, it is a method of 

identifying unsuspected oral cancers found during a visual examination, at early and curable stages
16

.
  

Histology: Histological risk stratification, currently the gold standard for oral cancer diagnosis, 

requires biopsy, staining and microscopic examination by a pathologist. However, removal of tissue 

or biopsy is an inherently invasive procedure and carries risk of complications in the proximity of 

vital anatomy. Sampling errors in collecting or interpreting biopsies due to inter-observer discrepancy 

can be significant. Once removed, the tissue can undergo biochemical changes which can lead to 

artifacts. In many diseases, tissue involvement is not uniform, potentially leading to sampling errors. 

Especially in oral cancers, some early lesions are clinically indistinguishable from benign conditions. 

Furthermore, histologically, identification of subtle changes in precancerous lesions or in normal 

mucosa that are indicative of early neoplastic transformation is subjective and can lead to inter-

observer variations 
17

. 

It is therefore conceivable that the primary prevention of the disease would involve activities to 

reduce or eliminate the use of tobacco and alcohol. Secondary prevention includes activities that are 

aimed to detect the disease at an early stage which would lead to better prognosis and lower 

morbidity. Current methods of detection of oral cancers are based largely on visual observations of 

abnormalities in tissue or cellular morphology and are therefore limited in terms of sensitivity and 

specificity, particularly at early stages. In the following section, a general discussion on the 

application of optical spectroscopic methods as an alternate/adjunct diagnostic tool for oral cancer is 

presented. 

Optical spectroscopy in oral cancer diagnosis 

Spectroscopy is the study of the frequency dependence of the interaction of electromagnetic radiation 

(light) with matter. Generally, light interacts with matter through absorption, emission and 

scattering/reflection. In each case, the spectrum of the interaction gives information about, and is 

characteristic of, the structure and chemical content of the sample. Optical measurements provide 

quantitative information based on the spectroscopic signature of the biochemical constituents of the 

sample that can be rapidly analyzed to yield an objective diagnosis, even in the hands of a non-expert 

operator. Diagnosis is based on biochemical changes underlying the pathology rather than visual or 
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microscopic changes in cellular or tissue morphology. Devices to make these measurements have 

become inexpensive, robust, and portable, because of advances in computing, optical, fiber-optical, 

and semiconductor technology. Approaches based on fluorescence, Fourier-transform infrared 

absorption and Raman scattering spectroscopy have shown potential for improved detection of oral 

cancers. A brief introduction of these techniques and their potential applications in oral cancer 

diagnosis is presented in the following sub-sections. Figure 2 provides a schematic illustration of their 

typical method of application.  

Fluorescence spectroscopy: When a molecule is illuminated at an excitation wavelength lying within 

the absorption spectrum of that molecule, it absorbs the energy and undergoes a transition from the 

ground state to an excited state. The molecule can then relax back from the excited state to the ground 

state by emission of light at specific emission wavelengths. In the UV/visible/Near infrared region of 

the spectrum (~200-1000nm), light emission takes the form of fluorescence (or occasionally 

phosphorescence). A fluorescence emission spectrum represents the fluorescence intensity measured 

over a range of emission wavelengths at a fixed excitation wavelength and can provide information 

relating to the molecular characteristics of the fluorophore, Figure 3.  

In the late 1970s, cancer diagnosis based on auto-fluorescence (also called natural, intrinsic or 

endogenous fluorescence) of naturally occurring fluorophores such as collagen, elastin, keratin and 

NADH was initiated 
18

. The presence of disease can lead to changes in blood concentration, nuclear 

size, collagen content or epithelial thickness, which can alter the concentration and characteristics of 

the fluorophores. In oral cancers, it was demonstrated that the epithelial layer shields the strongly 

fluorescing collagen layer leading to a low intensity of fluorescence in cancers
19

. An ex vivo study 

used hamster buccal pouch as an experimental model to identify spectral markers associated with 

different stages of oral carcinogenesis 
20

. Onizawa et al., compared fluorescence spectra from human 

and hamster biopsies and oral cancer cell lines, suggesting that variation in the riboflavin and 

porphyrin fluorescence can be used as a spectroscopic marker for normal and cancerous conditions
21

. 

Ingrams et al. further showed that normal and cancerous human biopsies can be discriminated based 

on their autofluorescence spectral profile
22

. Another ex vivo study by Muller et al., explored the 

feasibility of quantifying the spectroscopic response of different grades of malignancy
23

.   



7 
 

The first in vivo study using autofluorescence spectroscopy by Harris et al. reported differences 

between healthy and tumor mucosa based on the porphyrin emission band
24

. These differences were 

attributed to microorganisms living on ulcerating or necrotic surfaces. In vivo methods have also been 

explored to understand oral cancer progression in animal models
25

. Gillenwater et al. recorded in vivo 

autofluorescence from oral mucosa of 8 healthy volunteers and 15 patients with premalignant or 

malignant lesions
26

. Decreased intensity in the blue spectral regions, and increased porphyrin 

fluorescence in the red were observed. Based on the ratio between these, a sensitivity of 82% and 

specificity of 100% were reported 
26

. Various other studies have provided further evidence in support 

of in vivo fluorescence spectroscopy for non-invasive oral cancer diagnosis
27-29

. A recent study by 

Shaizu et al. showed that autofluorescence spectroscopy can be used to identify oral cavity disorders 

caused by long-term tobacco habits. Their findings suggest that lower collagen levels and increased 

ratios of flavin adenine dinucleotide (FAD) to nicotinamide adenine dinucleotide (NADH) can serve 

as prognostic markers for oral cancer risk 
30

.  

However, tissue contains few natural fluorophores and their spectroscopic features are broad and 

overlapping, making them poorly distinguishable, reducing the specificity of fluorescence 

spectroscopy for diagnostic applications. 

Fourier-transform infrared spectroscopy: Vibrational Spectroscopy is a subset of spectroscopy 

which analyses vibrations within a molecule (or material). The vibrations are characteristic of the 

molecular structure and, in polyatomic molecules, give rise to a spectroscopic “fingerprint”. The 

spectrum of vibrational energies or frequencies (expressed as wavenumbers, cm
-1

) can thus be 

employed to characterise a molecular structure, or changes to it due to the local environment or 

external factors (radiation, chemical agents). Vibrational energies fall within the mid Infrared (IR) 

region of the electromagnetic spectrum and are commonly probed through IR absorption 

spectroscopy. High energy or frequency vibrations are characteristic of light, tightly bound groups 

such as C-H, N-H and O-H, whereas low frequencies are associated with heavier groups, or collective 

vibrations such as ring breathing or skeletal stretches in macromolecules (Figure 4). 

IR spectroscopy is now a routine technique for materials characterisation and has found numerous 

applications in forensics, environmental science and pharmacology
31

. Applications to tissue samples 
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for (cancer) diagnostic applications were first reported in the early 90s, and since this time a range of 

pathologies has been investigated
32

. 

Wu et al. demonstrated that, on the basis of lipid and protein content, normal and tumor oral tissues 

can be discriminated
33

. In another study, of 10 normal sub-gingival tissues (NST) and 15 oral 

squamous cell carcinoma (SCC) tissues, Fukuyama et al. demonstrated that the normal spectra are 

strongly influenced by the presence of collagen. They also suggested that spectra are influenced by 

keratin, which exists in the ectodermal cells
34

. Study using FTIR spectroscopy to understand oral 

carcinogenesis in animal models have also been reported 
35

. FTIR imaging methods have also been 

explored to analyze different aspects of oral cancers. A study by Schultz et al., to assess changes in 

biochemistry of well and poorly differentiated oral/oropharyngeal SCC by infrared 

microspectroscopy, demonstrated that DNA and keratin can provide spectral markers to differentiate 

between normal and SCC biopsies
36

. Bruni et al., by generating three-dimensional IR chemical maps, 

demonstrated that proliferating and regressive states of head and neck tumours can be identified
37

. 

Towards high throughput, automated analysis, Pallua et al. demonstrated that good quality FTIR 

images can be obtained from formalin fixed paraffin embedded tissue microarray sections providing 

molecular level information as the basis for diagnosis
38

.  

Compared to fluorescence, FTIR provides a detailed fingerprint of the biochemical content of the 

sample. However, although FTIR has been used for the analysis of human tissues ex vivo, the 

application of this method for in vivo diagnosis is limited, due to the short penetration depth and the 

fact that water is highly absorptive in the mid-IR range. Conventional optical fibres have limited 

transparency in the IR region, and therefore, in vivo studies are less frequent than fluorescence or 

Raman fibre optical applications. New developments based on attenuated total reflection (ATR) 

elements might help in implementing in vivo applications.  

Raman spectroscopy: Raman spectroscopy is a complementary technique to FTIR and has its origin 

in the discovery of the Raman effect in 1928, for which C.V. Raman was awarded the Nobel prize in 

1930
39

. Similar to IR spectroscopy, Raman entails the coupling of incident radiation with molecular 

vibrations and the resultant spectrum is similarly characteristic of the material. However, whereas IR 

spectroscopy involves the absorption of radiation, Raman spectroscopy is a scattering technique, 
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whereby the incident radiation couples with the vibrating polarisation of the molecule and thus 

generates or annihilates a vibration. The differing underlying mechanisms results in a 

complementarity of the techniques. Vibrations of asymmetric, polar bonds thus tend to be strong in IR 

spectra, whereas Raman is particularly suitable as a probe of symmetric, nonpolar groups. Notably, O-

H vibrations of water are very strong in IR spectra, but are extremely weak in Raman spectra, 

rendering Raman a potentially more suitable technique for in vivo applications (Figure 3). A further 

implication of the differing physical origins of the techniques is that, whereas IR monitors the 

absorption of IR radiation, Raman scattering can be employed in the UV, visible or near IR regions of 

the spectrum (Figure 2). Raman scattering thus offers intrinsically higher spatial resolution for 

mapping or profiling in a confocal microscopy mode, the limit of spatial resolution being determined 

by the wavelength (<1µm for Raman, ~5-10 µm for IR). The application of Raman spectroscopy to 

biomolecules was first demonstrated as early as the 1960s and by the 1970s biomedical applications 

were explored
40

. Whole cell, tissue and in vivo studies carried out on a range of pathologies have 

demonstrated the potential for diagnostic applications
41

. 

Raman spectroscopic applications in oral cancer diagnostics started with the analysis of normal and 

dysplastic tissue in a rat model by Schut et al. (2000). Dysplasia in the palate was induced by topical 

application of the carcinogen 4-nitroquinoline 1-oxide and sensitivity and specificity of 100% were 

observed
42

. This was followed by a study of human oral cancer biopsies by Venkatakrishna et al., they 

recorded spectra of 49 biopsies and obtained an average classification efficiency of 88%
43

. In 2004, a 

study carried out by Krishna et al. demonstrated the applicability of formalin fixed oral tissues for 

optical pathology, revealing significant differences in the epithelial region of normal and malignant 

samples, arising from the protein composition, conformational/structural changes, and possible 

increase in protein content in malignant epithelia
44

. In 2006, Malini et al. demonstrated the efficacy of 

Raman spectroscopic methods in discriminating normal, cancerous, precancerous and inflammatory 

conditions
45

. Lipid rich features in normal conditions and prominent protein features in tumors and 

other pathological conditions were observed. Classification between different groups using 

multivariate statistical methods produced 100% sensitivity and specificity
45

. Raman mapping of tissue 

sections further elucidated biochemical changes within different epithelial layers which are associated 
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with disease onset
46

. A study by Sunder et al. demonstrated that oral carcinomas of different 

pathological grades can also be differentiated on the basis of the relative intensities of bands 

associated with lipids and proteins
47

.  

 In vivo Raman spectroscopy using fibreoptic probes for identifying site specific variations in 

the oral cavity was reported by Guze et al. in 2009, indicating that different oral sites can be 

discriminated on the basis of level of keratinization
48

. Bergholt et al., (2011), characterized the Raman 

spectroscopic profiles of different oral cavity regions (inner lip, attached gingiva, floor, dorsal tongue, 

ventral tongue, hard palate, soft palate, and buccal mucosa)
49

. Fitting of reference biochemicals 

(hydroxyapatite, keratin, collagen, DNA, and oleic acid) and partial least squares-discriminant 

analysis (PLS-DA) were employed to assess the inter-anatomical variability. The findings suggest that 

histological and morphological characteristics of different sites have a significant influence on the in 

vivo Raman spectra, and different sites can be classified with an overall sensitivity and specificity of 

85%
49

 .  Singh et al. demonstrated that in vivo spectra can be acquired in clinically implementable 

timescales and demonstrated the feasibility of classification of normal and pathological conditions
50

. 

This was followed by another study exploring tobacco induced cancer field effects in the oral 

mucosa
51

.  Sahu et al. demonstrated that in vivo Raman spectroscopy methods can also be utilized to 

understand age-related changes in the oral mucosa
52

. These findings were further verified by a recent 

study showing anatomical variability and feasibility of identifying pathological conditions with in 

vivo Raman spectroscopy 
53

. 

Minimally invasive methods in oral cancer diagnosis: Bio fluids such as blood, urine, lymph, and 

saliva can provide substantial information about human health and are being widely investigated for 

clinical diagnosis of various diseases including oral cancers. The attraction of these specimens lies in 

the fact that they can be used for mass screening, due to ease in collection, transport and low cost
54

. 

Studies have been carried out on physiochemical properties of saliva using surface enhanced laser 

desorption and ionization time of flight (SELDI-TOF) coupled with mass spectrometry (MS) and high 

performance liquid chromatography (HPLC) to identify proteomic and enzymatic markers associated 

with oral cancer
55

. Other techniques such as laser-induced fluorescence coupled with HPLC, and 
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capillary electrophoresis coupled mass spectroscopy have been employed to characterise salivary 

metabolites in oral cancer patients
56,57

.  

Recently, optical methods based on Raman, infrared absorption, and fluorescence 

spectroscopies have also been exploited for such investigations.  For example, enhanced levels of 

porphyrin in blood have been used as a diagnostic marker for various cancers including oral 

cancers
58,59

.  Yuvaraj et al. characterized different salivary metabolites associated with oral cancers by 

fluorescence spectroscopy
60

. FTIR spectroscopy has been applied to study sputum in order to 

diagnose oral cancers and discrimination between normal and cancerous samples was achieved on the 

basis of changes in the protein and glycoprotein structure within cells
61

. Surface-Enhanced Raman 

spectroscopy methods (SERS) have been used to differentiate between normal and oral cancer 

patients using spectra acquired from saliva
62

. A recent study by Elumalai et al. demonstrated that 

Raman spectroscopy of urine samples of healthy subjects and oral cancer patients can offer potential 

diagnostic information with a discrimination accuracy of 94%
63

.  The analysis of exfoliated oral cells 

by optical methods also holds enormous promise for early disease detection and diagnosis. Diem and 

co-workers have carried out multiple studies on spectral cytopathology of oral exfoliated cells
64,65

. 

Their findings are suggestive of the tremendous potential of spectroscopic methods in identifying 

minor changes associated with disease onset. Nevertheless, diagnosis based on biofluids suffers from 

limitations such as low analyte concentration, longer acquisition time, prone to experimental errors 

etc. Considerable efforts have been undertaken to develop standard protocols and sensitive 

instrumentation. Signal enhancements with the help of nano-particles or surface coating is an active 

area of research 
66

. Concentration of samples using centrifugal filtration devices has been shown to 

offer an alternative which allows measurement of the analytes in the native aqueous environment
67

. 

This also allows fractionation according to molecular weight of the constituent analytes, potentially 

allowing the targeting of molecular biomarkers of a disease. Appropriate modification in the 

instrumentation, especially automation for collection and analysis of body fluids is also an area which 

requires constant development. Efforts should also be undertaken for large scale trials and database 

development to overcome inter-laboratory and instrument variabilities 
68

.  
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Summary and Outlook 

Although the oral cavity is easily accessible to inspection, oral cancer patients often present at an 

advanced stage when treatment is less successful, thereby leading to high morbidity and mortality. 

Early detection is the best way to ensure patient survival and quality of life. The current gold standard 

for clinical diagnosis of oral lesions is biopsy and subsequent histopathological confirmation. The 

process is invasive, time-consuming and prone to inter-observer variability. An alternate method of 

diagnosis that can enable non-invasive diagnosis of the oral cavity in individuals with suspicious oral 

lesions is warranted.  

It is now well recognized that techniques based on optical spectroscopy can play a very 

important role towards this end. Spectroscopic measurements of tissue biochemistry, with sensitivity 

and specificity to localize changes enhanced by imaging, represent a measure of health (or disease) 

unattainable in current practice, and can provide sensitivities for early stage detection of biochemical, 

rather than simply morphological, abnormalities. Table 1 lists the advantages and disadvantages of the 

current screening/diagnostic methods and optical spectroscopy methods. Among the spectroscopic 

techniques described, fluorescence is perhaps the most technologically accessible, as it is simply 

based on the analysis of light which is emitted after illumination with a UV lamp. The emitted light is 

in the visible range and therefore probes can use free space or low grade, inexpensive fibre optics. The 

technique detects only the small fraction of endogenous biomolecules which are fluorescent, however, 

and relies on identifying pathology specific biomarkers amongst them. FTIR spectroscopy, on the 

other hand, produces a label free fingerprint of the complete biochemical content of the tissue, cell or 

biofluid, and this can explore more global and specific pathological changes. However, water is an 

extremely strong FTIR absorber, and so in vivo diagnostic applications may be limited. Raman 

spectroscopy provides a similar complete, label free fingerprint of the sample, and also couples to 

benefits of working in the visible region of the spectrum. Water is a weak Raman scatterer, and so the 

technique is more adaptable to routine in vivo patient screening or ex vivo spectral histology or 

cytology. The prospect is therefore of a high sensitivity and specificity, automatable, objective 

quantitative label free probe of early stage disease development and progression, based on the 

biomolecular content of the patient sample.  
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Variable thickness and degree of keratinisation at different sites in the oral cavity can 

influence the diagnostic efficacy of optical methods, especially for early lesions. This issue has been 

addressed extensively by the biomedical spectroscopic community. Various studies have successfully 

demonstrated the potential of spectroscopic methods in identifying anatomical variability due to 

different levels of keratinization
19,28,29,48,49

. These studies have provided evidence in support of 

inherent differences between different locations and suggested that each site be treated independently. 

For example, spectral models developed using spectra from buccal mucosa cancers cannot be used for 

identifying abnormalities at tongue or palate. Most of the recent studies have been performed under 

these guidelines, where tumors of specific sites are treated separately
50-53

. As with all optical 

techniques, the depth sensitivity is limited by the absorption and scattering of the tissue. Operation in 

the near infrared can optimise the depth sensitivity of Raman probes, and novel methodologies such 

as spatially offset Raman spectroscopy (SORS) promise increased penetration depths of several 

millimetres for deeper set lesions 
69

. Such technological advances potentially place Raman ahead of 

the field as candidate for in vivo optical diagnostic applications. 

In the coming years, large scale clinical trials must be conducted to gain the amount of site-

specific data necessary for developing adequate size training and test sets for robust algorithm 

development and analysis. The standard models for each of the individual sites in the oral cavity 

should be tested rigorously, preferably double-blinded, as multi-centric studies, before they are 

considered for routine use. Several technological advances in terms of fiberoptic probes and 

miniaturization of instruments are also required for real time and routine diagnosis. Efficient 

suppression of background signal, optimization of collection optics, and incorporation of miniaturized 

interference filters in the fiber probes are some of the issues that are to be addressed effectively. 

Further improvements in data analysis algorithms are also required for developing less cumbersome, 

rapid, unambiguous, objective and user friendly interfaces from the point of view of routine clinical 

use where a clinician or a technician can analyze a given spectrum against all available models to 

diagnose a case. The prospective adaptation of optical spectroscopy methods for routine clinical 

diagnosis would decrease the number of follow-up clinic visits and patient anxiety by minimizing 
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waiting times for histopathological diagnosis. The technology poses no known risks to the patients, 

and therefore could be a safe alternative/adjunct to the current diagnostic methods. 
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Figure legends 

 

Figure 1: Clinical presentation of tongue- cancer (A), leukoplakia (B) and lichen planus (C)  
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Figure 2: A schematic of the typical application of optical spectroscopic techniques for diagnostic 

applications. The light source is delivered via a probe or microscope (for in-vivo or ex vivo/in-vitro 

applications respectively) to the sample (cells, tissue or biofluid). Upon excitation by an appropriate 

source, molecules can either; go to an excited state and reemit light in the form of fluorescence 

(UV/visible lamp), absorb the light to generate vibrations within the molecules (Infrared lamp), or, by 

interaction with the vibrational modes of the molecules in the cells; the light is Raman scattered 

(visible or near infrared laser). The emitted/transmitted/scattered light is then collected by the probe or 

microscope and passed to a detector. The operator can then perform analysis on the resulting spectra 

and, using a prepared classifier, the output can for example be a yes, no, or maybe for the presence of 

cancer.  The technique can be modified according to the application; in-vivo, ex-vivo (histological or 

cytological) or in vitro.  
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Figure 3: Comparison of typical fluorescence spectrum (riboflavin) and typical Raman spectrum of 

tissue (both normalised) plotted on an energy scale. The intrinsic bandwidth of the fluorescence 

feature is very broad, compared to the Raman spectrum, which has a multitude of narrow bands which 

are shifted from the source wavelength of 785nm (~1.6eV). The energy shift of the Raman band is a 

measure of the vibrational energy and for comparison with infra red spectroscopy is usually expressed 

in wavenumbers (1/cm). Note the energy scales for the two spectra are different. 
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Figure 4: Comparison of typical IR absorption and Raman spectra of human tissue samples. The IR 

spectrum is in the mid infrared region of the spectrum, and the spectrum is less rich in information 

than the Raman spectrum. The Raman spectrum is expressed as wavenumber shift from the source 

laser line, although as shown in Figure 3, the scattered light is in the visible region of the spectrum. 

Both show typical features of lipids (●), proteins (▲), carbohydrates (■) and nucleic acids (♦). Note 

the strong absorption due to trace water in the FTIR spectrum in the region of ~3300cm
-1

. 
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