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Abstract

This research was aimed at the development of a finite element based software
package for the analysis and design of prestressed concrete slabs. Many of the
existing packages used in this area carry out a simplified two dimensional
analysis of the stab which does not account for the secondary stresses set up
by the presence of openings and notches in the slab. In an attempt to overcome
this particular weakness, a finite element analysis package was written to help
produce a more rigorous analysis of the stresses developed in prestressed

concrete,

The aims of the research were the examination of prestressed concrete theory,
the identification of a suitable finite element model and the implementation of
both theory and model through a purpose written software package. A
combination of two finite element models, plate bending and plane stress, were
used to simulate the effect of the axial stress imparted to the concrete by the
strands and the moment applied to the section due to the eccentricity of the
strands. The stresses encountered at transfer and during service conditions
were examined in the software. Good programming practices such as
minimised storage structures and the development of an efficient matrix solver
were integral to the development of an effective software tool. Finally, the
results produced by the software were examined and compared with those
calculated using an established finite element analysis package. Ansys was
chosen for this purpose as it has the flexibility to be applied to this particular

application.

The process of writing the software showed that an extensive amount of work
was involved in debugging the code. An understanding was developed of the
stages of evolution through which software of this type passes before
completion. The software produced results that were broadly in line with those
predicted by Ansys. However, the arduous task of setting up the model in Ansys
showed that software tailored for use in the prestressed concrete field that

would produce reasonably accurate results would have a place in industry.
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Nomenclature

Distance to centroid in the y-direction

y
o Applied uniformly distributed load
Creep coefficient
¢ Nominal diameter of the strand
v Poisson's ratio
o Prestressing force loss ratio
€ Final creep strain
Bea-creep Additional deflection occurring after creep has occurred
Ser-serv UDL deflection as measured after member has gone into service
Sp-tran UDL deflection as measured soon after transfer
o, U2 Constants used in displacement function
£c Strain in the concrete
Ocg Stress in concrete at the strand depth due to self-weight
Screep Decrease in the upward camber due to creep losses
Ecu Ultimate concrete strain
Oov Total Stress in concrete at the strand depth post transfer
€e Concrete prestrain at the strand level
Ue Modular ratio
Ym Partial safety factor for strength of materials
Simax Maximum deflection
Smin Minimum deflection
€pa Strain in the strand due to applied load
€pb Strain in the strand at the ultimate limit state
Epe Strain in the strand due to prestress
Operm Permanent UDL (uniformly distributed load)
Spermanent Deflection due to permanent loads
Spi Deflection due to prestressing before service losses occur
Bprestress Deflection due to prestressing force
Es Strain in the steel
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Wsemi Semi-permanent UDL

Ssemi-permanent  D€flection due to semi-permanent loads

£u Concrete stain at stand level at collapse

Ox Rotation about the x-axis

Ex Strain in the x-direction

Ox Stress in the x-direction

Yxy Shear strain in the x-y plane

Txy Shear stress in the x-y plane

0y Rotation about the y-axis

Ey Strain in the y-direction

oy Stress in the y-direction

{] Indicates a matrix

(Al Coefficient matrix associated with displacements

[B] Matrix relating element strains to element nodal displacements
(D} Elasticity matrix

[H] Stress-displacement matrix

[H] Stress-displacement matrix relating to plate bending elements
[H] Elemental stress-displacement matrix

[HP] Stress-displacement matrix relating to plane stress elements
[Kbi,-] Sub matrix ij relating to the plate bending stiffness

[K®] Stiffness matrix

[KP;] Sub matrix ij relating to the plane stress stiffness

[L] Factorised matrix

{} Indicates a vector

{87 Arbitrary set of nodal displacements

{3(x, y)} Displacement at any point in a plate

o}’ Stresses due to plate bending

{o)® Stresses due to plane stress

(8% Displacement matrix

{F%} Nodal forces vector

A Area of concrete in the cross-section

Agc Area of concrete in compression
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, 01

Area of the prestressing strand

Breath of the section

Effective width of section resisting shear.

Depth from the top fibre of concrete to centre of the strand
Flexural rigidity

Coupling rigidity

Depth from the top fibre of concrete to centre of compression block
Flexural rigidity in the x-direction

Torsional rigidity

Flexural rigidity in the y-direction

Eccentricity of the stand

Final Young’s Modulus of mature concrete
Young's modulus of the concrete at transfer
Young’s Modulus of steel

Compressive force in the concrete

Compressive stress

Strength of the concrete at transfer

Characteristic strength of concrete

0.1% proof stress

Stress in the strands

Stress in the bottom fibre of the concrete due to prestress
Characteristic strength of the strands

Force in the prestressing strand

Principle tensile stress

Force in the x-direction
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Modulus of elasticity in shear

Overall depth of section

Second moment of area

Second moment of area of section about the x-axis
Second moment of area of section about the y-axis
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Plosses
Px

Sx

Sy

t

Tx

Ty

Tz

Coefficient relating to the surface grip provided by the strands
Span of the member

Transmission distance

Applied moment

Moment necessary to produce zero stress in the bottom fibre
Moment due to prestressing force after losses
Elements within the [L] matrix

Moment due to eccentric prestressing force
Applied moment at service

Moment due to seif-weight

Ultimate moment capacity of a section
Bending moment at the ultimate limit state
Internal bending moment in the x-direction
Internal twisting moment in the x-y plane
Internal bending moment in the x-direction
Prestressing force
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Prestressing force after losses

Prestressing force before service losses occur
Loss in prestressing force
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Vit
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Shear force at the ultimate limit state
Deflection of the plate in the z-direction
External work

Internal work

Depth of compression block
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1. INTRODUCTION

1.1. Introduction

Precast concrete construction is an increasingly attractive method for delivering
high quality structures in an environment where tight construction programs are
the norm. As is apparent throughout Dublin, very few building sites are green
field developments with most building sites having a footprint identical to the
building being constructed on it. With these limitations on both time and storage
space on construction sites the advantages of precast concrete become clear.
The precast member arrives on site on a truck and is placed by crane most
likely within a few hours, removing the need for storage on site. The biggest
advantages are achieved where precast beams and slabs are utilised. In-situ
beam and slab construction requires temporary formwork to be constructed,
reinforcement to be placed and checked, and the concrete itself to be placed
and compacted. Precast concrete construction on the other hand allows the
member to be cast under factory conditions with good quality control being
much easier to achieve than on site, the only concern is placing the member by

crane,

Prestressing concrete slabs allows even greater efficiency to be achieved with
thinner and lighter cross-sections carrying similar loads with excellent deftection
performances. This efficiency also allows greater spans to be constructed and
heavier loads imposed. Specialist structures such as car parks in which spans
of the order of 16.5m are commonplace are often constructed almost entirely

from precast concrete with the prestressed slabs providing the flooring.

1.2. Research aims and objectives

The aim of this project was to develope a prototype structurat engineering
software package to assist in the analysis and design of prestressed concrete
slabs. The analysis of prestressed slabs is often complicated by the presence of
openings and line loads due to walls at various locations along the span of the

slab making the use of analyses based on simple elastic methods impractical.

17



The use of a finite element method of analysis allows for an accurate evaluation
of the stresses and deflections throughout the slab. The analysis tool envisaged
would allow slab manufacturers, without a large technical staff with specialised
knowledge in finite element analysis, to carry out reasonably detailed analyses

of slabs.

The key areas requiring study and investigation before the heart of the project
could commence were as follows:

¢ Prestressed concrete theory

¢ Finite element theory

o Matrix algebra

e Programming techniques

» The use of Ansys for testing purposes

The final product is intended to present the user with the simplest possible
interface, completely tailored towards the prestressed concrete industry, and

one of the main goals is to hide the complexity of finite element from the user.

1.3. Background to the research

The genesis of this research stemmed from a query from within the precast
concrete industry relating to the establishment of critical stresses on slabs with
notches or openings and complicated loading patterns. As noted earlier, elastic
analysis provides a crude estimation of the actual stresses encountered in
these more complicated situations and therefore a definite gap exists in the

designer's arsenal of methods and techniques for checking stresses.

Therefore, the author therefore is focusing this research on uniting two
established areas of theory to produce the software — that of prestressed
concrete and that of the finite element method. It is not the author's aim to
develop new theories but to employ tried and trusted methods within a software

package to produce the prototype for a software suite required by industry.

18



1.4. The outline of the thesis

This thesis details the processes involved in producing the prototype analysis
software. Chapters two and three describe the theory of prestressed concrete
theory and also that of the finite element method both of which will be employed
in the software. The chapter relating to prestressed concrete also deals with the
method of manufacture to help the reader understand its implications for the
application of the theory. The fourth chapter examines the programming
technigues employed to implement the theories that were discussed in the
previous chapters. This chapter also shows the logical progression through the
software from the initial selection of geometry to the display of results as well as
discussing the logic of these processes. Chapter 5 investigates the debugging
process used to check the software during the development phase and the
testing that was subsequently carried out. The chapter will focus particularly on
the use of Ansys to model prestressed slabs. Chapter 6 shows the results of a
number of analyses carried out in Ansys according to the procedure established
in the previous chapter. These results will then be compared with results of
analyses carried out in the software produced. Finally Chapter 7 gives the
conclusions of the research and outlines further research that could be carried

out on the topic.
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2. PRESTRESSED CONCRETE

2.1. Introduction

Prestressed concrete can be defined as ‘concrete in which internal stress of
such a magnitude and distribution have been introduced that the stresses
resulting from the given applied loading are counteracted to a desired degree’
(Kong and Evans 1998:333). In the simplest possible terms the aim of
prestressing is to prevent tension from occurring in the member. The internal
stresses that are induced in the concrete are developed essentially by stressing
a number of steel strands to seventy percent of their breaking stress, pouring
concrete into a mould with the strands in place and once the concrete has
obtained sufficient strength releasing the strands. As these stands relax and
attempt to shorten back to their original length the bond between the strands
and concrete transmits the force into the concrete which in turn develops

compressive stresses. Figure 2.1 (O’Brien and Dixon 1995:291) shows this

process.
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Figure. 2.1 (a) strands are tensioned (b) concrete is cast (c) strands are cut

Concrete has a compressive strength approximately ten times greater than its

tensile strength and therefore for some design work this tensile strength is
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actually ignored. By inducing a sufficiently large compressive stress in the
concrete during the manufacturing of the slab, the tensile stress due to the

service bending moment are negated.

2.2. Theory

The design of prestressed concrete elements is similar in many ways to that of
post tensioned members. The main design differences between pre-tensioned
and post-tensioned members is the eccentricity of the strands and the
difference in how stresses are transferred from to steel to the concrete. Post-
tensioned members may have varying eccentricity along the length of the
member. Due to the manufacturing technique used in producing precast slabs
the eccentricity of the strand is constant along the length of the member. With
post-tensioning however, the ducting in which the strand is situated may follow
almost any pattern and therefore give the designer particular eccentricity values
at various locations along the slab. The second difference stems from the
nature of the transfer of stresses from the strand to the concrete. The jacking
force is applied at the ends of the member after the concrete has achieved the
required strength and therefore unlike prestressed concrete slabs a uniform

force along the length of the member is achieved.

2.2.1. The basic principles

A typical prestressed beam is show below in Figure 2.2(a) to demonstrate the
benefits of prestressing over ordinary reinforced concrete. A beam is taken as
the example but slabs are designed using the same method where the slab is
treated as a wide and shallow beam. The beam shown has a single strand with
a tensile force ‘P’ acting upon it. This strand is at a distance ‘e’ from the
centroid. In the case of a solid body, such as that shown, the centroid is located
at mid-depth. It should be noted however that most slabs are not solid and the
centroid must be found for these sometimes complex cases. The force 'P’
acting at an eccentricity ‘e’ results in a moment about the centroid given by "My’
The stresses resulting from ‘P’ and "M,’ are given in Figure 2.2(b) and 2.2(c),

with the result of these two stresses combined shown in Figure 2.2(d). The
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stresses that have been set up thus far in this model do not account for the self

weight of the beam or any of the applied loads.
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Figure 2.2 stress profile due to prestressing

The importance and effect of the eccentricity of the strand is best demonstrated
by comparing an example of an eccentrically and a non-eccentrically
prestressed member. Figure 2.3(a) shows the stresses resulting from the
prestressing of a beam with an eccentric strand. The moment due to the
prestressing force is given by ‘M,’. A gravity load is then applied to the member
resulting in a bending moment which gives a stress profile shown in Figure
2.3(b). The combined effect of the prestressing stresses and the stresses due to

the applied loads are given by Figure 2.3(c).

F"l;]:;\! Il + My /1, [}-3'\/4:; J Ix] + [My ! f,._]
™

I

f@y/lx R [Elﬁ//!,]‘[""y”*]
(a) (b) (c)

Figure 2.3 benefit of eccentrically applying prestress force
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In contrast, if the prestressing strand was located at the centroid of the member,
the stress profile shown in Figure 2.4(a) would be the result. The applied loads
would again result in the same stress profile as given in Figure 2.3(b) which is
repeated for clarity below in Figure 2.4(b). Again the resulting combined stress

profile is shown in Figure 2.4(c).

+PJ/A + My /1, [P/A]+[My!l4]

i | | | J

L.
- Ioly £ 1, [p / A]- [My/ IK]

(a) (b) ()

Figure 2.4 effect of applying prestress force centroidally

A comparison of the two combined stress profiles shows that the top stresses in
the centroidally prestressed member are significantly higher than those at the
same location in the eccentrically prestressed member. Also the compressive
stress in the bottom fibre of the centroidally prestressed member is very low and
a small increase in the applied moment would reduce these stresses even
further to the point where tensile stresses would then occur. As will be
explained below, limited tensile stresses are allowed in some prestressed
concrete members but generally this can be seen as a limiting factor with regard
to a members capacity. The eccentrically prestressed member has a more even
distribution of stresses throughout its depth potentially allowing significantly

greater applied loads to be carried.
At this point it should be clarified that the British standards set out three different
serviceability classifications which relate to the tensile stresses that are allowed

in the slab (BS 8110: Part 1: 1997, Clause 4.3.4.3).

Class 1 members are designed allowing no tensile stresses
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Class 2 members aliow tensile stresses however their magnitude is limited to no

greater than the design flexural tensile strength of the concrete. The tensile

strength is generally taken as0.45,/ /., . This class is precluded from showing

any visible signs of cracking

Class 3 members also allow tensile stresses and furthermore the member is
assumed to have to have cracking on the tension face. The design is carried out
based on an uncracked section with a hypothetical tensile stress capacity
greater than that outlined for class 2 members. Crack widths are limited
however and the British standards recommend limits on the crack widths of
0.2mm for normal conditions and 0.1mm for more severe conditions. In practice
this is achieved by limiting the hypothetical design tensile strength, for example,
a member cast from 50N/mm? concrete under normal conditions has an
allowable crack with of 0.2mm. Table 4.2 in BS8110: Part 1: 1997 then allows a

hypothetical design tensile stress of 5.8N/mm? to be used in the calculations.

Generally slabs are designed as class 2 members as this leads to the most
efficient design whist still satisfying other requirements such as deflection and

durability.
2.2.2. Stresses

It can be seen from the manufacturing process that the members go though two
distinctly different loading patterns from when the members are first cast to the
stage when the structure has gone into service. The first stage is encountered
when the strands are released allowing the prestressing force in the member to
develop in what is most likely young concrete. This case is called ‘transfer'.
Once the slab has obtained its full design strength and has been brought to site
and placed, it will be subject to greater imposed loads. This case is known as

‘service’.
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2.2.2.1. Transfer

As will be outlined later in Section 2.5, the practicalities of manufacturing slabs
dictate that the fess time the slabs are left on the casting beds the more slabs
can be produced. As the concrete mix used gains most of its strength in the first
twenty four hours after casting this allows the slabs to be moved to a suitabie
storage location to continue gaining strength. The normal duration of the curing
and initial strength development period is as little as 10 hours. At this point the
strands are cut and, as they attempt to contract, the force is imparted to the

concrete through the bond between the strands and the concrete.

Figure 2.5(a) shows an eccentrically prestressed member similar to that in
Figure 2.2(a). If it is assumed that the prestressing force is of a similar
magnitude in both diagrams but the eccentricity is greater in Figure 2.5(a) then
the resulting stresses due to the eccentricity will also be greater, see Figure
2.5(c).

PrA
+P/A - Wy F L -My 1l

+MLy /I, P/A
% + My 7,

(a) (b) (c) (d)
Figure 2.5 stress check at transfer state

The resulting stress profile, given in Figure 2.5(d), shows a larger compressive
stress in the bottom of the member and a small tensile stress in the top. As
noted earlier tensile stress are often undesirable. However, at the moment
when the strands are cut and transfer occurs, the member cambers upwards
due to eccentric prestressing force. As this slight upward camber occurs the
contact between the casting bed and the under side of the member is broken

and its weight is carried by its two ends. The self weight induces a small
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bending moment in the member denocted by ‘Ms,'. Figures 2.6(a), (b) and (c}
show how the stress resulting from this small bending moment effects the

overall stress.

PIA
' PIA
“My /L Moy /1 [Myll] [M y”]

-

O —

fi::y 1, ST [E LCy , } [MS‘ v ']
(a) (b) (c)
Figure 2.6 contribution of seif weight at transfer
The self weight bending stresses, Mgy, shown in Figure 2.6(b) when added to
the stresses generated by the prestressing process help to reduce the
compressive stresses in the fibres and more importantly negate the tensile
stresses in the top fibres. If the top fibre stresses are compressive, even if these

stresses are very small, then cracking will not occur.

The check for the bottom fibre compressive stress is carried out based on a
concrete strength that is achieved normally in less than a day. A nhumber of
cube tests would be carried out to verify that this ‘transfer strength’ has been

reached.
2.2.2.2. Service

The other stress condition that must be checked is when the beam is at the
service stage. The unfactored applied loads give rise to the moment at service
which is given by ‘Ms'. The peak service stresses occur when the building has
been fully completed and has gone into active use, at which stage the losses in
the prestressing force discussed in Section 2.3 will have occurred. The final
prestressing force which is typically about eighty percent of the initial

prestressing force is given by ‘Py.
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Figure 2.7 stress check at service state before loading

Figure 2.7(c) shows the effective prestressing stresses after losses have been
taken into account. Once again the stresses due to moments caused by self
weight are show in Figure 2.7(d). This will contribute towards reducing the
stresses giving the stress profile show in Figure 2.7(e). This profile is the state

of stress in the section before the imposed service loads are applied.

Shown in Figure 2.8(b) is the stress profile due to the applied loads
encountered by the slab during service. It can be seen again that the stresses
due to the applied service loads reverse the stresses in the member. The
resulting profile in Figure 2.8(c) gives the net stresses in the section that must

be checked. The bottom fibre is only critical if there are tensile stresses present

in the case of a class 1 member or tensile stresses greater than0.45.,/ 7. in the

(413

case of class 2 members as any compressive stresses that may occur would be

relatively small.
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Figure 2.8 stress check at service state after application of loads
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The top fibre stress must be checked to ensure that the compressive stress is
less than the allowed stress in the concrete. The design strength of the concrete
is based on the twenty eight day strength for the service checks as at [east this
length of time will have passed from casting to introducing the structure to its

use.

2.2.3. Ultimate limit state

The design checks discussed above relate to the stress checks carried out for a
member under normal working conditions experienced during ‘service’.
However ultimate limit state design checks require the designs to be checked at
the most extreme case. At the ultimate limit state all factors of safety are applied
to check the slab for shear and bending. To this end, the imposed dead and live
loads and the self-weight are factored up whilst material strengths are reduced

to allow for imperfections.

2.2.3.1. Ultimate moment capacity

The ultimate moment capacity checks carried out on prestressed members is
similar to that for ordinary reinforced concrete members with a prestrain in the
steel. The member would be cracked in tension from the bottom most fibre to
the neutral axis as expected in a similar reinforced concrete member. The
compression stress block used is shown in Figure 2.9 and has been taken
directly from BS 8110; Part 1: 1997, clause 3.4.4.4.

0.9x

Strain Stress
Figure 2.9 simplified compression block
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The ultimate moment capacity, M,_is given by the following formula derived
simply by taking the moment of the force acting through the strand about the
centre of the compression block. The depth from the top fibre to the neutral axis
is denoted by x’. Equation 2.1 gives the ultimate moment capacity of a solid
slab.

M, = f,A4,(d-045x) (2.1)

The area of the strands 'Aps' and the effective depth to the centroid of the
strands ‘d’ are found from the table of properties for strands and simple
geometry respectively. However the stress in the strands ‘f,," is more difficult to
evaluate due to the stress-strain properties of the steel used in the prestressing
process and the presence of the prestress force itself. The more general case
of a voided slab presents further complications as the compression block would
not be rectangular and therefore the depth to the centroid could not be assumed
to be at half the depth of the compression block. Figure 2.10(a) shows the
compression block for a voided slab. The simplified stress block given in BS
8110 allows for a uniform stress profile to be taken over 0.9 times the depth to

the neutral axis rather than the more complicated parabolic stress profiie.

Depth to centroid, d,
Centroid of compression

block N\

. N e - _.,, «
a\ A // »n ! Z Ji [D-gx

(a) (b) ()
Figure 2.10 compression block for a typical voided slab
The depth to the centroid of the simplified compression block is found by
dividing the first moment of area of the compression block about its top fibre by
its area. This quantity is denoted by ‘d.’. Once ‘d.’ has been established, the
lever arm about which the prestressing force is acting may be found. The
moment capacity equation given above in Equation 2.2 can be altered to reflect

the general case for a voided slab as given in Figure 2.10(c) or solid slab.
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M, =f,d,(d-d,) (2.2)

The remaining variable, s, the stress in the strands presents a more
challenging calculation. The stain in the strand at the ultimate limit state, &, is
given by Equation 2.3.

=&, +&, (2.3)

& b

The two component strains, g, and ep, represent the strain due to the strand
prestress and the strain due to the applied load respectively. The force taken for

calculating epe is the post losses prestressing force which gives Equation 2.4

(%4)
=70 (2.4)

e E

Ry

The strain resulting from the additional applied loads has two components, the
concrete prestrain at the strand level g, and the concrete strain at the strand
level at collapse, ¢,. This is given in Equation 2.5

£ = gu + g" (25)

pa

P Pet

Where ¢, = A—E"— (2.6)

c

To find the concrete strain at failure refer to Figure 2.10(b) where it can be seen
that:

g =975, (2.7)

These strains can be summed as follows and then an expression for x, the

depth to the neutral axis, can be derived.

Spb = gpe +ge +[d—x E"cu) (28)

Ead

Eﬂb - (gpc + ge - 8('" )

(2.9)

X =



The next step involves equating the internal forces within the slab, i.e. the
tensile force in the steel strands and the compressive force in the compression
block for the concrete. The force in the steel is given by Equation 2.10.

F; = Ap,\'.f;rb (210)

The compressive force is a function of design stress of concrete and the area of

concrete in the notional compression block as shown below.

=007, (2.11)

c 1‘5 Lirss

If the section under examination is a solid rectangular member then A = 0.9bx,
where b is the breadth of the member. By equating the forces and expressing
the variables in terms of the stress, fop, the following equation is found where k;
is equal to 0.405

k
o = Llab (2.12)

F2i

Equation 2.9 can be substituted into Equation 2,12 to allow the stress in the
strand, fyp, to be related to the strain gy

S = kifob Eandl (2.13)

Ap.c E"pb - (gpe + ge - S(u )

As all the other variables in this equation are known, it is now possible to plot
the range of strain verses stress values that satisfy this equation. However, only
one point will also satisfy the constraints given by the stress-strain diagram for

the steel. Shown below is a solution which satisfies both constraints.

Stress

g d

~ — kl fcub cu
\ ‘ Aps gpb - (gpe te, —&, )
\ “7 where this formula allows a

\ solution to be plotted

StrainF
Figure 2.11 possible solution giving * /,," and ‘&
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The solution provides values for fy, and gy in the strands and by substituting the
strain value into Equation 2.9, the depth to the neutral axis may be found. The
ultimate moment capacity may now be found as both the stress in the strands
and the effective lever arm, (d — 0.45x), have been calculated.

M, = [, A, (d —0.45x) (2.14)

A problem arises however where the concrete compression block, whose area
is given by A, is not rectangular as is the case for hollow core slabs. The
simplest method of achieving a satisfactory solution to this is {o use an iterative
technique. First the equilibrium equation must be developed in general terms as
shown in Equation 2.15 which is developed by equating Equation 2.10 and
2.11.

0.67f., YA,
— e ¢ 215
.f‘pb ( 1.5 J 14 ( )

Py

The area of the compression block A, is based on the area of concrete that is
present above the neutral axis which is obviously less in a voided slab than in a
solid slab. However, to comply with the suggested simplified stress block given
in the British Standards the depth of the compression block must be reduced to
0.9x. This is shown in Figure 2.10(a) where the shaded area can be seen to

show the assumed compression block.

The first step in the iterative process is to assume a value for x from which the
area of the compression block can be estimated. Referring to Equation 2.8, the
trial value of x assumed can be used to calculate gy, and then using this value
the Young's modulus for the steel may be used to calculate the trial value for
the stress in the strands fu,. The value for x taken is then used to calculate the
area of concrete in compression. The area of the compression block may then
be substituted into Equation 2.15 to produce a second value for the stress in the
strands which if found to be within a specified tolerance to that found from the
compatibility equation would verify the assumed depth to neutral axis chosen. If
the two stress values differ by a value greater than the tolerance then a higher
or lower value for x is used and the process repeated. Once a satisfactory

convergence is achieved the vaiue for fy, is deemed to be the ultimate stress



acting within the strands. The centroid of the compression block determined
earlier is now known and its location is given with respect to the top fibre of the
slab. This is denoted by d; and aliows the lever arm, (d — d;) to be found. As
shown in Equation 2.16 the ultimate moment capacity of the slab can be
calculated from

M, =[f4d,d-d) (2.16)

ps

It can be seen that, if a similar ultimate moment capacity check is carried out on
a similar slab where the strands are unstressed at casting, the ultimate moment
capacity decreases by as littte as 20%. However, the deflections would increase
greatly and cracking would become critical. This process is shown below in the

flowchart in Figure 2.12.

Estimate a value for

X
P Incresase / decrease value for x
A 4 r
Caiculate g, based Calculate A based
on trail value for x on trail value for x
(Equation 2.8)
Y
v The value found for
Find the associated Acc is used to find fop
stress in the steel, fyp (Equation 2.15)

(Figure 2.11)

Are fyp values no

similar

Calculate A based
on value of x and fy,
(Equation 2.16)

Figure 2.12 Process used for finding ultimate moment capacity
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2.2.3.2. Ultimate shear capacity

The ultimate shear capacity of a slab is determined by the aggregate interlock in
the concrete and dowel action provided by the strands. The degree of
compaction in the concrete is a major factor in the shear capacity of a section.
However, it is primarily affected by whether or not the section under
consideration is cracked. Unlike a traditional reinforced concrete slab, the soffit
of the slab would not be cracked across the full span distance at the ultimate
limit state due to the prestressing force. The simple case of a slab resisting a
uniformly distributed load demonstrates the requirement for cracked and
uncracked portions of the slab to be considered separately. Figure 2.13 shows
the bending moment diagram due to imposed loads and also the moments due

to the prestressing force.

Span

Applied bending momenl: M

Wom enl necessary lo produce
zero stress in lhe concrele in the

bollom fibre: b, —\

Bending Moment

Uncracked _ | Cracked | uncracked | |

i}

Figure 2.13 cracked and uncracked zones

These moments due to the prestress have the effect of reducing or cancelling
the tensile stresses resulting from the gravity loads. The regions where the
stresses in the bottom fibre of the slab are either zero or compressive are
deemed to be uncracked and therefore the cross sectional area of concrete
available to resist the applied shear force is at its greatest. As the centre portion
of the slab comes under consideration it can be seen that tensile stresses would

occur and therefore the section must be treated as cracked.
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The first step in a shear capacity check is to determine which portions of the

slab are considered cracked and which are considered uncracked. The moment

due to the prestressing force is given by My and shown in Equation 2.17

0.8/,1,
y

M, = (2.17)

It is noteworthy that fy, the stress in the bottom fibre of the slab due to
prestress, is derived from the post losses prestressing force. Therefore the
value of Mg can be seen to vary across the span in accordance with the loss of
prestressing force as described in Section 2.4. A factor of safety of 0.8 is
applied to the bottom fibre stress to account for variances experienced during
experimentation and load tests carried out on slabs. The bending stresses due
to the applied loads are calculated using loads that are factored in accordance
with limit state design. As seen above in Figure 2.12, when the two bending
moment diagrams are added to produce the net bending moment diagram the
resulting stresses show clearly where the bottom fibre stresses are compressive

or tensile and therefore cracked or uncracked.

Uncracked shear capacity

The formuia for calculating uncracked shear capacity is obtained by examining
the stresses within an element in a region of the uncracked concrete using
Mohr's circle analysis. The applied stresses acting on this element are the
compressive stresses due to the prestress and a shear sfress due to the
applied loads. Shown below in Equation 2.18 is the principal tensile stress, f;,

resulting from the compressive stresses, f, and the uncracked shear strength,

VCO-
/= %\/Iff ") %f (2.18)

The tensile stress within the concrete is limiting factor with respect to the shear
capacity and therefore by reorganising the variables the maximum shear stress

is given.

vo =72+ 11) (2.19)
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For a solid rectangular section the shear capacity V., is given by the following
where the area of the section is a function of the overall depth, h, and the

effective width, b,,.

2
Vo =5 (2.20)

The more general form of this equation allows slabs with voids of any shape to

be considered. This is given by Equation 2.21.

b I
V,o=-2Ey 2.21
ch Ay c0 ( )
The width of section used in this equation, by, is based on the cumulative width
of the webs of the sections between the voids. It should noted that where the

width of the web varies, the narrowest point should be taken as the critical
section. Also, Ay, is the first moment of area of the concrete above the

centroidal axis.

The British standards recommend that the compression due to the prestressing
force value be reduced by 0.8 as a factor of safety. This stress is taken as the
average stress at the cross section under consideration given by P/ A. The
losses in prestress are an important factor in this shear check as the
transmission distance where the prestress force varies parabolically from zero
to its maximum potential value occurs normally in the region of highest applied

shear. The maximum allowable tensile stress in concrete is normally taken
as0.24./ /.. , as suggested by the British Standards. Shown below is the

complete equation combining Equation 2.19 and 2.21 to give the shear capacity

of the slab in the uncracked region:

Ve = bjm (2.22)

))
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Cracked shear capacity

The cracked shear capacity of a slab is given by an empirically derived equation
as recommended in clause 4.3.8.5. of BS 8110: Part 1: 1997. This is given in
Equation 2.23

M
v =1 0ss ey bod+ —2V (2.23)
o € 11/1( ult

Jopu 1t

It can be seen that there are two distinct parts to this equation that vary
independently as cross sections across the span are considered. For the sake
of explanation a uniformly distributed load on a simply supported slab is taken

as an example.

in the first part of the equation f,e / fpy is the ratio of the stress in the strands
after losses at the cross section under consideration to the characteristic
strength of the strands. The design shear stress, v, is calculated as in an
ordinary reinforced concrete section. It may be noticed that if this part of the
equation was applied to an unprestressed section the ratio fye / fou would be

equal to zero and therefore the formula would simplify tov, =v_b,d , which is the

same as that given in design codes for reinforced concrete. It is clear therefore
that the larger the stress in the strands the smaller the contribution of the first
part of the equation to the overall shear capacity. Conversely, in the second part
of the equation a larger prestressing force would contribute positively to the
capacity of the section. The quantities My and Vu, are the bending moments
and shear stresses calculated at the ultimate limit state. Mg is given above in
Equation 2.17 and as it is a function of fy will increase as the prestressing force
rises at the centre of the span. The two parts of this equation can generally be
said to represent the effect of the materials present and the effect of the

prestressing force respectively.

The method of manufacturing most prestressed slabs makes it difficult for shear
reinforcement to be provided within the slab. If a slab fails the shear check the
most likely remedy is to use a deeper section so as to provide a greater area of

concrete to resist the shear forces.
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Figure 2.14, shows the form that the shear capacity diagram takes. The effect of
end anchorage on the shear capacity in the uncracked portions is very clearly
visible as is the sudden fall off in capacity in the area where flexural cracking is

assumed to occur.

B——

Uncrackexl Cracked in flexure Uncracked

Shear Force

Span

pplied shear force

Figure 2.14 shear capacity and applied shear force

2.2.4. Defiection

The process of designing ordinary reinforced concrete beams or slabs
predominantly begins with choosing the depth of the slab based on span/ depth
ratios. This process generally ensures that deflections are within prescribed
limits so as to avoid cracking of the internal finishes in buildings, and it also
minimises the visual impact of the deflection of the member on the inhabitants
of the building. The deflection experienced by prestressed members cannot be
simplified to this degree due to the upward camber caused by the prestressing
force. Also, as the prestressing force varies with time due to losses, and
Young's modulus increases, a short term and long term deflection check is
normally carried out. In a limited number of cases a contractor may ask for a
deflection calculation for the slab in the unloaded state so as to find the upward
camber. This would allow the contractor to more accurately estimate the volume

of concrete required for a screed.



2.2.41. Short term deflection

There are three components for short term deflection:

1. Upward deflection due to the prestressing force less the initial elastic
shortening and relaxation losses. Also the Young's modulus of the
concrete is taken as that at transfer.

2. Deflection due to permanent loads causing downward deflection based
on the mature properties of the concrete.

3. Live load deflection based on the mature properties of the concrete

The first component of the deflection to consider is the upward cambering due

to the prestressing force.

The upward deflection at mid span on a simply supported slab is given as
follows:
LZ
5/?]‘:'“(’.’“’ == Re
o 8E_1

T x

(2.24)

This upward camber occurs at the moment of transfer and therefore the
Young's modulus at transfer is taken as the appropriate material property. Also,
the time dependent losses in the prestressing force will not have occurred and
therefore only the instantaneous losses are deemed to have an effect on the

prestressing force taken for the camber calculation.

Permanent load deflection which is a function of self weight and the weight of
the screed is based on the mature strength of the concrete as a sufficient time
will have passed since the casting of the slab to the time when all of the
permanent loads are acting. Again, the formula shown here (Equation 2.25)
only apply to the simplest case of a uniformly distributed load on a simply
supported span. However, for other cases, moment-area theorems can be used
for hand calculations. It should be noted however that the geometry and
material properties found for the above calculation remain valid for the more

complicated cases examined using moment area methods.
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Semi-permanent loads form the third and final part of the short term deflection.
Effectively the semi-permanent loads are any unfactored live loads that may be

applied to the slab.

4
S — i_ @ o L (2 . 26)

semipermaneat = 384 E.I.
The deflections due to permanent and semi-permanent loads are calculated
separately so as to allow for comparative deflections to be calculated. This
comparison may be called for by a contractor finishing the inside of a building.
The case of a studded partition built right up to the under-side of a slab subject
only to permanent ioads may lead to problems. The semi-permanent loads that
would be applied to the slab above during the life time of the structure would
lead to further deflection. The slab would bear down on the partition and cause

superficial cracking to the plaster.

The maximum and minimum short term deflections are shown below:
5 =0 +O +8 (2.27)

max prestvess periianent semi— permeaiteid

S =8 48 (2.28)

min Y prestress permaient

2.2.4.2. Long term deflection

Long term deflection is affected by time dependent losses in the prestressing
force causing a reduction in the upward camber component of the deflection.
Concrete creep also affects the deflection due to the applied moments and the
upward camber. It should be noted that in all cases when examining long term

deflection the Young’s modulus value for mature concrete should be used.
The upward camber is the product of three functions. The largest of these

factors is, as before, the upward camber due to the prestressing force at

transfer.
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Then as time passes a loss in prestress occurs given by Pisses Which causes a

reduction in the upward camber.

(Sl'm'\'ej = M (230)

) 8E. 1
Creep has a further effect on the deflection by decreasing the upward camber.
The effects of creep are looked at in some detail in Section 2.4.2. As seen in the
formula given below this factor is a function of the average prestressing force.

s _ AR el (2.31)
erer 2 8E, 1, '

Therefore, it can be said that the total deflection contribution due to prestressing
is as shown in equation 2.32. When 8pi, Siosses aNd Screep are substituted into this
formula, equation 2.33 is found. This is simplified as shown in equation 2.34
(Kong and Evans 1997:371).

5prmrress = 5.”1’ + 5.’0:50: + éc'recp (232)
LZ Ll - P 7 2
— l)fe + P[{J.“S(’.Te _ ¢([)f + ])l tnsses ) eL (2 .33)
8F. 1. 8E., 2 8E I
Pel’ | PP HR_;I%
- _ i€ i = ¥ losses ¥ i ¢ (234)
SEC ].\.' Pf 2

From this the following relationship can be extracted where « is the prestressing

force loss ratio

a = (’PJ ﬁjf[nsﬁes) (235)

1

Equation 2.34 can then be simplified to the following.

Pel? l+a
S o m—— o+ 2.36
JIEStresy SEL_]"_ ( 2 ¢] ( )

The defiection due to all applied loads, permanent and semi-permanent, can

itself be divided into two categories, that which occurs instantaneously as the
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load is applied and the further deflection that happens due to this load when

creep effects occur. The instantaneous deflection due to the loads is given by

5({)-”‘0” = i a)L4
384 E 1,

(2.37)

After time has elapsed the effects of creep will have occurred and therefore the
additional deflection will happen. This is given by:
5 wl

S = 2.38
w-cregy 384 E‘_]_l, ¢ ( )

Equations 2.37 and 2.38 are combined to give the following equation which

sums up the downward deflection experienced by the slab.

5 ol

Sopvere = 7o 1+ 2.39
YY) [x( ?) (2.39)

As seen in the calculation of short term deflections, the consideration of
permanent and semi-permanent loads is often carried out separately so as to
allow the range of possible deflections to be examined. The formula given

above may be used by substituting in values for @ and @ The

SCHE - peiianent permanent ”

range of long term deflections due to all loads both internal and external

affecting the slab is given by equations 2.40 and 2.41
o =0 +0 +d

max prestress prermeanent SII— permanen

=5 46 (2.41)

min presress permanent

(2.40)

J

The multitude of factors affecting deflection result in calculations rarely giving an
answer that agrees very closely with those measured on site. The final
deflection value required a degree of engineering experience to be used. In
many cases due to manufacturing techniques the calculated value would differ
from actual deflections by an almost constant factor that can only be gquantified

through experience.

Limits are placed on the deflection due to semi-permanent loads of span / 500
for brittle finishes and span / 350 for non-brittle finishes and in either case not
greater than 20mm. In essence this limits the deflection that occurs after the
slab is in place with the permanent loads acting on it. A further limit is placed on

the overall deftection {downward deflection less upward camber) of span / 1500.
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2.3. Materials

The steel and concrete used in prestressed concrete manufacturing is generaily
of greater quality than that used in other comparable forms of construction. The
design philosophy favours increasing the size or number of strands, or the
strength of concrete rather than changing section sizes to fit a particular set of

design requirements.
2.3.1. Concrete

It is noteworthy when considering concrete as a material that the quality of the
wet concrete does not necessarily reflect the performance of the concrete after
it has set. The cement used will have been produced to high standards, the
aggregate will be of known performance and any admixtures well documented.
However, if the concrete has not been adequately compacted or if there has
been carelessness on behalf of the staff manufacturing the unit - for example,
allowing cold construction joints to form, this will greatly affect the performance

of the concrete.

It is generally the case that higher strength concrete mixes are used in
prestressed concrete manufacturing. Many manufacturers use machinery to
form the slabs by extruding the concrete to form the outline of the slab with
circular mandrels forming the voids. This calls for a very dry concrete mix
sometimes referred to as ‘earth-dry’. This requirement for low siump concrete
makes compaction critical for achieving the full potential of the concrete with
respect to strength, durability etc. This places demanding requirements on the
batching plant operator and mix designer. Typical mix requirements are given in
Table 2.1 (Elliott 2002:19)

The early strength of the concrete is of particular interest to the manufacturer.
As is shown in the table, grade C50 concrete must reach a transfer strength of
at least 30N/mm? which is ensured through cube tests carried out on concrete

samples taken whilst the slabs were being cast and then cured under the same
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conditions. Once the required strength has been reached the slabs can be

removed from the casting bed allowing the next production run to begin.

Grade F at28 Demould cube Design Tensile Ecat28 Edi
days strength strength  Strength days
(mm?) (N/mm?) (N/mm?)  (N/mm?)  (kN/mm?)  (kN/mm?)
C50 50 30-35 225 3.2 30 27
C60 60 35 - 40 27.0 3.5 32 28

Table 2.1 concrete properties

2.3.2, Steel

The steel used for prestressing concrete in Ireland is generally cold-drawn high
strength wire. The wires which range in diameter from 3mm to 7mm are twisted
together into strands. The seven wire strand is the most popular configuration,
however, five and nineteen wire strands are manufactured. The strength and
bond characteristics of the strand are affected by the number of strands present
to which the concrete can grip and also the tendency for the straightening of the
spun wire within the strand during tensioning. Shown below in Table 2.2 are the

properties of seven wire strands (taken from BS 5896: 1980).

Nominal Nominal area Breaking 0.1% proof

diameter of strand strength load
(mm) (mm?) (kN) (kN)
6.35 23.22 40.0 34.0
7.94 37.42 64.5 54.7
9.53 51.61 89.0 75.6
11.11 69.68 120.1 102.3
12.50 93.00 164.0 139.0
15.70 150.00 265.0 225.0

Table 2.2 steel properties

The stress / strain properties of the high strength steel used in prestressed
concrete differs from that used in reinforced concrete. The ultimate
characteristic tensile strength of the wire used is approximately 1770 N/mm?
compared to 460 N/mm? for ordinary high yield steel. The value of Young's

modulus for this steel is generally taken as 190,000 N/mm?.The failure strain
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tends to fall between 0.04 and 0.06 giving no definite yield point. A proof stress
is chosen to give an equivalent yield stress that would not result in an excessive

strain and therefore creep. For this purpose a value of 0.1% proof stress is used
denoted by 'f, 0.4. At 0.1% strain a line is draw at an equal angle to the Young's
modulus. The point on the graph where the stress / strain curve intersects this
line defines where the proof stress can be read. This can be seen in figure 2.15.
This stress / strain relationship is simplified in the British standards giving an
almost as accurate yet mathematically simple model.

4[

fultlma'le lensile strenglh
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Strain
Figure 2.15 stress / strain relationship for steel

The simplified stress / strain relationship is given in BS 8110: Part 1: 1997,
Section 2 and is shown in Figure 2.16. Minimum standards for the material

properties of the steel are given in BS 5896: 1980.
0.8 1. f

f

Stress

Strain
Figure 2.16 simplified stress / strain relationship
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Section 3 in BS 5896 relates to strands with table 6 giving details of both the

material properties and dimensional requirements.
2.4, Losses

The force applied to the strands is normally 70 — 80% of the ultimate tensile
strength of the strands. There are a number of factors affecting the loss of force
within the strands. Furthermore, the degree to which these factors affect the
prestressing force varies with time. For example, elastic shortening occurs at
the moment of transfer, however, relaxation of the steel is assumed to have
reached its peak after one thousand hours have passed from the stressing of

the steel.
2.4.1. Elastic shortening of the concrete

At transfer, as the strands are cut and the force is transferred into the concrete,
the compressive stress in the concrete at the level of the strands is
accompanied by strain. As the concrete shortens under the action of the
compressive force the strands embedded therein shorten by the same length.
The reduction in the strain in the strands leads to a reduction in the prestressing

force that is typically in the order of about 5%.

To quantify the reduction of the stress in the strands, the stress in the concrete

at the depth where the strands are located must be calculated. The concrete
stress ‘g’ is given by the following formula:

2
o, = 2(1 + 4 ] o, (2.42)

x

It is noteworthy that the value taken for the prestressing force is the post-
transfer force. The stress due to the self-weight ‘c¢g’ is relatively small but its
presence is beneficial as it partly counters the loss of prestressing force. Most
designers will therefore use this. The compressive strain in the concrete that
develops at the level of the strands is equal to the reduction in the tensile strain

in the strands.
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£, = Ef:' =g, (2.43)
And therefore the reduction in steel stress = ¢ E, (2.44)
(UWJE, (2.45)

E,
—a o (2.46)

e op

The reduction in force in the strand is therefore given by o 4,0

et p o

At the moment before transfer the prestressing force is denoted by ‘Py'. It is

then clear that the post-transfer prestressing force is given by

P = Py - reduction in force (2.47)
Po = P + reduction in force (2.48)
o A ? A M.
—pyplfef A EATE (2.49)
A 1, I,

Finally, when this is rearranged the post-transfer prestressing force is given
a, A, Me
AR N a g

0
P= 8 (2.50)

o A 2
A !

X

It can be seen from this equation that the prestressing force after transfer is
amongst other factors, a function of the moment at the cross-section being

considered. At transfer the moment acting on the slab is due to the self weight

alone and is given by o 1’ /8.

2.4.2. Creep

Creep occurs in concrete when it is subjected to a sustained compressive
stress over a long period of time. The degree to which creep affects the
concrete is a function of the long term stress in the concrete and the

atmospheric conditions in which the slab is situated.
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The final value for the creep strain ‘e, is in theory only reached after an infinite
time has passed. This differs from linear elastic strains by a creep coefficient ‘¢’
which can be estimated from the following formula:

¢ﬁ0‘9;°E (2.51)

This eguation can be rearranged to give the creep strain value. From
compatibility of strains this allows the strain and therefore the force in the steel
to be found. The creep losses can be calculated from the following:

= A Ec¢ o

P 5

= A, E ¢

E = A[)aﬂ¢aff} (252)

o

The British Standards recommend the following key factors in estimating the
creep factor.

1. Original water content

2. effective age at transfer

3. effective section thickness
4. ambient relative humidity
5

. ambient temperature

It the absence of further investigation, BS 8110: Part 1: 1977 gives a value of
1.8 for transfer within 3 days and 1.4 for transfer within 28 days for normal
outdoor exposure in the British Isles. If greater accuracy is required with respect
to the estimation of ¢ then Figure 2.17 can be used. This is given in BS 8110:

Part 2: 1985 Section 7.3 where a more thorough examination of creep is shown.
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Figure 2.17 creep factor graph
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2.4.3. Relaxation of the steel

Relaxation of the strands causes a time dependant loss of prestressing force.
The losses due to relaxation of the strands are directly related to the degree to
which the strands were initially stressed. Strands stressed to 30 — 40% of their
ultimate breaking stress will be prone to virtually no relaxation and therefore the
accompanying losses would be miniscule. At a prestressing force of 60% of the
breaking force the long term relaxation increases to 1%, however, at 80% of the
breaking force the relaxation is of the order of 4.5%. As recommended by the
British standards the balance between efficiency and safety is achieved by
using a prestressing force of 70% of the breaking force giving a relaxation of
2.5%.

Relaxation of the strands continues to occur over time at an ever reducing rate.
For practical purposes it is assumed to have reached its peak value after 1000
hours have passed since the strands were initially stressed. Design codes state
the maximum permissible relaxation based on the performance at 1000 hours at
a given percentage of the breaking force. Manufacturers also provide similar
tables for their own products revising the properties as necessary to reflect
improvements in performance. Shown below is an extract taken from Table 6 in
BS 5896: 1980 showing allowable relaxation values for the three most

commonly used initial prestressing forces for both class 1 and 2 members.

Max. relaxation after
[nitial load 1000 hours

(% of actual

. Relax Relax
breaking f

reaking force) Class 1 Class 2
60 % 45 % 1%
70 % 8 % 25%
80 % 12 % 45 %

Table 2.3 relaxation values

In practice it is assumed that some relaxation will occur before transfer. To
reflect this, it is normally taken that 25 % of the relaxation has occurred before

transfer. The remaining 75 % is assumed to have occurred by the 1000" hour.
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2.4.4. Shrinkage of the concrete

Shrinkage of the concrete is another time dependent source of losses in the
prestressing force. The ultimate value of the shrinkage strain is only reached
after an infinite time has passed. The factors affecting the degree to which
shrinkage would occur are given in the British standards as follows:

1. the aggregate used

2. the original water content of the concrete

3. the age of the concrete at transfer

4. the effective thickness of the concrete

5

. the ambient relative humidity

Many of the factors vary greatly according to region and therefore the best
estimation of the loss of strain is made through local experience or experimental
results. In the absence of local or experimental data the British standards
suggest a value of 100 * 107 is taken for outdoor conditions while a value of

300 * 107 is taken for indoor conditions.
2.4.5. Transmission length

The transmission length for a strand is the distance from the end of a length of
strand to the point where sufficient anchorage has developed to allow the
prestressing force to be transferred from the strands into the concrete. Itis
clearly the case that at a distance of 100mm from the end of a strand that
insufficient surface area on the strand surface to provide anchorage great
enough to resist a pullout force in the order of 60 kN. The transmission length is
typically of the order of 50 to 160 times the diameter of the strand itself. If a slab
has openings or notches that cut the line of a strand then the prestressing force

falls off in the same manner as the ends of the slabs.

Guidance on transmission distances is given in BS 8110: Part 1. It suggests
again that experience with particular site conditions or experimental data should
be used where possible but in their absence gives coefficients that can be used.

It lists the key factors affecting the transmission length as follows:
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the degree of compaction of the concrete
the diameter of the strand

the concrete strength

M=

the surface condition of the strands

The following equation gives an estimation of the transmission length and can
be said to be valid for cases where the initial prestressing force does not

exceed 75% of the strands breaking force.

(2.53)

Where ¢ is the nominal diameter of the strand.
fi is the strength of the concrete at transfer
K\ is the coefficient relating to the surface grip provided by the strands

The two main types of strands used are the seven wire standard or super strand

with a K, value of 240 and the seven wire drawn strand with a K; value of 360.
2.4.5.1. The rate of anchorage development

The magnitude of the prestressing force varies from zero at the free end of the
strand to it full value as mentioned above. BS8110 provides a relationship
derived empirically to gives stresses at the centroid of the slab within the
transmission length. This formula can be adapted slightly to give the force in the
strands themselves. Equation 2.54 shows this relationship with |; being the
transmission length as given above in equation 2.53. 'Py in this formula needs
to be clearly defined. It is the force in the strand at the end of the transmission
length as calculated after all the other sources of losses have been accounted
for.

P, = [l[z - %JPI (2.54)

t i

This relationship gives a convex parabolic growth in the force from the free end
of the slab. Figure 2.18 shows the relationship between the stress in the strands

before and after transfer.
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After transfer

Stress in tendons

| Bordlengh Span distance

Fig 2.18 development of anchorage

2.4.6. The process of calculating losses

The check for transfer, service and ultimate limit state stress requires careful
selection of the appropriate values for the prestressing force. As seen in earlier
sections, the slab must be checked for various limiting factors during three
distinctly different states transfer stresses, service stresses and the ultimate
limit state stresses. Figure 2.19 shows the processes and order in which the
losses should be calculated. The two columns on this chart show the sets of

values of the prestressing force that must be ascertained as part of a full check.

The transfer losses calculation of relaxation is only 25% of the long term value.
This loss affects the value of the prestressing force ‘P’ used in the elastic
shortening check. Also noteworthy is the fact that the moment acting upon the

sfab during this check is the unfactored self weight.
As concrete creep and shrinkage would have occurred by transfer they are both

ignored. Finally the end anchorage values can be calculated based on the

previously evaluated forces.
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Losses

Transfer

Service & ULS

Relaxation
~ 25% of the relaxation is assumed
to have occurred by transfer.

Relaxation
~ 25% of the relaxation is assumed
to have occurred by transfer.

'

'

Elastic Shortening

~ P reduced due to partial
relaxation.

~ M due to unfactored self weight.

Elastic Shortening

~ P reduced due to partial
relaxation.

~ M due to unfactored self weight.

- Conarete croep
.~ No creep will occur by transfor,

© - No shrinkage of the concrete will
. oceur by transfer. :

A 4

; Transfer -~----—----—-- i _____________
Voo

Relaxation

~ remaining 75% of the relaxation is
assumed to have occurred when
the structure has gone into use.

’

Concrete creep

~ P reduced due to relaxation and
elastic shortening.

~ M moment due to unfactored self

weight.

Concrete shrinkage
~ Shrinkage losses will have
occurred when the structure has

gone into use.

End anchorage
~ Calculated based on the sum of
other losses

End anchorage
~ Calculated based on the sum of
other losses,

Figure 2.19 loss calculation process
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Losses at the service state and the ultimate limit state are the same. Relaxation
of the steel will have reached 25% of its final value by transfer, with the
remainder occurring post transfer. To calculate the losses due to elastic
shortening the prestressing force is the value measured at the jack iess the
25% relaxation value. The bending moment values adopted for this calculation
are again those due to the unfactored self weight. After transfer, the remaining
75% of the relaxation will occur before the structure goes into service. Foliowing
this check creep in the concrete creep is evaluated. This check is based on the
state of stresses in the slab after a significant time has passed and therefore it
is calculated from the post relaxation and post elastic shortening prestressing
force. The bending moment values used are those due to self weigh alone. It
may be asked why the imposed loads are not also reflected in the moment
values adopted. The unfactored self weight is the only load whose presence is
guaranteed to always remain in action. As the gravity loads provide a beneficial
role in reducing the elastic shortening losses it would not be prudent to assume
that they would be ever-present. Thus to give a conservative design the self
weight alone is used. Concrete shrinkage losses are also time dependent and
therefore must be carried out after the previously mentioned losses have been
accounted for. The final check for end anchorage is again for both cases based
on the initial prestressing force less the cumulative losses calculated for the

state under consideration.

It is apparent that the creep and elastic shortening losses are a function of the
bending moments acting upon the slab. During a very rigorous analysis of a
slab the final values of the prestressing forces at both transfer and service may
be found. As the applied moments varies parabolically along the length of the
slab for even the simplest case, ie the self weight of the slab, theses values
must be evaluated at a reasonably large number of intervals along the span. If
the losses at each of these intervals are found then a very accurate estimation
of the final prestressing force is given. Figure 2,20 show the variation of
prestressing force along the length of a slab for the three states that require

consideration. The full caiculations are shown in Appendix 1.
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Variation in prestressing force across the span

Pretressing force (kN)
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Figure 2.20 example of post losses prestressing forces

Upon examination of this chart the importance of end anchorage becomes
clear. The beneficial effects of the gravity load in the elastic shortening and
concrete creep calculations are also apparent. Also, excluding transmission
distances, the average loss of prestressing force along the span of the slab is of
the order of 25%.

2.5. Manufacturing the slabs

All types of prefabricated construction have a number of advantages over in-situ
construction. As with any product manufactured under factory conditions, quality
control of a higher order than is possible on site is achieved. In most cases the
concrete is produced at the same manufacturing facility allowing quality control
to also extend to its production. The cement used for producing concrete and
steel prestressing strands are manufactured to exacting standards by a small
number of companies with their own quality control procedures. The designer
can also have greater confidence in the slab being manufactured to the
specifications drawn up with respect to the geometry of the cross section, the

position of the strands and the location of any notches or openings.



The process of casting prestressed concrete slabs involves six main steps

carried out on the factory floor over the course of two days.

Preparing the casting beds

Stressing the strands.

Placing and compacting the concrete.
Curing the slabs.

Cutting the slabs to the required iengths.

2R T

Removing the slabs from the casting beds.

2.5.1. Preparing the casting beds

The casting beds used in the production of prestressed slabs are typically one
hundred and twenty meters long. At each end of these beds there are large
anchorage blocks designed to resist the action of the prestressing force.
Between uses, the casting bed must be cleaned and mould oil applied to ensure

a clean separation between the casting bed and the underside of the slab.

2.5.2. Stressing the Strands

The strands are positioned according to the design with particular attention to
the distance from the strands to the casting bed. However, the designed must
also obey certain other constraints such as the minimum cover to the strands
for fire protection purposes. The guidance given by the British standards
suggests that a minimum cover of 20mm be given for one hour fire resistance
with further information given by Table 3.4 in BS8110; part 1; 1997. Similar
consideration is given to corrosion where it is deemed to be a probiem. A typical
siab could have ten 9.5mm diameter stands each with a force of 64.1kN,
working with forces of this magnitude requires great care. The jack used for
stressing the strands must be calibrated regularly and the sequence in which
the strands are stressed involves stressing the centre pair first and the working

outwards towards the edge strands in a balanced fashion.
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2.5.3. Placing and compacting the concrete

There are a number of machines available for placing and compaction of the
concrete all of which accomplish the same goal. As mentioned eariier, the
concrete used in the manufacture of prestressed concrete elements is a very
dry mix so as to ensure that it will hold its shape after placing. The deeper
sections with voids throughout their length require mandrels to give the required
void shape. The slip forming process happens relatively quickly as the machine
moves along the casting bed on rails. The main difference between the
machinery produced by different manufacturers is the shape of the void forming
mandrels. As the concrete used sets rapidly, the time from the addition of the
water to the mix, to the placing of the concrete is critical. As the concrete begins
to set, the task of ensuring that the concrete has been vibrated fully becomes

more onerous.

There are a number of modifications that can be made to the standard cross
sections produced by the machines. Some factories employ robotic spraying
machines to mark the location of notches and openings on the top suiface of
the slab. This machine follows closely behind the casting machine in order for
the team manufacturing the slab to remove the concrete whilst it is still
somewhat soft. The spraying machine also marks the ends of the slabs so as to
simplify the cutting. Modifications can be made to the cross sectional shape that
the machine produces by varying the mould shape or mandrels used. However,
this task is somewhat intricate and therefore would not be varied on a slab by

slab basis.

2.5.4. Curing the slabs

The process of curing the slabs is greatly helped by the factory conditions in
which the slabs are produced. The casting beds upon which the concrete
hardens are heated by a system of hot water pipes running below them. In
many cases a long tarpaulin sheet is used to cover the slab fo keep the heat in.

In some of the deeper sections produced, ensuring a uniform temperature
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gradient throughout the depth of the slab can become an important issue so as

to minimise the possibility of additional stresses being imparted into the slab.

2.5.5. Cutting the slabs to the required lengths

Detensioning of the strands and the process of cutting slabs to their required
length can take place once the cube strengths verify that the required transfer
strength has been reached. The slabs will also be sprayed with an identification
number to ensure that the slab is placed in the correct location within the

building when it does reach the construction site.

2.5.6. Removing the slabs from the casting beds

The factories in which the slabs are produced generally have gantry cranes for
lifting and moving machinery and slabs. Specialist lifting equipment is required
for lifting and moving slabs. Ordinary forklifts cannot be used to lift slabs as
lifting a slab around the mid-point would result in tension in the top of the fibres
and therefore cracking would occur. To overcome this difficulty, an adjustable
length lifting beam is used to pick up the slab by its ends. A great deal of
consideration is also given to the order in which slabs are loaded onto the
trucks used to bring them to the construction site. By placing the slabs on the
truck in reverse order to that in which they are to be placed on site, the need to
unload slabs to a storage area on site is removed. As such this allows the slabs

to be lifted directly from the truck to their final position.

2.6. Summary

The theory upon which prestressed concrete design is based was examined
within this chapter with a view to constructing a software package to calculate
the stresses found in prestressed slabs. The stresses at transfer and service
states were reviewed and verified from first principles and the logic behinds
checking the slabs integrity during these states discussed. Bending moment
and shear capacities at the ultimate limit state were both reviewed with

particular attention shown to the British Standards. Losses in prestressing force
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were due to material and environmental factors and the effect theses losses
have on the slabs capacity were reviewed and a sample calculation studied.
The deflection characteristics of prestressed slabs and those factors affecting it
were studied and this important benefit of prestressed concrete construction
shown. Finally, the method of manufacture was discussed and some of the

practical aspects of the process highlighted.
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3. FINITE ELEMENT ANALYSIS

3.1. Introduction

Finite element analysis was chosen as the best analysis method for the
software for two main reasons. Firstly, the accuracy given by a finite element
analysis where complex shapes or loads are considered is excellent. Secondly,
the processes involved in carrying out this type of analysis are much more
easily implemented in a software package than, for example, the Hillerborg strip
method or yield line analysis. The finite element model chosen to best suit the
requirements of the prestressed slab analysis for normal construction is a plate
bending model combined with an in-plane model. The elements to be analysed

using this model are two-dimensional rectangles.

This chapter attempts to explain the theory being used and the choices made
with respect to applying this theory to prestressed concrete analysis. The theory
for the two models to be used are developed independently and then combined
in the global stiffness matrix. The application of boundary conditions is
discussed and a simple example is used to help explain the process. Finally,

the process of solving for displacements and then stresses is outlined.

As stated in Chapter 1, the aim of the research was to produce prototype
prescast concrete design software and not a more general study of finite
element analysis techniques. At the outset plate bending and plane stress were
decided upon as the theories upon which the analysis element of the software
would be built. The suitability of these theories will be verified or otherwise in
later chapters. The main reference from which the finite element theory was
taken was ' The finite element method: a basic introduction for engineers’
(Rockey et al. 1983). Elements of theory taken from other sources will be

referenced as such.
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3.2. The choice of model

In setting up a finite element model the decision must be made as to what
degrees of freedom are required to accurately model the element or structure. A
‘degree of freedom’ at a node can be defined for this project as ‘a deflection
perpendicular to a given plane or rotation about a given axis'. Normal plate
bending models have three degrees of freedom, one deflection and two
rotations. For a square or rectangular element there are four nodes, one at each
corner. Figure 3.1 shows a rectangular element with the degrees of freedom
associated with plate bending. At each of the four nodes, loads can be applied

in various ways.
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Figure 3.1 plate bending element

A force can be applied normal to the plane of the object denoted by F.

Moments can also be applied at each node denoted by T, and Ty.

An in-plane finite element model is incorporated into the program to increase
the accuracy of the analysis. This adds two extra degrees of freedom to the

model and they are denoted by F, and Fy. This is shown in Figure 3.2.
v

.

Figure 3.2 plane stress element
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It can be seen that the combination of in-plane and plate bending produces a

model with degrees of freedom including u, v, z, ,and @, . There is a possible

sixth degree of freedom ‘T, representing twisting within the plane of the plate,
however the plate is extremely stiff in its plane and therefore this degree of
freedom can be neglected without any reduction in the accuracy of the overall

maodel.

The loads applied to the slab can be divided into those due to gravity and those
due to the presence of the prestressing force. The gravity loads include all types
of line load, point loads and uniformly distributed loads including self weight.
These loads are applied to the plate bending mode! via the F; component. The
loading due to prestressing has two components as can be seen in Chapter 2.
The prestressing force itself is applied to the F, component of the plane stress
model, whereas the moment due to the eccentricity of the prestressing force is

applied to the plate bending model via the Ty, component.
3.3. Finite element theory

The forces within an element can be related to the displacement of the element

using the following formula:

{Pey=lx o) (3.1)

where {F°} is the nodal forces vector
{8°} is the nodal displacement vector

[K°] is the stiffness matrix

This applies to the plate bending and in-plane methods used in this project. It
can be seen that the size of the force and displacement vectors, and also the
stiffness matrix, are determined by the number of degrees of freedom used in

the model. This will be shown below for both cases
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3.3.1. Plate bending

It is assumed that the plate under consideration has a thickness that is small
relative to its other dimensions and that deflections are small. These
assumptions allow membrane stresses to be neglected as they are deemed to

be insignificant.

3.3.1.1. Stiffness matrices

Plate bending elements have three degrees of freedom at each node, two
rotations and the deflection normal to the plate itself. The rectangular elements
under consideration therefore have twelve degrees of freedom in total. The

displacements, and corresponding moments and forces at node one are given

9.\’[ rrl
o.}=10,1and {F}=1T, (3.2), (3.3)
W, F.

The{.«ﬁ"}and {F"}vectors clearly contain twelve terms and therefore the

elemental stiffness matrix, [K”] takes the from of a twelve by twelve matrix.

The following function gives the displacement at any point in plate element

7

X

{5(x, )} = 9;_ (3.4)

w
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Figure 3.3 element displacements
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As is apparent from Figure 3.3, the two rotations, &, and &, are related to the

deflection at any point in the plate element by the following expressions

ow

a. = , 0, =—
oy ox

X

(3.9), (3.6)

where w = f(x,y) is the vertical displacement function

A displacement function is established to reflect the twelve unknowns

corresponding to the twelve degrees of freedom of each element. This function,

a polynomial with twelve constants, is shown below in Equation 3.7.

W=+ Xy o R oy F gy X tagx Yy ayxyt vayt ta,xy+ oy’
(3.7)

This equation may be differentiated with respect to x to yield the slope of the

plate in the x direction, and differentiated with respect to y to give the slope of

the piate in the y direction as shown in Equations 3.5 and 3.6. The three

expressions give the general state of displacement within an element. By

substituting in the relative co-ordinates of the four corners of the element a

matrix with twelve equations and twelve unknowns is obtained. This matrix, [A],

is shown in full in Equation A2.13 the derivation carried out in Appendix 2 .

However the basic relationship is as follows:

o }=[aller) 3. 8)

And therefore the unknown coefficients in Equation 3.8 can be found using
ordinary matrix inversion. Therefore, referring to the general case the following

statement may be made:
(8o, =[G y)al o< (3.9)

To relate the strains within an element to the displacements found above, the
curvature of the plate in the x and y directions and the twist must be considered.
The curvature in the x direction is found by examining the rate of change of the
slope in the x direction as shown in Equation 3.10 below. The curvature in the y
direction is obtained in a similar manner.

' 2?
ﬁa[é‘n):_au (3.10)

o\ Ox o’
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_9_(@}_52‘2" (3.11)
oy\ oy oy

The twist is found by considering the rate of change of the slope in the x
direction with respect to the y direction.

? 2 47}
9-@-‘): o (3.12)
oy \ Ox axoy

Equation 3.13 gives the general state of strain in an element. The twisting

moments acting on the plate act equally along the four edges of the element

and therefore it can be that A/, = M, . From this it is apparent that the A/, in

Equation 3.13 should be doubled.

— 0w ax?
{e(v,y)t = {~*w/ay? } = [Cller} (3.13)
267w/ oxdy

The complete matrix [C] is shown in detail in Equation A2.14. Substituting
for{z}in the above equation where {«} is found by inverting equation 3.8, the

relationship between strains and nodal displacements is obtained.
{elx v} = (Bl (3.14)
where[B]=[C] 4] (3.15)

The state of bending stresses at any point in the plate bending model can be
represented by the three components shown below in Equation 3.16. My and My
are bending moments per unit length while M,y represents the twisting moment

per unit length:

M

X

folv, =4 M, (3.17)
M

xy

Equations 3.17, 3.18 and 3.19 are moment-curvature relationships for plate
bending. The action of these moments on a plate element can be seen in Figure
3.4.

2) 2JI
071 0 u] (3.17)

1‘1/[_,: = ﬁ(D“_ az— + Dl 5},7
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2 , 2 ;
M, =—[1),-a—“_+p1 0 ‘2‘] (3.18)
’ ox ox

(3.19)

Figure 3.4 element internal forces

The three equations, giving the flexural rigidity of the particular element, can be
written in matrix form, denoted by [D]. The elasticity matrix will be discussed in
greater detail in the next section. This equation can be further simplified by

substituting for {&(x, »)}

M, D, D 0 |-0 21/ O’
o,y =4 M, t=|D, D, 0 K-3"w/oy’ (3.20)
M, 0 0 D, ||20"w/oxdy

- [DYs(x, ¥)} = [DIBYs" (3.21)

To obtain the element stiffness matrix the principle of virtual work is employed.
The principle of virtual work, as far as the finite element models under
consideration in this project are concerned, can be stated as follows. during any
virtual displacement imposed on the element, the fotal external work done by
the nodal loads must equal the fotal internal work done by the stresses. This is

given by the following Equation 3.22.

TE jag d(vol) (3.22)

The external work done at an arbitrarily selected set of nodes is given by

Equation 3.23 where {5"’} denotes the arbitrary set of nodal displacements.
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{5} i) (3.23)

5, ﬁ
52
Where (3.24)

{

Equation 3.24 gives the nodal displacements at the arbitrarily selected set of

Qq

nodes.

The internal work done per unit volume of the same element is:
7y = e 0) | o) (3.25)

And therefore the total work done within the entire volume of the element is

jH"“ (vol) J{ (x ) }T {o(x, y)}d(vol) (3.26)

Referring back to equation 3.14, it can be seen that{e(x, y)} = [B]5¢}. However

when the nodal displacements given in Equation 3.24 are imposed, this

equation becomes
e,y }=[Bl"} (3.27)

Substituting Equations 3.21 and 3.27 into Equation 3.26 yields:

(i#,,(wor) = 181 {5 DT 8Yo" Jioot) (3.28)

When the internal and external work are equated and the resulting equation

simplified the following expression is obtained for{ }
{re}=[[l8T (Dl Bk (o5} (3.29)
For the particular case of rectangular plate bending elements the volume

v ba
integral, Id(vo!) is replaced by ”dx.dyto give
g0
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{Fe}= U‘][B]T [D][B]dxcbe{é ‘} (3.30)

From which the stiffness matrix is seen to be;
bha

[ ]= [ ]8T [DYBlxay (3.31)
00

The integral is obviously rather complicated to obtain and the integration is
typically carried out using computer software that specialises in symbolic

mathematics. The final [K®] matrix can be found in Eguation A2.24.
3.3.1.2. Elasticity Matrix

The elasticity matrix referred to above must be found before the global stiffness
matrix can be formed. In the case of plate bending the general form of the

elasticity matrix takes the foilowing form:

D, D 0
[Dl={D, D, 0 (3.32)
0 0 D

X

Where Dy and Dy represent the flexural rigidity in the x and y direction
respectively, D1 represents a coupling rigidity and D, represents the torsional
rigidity. For an isotropic plate, the flexural rigidities in the x and y directions are

the same and can be evaluated using the following formula:

3
D,=D =D=—21 (3.33)
: 12(1-v?)
D, = Do (3.34)
D, =(1—TU)D (3.35)

The coupling rigidity, D, allows the effect of Poison’s ratio to be modelled. This

effect can be observed more readily in thick plates made of materials with a
high Poisson’s ratio. These plates bend in two directions under load: a concave

curvature in the direction of the span, and a convex curvature perpendicular to
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the span which produces a saddle-like effect. The coupling rigidity can be

evaluated as shown in Equation 3.34

The final element in the elasticity matrix is the torsional rigidity. This is also
linked to the flexural rigidity in the y direction and is a function both of this and

the shear modulus of the material. This relationship is given by:

3 E

D, =G’ where G = (3.36)
' 12 2(1-v)

In the case of orthotropic plates (of which hollow-core, or voided slabs, are both
examples) these formulae must be adapted to reflect the reduced rigidities. The

adapted forms of the four formulae are shown below (Clark 1983:17).

=34 _Evl)% (3.37)
I,
g iz) - (3.38)
D, =vD, (3.39)
I,
p gl (3.40)

The values of I, and }, are the second moments of area of the element under
consideration with s, and s, representing the width of the element in the x and y
directions respectively. It must be noted that the centroidal axis varies from

element to element due to the presence of strands or voids.

3.3.1.3. Stress-displacement matrix

Once the displacements of the nodes within the plate have been ascertained
the vector containing these values may be used to find the stresses within the

individual elements.

Referring back to Equation 3.21 it can be seen that
{o(x, )} = [H s+ (3.41)

where;
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[]=[p]B] (3.42)

Equation A2.27 shows the fuli derivation of the[H | matrix with the nodal
coordinates substituted into the[B] matrix for each of the four nodes on the

element to give a twelve by twelve matrix.
3.3.2. Plane Stress

Plane elasticity problems refer to plates that are loaded in their own plane.
Once again the assumption is that the thickness of the plate is relatively small

compared to its other two dimensions.
3.3.2.1. Stiffness matrix

The 2-dimensional mode! used for analysing rectangular elements subject to in-
plane loading has two degrees of freedom per node and therefore eight in total.
The displacements at each node in this model are assumed to be in-plane.

These displacements and the corresponding forces are shown below:

{6,1= {"'} (3.43)

{r}= {;'} (3.44)

¥l

For a single element the displacements and forces are therefore as follows
{6}

5,
5]
54

{

(3.45)
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Once again, the equation relating elemental displacements to elemental forces

takes the following form where the stiffness matrix, [K] is an eight by eight

matrix.
{ret=lxfs} (3.47)

The following function gives the displacement in the x and y directions at any

point within an element

l.y)= {”} (3.48)

Vv

Two functions are chosen with a total of eight unknowns reflecting the eight

degrees of freedom.
"H=a +a,X+a,y+a,xy (3.49)

V=0 X RO Y+ A Xy (3.50)

The two displacements can be written in matrix form as shown in Eguation 3.52.

-

(«,

i _ Il x p xp 0 0 0 0 <a4r (3.52)
vl 100 0 0 1 x y xyl|la,

This relationship can be summarised as shown below to give the general

formula for the displacements at a point within an element.
ol )=/ )e} (3.53)

As shown in Equation 3.8 (see Section 3.3.1.1 above), the four sets of nodal
coordinates are substituted into the equation relating displacements at a point to
the nodal displacements. These nodal coordinates, (X1, ¥1), (X2, y2), (x3, y3) and
(Xa, ya), are then substituted into Equation 3.52 giving an eight by eight matrix
represented by [A], which is shown in full in Equation A2.39.

6= [4)fa} (3.54)
and therefore {a}=[4]" {5} (3.55)
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This Equation allows the unknown coefficients, ] to be found and substituted
into Equation 3.53 giving the following:

(o0} =[Gyl o (3.56)
The strains at any point within an element can be summarised as shown in

Equation 3.57. The strains in the x and y direction are given by ¢_and ¢,

respectively, and the shear strain is given by y .

£

(e )}~ e, (3.57)
Ve

These strains are related to displacements using the theory of elasticity to give

the following differential equations.

£, =0oufox (3.58)
g, = ov/oy (3.59)
Yy = OufOy + ovfox (3.60)

The displacements u and v are substituted into Equations 3.58, 3.59 and 3.60.
The resulting formuia is put into matrix form and is denoted by [C]. The full

derivation of [C] is shown in Equation A2.47,

eyl =[Cle} (3.61)

The vector {a}is known from Equation 3.46 and can be substituted into Equation

3.61 to allow strains to be directly related to displacements. This is given in
Equation 3.62.

feCe, )} = [CTA] o) (362)
- [8)l5*} (3.63)
The full derivation of [B] is shown in Equation A2.49. The relationship between

stress and strain in plane stress problems is given by the following relationship

into which Equation 3.63 may be substituted.
to(v. vl = [Dfe(x, »)} (3.64)
=[D]sls*} (3.85)
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The elasticity matrix will be discussed in the next section in more detail. As seen
in Section 3.3.1.1 the principle of virtual work is employed to equate the external
work done by nodal loads to the internal work done to give the following

integral:
()= Jl8] [o1BkGon) o) (3.66)

From which [K®] can be extracted as follows

[x]= [BY [PIBki(vor) (3.67)

However, since it is assumed that the element under consideration has a

constant thickness this integral simplifies to the following
|2 )= 1 [B] [D]B)bvely (3.68)

Once again the matrix multiplication operations are carried out in the usual way
before performing the integration over the area of the element. The resulting

matrix, (K®] is shown in full in Equation A2.57.
3.3.2.2. Elasticity matrix
The efasticity matrix for plane stress differs from that of the plate bending model

in that the plane stress elasticity matrix only considers material properties and

not geometric properties such as the second moment of area.

d, d, 0
[D]: dy dy 0 (3.69)
0 0 dy
where
FE
dn :dzz :1—2 (3-70)
—
I
dyy =dyy = —— (3.71)
E
d., = 3.72
Yo 2l+w) (3.72)
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Referring back to Equation 3.68, the thickness of a given element must be
taken as constant; however, within a plate, elements may have different

thickness,

3.3.2.3. Stress-displacement matrix

Examination of Equation 3.21 shows that once the displacements at a point

have been established, the stresses at that point may then be obtained.

lo(v. )= D]l (3.73)
=[H s} (3.74)
where [H]=[D]B] (3.75)

The [H] matrix relates to a single point on an element. Substitution of the four
sets of relative nodal coordinates into this matrix gives the elemental stress

displacement matrix seen in Equation 3.76.

[H xzs)’z)] (3.76)

The four corners of the element have the following relative coordinates: (0, 0),
(0, b), (a, 0) and (a, b). Each of these sets of co-ordinates may then be
substituted into the Matrix [H] as found in Equation 3.75. The four resulting 3 * 8
matrices are then assembled into an elemental stress-displacement matrix
denoted by [H®] whose dimensions are 12 * 8. The full derivation of this matrix is

shown in Equation A2.61.
3.4. Combined plate bending and plane stress model
The combined plate bending and plane stress model is similar to that

sometimes used when analysing shell structures. It can be seen that the two

models will be combined into one matrix before the solution stage.
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3.4.1. Construction of the Giobal stiffness matrix

For small deflections the plate bending and in-plane stresses develop

independently of each other. The stiffnress matrix encompassing both

techniques is formed by inserting the corresponding elements from the plate

bending and in-plane stiffness matrices. The following are the elemental

stiffness matrices for both plane stress and plate bending. Each matrix shows

the sub-matrices that form the whole.

K]
&4
K4
K5

e.p

[Klbl]
_|[K3]
(K3
(K]

K b

(K]
[K3]
(K3 ]
[K5]

(K]
[K3]
[K5]
[K5]

(K},
[K3)
(K,
(K31

(3]
[K3]
[K4i]
(K]

L
[K34]
(K4
(K]

(3.77)

(3.78)

The sub-matrices on the main diagonal, for example [K14], contribute to the

strength of the plate through direct stiffness, while the off diagonal members

such as [Kaz] contribute through indirect stiffness. These sub elements from

both elemental stiffness matrices are grafted into the elemental stiffness matrix

generated in this combined model as seen below.

N

{F"}:J

o3

!

i R Dl e
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where
U,

=y

e

V.

——
N-j
Nt
Il
~3

rand {5}=16, ¢ (3.80), (3.81)

Xi

=

-~

by
2]
“

U

It can be seen from the above that the overall size of each elemental stiffness
matrix will be twenty by twenty. The global stiffness matrix may only be formed
after the elemental stiffness matrices have been generated for each of the
elements in the mesh. The nodes at the corner of the elements must be
numbers to assure that the components of the element stiffness matrices are
copied to the appropriate cells within the global stiffness matrix. All stiffness
matrices in finite element probiems are symmetrical and are most heavily
populated along the main diagonal. In terms of computing time, the computer
expends most of its effort in calculating the inverse of the stiffness matrix. The
numbering system used for addressing the nodes determines the bandwidth of
the global matrix. It has been found that the least bandwidth can be achieved by
numbering the nodes starting along the shortest edge then moving in one row
and starting at the node beside the first node in the previous row and numbering
in the same direction as before (Rockey et al. 1983:30). This process is
continued for all the nodes on the slab. This process is demonstrated in the

example show in Figure 3.8

The matrix shown in Equation 3.79 can be summarised as shown in

Equation 3.82. Each sub-matrix is a five by five matrix.

[Kll] [KI2] [KU] [KH]
xe o | Kal K] [Ky] (K]
[Ka) Kl (K] [K]
(Kol [Kpl (K] [Ky]

(3.82)

Upon examining the elemental stiffness matrix shown above a number of
important points may be noticed. Firstly, the sub-matrices along the main

diagonal relate the effect of a force or moment applied at a corner directly to the
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displacement or rotation experienced at that particular corner of the element.
The off-diagonal terms give the relationships between applied forces or
moments at a particular node and the observed displacements or rotations at
any of the other three nodes. For example, sub-matrix [K»4] relates the effect
that applying a force, or moment to node two has on the displacement or
rotation of node one in the element under scrutiny.

3.4.2. An example

A six element plate provides an ideal example of how the global stiffness
matrix is constructed. The six elements are lettered from A to F and the nodes
at the corners of the elements are numbered from 1 to 12. The node numbering
system conforms to the method outlined in the last section to give a global

stiffness matrix with the least possible bandwidth.

13 "6 '9 112
| I
B ! D I F
BTt 5T TeT T T11

|
[
‘.- |
1 4 7 10

Figure 3.5 six element example

Shown below in Equation 3.83 is an elemental stiffness matrix divided into
sixteen sub-matrices. This particular matrix relates to element ‘A’ from the plate
shown above. The rows and columns are numbered according to the numbers
assigned to the corners of the element.

(K] [Kp] [KL] [Ks]
o - | Kl [Knl [Ku] [Ky] 3.63)

[KM] [Kdz} [Kd-l] [Kdi]

[K5] [Kql [Kyl (K]
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The first element in the plate ‘A’ has nodes 1, 2, 4 and 5 at its corners. The
sixteen sub-matrices from which each elemental stiffness matrix is formed is a
five by five matrix. This stems directly from the degrees of freedom chosen for
the model used in this project. As is apparent from the numbering of the nodes
in Figure 3.5, the numbering of the first and second node and also the third and
fourth, is sequential. The difference in the numbering of the first and the third
node in an element and aiso between the second and the fourth node on an
element differs by a value equal to the haif-bandwidth of the matrix plus one
divided by the number of degrees of freedom (DOF) adopted. In the case of the

piate shown above the, half-bandwidth is found as follows:

Greatest difference in node numbers: 5 -1 =4
Half-bandwidth: number of DOF * (difference in node numbers + 1)
=5*(4+1)=25

The cells in the sixteen sub-matrices are copied in block into appropriate cells in
the giobal stiffness matrix according to the numbering assigned to the sub-
matrix. This process becomes clearer when the completed global stiffness

matrix shown below in Equation 3.84 is studied.

From further examination of the sampie plate and the associated global
stiffness matrix, elements ‘A’ and ‘B’ can be seen to share nodes ‘2" and '5'.
Taking node 2’ first, both elements contribute stiffness to the load carrying
capacity of this node. The sub-matrices relating to the direct stiffness of node ‘2’
of both elements are added together in the appropriate cells in the global

stiffness matrix.
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3.4.3. Applying boundary conditions

The global stiffness matrix is a singular matrix and as such can not be solved
as it stands. Boundary conditions are applied to the global stiffness matrix by
suppressing the displacements at nodes. In the combined model developed
earlier in this chapter has a total of five degrees of freedom. At the support
types considered in this project, deflection (displacement of the plate in the z-
direction) is always suppressed. In order to yield a stable structure, the plate
must be restrained against lateral movement, i.e. the structure has the ability
to resist horizontal forces. This is achieved by restraining both horizontal
displacements at one of the supported edges of the slab. It must be noted that
horizontal movement should only be restrained at one edge so as to produce
the ideal model shown in Figure 3.6. Additionally fixed supports could also be
modelled by suppressing all the degrees of freedom at a node including the

two rotations.

Figure 3.6 sample displacements

As some slabs may be supported on three or more sides it is adequate to

restrain lateral movement along only one line of supports.

Once the supports for the slab have been defined these restrictions must be
reflected in the globai stiffness matrix. This can be accomplished by a number
of means. However, the method chosen here involves removing the rows and
columns from the global stiffness matrix pertaining to the restrained

displacements or rotations. The resulting matrix is commonly referred to as
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the restricted global stiffness matrix. The corresponding load vector must also

have the rows relating to the suppressed displacements removed.

3.5. Matrix decomposition

The solution stage consumes the greatest proportion of the
computational effort in finite element analysis. The two classes of equation
solvers are direct solvers and iterative solvers. Direct solvers allow for the
stiffness matrix to be decomposed without defining the load vector therefore
making the analysis of multiple load cases more efficient than would be the
case if iterative solvers are used. lterative solvers prove more efficient with
larger problems involving the solution of greater than fifty thousand degrees of
freedom. They are also well suited to problems dealing with non-linear
materials (Cook et al. 2002:668). The Cholesky method, a direct solver, was

chosen for this project.

The key properties of the matrices generated during finite element analysis
are diagonal dominance and symmetry. The symmetrical nature of these
matrices means that only half the global stiffness matrix need be generated
and stored giving savings in terms of memory space and processor time.
Firstly, only half of the elemental stiffness matrix for each element is
generated. Given the symmetry of each matrix it is adequate to generate just
the lower triangle including the main diagonal. This step reduces the workload
by approximately fifty percent and, since a typical analysis may involve many
hundreds of elements, there is a considerable time saving. Similarly, since
only the lower triangle of the global stiffness matrix is required, the process of

assembling the matrix is shortened by approximately a half.

3.5.1. Cholesky decomposition

The Cholesky method in general can only be used for solving symmetrical
positive definite matrices. However, the global stiffness matrix generated
during a finite element analysis with adequate restraints applied meets these

criteria. This method is based on factorisation of the matrix to be solved. The

81



general case is shown below in Equation 3.85 where {x} is the unknown
solution vector. Equation 3.86 shows the form that the decomposition of the
matrix [A] would take (Kreyszig 1993:983).

[f{x} = {b} (3.85)
[4]=[2]] (3.86)

The first step in the matrix solution process is therefore to factorise the [A] as
given in the last equation. The [L][L]" operation is shown in algebraic form in
Equation 3.87. The formula used to calculate the specific values in the matrix

[L] are shown later in Section 4.10.1.

[a, a, a; - ag | [m, 0 0 0 my, my, my, - m, |
() Uy by oy ny  my, 0 0 0 my my, ... om,
Qy Ay Ay o Ay |=| iy, By, g 0 0 O myy e om

(G Uy Ay ajkj My My gy ey |0 0 0 0 my |

(3.87)

The factorisation of the global stiffness matrix [A], is carried out independently
of the load vector. As will be shown in Chapter 4, this minimises the
computation involved in evaluating multiple load cases.

3.5.2. Forward and backward substitution

The next step is the forward and backward substitution of the load vector or

load vectors if there is more than one load case to be considered.

Combining Equations 3.85 and 3.86 gives:

[L]L] {x} = {o} (3.87)
Let {y}=[L] {x} (3.88)
therefore [y} = {b} (3.89)

From this it is apparent that an intermediate vector {y} must be solved for

before the displacements in {x} can be found. The matrix [L]obtained from the
factorisation of [A], and the load vector {b} allow for an intermediate vector {v}

to be found by forward substitution. Back substitution using[Z]" and the
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intermediate vector [y] can then be carried out to solve for the displacements

in the {x} vector.
3.6. Stresses

Once the displacements have been calculated the results may be scrutinised
by the designer. However, it is generally the stresses in slabs that designers
are most interested in. Referring back to the main principle on which stress
analysis in finite element is based the following can be restated.

{F}=[K}{s} (3.90)

As seen in Section 3.3.1.3 and 3.3.2.3 stress-displacement matrices link the
displacement found above in Equation 3.89 to stresses be the plane stress or
plate stresses. A global displacement matrix must be formed with the zero
displacements at restrained nodes substituted into the appropriate cells. In
order to calculate the stresses in a particular element the displacements and
rotations relating to the nodes at the four corners of this element must be
gathered into two displacement vectors. The first vector contains the
displacements associated with plane stress while the other vector contains the
displacements associated with plate bending. These steps can be seen in
Figure 3.7 where {6 P} represents the elemental displacements in the plate
associated with in-plane forces, and {3} represents the elemental

displacements in the plate associated with the plate bending forces.
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Figure 3.7 division of displacement vector

Once the displacements and rotations for the element have been sorted into
their respective vectors, the appropriate stress-displacement matrix is
generated and the two stress vectors can be found as shown below in
Equations 3.91 and 3.92.

{o} =[H"]{6*"} (3.91)
{o} =[H"){6""} (3.92)

Where [HP], [HP] are the stress-displacement matrices for in-plane and plate

bending forces respectively and {o(x, y)}°, {o(x, y)}° are the stress vectors due to

in-plane and out of plane are displacements respectively.

The stresses generated from this analysis can be further processed before
presentation. As seen before (see Section 3.3.1.1. and 3.3.2.1.) the stresses

from the two models are, once again shown below:
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o} =10,
X
O-X
o} =40,
o

(3.93)

(3.94)

The ox and oy, terms in both of the stress vectors may be added to yield the

top and bottom fibre stresses in the plate. The shear stress and torsional

stresses are not compatible and as such must be presented as other types of

stress present in the plate.

3.7. Summary

The plate bending and plane stress theory was developed from first principles

with the theory slightly adapted to suit the particular stiffness properties of the

hollow core slab examined in this research. The formula for generating both

stiffness matrices was developed and the process for constructing the global

stiffness matrix shown. The effect of applying boundary conditions is then

shown with the global stiffness matrix and load vector being restricted. Matrix

decomposition was examined and Cholesky decomposition was chosen for

this purpose. The final step examined was the process of using the

displacements to calculate the stresses.
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4. PROGRAMMING

4.1. Introduction

The previous chapter described the steps involved in setting up the model to be
used for analysing the prestressed slabs. It is clear for even the simplest model
that computerisation of the process is essential. The simplest possible solution
to this would involve constructing an elaborate spreadsheet in Microsoft Excel.
However, the user would quickly find that this solution requires a vast amount of
work most of which would require modification if a design is changed. Therefore

the most flexible option was to write software tailored for the purpose.

The Delphi programming language was chosen as the preferred environment
within which to develop the software. The primary reason for this compiler being
chosen was that an existing body of expertise in this programming environment
had already been accumulated by one of the project supervisors. It could
therefore be said with relative certainty that the language was versatile enough
to allow the task to be achieved. Delphi is an object orientated Pascal based
programming language. The benefit of the object oriented nature of this
language is the ability to compartmentalise pieces of code that accomplish
different tasks. This helps to simplify the task of debugging code as the error
can be tracked to within a relatively small fragment of code. This also allows the
programmer to organise the code very easily into logical divisions on work
which lends itself to the reuse of sections of code. The Delphi compiler also
allows software to be easily linked to other existing packages which, as will be
seen in the next section, is essential for a simple user interface. Delphi 7 was
the version of the compiler used for this project. Throughout this chapter
reference is made to particular sections of code contained in Appendix 3 where

the parts of code for the software can be found.
Figure 4.1 shows a brief outline of the processes carried out by the software.

Detailed descriptions of these processes are given later in the chapter and a

more detailed flowchart of the processes is shown at the end of the chapter.
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(Section 4.2.2.)
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Generate mesh (Section 4.4.)

Specify material

properties (Section 4.6.)

Generate global

stiffness matrix (Section 4.7.)

Calculate internally
and externally
applied loads

(Section 4.9)

Solve for

displacements (Section 4.10.)

Calculate

(Section 4.12.)
stresses

(Section 4.12.4)

Display results

Figure 4.1 outline of processes carried out by the software
4.2, The AutoCAD Interface
A good user interface is one of the more crucial elements required for a

software package to be used by engineers without a finite element background.

The geometry of the slab, both the cross section and plan shape, are the key
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sets of data required to lay out the basic analysis problem. This data is
communicated to designers through drawings that are almost always computer
generated and distributed electronically through e-mail. There is a limited
number of drawing packages used for generating drawings in civil and structural
engineering detailing, with Autodesk’s AutoCAD, and Bentley's Microstation
being the leaders. The AutoCAD package is considerably more popular in
Iretand and is used by consulting engineers, architects, contractors and their
suppliers and is therefore the most obvious choice of drawing package to link to
the analysis software. Linking the analysis package to AutoCAD for the purpose
of extracting the geometry of the slab to be analysed provides great

convenience and removes a potential source of error from the process.

4.2.1, Capturing the plan of the slab

The floor area to be constructed using precast concrete slabs is also captured
from AutoCAD. The area to be slabbed would most commonly be obtained from
architect’s or engineer’s general arrangement drawings. These drawings
contain other superfiuous information that must be filtered out to prevent errors
from occurring. The method chosen to accomplish this end was to filter all lines
other than ‘polylines’ out of the selection. In the AutoCAD environment, a
‘polyline’ is a set of lines treated as a single entity. A ‘polyline’ may be draw
from known co-ordinates, traced over an existing drawing, or lines and arcs on
an existing drawing may be converted to ‘polylines’ and then joined together.
Figure 4.2 shows the plan of a typical slab with a sizable opening present, and

the cross section of a standard 150mm deep slab drawn in AutoCAD.
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Figure 4.2 slab outline in Auto-CAD
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Selecting the shape of the slab in plan is the starting point for the analysis. The
slab outline is the first item to be selected. The techniques used as standard to
select the items on screen in AutoCAD such as using the ‘window selection
method’, ‘crossing selection method’ or clicking directly on the item itself may be
employed to capture the slab outline. These selection operations are managed
by AutoCAD and therefore implement the filters that, for example, prevent the
same item being selected twice. The user can also add or remove items from
the selection using standard AutoCAD commands. Once the selection of the
outline has been confirmed, the main form reappears on screen and generates
a scaled down graphical representation of the slab. The user is then is
presented with the option to capture any openings in the slab which must be
included in the design. Again, as the openings are selected, the graphic on
screen representing the slab is updated to indicate the presence of these
openings on the slab. This allows the user to verify selections as they are made.
Figure 4.3 shows the graphic generated for inspection by the user. The software

code relating to the processes outlined above are contained mainly in the unit
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Figure 4.3 slab outline as displayed in the software
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4.2.2. Capturing the slab cross-section

The slab cross section including strand locations and sizes is established next.
A new form is presented for the purpose of gathering and displaying this
information. The selection of the data from the AutoCAD drawing is similar to
that for plan shape of the slab however lines, arcs and circles are not filtered out
s0 as to allow the profile of the voids and the location of the strands to be
captured. The four different slab cross sections that the software has been
designed to capture are shown below in Figure 4.4. In essence there are
actually only three cases to be programmed for. The cross sections shown in
Figure 4.4(a) and (b) differ only very slightly. The distance from the bottom of
the slab to the centres of the top and bottom arcs which make up the
longitudinal voids is the first difference and the slightly modified edge profile and
deeper cross section is the second. The software deals with both of these two
cases in the same manner removing the requirement for extra code to be
written. Figure 4.4(c) and (d) shows the circular voided slab and solid slab

respectively.

1000000000
(000000000

(b)
0000000001
(c)

(d)
Figure 4.4 slab cross sections
The shape captured is displayed in the form and the user is then prompted to
select a number of key properties relating to the strands diameter and the
prestressing force and also factors affecting the losses in prestressing force. All

of these fields have values already present that are relatively standard. The
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strand diameter is selected from a list of standard sizes whose areas are known
from the British Standards relating to prestressing strands. This form is shown
in Figure 4.5.
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Figure 4.5 cross section as displayed in the software

The value taken for the prestress force as a percentage of the ultimate breaking
force is, as standard, 70%; however this may be varied if a designer so
chooses. This value along with the strand area is used to calculate and display
the prestressing force per strand. The force is calculated based on an ultimate
steel strength of 1775 N/mm?; however this value and other such properties of
the steel can be changed through the options menu on the main form before

capturing the cross section.

The geometry captured is then processed to extract the relevant data from it.
The number of strands and their positions, the number of openings and their
positions and the geometry of the perimeter of the cross section are extracted
from the data set. All the co-ordinates are reduced based on an x axis that is
co-linear with the bottom of the slab cross section and a y axis intersecting the
left most point on the slab. The width and depth of the chosen section is
established and also the slab type: solid, circular voids or elongated voids. The
user then exits this form by clicking on the button to accepting the data
displayed. The software code executing this can be seen in the unit
‘UO_Strands’ on page 336 and ‘UO_shapedata’ on page 325.
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4.3. Element stiffness

The geometry of the slab has now been established and at this point some of
the engineering properties of the slab can be ascertained. The relationship
between the second moment of area of a siab about both the x axis and y axis
and the plate bending elastic matrices is given in Section 3.2.1.2. It can clearly
be seen from both equations that the flexural rigidity of an element in either
plane is a function of the material properties of the element and its geometry.

. E2 L (4.1)
Ty,

E I

- .
Tol-v?)s,

(4.2)

The second pait of each equation, relating to the geometry, gives a quantity
found by dividing the second moment of area of the element in the direction
under consideration by the width of the element in that direction. As such this
quantity could be described as the average second moment of area of the

element per unit width.

4.3.1. Selecting element sizes

The choice of element size is based on the cross sectional shape of the slab in
the span direction. Another key consideration is the aspect ratio of the element
in plan as the best results are given by elements with an aspect ratio of
approximately one. Therefore, if the standard element width is halved to help
improve accuracy the number of elements to be analysed would increase by a
factor of four. The knock on effect in terms of computer processor time must be
weighed up against the payback in accuracy. As the calculation of the second
moment of area of the elements is complex it is desirable to minimise the
variety of element shapes to be analysed, however the values produced must
still give significantly accurate results. Figure 4.6(a) and (b) show two potential
element arrangements. The element layout shown in figure 4.6(a) has one
element type for all the internal elements with the requirement for a second

special case to be developed for the edge elements. The element arrangement

92



shown in Figure 4.6(b) requires two different types of internal elements to be

considered together with the special case of the edge element.

Figure 4.6 possilglljg element divisions
To fully understand the implications of choosing either element arrangement the
flexural rigidity equations must be examined. As stated earlier, the second part
of these equations gives the average second moment of area of the element
per unit width. When this is applied to the ‘I-beam’ shaped elements given by
Figure 4.6(a), it is apparent that the average second moment of area value
would differ significantly from values calculated for the individual unit wide strips
of the element. Conversely, when the same considerations are applied to either
of the two main element types shown in Figure 4.6(b), the average value can be
seen to be much closer to the actual value calculated for an arbitrarily selected
unit wide strip. The two element types show in Figure 4.6(b) are the narrow |-
shaped element composing of the material predominantly between the voids
(Type 1) and the element formed from the material above and below the voids
(Type 2). Type 1 elements are approximately rectangular with thin,
predominantly rectangular slices removed from each side. It must be noted that
the portions removed are close to the centroid and therefore have a minor effect

on the average second moment of area of the element.

As stated earlier, halving the width of the standard elements approximately
quadruples the work load for the computer at the solution stage. However, the
time taken to form the global stiffness matrix and solve for the displacements

was seen to be reasonably short (10 — 30 seconds) and therefore the increased
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accuracy brought by increasing the number of elements was considered to be

justified.

The selection of element size also affects the results of the plane elasticity
analysis. In the case of a simple isotropic plate, the area per unit width of the
element is required. For an element with a solid rectangular cross-section this
value is the same as the thickness of the plate. In the case of an orthotropic
plate the value that is taken is the average thickness of the plate. Again, if the
size and shape of the elements is chosen carefully then the average thickness

of an element should not vary greatly from the actual value.

4.3.2. Calculation of the second moment of area

The second moment of area of all the elements must be found as a first step
towards establishing the flexural rigidities of the elements. The fuil set of data
required for each element is: the first moment of area in the x-direction and y-
direction, the cross sectional area of the element in both directions and the
distance from the bottom fibre to the centroid in both directions. As is the norm
when finding the second moment of area of a complex shape, the area and

distance to the centroid are found as part of the calculation.

To understand this point, the 250mm deep slab is taken as an example. Figure
4.7(a) shows a typical Type 1 element in 3D. From this, the computation
process for the second moment of area of the elements becomes clearer. The
second momertt of area in the x-direction 'IX’, is calculated based on this
somewhat complicated ‘I-beam’ shaped cross section. In the y-direction the ‘ly’
is based on a simple rectangular cross section. In Figure 4.7(b) a Type 2
element is shown from which it can be seen that the ‘Ix’ value is based on a
cross section consisting of a top and bottom rectangle with circular segments
removed. In the ‘ly’ direction, the cross section to be examined consists of an

upper and lower rectangle
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Figure 4.7 3D display of elements

The actual process of obtaining the second moment of area of the voided slabs

involves many steps as can be seen from the partial example shown below in

Figure 4.8
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Ix - rectangle

NN
>>T)>

rectangle

N L Centrog 2 N
[ '

Figure 4.8 calculation of second moment of area

The method used for ascertaining the second moment of area of this section
involves finding the value for the hatched areas on either side of the element
and subtracting these from that found for the rectangle bounding the cross
section and hatched areas combined. The second moment of area of the
rectangular section can be found once the distance to the centroid of the overall
cross section has been found using the paraliel axis theorem. Finding the
properties of the segments involves a number of steps. The segmental shape
shown by the hatched area can be derived by subtracting an arc and two right
angled triangles from a semi-circle. The second moment of area of these three
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shapes must be found relative to their own centroids and only then may these
values be found relative to the centroid of the element itself again using the

parallel axis theorem.

The stiffness contribution of the prestressing strands will effect the second
moment of area value of the slab in the direction of the span in a positive
manner. The presence of the strands in the bottom of the slab will raise the
level of the centroid somewhat and also increase the second moment of area of
the element. Despite the relatively insignificant cross sectional area of the
stand, when the transformed section is formed, the modular ratio can be seen to

increase the effective area of the strand.

The size of the edge elements is found through simple geometry. This is shown
in Figure 4.9(a) and (b).

ST ST STt T -
! | 1
- o
~ ¥ A
/ \ i )

R
o

Figure 4.9 Edge element shape

The efements at the outer edges present a special case in terms of calculating
stiffness. The complex shape of edge of the slab, shown on the left side of
Figure 4.9(a), requires that an alternative approach be taken to calculating its
second moment of area. The method chosen to accomplish this was to
calculate half the second moment of area of a standard Type 1 element and to
use the Greene's theorem to find the second moment of area of the irregularly
shaped outside edge of the first and last element in the cross-section of the
slab. The code implementing this is found in ‘UO_DArray’ on page 260.
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4.4, Mesh Generation

A detailed study of mesh generation is beyond the scope of this research
however at a basic level it must be employed in the software. A possible
extension to the research could include the application of shape functions to

allow denser meshes to be used, for example, near corners or openings.

As seen in the last section, the mesh density perpendicuiar to the direction of
the span of the slab is determined by the shape and number of voids. in the

span direction openings and notches in the slab affect the layout of the mesh.
4.4.1. Element Shape

As stated in Section 4.3.1. an aspect ratio of less than 2 for the elements is
desirable with square elements being best. The standard element width is found
by examining the cross section. The width of the cross section to be meshed
with either Type 1 or Type 2 elements of whatever size is found and divided by
the number of such elements to be found in the cross section. This process can

be seen in Figure 4.10.
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Figure 4.10 cross section through the mesh

In the case of the slab shown the standard element width would be 60.5mm
(1028.5 / 17). It is unlikely that exact multiples of the standard element size
found above would fill out the distances shown below in Figure 4.11, and
therefore a number of element sizes must be developed to meet this

requirement.
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span

Figure 4.11 division of area for meshing purposes
An array of distances within which identical elements sizes are required is
constructed. From these distances the number of columns or rows of standard
elements that will fit within the region is found. However, to ensure that the
elements fit exactly within the bounds of the region being meshed, a whole
number of elements must be used. The number of elements to be used in each
of these regions is found by rounding the number of partial elements and
adjusting the element sizes so as to create a perfect fit. It can be seen that this
process ensures that the aspect ratio of the elements is kept within the
desirable range. The process used to generate the array of element sizes is

shown in Tabie 4.1.

Length / Exact
Length Average Number of Element Size Asp.ect
(mm) . Elements Ratio
Element size {(mm)
Distance 1 | 950 15.70 16 59.375 1.019
Distance 2 | 825 13.64 14 58.929 1.027
Distance 3 | 1300 21.49 21 61.905 1.023
Distance 4 | 825 13.64 14 58.929 1.027
Distance 5 | 700 11.57 12 58.333 1.037

Table 4.1 sample meshing calculation

The geometry of the edge elements is such that their aspect ratio is greater that
the other elements, typically up to 1.5, however this is below the upper limit and
therefore does not present a problem. In the case of a small distance where the
(Length / Average Element size) calculation rounds down to zero then one
column of elements is inserted at this location with an element width equal to

the distance itself. Refer to ‘UO_Mesh’ on page 299.

98



4.4.2. Location of the elements

The presence of an opening on a simple level involves removing elements from
the mesh so as to negate their contribution to the stiffness of the overall body.
The procedure to achieve this involves two steps. Firstly, a test is carried out on
all of the nodes in the mesh to determine whether they lie on the surface of the
slab or not {in a notch or opening). From this a 2D Boolean array is formed. In
Figure 4.12 the nodes that have been found to lie on the slab are denoted by a

solid black dot with the remaining nodes left blank.
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The second step entails examining each rectangle in the mesh by counting the
number of nodes on its perimeter and denoting it as an element if all four nodes
are inside. Again, a Boolean array is formed to store this data for every element

in the mesh.

The mesh generated within the software is generated on the display in the main
form. The mesh is superimposed over the plan of the slab shown in Figure 4.3
to allow the user to verify mesh generated by the software. This is shown in
Figure 4.13. The user then clicks to accept the geometry and properties

material properties of the elements.
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Figure 4.13 meshed slab as displayed in the software

4.5. Service and transfer condition stress checks

In the last chapter the requirement to check both transfer and service stresses
was shown. The key differences between the transfer and service checks are
the concrete strengths used, the magnitude of the gravity loads and the effect of
time dependant losses in prestressing force. As will be seen in the next section,
the Young's Modulus of the concrete at transfer is significantly different to the
long term value used for the service stress checks. Referring back to the finite
element theory outlined in Section 3.2.1.2 and 3.2.2.2., the elasticity matrices
are a function of the Young’s modulus of the concrete. Those elasticity matrices
are in turn used in the formation of the global stiffness matrix. This results in the

requirement for two global stiffness matrices to be formed and solved.

The process of solving for the stresses at both transfer and service conditions
also involves generating a pair of load vectors to reflect the different loading
present at these two conditions. At the transfer stage the only gravity loads
present are those due to the self weight of the slab. The prestressing force at
this stage is affected only by losses that occur almost instantaneously at the
moment of transfer. These losses are detailed in Section 2.4. The second load

vector required contains the total effect of all gravity loads acting on the slab
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such as the self weight, uniformly distributed loads and patch loads. The
prestressing forces within this load vector are assumed to have been reduced
by all the losses including those that are time related. Following the two sets of

analyses outlined above, two sets of results would be displayed to the user.

4.6. Material Properties

As stated earlier the material properties to be used during the analysis are
either those that are preset when the software was written or if the user so
chooses a custom set of values may be used. The preset values would be
considered to be the standard values used in a lot of design work and so may
not require alteration. The option does however exist to change the steel and

concrete material properties.

The steel properties form, shown below in Figure 4.14 is the form on which the
steel properties are defined. The idealised stress / strain graph, discussed in

some detail in Section 2.4.2, is shown. The user may decide to change the “fob’
or ‘Es’ values presented on the form. The graph updates itself automatically to

reflect these new values.
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Figure 4.14 Steel properties form

The properties of the concrete can be changed through the concrete properties

form. Once again a set of values are presented that the user may choose to
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accept. Figure 4.15 shows the form on which the changes to the standard

properties may be made.
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Figure 4.15 Concrete properties form

If the user changes the 28 day strength the value of the 28 day Young’s
modulus changes to reflect these changes. As a relationship exists between the
28 day strength and the Young's modulus at transfer, any changes to the 28
day strength will affect the value shown for the Yong’s modulus at transfer.
However this does not preclude the user from manually selecting a value based
on experience or experimentally found values. It can also be seen that changing
the value for the concrete strength at transfer also affects the displayed value
for the Young’s modulus at transfer. The concrete density used for calculating
the self weight of the slab may also be changed. The Poisson’s ratio value
presented is standard but again the option is there for the user to modify it. The
units titled ‘UO_MaterialProperties_Concrete’ on page 287 and
‘UO_MaterialProperties_Steel on page 290 perform the tasks outlined above.

4.7. Filling the global stiffness matrix

It is now possible to construct the global stiffness matrix based on the data
collected. The theory outlining this procedure is discussed in Section 3.4.1
however whilst programming this section it became apparent that it would be

critical to consider optimising the assembly and storage of the global stiffness
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matrix. As this software was being assembled, the standard quantity of RAM
memory sold with computers was between 512Mb and 1024Mb. Whilst
assembling and solving a large matrix, the operating system attempts to carry
out the operation whilst storing the pertinent data in RAM. However, if the
available RAM memory is insufficient then the computer will move some of the
data to virtual memory which is hard disk based. The problem then arises that
data stored in the hard disk takes approximately 30 times longer to access.

4.7.1. Bandwidth optimisation

As a rule there will always be a greater number of columns of elements in the
span direction than rows in the lateral direction. This enables the matrix with the
least possible bandwidth to be formed following the rule of thumb stated in
Section 3.4.1. Once the half-bandwidth has been found it is then possible to
minimise the storage space required for the global stiffness matrix. This is
achieved by creating storage space for a rectangular array of numbers as
opposed to the square array required to store the entire matrix. Figure 4.16(a)
shows the general form taken by a global stiffness matrix generated for a body

divided into a 4 * 3 element mesh

(a)

Figure 4.16 storage method for global stiffness matrix

The rectangular array is shown in Figure 4.16(b). The square array in this case
contains 10,000 numbers whilst the rectangular array contains 3,500. The

savings in terms of memory space increase greatly as the matrices get bigger.
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For example, if the plate being considered above was divided intoa 4 * 4
element mesh the square array would have 15,625 numbers whereas the
rectangular array has 4,375 numbers. Whilst these numbers are relatively small
if a small slab with a span of 4m were considered, a 19 * 64 mesh would be
formed. The square array formed for this would contain 42,250,000 numbers
whilst a rectangular array would require 715,000 numbers. As the spans get
larger, and therefore, the matrices bigger, the percentage saving in terms of

memory space increases when using the rectangular storage technique.

The rectangular arrays discussed above result in a relatively small number of
cells at the top left of the global stiffness matrix, as seen in Figure 4.16,
effectively being wasted. It proved a simpler solution to accept this wastage so
as to simplify the code governing the formation and assembly of the global
stiffness matrix. In the case of the 19 * 64 mesh discussed above the number of
unused cells in the triangle at the top of the array would be 4851 or 0.7% of the
total array size. The unit ‘'UO_Ke' on page 278 carries out the formation and

optimisation discussed above.

4.7.2. Elemental stiffness matrices

The individual elemental stiffness matrices must be formed before copying the
individual cells into the global stiffness matrix. This process begins with a loop
that systematically works through the mesh, determining, from the Boolean
array (discussed in Section 4.4.2) whether or not an element exists in the
particular location. If an element does exist at the location under consideration,
then the geometry of the element is established and the plane stress and piate
bending elasticity matrices for the particular element are used to generate the
stiffness matrix for the element. This matrix is also symmetrical and therefore
only the lower triangle is formed. The individual elemental stiffness matrices are
destroyed after its cells are copied into the global stiffness matrix so as to free

up memory space.
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4.7.3. Openings and Notches

The first step taken when constructing the global stiffness matrix within the
software is to create an array large enough to store the data. The initial storage
array gets its size from the numbers of rows of elements multiplied by the
number of columns of elements by the number of degrees of freedom. This is
the size of the global stiffness matrix assuming that the slab is solid. However,
the presence of notches or openings in the slab results in nodes effectively
being removed from the solid mesh. It was deemed simpler to write a piece of
code to fill the oversized matrix and then after this is complete remove the rows
and columns pertaining to the defunct nodes. Referring back to the 4 * 3
element mesh from Section 4.5.1, it can be seen that the rows and columns
corresponding to the degrees of freedom at the nodes excluded from the mesh
remain empty. Figure 4.17(a) shows a plate with four elements removed.
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(a) (b)
Figure 4.17 example of global stiffness matrix storage

The diagram shows that two nodes, 13 and 18, are obsolete and therefore their
equivalent rows and columns must be removed from the global stiffness matrix.
The effect that this has on the global stiffness matrix can be seen in Figure
4.17(b) with the rows and columns to be removed shown in yellow. These rows
and column are removed after the global stiffness matrix has been populated by
all the elemental stiffness matrices. The resized global stiffness matrix for the

above example is shown in Figure 4.18.
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Figure 4.18 resized global stiffness matrix

4.8. The application of boundary conditions.

The global stiffness matrix generated using the steps given thus far in this
section is, in theory, a singular matrix, whose variables can not, as things stand,
be solved for. In mathematical terms, the determinant of the matrix is zero and
therefore no solution exists. In real terms, attempting to solve for displacements
without specifying the supports makes little sense as infinite displacements

would occur.

The next step for the user is to define the supports for the slab. An assumption
is made that all supports defined will be found at the perimeter of the slab. To
ensure that an adequately restricted structure is defined, all horizontal
movement as well as vertical movement is restrained at the first supported edge
selected, thereafter any supports selected are roller supports. To define a
supported edge the user simply hovers the arrow over the edge to be
supported. As seen in Figure 4.19(a), a white line appears under the arrow.
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(b)
Figure 4.19 applying supports in the software
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The user then verifies the selection by clicking on the white line. As the user
does this the white line disappears and pink dots appear on the nodes
indicating the selection. As each support has been selected a database of the
supported nodes is formed with the exact nature of the support recorded (fixed
or pinned). The user then moves to the next support and the process is
repeated. A further precaution is taken to ensure that adeqguate supports are
provided by preventing the user from proceeding to the next step in the process
until at least two supported edges have successfully been defined. The software

code for this is given in ‘UO_Support on page 356.

4.8.1. The restricted global stiffness matrix

The data collected must then be used to restrain the global stiffness
matrix as such forming a second ‘restricted’ global stiffness matrix. Figure 4.20
shows the plate for which the global stiffness matrix was developed in Section
4.5.3. The diagram shown below has supports defined along the top and
bottom. Nodes 5, 10, 15 and 20 are pinned supports whilst nodes 1, 6, 11 and

16 are roller supports.

£ Fixed support
A\ Pinned support

Figure 4,20 sample plate with supports

The restricted global stiffness matrix is formed by suppressing the relevant row
and columns in the global stiffness matrix. This process is similar to that shown
Figure 4.17, however instead of eliminating all rows and columns relating to the
nodes in question, the rows and column removed relate to certain degrees of
freedom at these nodes. As seen in Section 3.3.1 the first, second and third

degrees of freedom at a node relate to movement in the horizontal x and y
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directions respectively, and vertical deflection in the z direction. The fourth and
fifth degrees of freedom relate to rotations about the x and y axis. Therefore, in
order to restrain a node at a pinned support the first three degrees of freedom
must be suppressed and also, to restrain a node at a roller support only the
third degree of freedom would be suppressed. Figure 4.21 shows the rows and
columns in yellow that must be suppressed in order to correctly restrain the

plate shown above in Figure 4.20.
123456 7 8 910111214 1516 17 19 20
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Figure 4.21 global stiffness matrix with restricted rows and columns

Again, a new resized array must be formed to hold the values contained in the
restricted global stiffness matrix. Figure 4.22 shows the reconstructed restricted
global stiffness matrix.

5 10 15 2
1) 2]3]alle|7]s]e||11]12]14] 16|17 ] 10]

Figure 4.22 restricted global stiffness matrix
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4.9. Loading

The loading applied to an element acts on the structure through the nodes at
the corners of the element under examination. A node located inside the
perimeter of a structure and away from openings or notches would potentially
receive loading from all four surrounding elements. To this end, the procedure
used to produce the load vector was to examine the elements, an element at a
time, determine whether it was loaded and if so how much loading, and then

distribute the load evenly to its four corner elements.

4.9.1. Externally applied loads

The application of externally applied lcads is relatively simple. The two most
common loads, a uniformly distributed load and the self weight, are applied by
clicking on a tick box. In the case of the uniformly distributed load, its magnitude
must also be defined. The patch load is selected using selections made with the

mouse as opposed to specifying coordinates.

4.9.1.1. Self Weight

The self weight of the slab is the one ever present load and therefore by default
is included in the calculations to find the load vector. The option to remove the
effect of the self weight from the load vector is however presented, as this may

be required occasionally for testing or calibrating the software.

In Section 4.3.2. the process used to determine a number of properties was
outlined including the cross sectional area of the elements. The cross section
taken in the x direction is a true cross section for any plane along the length of
the element in the x direction. Therefore, from this cross sectional area and the
length of the element in the span direction, the volume of the element can be
found and then from this the weight of the element. Section 4.3.1. shows that
the mesh will typically be made up from three different element cross sections,
the two standard internal element types and the special element shape required

at the sides of the slab. The Type 1 and 2 internal elements are symmetrical in
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the x and y direction and therefore their self weight can be said to be carried
evenly by all four corner nodes. This is not the case for the edge elements as
they are clearly asymmetrical in the x direction. Upon visual inspection of the
three edge element shapes it was deemed to be close enough to symmetrical to
allow the distribution of quarter of the self weight to each node to stand. The
pay off in terms of the accuracy of writing code to find a more accurate

distribution was deemed to be inefficient.
4.9.1.2. Uniformly distributed loads

The loading applied to an element acts on the structure through the nodes at
the corners of the element under examination. Therefore if an element has a
uniformly distributed load applied (udi) to its entire surface area it can be said
that each of the four corner nodes is carrying a quarter of the load. The user
must specifically choose to apply this load as it is not included by default. The

magnitude of the load is preset at 2 kN/m?.
4.9.1.3. Patch loads

Patch loading may be used to simulate a number of potential loading patterns
that may be applied to slabs. Line loads due to walls being constructed or point
loads due to columns bearing onto the siab may also be simulated. To achieve
this, the user must increase the intensity of the patch load which is given in
kN/m? in order to replicate the effect of a wall load which would be calculated in
kN/m run based on a wall width of 100mm to 150mm. A limitation in the
software is found here as the exact boundaries of the patch load must coincide
with the mesh as generated earlier. However, it should be considered that since
the elements are generally about 60mm in width and length, this approximation

should not lead to a large error.

4.9.2. Internally applied loads

The information gathered thus far allows the prestressing forces at the required

intervals along the span of the slab to be calculated. The unit of code which
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carries out this function is triggered once the externally applied loads have been
defined.

4.9.2.1. Calculating losses in the prestressing force

Once again the theory underlying this process is deait with in Chapter 2.
However the methods used to implement this theory in the software itself are
shown here. The first step in this process is determining the length of the
sections of strands in the slab. This is accomplished by considering the rows of
elements containing strands. Starting from the left most element in a particular
row, the width of the element in the span direction, is copied to a 1D array of
values. This process continues along the strand moving across the slab in the
direction of the span until either a notch or opening is encountered or when the
end of the row of elements is reached. A new airay is formed to store the width
values for the next section of the strand if such a section exists. At the end of
the row a number of arrays may exist, one for each unbroken section of the
strand. The data is copied into a record structure before the next row is
considered. An example is used to demonstrate the method adopted and the
data structure generated in the process. Figure 4.23 shows a typical slab with a
notch and opening present. The elements of interest, i.e. those containing the
strands, are shown lightly hatched. Each row containing a strand is numbered.
The individual sections of strand are also numbered in the order in which they

are scrutinised.
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Figure 4.23 slab outline with strands
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The first row of elements containing a strand is divided by a notch in the slab
and following the procedure laid out above it can be seen that two arrays of
element widths are required. These arrays are represented by (1) and (2) on
Figure 4.23. Once the entire row has been considered the resulting arrays may
be copied into the overall record structure, the first half of which is shown in
Figure 4.24.

Element Element Element Element Element
Array (1) Array (3) Array (5) Array (8) Array (10)
Element Element Element Element I Row 5 ‘
Array (2) Array (4) Array (6) Array (9)
’ Row 1 I ' Row 2 | Element i Row 4 |
Array (7) |
‘ Row 3 l
Global Strand Record

Figure 4.24 record structure for strand data

The two arrays are copied into a subsection of the overall data structure created
to hold data pertaining to the first row of elements. The next row of elements is
examined in a similar manner producing two arrays, (3) and (4), which are again
copied to the appropriate address in the overall data structure. The third row of
elements is broken up by both the notch and opening and therefore three
element arrays are generated. Rows 5 to 10 are unbroken along their length
and therefore only one element array is required for each row.

As seen in Section 2.4 both elastic shortening and creep are a function of the

stress in the concrete at the level of the strand, o, . Also, this stress was seen

to be a function of the self weight bending stresses and the stress due to the
prestressing force. The next step carried out by the software is to find the self
weight bending stresses. The self weight of the individual elements can be
found as shown in the same manner as outlined in Section 4.3.2. The simplest
possible case where self weight stresses are calculated is along the length of
an unbroken section of strand whose length is that of the span. Referring back
to the slab in Figure 4.23 the self weight bending moments for the strands in
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rows 5 to 10 would be of the order shown by Figure 4.25. These moments are

calculated in the same way as a simply supported beam with a UDL applied.

Self Weight Bending Moments
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Figure 4.25 Self weight bending moments
The rows numbered 1 to 4 are complicated by the presence of the opening
and/or notch. An accurate estimation of the actual bending stresses due to self
weight could only be found by adding another finite element analysis step to the
process. It was deemed that such a step would add significantly to the workload
without a significant payoff in terms of accuracy. As was seen in Section 2.4,
the addition of stresses due to gravity loads to the overall state of stress in the
concrete at the depth of the strand was a small but beneficial contributor to the
prestressing force. Therefore, any estimation of self weight bending stresses
that understates the stresses would lead to a conservative design. The
approach taken was to assume that the stresses in each section of the strand
vary as if the concrete encasing that section of the strand is simply supported
beam supported at the ends of the section of strand. Shown in Figure 4.26 is a
plausible bending moment diagram for the full length of row 3 in Figure 4.23.

Self Weight Bending Moments
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Figure 4.26 self weight bending moments for a non continuous strand
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The stresses can be seen to be much smaller than would be expected had a

more rigorous analysis been carried out.

Transfer prestressing forces

The force to which the strands are actually stressed before the concrete is
placed is calculated next. An array of strand forces is formed to store the
prestressing force values at distances equal to those stored in the global strand
record found earlier. The structure of this array is identical to the global strand
record. From these initial values all loses will be deducted. The loss in prestress
force due to the 25% relaxation that occurs before transfer is the first loss to be
calculated. This loss affects the full span of the stand uniformly and therefore is
subtracted from every value in the current array. The losses due to elastic
shortening must be found next. This process is slightly more involving as the
magnitude of the loss varies across the span. The reduction in prestressing
force is largely affected by the initial prestressing force before elastic shortening
occurs with the minor relieving effect due to the self weight bending moments
calculated earlier. The array of forces produced must now be altered to allow for
the development in anchorage of the prestressing force that occurs at the ends

of the strands.

The anchorage distance is found as shown in Section 2.4.5. The
situation will normally arise where the anchorage distance calculated does not
correspond exactly to any of the distances at which the prestressing forces
were found for the array developed in the last paragraph. Linear extrapolation is
used to find the peak force value at the end of the anchorage distance. With this
information it is now possible to ascertain the development curve for the
prestressing force within the anchorage distance at each end of the strand.
Figure 4.27 shows the nature of the reduction in force that must be applied to

the end of both sections of strand.
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Figure 4.27 reduction in force due to anchorage
A case may arise where the length of a section of strand may be shorter than
twice the anchorage distance. Where this occurs the force will not develop to
the peak value at the end of the transmission distance as insufficient anchorage
distance exists to resist the opposing force. Figure 4.28 shows the idealised
development in the prestressing from either end of a short section of strand.
From this it is assumed that the actual maximum force occurs at the mid point of
the strand and that the anchorage develops as before.
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Figure 4.28 reduction in prestress force in a short section of strand

A new data record is formed to hold the force values at transfer after anchorage
losses are accounted for as the post elastic shortening forces are required for
the calculation of the forces at the service stage. The functions written to
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calculate anchorage distances and the development of the forces in this region

are used after both the transfer and service losses have been found.

Service prestressing forces

The remaining work involves the calculation of the prestressing forces found at
the service condition. The remaining 75% relaxation is the next loss applied and
again its effects are uniform across the span. The creep losses are a function of
a number of factors including the stress in the concrete at the level of the
strands. Again the arrays of self weight moments in conjunction with the post
relaxation prestressing forces are used in calculation of these stresses. In a
manner similar to that used to calculate elastic shortening, these stresses are
used along with the creep factor, strand area and modular ratio to find the
losses. Shrinkage losses act uniformly across the span and therefore once
quantified are merely subtracted from each of the post creep force values.
Finally, this resulting array of forces is passed to the functions to reduce the
forces at the ends of the strands to account for anchorage. The process of

calculating the prestressing force is carried out in 'UO_prestress’ on page 310.

4.9.2.2. Applying nodal prestressing forces and moments

The contribution to the load vector due to the internally applied loading is found
next. In the last section the force in the strands at locations corresponding to the
horizontal distances from the end of the slab to the nodes at the element
corners were found. However, the forces in the strands must be distributed to

the nodes at the corners of the elements.
Taking an arbitrary element at some point along the strand the forces acting on

the left and right sides of the element are given by ‘Fi' and ‘Fi. 4. This arbitrary

element is shown in Figure 4.29.
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(Fie1-F)/2

oeonn- -
: : X (m) Force (kN)
: 0.000 0.0
Fi Fies 0.063 525
: 0.126 101.6
! 0.189 147.3
TN , 0.252 189.6
(Fis1-F) /2 0.315 228.4

Figure 4.29 applying nodal forces Table 4.2 Sample strand forces

(F2-F1)/2 (Fa-F2)/2 (Fs-Fo)/2 (Fs-Fai2 (Fe-Fs)/2
=26.25kN =2455kN =2285kN =2115kN =19.40 kN
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(F2-Fi)/2 (Fa-F2)/2 (Fa-Fs)/2 (Fs-Fa)/2 (Fs-Fs)/2
=2625kN =2455kN =2285kN =21.15kN =19.40 kN

Figure 4.30 example of the application of forces

Once the nodal forces have been found the moment values are found
immediately and aiso stored. The distance to the centroid from the bottom of the
slab is known for each element as is the cover from the bottom of the slab to the
strands themselves and therefore the eccentricity itself is easily found. Finally
the moment applied at each node is a function of the nodal force found above

by the eccentricity.
4.9.3. The load vector

Initially two separate load vectors were formed, the first for transfer and the
second for service stress conditions. For each case, the first load vector formed
contains the gravity load data and the second load vector contains prestressing
force data. In turn, both gravity and prestress load vectors are restricted using
the support condition data gathered earlier. The final restricted load vector is
found by simply adding both load vectors together. Once again the units of code
written to carry out these processes are used in an identical manner for both

transfer and service load vectors.
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4.10. Solving for displacements

The restricted global stiffness matrix for the structure must now be decomposed
as a first step towards solving for displacements. Cholesky decomposition is
used in the software to achieve this task. A brief introduction to Cholesky
decomposition is given in Chapter 3. As mentioned, one of the strengths of this
method for this type of calculation is that the decomposition is carried out on the
restricted global stiffness matrix and is completely independent of the load
vector. This allows a considerable portion of the calculation work to be carried
out only once even if multiple load cases are to be considered. This allows the
software to be written so as to permit the user to change the applied gravity
loads, for example, to analyse a number of slabs whose geometry is identical
but with differing loads. It should be noted, however, that two different load
vectors would be required when considering transfer stresses and service
stresses as the Young’s modulus at the service stage is greater than that at
transfer, a second global stiffness matrix must be considered thereby doubling

the calculations.

4.10.1. Decomposition of the half-bandwidth matrix

The restricted global stiffness matrix seen in Figure 4.22 is stored as a
rectangular array of numbers as given below in Figure 4.31. The cells shown in
red are those created to simplify the storage structure however no values will

have been assigned to any of these cells.

Figure 4.31 portion of matrix to be decomposed
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The section of code containing the decomposition function is designed to avoid
carrying out any computations based on these cells. There are three formuiae
used in the process of decomposing the restricted global stiffness matrix. These

are given below:

my, = Jan (4.3)

J-1
H?_” = ‘(lﬂ—Zﬂ?ﬁ j:2’...1” (44)
s=1

m =i[aﬂ, —Emﬁth J=k+l, - mk =2 (4.5)
These three equations can be used to find all of the values in the decomposed
matrix. Equation 4.3 is employed to find the first vaiue on the main diagonal
whilst Equation 4.4 is used for every subsequent value on the main diagonal.
Equation 4.5 is employed in the case of every other cell. From examining
Equations 4.4 and 4.5 it is apparent that the cells in the decomposed matrix
must be filled in a systematic fashion, from left to right in a given row before
proceeding downwards to the next row. As mentioned in Section 3.4.1, the
decomposed matrix is a triangular array of numbers. Therefore there is one
calculation involved in filling the first row, two for the second, three in the third
row and so on. The order in which the values in the decomposed matrix must

be found and the shape of the matrix is given in Figure 4.32.
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Figure 4.32 order in which solution is carried out

However the storage structure designed to minimise the required memory
complicated the looping in the section of code carrying out the decomposition.
Once this problem was overcome the resulting code dealt with the
decomposition process much more efficiently. The software code executing this

is show in ‘UO_malrix’ on page 295.
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4.10.2. Displacements

The forward and back substitution process was again designed with due
cognisance shown to the minimised storage structure used through out the
software. The displacement vectors generated for both transfer and service
conditions could as such be called restricted displacement vectors. These
vectors are modified by reinstating zero values into the vectors for restrained
displacements. This simplifies all further processes involving the displacement

vectors.

4.11. Displaying displacements

The displacements, in particular the upward camber and downward deflection,
are found in the two load vectors. As seen in Section 3.3. for each node in the
structure, five displacements are found for each node. The first two
displacements give the horizontal movement of the nodes which whilst
necessary for calculating the accompanying stresses is of little value to a
designer. Similarly, the following pair of displacements, both rotations, will be
later used in the calculation of stresses but are again of littie interest. The final
displacement given for each node is the displacement in the z direction. This
quantity is traditionally sought by designers and therefore in parallel with its
usage in the caiculation of stresses, it is used to form a displaced shape

diagram.

The outline of the slab and the mesh that is displayed over it are shown
in plan. The problem that arises stems from the fact that whatever deflection
occurs will move the node points out of the plane of the slab almost
perpendicular to the original position of the node. Displaying the deflected
shape in plan therefore would not produce a clear displaced shape diagram. To
overcome this difficulty the deflection is displayed distorted downwards in the
south — south — east direction. The distance that each node is transposed is
proportional to the deflection experienced by the node. The user may also
change the scale factor by which the deflection is exaggerated. Figure 4.33

demonstrates how these principles operate.
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Figure 4.33 deflection display method

Shown in Figure 4.34 is a screen shot of the deflected shape diagram for a slab.
The user may switch between the deflected shape diagrams produced for the

transfer and service conditions.
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Figure 4.34 displaced shape diagram

The deflections displayed above were generated using plate bending theory.
However, as seen in Section 2.2.5. the estimation of the deflection in
prestressed slabs is a relatively complicated process. The deflections shown
here are calculated based on maximum loads and with no consideration given
to creep as shown in Equations 2.38 and 2.39. However these values do allow
the deflected shape to be shown and the location of the maximum deflection to
be identified.
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4.12. Stresses

The next step involves finding the stresses due to the combined model. The
predominantly compressive stresses due to the prestressing force was
modelled through the use of the plane stress theory, whilst the plate bending
theory was used to model stresses arising from the internal moments which
occur due to the eccentricity of the prestressing force. Once these stresses
have been found they may be combined to yield the complete state of

membrane stresses in the slab.

4.12.1. Plane Stresses

With all displacements found, and the displacement vector altered in order to
give the global displacements (including the displacements that were restrained
due to support conditions) the process of finding stresses may begin. The plane
stresses are solely a function of the displacements in the x and y directions and
therefore an array of in-plane displacements must be formed from the global
displacement vector. This concept is shown in Figure 3.6 in the previous

chapter.

The components that must be brought together to find the plane stresses in
each element are the elemental displacement vectors, the elasticity matrices
and the geometry of the element. The elasticity matrix was seen in Chapter 3 to
contain terms that only referred to the material properties of the element.
However the properties of the materials in the slab are uniform throughout and
therefore this elastic matrix is universally applicable to a slab with particular
material properties. The process of calculating the stresses in the slab involves
considering each element sequentially, i.e. forming the stress-displacement
matrix, gathering the appropriate displacements and multiplying these together

to find the elemental stresses.

The elemental displacements for the corners of each element must be copied
into an 8 * 1 array. This is carried out by identifying the node numbers for the

four corners of the element and then using these numbers to access the correct
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cell address in the global displacement vector from which to copy the values.
The stress-displacement matrix for the element under consideration must be
formed using the height and width of the element and the elasticity matrix
mentioned earlier are used to generate this matrix. It should be noted that due
to the size of this matrix (12 * 8), and due also to the fact that in excess of one
thousand of such matrices would be formed during an analysis, the matrix is

created, used and destroyed before proceeding to the next element.

The stresses at each of the four corners of the element are found by multiplying
the stress-displacement matrix by the displacements. These values are then

stored in a global plane stress array.
4.12.2. Plate bending stresses

The process of calculating stresses due to plate bending is similar to that found
in the last section. The relevant displacements are copied into an elemental
displacement vector, the stress-displacement matrix is formed and the
mulitiplication of the two results in the determination of the stresses. However,
the process of constructing each stress-displacement matrix is more
complicated because the elasticity matrices generated in plate bending theory
vary from element to element as they are a function of each element’s second
moment of area. Once again the airay storing the elemental elasticity matrices
is consulted for these values. The height and width of each element is also

required for the construction of the stress-displacement matrix as before.

Once the vector and stress-displacement matrix have been formed they are
multiplied together to give an array that contains moment values. These
moment values, M,,My, and M,y, are actually moments per unit width of the
element. The stresses resulting from M, and M, are given by Equations 4.6 and
4.7.

o =2 and o - ﬁi’y (4.6), (4.7)

x ¥
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The twisting moment, M,y, gives rise to vertical shear in the elements however
this research is focused on examining transfer and service stresses and not
shear stresses which are examined at the ultimate limit state. This can be

examined further in 'UO_Stress’ on page 343.

4.12.3. Combined stresses

The stresses calculated above may now be combined to give the final state of
transfer and service stresses in the slab. The stresses in the top and bottom
fibres of the siab are found by adding or subtracting respectively the bending
stresses to/from the plane stresses. The stresses found from the plane stress
model may be combined with their equivalent from the plate bending analysis
as shown in Figure 4.35. The vertical shear stress due to My, the twisting
moment, is shown in the figure for completeness however this resuit is not used

in the software itself.

Plane stress Plate bending Total stress
A
o, + o, T yrop
T.ry T.\'y—fap

T T
o, - g, O s —boitom
Ty T o bation

7, Te

Once the stresses at the nodes in the corners of the elements have been found
the next step involves finding the average stress in the quadrants of each

element. The stress values calculated for each node may be significantly higher
or lower than the average stress in that quadrant of the element. Figure 4.36(a)

shows a plan view of a typical element. The hatched areas represent the
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quadrants for which the average stress is sought. Figure 4.36(b) show the same

element in 3D with the magnitude of the stresses being displayed on the vertical

axis rising from each corner node.

(a) element in plan (b) stresses show in 3d

Figure 4.36 variation of stress within an element

The construction lines on this diagram help to explain how the average height
(and therefore stress) of any particular quadrant could be found. A

mathematical formula was found to calculate stresses according to this method

numerically. This is given in Equation 4.8 where o, is the stress at the nearest
node to the quadrant under consideration, o, and o, are the stresses at the
nodes at the two near corners and o, is the stress at the furthest node from the

quadrant.

o= [6%0,)+(323,)+ (0 )+ (170, (4.8)

This equation is employed in the four quadrants foro, ,o, andz,, . It should also

be remembered that this must be repeated for top and bottom stresses for both

the transfer and service stresses.

These results give stresses in their respective directions which are most likely
not the maximum stress present in these elements. To get the maximum values
the principles stresses at each node is found for the top and bottom fibres.

These stresses represent the final state of stresses and the next task is to
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display them graphically to the user. As is commonly the case in prestressed
concrete design, compressive forces are shown as positive whilst tensile

stresses are shown as negative.

4.12.4. Presentation of results

The method chosen to present the results is a colour coded plan of the slab.
The maximum and minimum stresses are found and twenty even divisions of
the difference are found. The lowest stress value in the slab is shown in green,
with each 5% increase in stress of the total range warranting a colour change.
Figure 4.37 shows a stress plot produced by the software. This plot shows the
top fibre stresses in the x-direction produced by the combined effect of the plate

bending stresses and plane stresses.

097 A 867 751 63 521 406 29 175 06 05
103 924 B3 G4 578 463 343 233 417 002 113
Shess Himm™2

Figure 4.37 top fibre x — direction stresses

The deflections may also be shown in a contour plot in this section of the

program as given in figure 4.38.

HEE]
ool 013 025 03 05 06 075 08 1
Defecton mm

113 155 13

Figure 4.38 deflection plot
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It should be noted that the deflection values do not account for such factors as
creep as mentioned in Section 2.2.5. This area was not examined as the
number of types of deflection examined in a typical study of slab design check
is considerable and was therefore deemed to be outside the scope of this

research.

Shown below in Table 4.3 shows the various stress and deflection data sets
that may be displayed in this part of the program. These results may also be

exported to Microsoft Excel for further examination.

Plane stress x - direction
y - direction
Plate stress Top fibre: x - direction

Top fibre: y - direction
Bottom fibre: x - direction
Bottom fibre: y - direction

Combined stress Top fibre: x - direction
Top fibre: y - direction
Bottom fibre; x - direction
Bottom fibre: y - direction

Principal stress Top fibre: p1
"~ Top fibre: p2

Bottom fibre: p1

Bottom fibre: p2

Deflection Dispiacement in y - direction

Table 4.3 results shown by contour piot

4,13, Ultimate shear and bending moment capacity

Upon completing the transfer and service stress design checks, the author
examined the possibility of extending the software to carry out the stress checks
at the uitimate limit state. Having examined the theory underlying ultimate
moment capacity and ultimate shear capacity in Section 2.2.3. and studied
programming techniques before constructing the software detailed earlier in this

chapter it was decided that the programming required to add these checks

127



would be very substantial and therefore it was not carried out. The largest factor
impeding the extension of the software to cover ultimate limit state checks
relates to the finite element theory used. The theory outlined in Chapter 3 suits
transfer and service stress as the concrete is assumed to be acting in the
elastic region. At the ultimate limit state the concrete is assumed to be acting
outside the linear elastic region and therefore the finite element theory used in

this project could not be applied to this check.

4.14. Summary

In this chapter the process of constructing the software was detailed. It shows
how the theory examined in the first two chapters was used to build the
software. The link to AutoCAD is explained and it's benefits shown. Some
discussion is made relating to the generation of the mesh and subsequent
calculation of element stiffness. A large amount of time was spent on the
construction of the global stiffness matrix in a manner that minimises the
storage space required. The process of generating the load vector was shown
including the detailed calculation of losses at intervals along the span. The
process of restricting the global stiffness matrix and load vector was discussed
followed by the matrix operations such as inverting the restricted global stiffness
matrix and the forward and back substitution to find the displacements. Finally
the methods used to calculate and display the stresses and the deflection are

shown.

A flowchart display of theses processes is shown over then next three pages in
Figure 3.39.
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5. VALIDATING RESULTS

5.1. Introduction

The quality of the results given by the software written must be verified in order
for confidence to be gained in the package. There are three main reasons why
the results given by a software package, such as that produced during the
course of this project need to be checked. The first is related purely to the errors
that creep in during the writing of the software such as incorrectly specifying the
size of an array of numbers, or the incorrect use of components or routines. The
second source of errors rests in the formula used to perform a function. Such
errors may be caused by a typing error or even a misprint in source material.
The final main reason for inaccurate solutions would lie with the assumptions
that were made when employing the formula. The methods used to attempt to
eliminate these errors are debugging, comparative calculations in Excel

spreadsheets and Ansys modelling of similar problems.

5.2. Locating errors

Great care was taken whilst writing the software and the theory was researched
and in some cases derived from first principles. Aside from the complexity of the
formulae that were employed, there are approximately 15,000 lines of code in
the software. During the preparation of such a large body of work, mistakes
would occasionally be made. These errors fall into the first two categories
mentioned in the introduction. The process of debugging the code will catch
many of the errors relating to poorly chosen functions or incorrectly sized

atrays.

5.2.1. Debugging

A number of mistakes were be located by the debugging features in the Delphi
7 compiler or by range checking which occurs during looping. As the hundreds
of steps in the development of the code were added the compiler was used to

search for errors. A number of errors made during the development of this
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software were spotted as a result of graphic displays that were mainly included
to allow testing. Break points strategically placed within the code allow
intermediate results not normally displayed to the user to be checked by
stopping the program temporarily and displaying the result of the particular line

of code.

An example of this type of error can be seen by examining two similar but
different functions. These functions /' and ‘div’ serve the purpose of dividing a
number, however the results given may differ slightly. The ‘/' function divides a
number and returns a real number. However, the ‘div’ function divides a number
and returns a value rounded down to the nearest integer. This type of error can
clearly be seen to lie solely in the choice of function as opposed to an error in
the execution of the function. Whilst this type of error would not be ring fenced
by the debugging features in the compiler, breakpoints may be employed.
Shown below in Figure 5.1. is a breakpoint being employed to expose the value

assigned to an array at a particular point in a loop.

for 1:= 0 to (Horfesh - 2) do
hegin
for j:= 0 to (VerMHesh - 2) do
begin

if FInsideRec.ElementIsInside(i, j] = true then
hegin
CurrentDisplrr:= Get_CurrentDispArrPlate (TvoDiapArrs, i, j):
D_plate:= Form D matrixPlate(i, j):
Current_H:= Get_Current_H Plate(FGetStressesRec.MeshArr, i, j, D_plate):
. FcsArr:= Hultiply Katrices Plate(CurrenctDispirr, Current_H):
o |8
' Hc1_Arrayf, ].Cor_1.Mc = -94.170155009 il
BA_Array[1, J1.COr Z.AXi= fcsirr(3]
BH_Array(i, j].Cor_2.Hy:= Fesirr(4]:
BH_Array[i, ]J].Cor_3.Mx:= FecsiArr[6]:
. BlI_Ar:rﬂyli, 3] .Cur_3.H9:= FcsArr(7) :
. BH_Arl:ayli, j) .Cor 4.Mx:= Fcsicrr[9):

BH_Acray(i, j).Cor_4.Hy:= Fcsirrc(10]:
end;
end:
cnd;

Figure 5.1. A breakpoint in the software

The debugging features in the compiler eliminated simple spelling errors made
when calling functions contained with the Delphi software itself. As such, this
could be described as checking the spellings within the code at run time.

5.2.2. Excel Spreadsheets

The second type of error that occurred within the code relates to formulae that

have been incorrectly typed. An example of this type of error could be as simple
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as typing a '+' instead of -' in a formula. The compiler would not find a software
error in this type of mistake and therefore would execute the program without
flagging it as an error. This type of error was found through the use of
comparative calculations mainly performed in Microsoft Excel. Spreadsheets
were used at many stages throughout the writing of the software to verify

intermediate results.

For example, the section of code written to find the losses in prestress at
intervals along the strands was compared with a spreadsheet written to assist
the checking process. This type of check was employed to verify the resuits of
the simplified finite element model before adding more detail. The simplified
model was checked by examining a test case with no prestressing force or
reinforcement, with a uniformly distributed load applied, taking a solid cross-
section with no openings or notches along the slab length and the assumption
(only taken for the purpose of testing) that the material properties of concrete
are isotropic. The deflections and rotations calculated by the software could
then be easily compared with a relatively simple spreadsheet developed with
the same parameters. The increments across the span taken in the
spreadsheet were purposely defined to be identical to those generated by the

software.

The subsequent comparison of results provided a level of confidence in the
software. Whilst the results found were not identical, they were generally within
2-3% of those given by the simple spreadsheet model. It should also be noted
that the spreadsheet model paid no regard to the effect of Poisson’s ratio, which
could be seen within the software to cause a saddle-shaped effect on the
deflection of the slab. This spreadsheet was further expanded to calculate
moments which could then be compared with the results of the next phase of
the software. Within the software, a stress-displacement matrix was generated
for each element and then multiplied by the displacements found earlier to yield
the moments in the x and y directions and the twisting moments at each of the
four corners of the element. Finally from these moments, the corresponding
stresses may be found. In many cases these checks were most usefull to verify

that units were converted correctly. A number of errors were isolated in this
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manner when results produced by the software were noticed to differ from those

in the spreadsheet by a factor of ten, a hundred or a thousand.

5.3. Ansys

The checks described above were employed to as great a degree as possible at
every stage. These particular checks will not, however, guarantee accurate
results, as the assumptions upon which the theory was employed may be
incorrect or have certain limitations. Therefore, in an attempt to verify the overall
soundness of the assumptions made and the reliability of the software itself
some comparative finite element modelling was carried out. Ansys was chosen
for this purpose. Once again, the choice as to which software to use was greatly
influenced by the fact that this particular package was widely used throughout
the college and a number of people with expertise in the use of this package

were available.

5.3.1. Ansys Classic versus Ansys Workbench

Initially Ansys workbench was chosen for the purpose of generating
comparative results. The advantage of using the Workbench as apposed to the
classic version relates to its user friendly graphic interface. The first attempts at
producing a set of results was carried out using Ansys Workbench, with the
geometry of the slab being generated in a separate software package named
Solid Edge. However, the limitations of this package became evident after some
experimentation, as outlined below, and therefore Ansys Classic was ultimately

used.

5.3.1.1. Solid Edge

Solid Edge is described as being ‘a computer-aided design system for
mechanical assembly, part modelfing, and drawing production’. Solid edge
provided a means of rapidly generating the geometry of both the slab and the
strands. This data could then be saved to a format recognisable in Ansys

Workbench. Within the solid edge environment the user generates 'parts’ which
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are 3-d volumes extruded from shapes drawn on a selected plane. Once two or
more parts have been generated, they may be brought together in an
‘assembly’ to give the completed body. This feature was of interest as the
prestressed slabs under consideration were comprised of the concrete slab part

and up to ten steel strand parts.

5.3.1.2. Ansys Workbench

The slab assembly was saved in a jointly compatible format and then imported
into Ansys Workbench. In the simulation environment the user can see the list
of parts in the imported assembly. The display in which the slab is shown and
the surrounding menus would prove very recognisable to experienced Microsoft
Windows users. The user can use very straightforward options menus fo create
materials, specify their properties and assign them to particular ‘parts’ of the
assembly shown on screen. Applying support parameters through the user
interface is made simple by the filters that allow the user to choose whether the
item to be selected is a vertex, edge, face or body. Pressure and gravity are
also similarly applied. In the case of gravity, the user only needs to specify the
direction in which gravity acts, and for pressure loads the user selects the face

on which the pressure is acting and then specifies its magnitude.

Bolt Loads

Initially, the ‘bolt load feature within Ansys Workbench was selected to be the
means by which the prestressing force would be applied. The nature of the
contact between the strands and the concrete within which they are embedded
could be set to bonded to accurately model the conditions found in reality. The
bolt load option however is based on similar theory to the PRETS179 element
type from Ansys classic meshed in a particular manner. Details on this
particular element type can be found in the Ansys help menu. This is shown in
figure 5.2, where it can be seen that the tension or compression in the bolt is
applied through a ring of elements at a distance approximately half way along
the shank of the bolt. As a result the prestress is only transmitted through to the

concrete between the nodes of the ring of 'special’ prestressing elements. This
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is due to the bond between the nodes on elements in the strands to the
corresponding elements in the concrete. It is noteworthy that the bolt load
discussed could be used in the modelling of post tensioning where there is no

bond between the strand and concrete.

Pretension Load Direclion

Cutting

Surface B
(contains
node Jy -.___

Pratension Made K
@ MNode J
& Mode |

Culling —
Sutlave A
[cunlams
node Iy

Figure 5.2. bolt load (taken from the Ansys help documentation)

Meshing

The meshing tool in the Ansys Workbench attempts to mesh a given volume
with an automatically generated mesh using elements deemed suitable to meet
the demands of the particular situation. The mesh generated for the strands
includes tiny elements in order to mesh the cylindrical cross-section, as the
diameter of the strands is between 6.4mm and 15.7mm. The density of the
mesh in the strands is such that the number of elements required in the
surrounding concrete to provide adequate linkage to the nodes on the strands
surface is typically huge. However, it should be noted that the stresses in the
concrete are the results that are sought, while the stresses in the strands are of
secondary interest. The strands are of interest only in that they impart the
prestressing force into the concrete. The mesh in the concrete in the region
surrounding the strands is far denser than that required to give reasonable
results.

The mesh produced utilises the uniformity of the cross section along the length

of the slab by meshing an end face and then extruding the mesh along the
length of the slab. Based on Ansys guidelines on the aspect ratios permitted,
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the number of divisions along the span length is calculated and the mesh

extruded to fill the volume.

5.3.1.3. The limitations of Ansys Workbench

The user-friendly nature of the Ansys Workbench comes at a price as the
options presented to the user at each step in the analysis are limited. In many
other cases the options presented to the user are more than adequate to
perform the analysis required. However, as seen in the last two sections the two
critical aspect of the analysis of a prestressed slab, meshing and prestressing,
can not be controlled adequately therefore making Ansys Workbench unsuitable

for the purposes of this project.

5.3.2. Ansys Classic

Ansys classic offers the user far greater control over every aspect of the
analysis than is possible with Ansys Workbench. This, however, comes at the
expense of considerably greater complexity and a less well developed user
interface. The user will often find two or more ways of executing any command
in this version of Ansys. The main method employed during this research was
the use of the ‘Ansys Main Menu’ which is ever present on the left side of the
screen. This contains a huge number of options compacted into a ‘Tree View'
format in which commands performing similar functions are grouped together
with subcommands shown in logical hierarchical of subheadings. This allows
the user to intuitively find the desired commands with little effort. An example is
shown in Figure 5.3 where the primary commands for creating the geometry of

the model are displayed.

Some other commands were most easily accessed through the utility menu
across the top of the screen. Finally, some users of Ansys prefer to utilise the
‘Ansys Command Prompt’ to execute commands. For example, if the user
wishes to add sub volumes together to create a single volume, the ‘VADD’
command could be typed followed by the names attached to the volumes

concerned. Referring back, to the main menu, the user could have achieved the
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same objective by moving through the following path to the same command:
‘MainMenu — Preprocessor — Modeling — Operate — Booleans — Add —
Volumes’. The Command prompt was not used during this research.

_®)

ANSYS Main Menu

E preferences
B Preprocessor
Element Type
[ Real Constants
@ Material Props
[ Sections
B Modeling
oiCreatel
[ Operate
@ Move / Modily
Copy
Reflect
@ Check Geom
[ Delete
@ Cyclic Sector
cMS
Genl plane strn
Update Geom
@ Meshing
Checking Ctrls
[ Numbering Ctrls
@ Archive Model
Coupling / Ceqn
[ Multi-field Set Up
[ Loads
@ Physics
Path Operations
Solution
General Postproc
TimeHist Postpro
Topological Dpt |

K _
Figure 5.3 Ansys Main Menu

5.3.2.1. Setting up the pre-processor

Before creating geometry, the user may define a number of properties such as
element types, material properties and real constants. Firstly, it is advisable to
set the Preferences option to ‘Structural so as to allow Ansys to filter out
commands from the options presented down the line that bear no relevance to
the analysis being carried out. For example, the fluid, thermal and
electromagnetic options are removed from most menus presented later in the

analysis.

The element types used in this analysis are chosen by selecting add elements.

Three elements types are required to set up the model, these are:
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1.

MESH200 — This element type is used solely for creating a mesh on a
surface which would later be extruded into a different element type. This
is termed as ‘not solved’ as its presence is ignored once the solution
stage begins. In the options menu relating to this element type the user
must specify that the element shape required is a ‘Quad 8-node’ so that
once the elements are extruded a 20-node brick is formed. This is shown
below in Figure 5.4

2D - 8 node 3D - 20 node
{Quad) {Brick)

Figure 5.4 transposing an 8 node element to a 20 node element

SOLID186 — This element type is the 20 node brick that is used to fill the
volume when the MESH200 elements are extruded into 3D elements.
BEAM4 — The choice of element used to model the effect of the
prestressing force was determined by requirement that the element type
in question must have the capability to have a prestress or prestrain
applied. This element type is normally used for modelling beams within
larger structures with real constants such as second moment of area,
torsional moment of inertia and shear deflection constants for beams
being optional inputs for the user. For the purpose of this analysis the

prestrain constant was of interest.

The real constants relating to the BEAM4 elements can now be set by adding
the set of real constants that relate to this element type. Once the user correctly
selects BEAM4, only the options relating to it will appear. The user must give at

the very least, information relating to the cross sectional area of the strands and
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also the prestrain accounting for losses relating to relaxation and concrete
shrinkage as detailed in Chapter 2. Furthermore, to increase the accuracy of the
overall model, the user may also include data relating to the second moment of

area of the strand and its thickness.

Material properties are then set by selecting the ‘Material Modef option. The
user must at this point decide on the units to be used through-out the analysis.
Obviously, the geometry of the slab would be defined in metric units, which, in
the case of this project, were millimetres. However, the user may define the
material properties in terms of N/mm? or in Mpa. Once again the units through-
out this research were N/mm?. The first material defined, concrete, would
typically have an assumed Young's modulus of between 28,000 N/mm? and
32,000 N/mm? with a Poisson’s ratio of between 0.20 and 0.25. The density of
the concrete is then specified so as to allow self weight bending stresses to be
quantified during the analysis. The density of concrete is typically taken as 2.5
Mg/m?>. The properties of prestressing steel are almost universally taken as
190,000 N/mm? for Young’s modulus and 0.3 for Poisson'’s ratio. Since the
weight of the concrete contributes to greater than 99% of the weight of the slab,

the density of the steel is ignored.
5.3.2.2. Creating geometry

In a manner similar to that used in Ansys Workbench, Ansys classic allows
geometry generated using other software packages to be imported. However, It
was decided that creating the geometry from scratch in Ansys was desirable in

order to remove a potential source of errors.

There is a large array of methods that can be employed to generate geometry in
Ansys all of which can be accessed through the Modelling sub-option found in
the Preprocessor heading in the Ansys main menu. Generally, the user's
ultimate goal within this section is to create a volume which may later be
meshed, loaded, etc. To create a simple volume the x, y and z dimensions of
the cube may be specified in a window that appears once the ‘Create Volume'

command is executed. The user may create other volumes and Add these to
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the main volume to create geometry. Similarly, a volume may be created which
partially co-habits the same space as another volume, allowing the Subtract
command to be used to remove the common space from the main volume. This
is commonly referred to as creating the geometry from the top down. The other
main technique employed for creating geometry is referred to as creating
geometry from the bottom up. This was the method used in this project as it

best suited the creation of the cross-sectional shape of the slab.

The technique involves creating single coordinates in space called ‘keypoints’.
Once at least two keypoints have been created a line may be formed
connecting them. Building upon this, lines may then be used to construct an
area. This may only be accomplished once a sufficient number of lines have
been created to enclose the area itself. Again, once a sufficient number of areas
have been created, the volume that these areas enclose can be defined. Figure
5.5 shows the four steps from defining kepoints, linking them to create lines,

defining the areas by lines and finally using the areas to define the volume itself.

Areas Volume
Figure 5.5 building volumes from the bottom up

It is also possible however to create an area and extrude it in a specified

direction to create the volume. There are a large number of options available for
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geometry creation allowing the user to decide through experience as to which
technique best suits the geometry being created. For example, in the case of
the geometry required for modelling hollow core slabs, creating the cross
sectional area of the slab and extruding it back was the most efficient way of

producing this geometry.

The process used to generate the hollowcore slab cross section is shown in
Figure 5.6. The first step involved creating the keypoints from the 2D co-
ordinates of the cross section and then linking the appropriate keypoints with
lines as shown in Figure 5.6(a). These lines may then be used to define the
outline area of the slab as shown in Figure 5.6(b). The ‘Solid Circle’ command
directly creates a circular area which allows the user to skip the process of
creating a keypoint and circle in order to define the area. All nine cores are
created in this manner, simply specifying the coordinates of the centres of the
circles and radius as given in Figure 5.6(c). Finally, the Boolean ‘Subtract
command is used to subtract areas from each other. In the example given,
areas A 2 to A 10 are subtracted from the base area, A 1. This yields the
completed cross sectional area shown in figure 5.6(d).

) :

(a) Lines

i 7",;“\\.,‘[ T ees

(b) Outline area

00000000 ® !

(c) Outline area and core areas

Figure 5.6 using Boolean commands to create an area
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Due to the method in which the mesh was produced for this particular analysis
the area itself was not extruded into a volume but the elements produced for

this area were. Further details on this are covered in the next section.

5.3.2.3. Creating the Mesh

During the attempt to employ Ansys Workbench to carry out the analysis (see
Section 5.3.1.2.) it became clear that great control would have to be exercised
over the number of elements in the mesh. To achieve this mapped meshes
were used. A mapped mesh has a more clearly defined structure to it than a

free mesh.

Meshing the concrete

To minimise the work involved in creating a mesh areas may be divided in such
a way as to allow mesh patterns to be copied to other areas with a similar
shape. Upon examination of the slab cross sections used in this project, it
became clear that the process of producing a complete mesh may be speeded
up by considering a small portion of the overall area which may then be
replicated across the overall area. Figure 5.7 shows a red hatched which is
possibly the most logical sub-area for which a mesh pattern can be developed.

e

Figure 5.7 repeatable mesh pattern

Once a suitable mesh has been developed for this area, the pattern may be
reflected to the other side of the core and then copied along the cross section.

This leaves only the left and right side of the cross section to be meshed but
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again upon developing a suitable mesh for one side the user may reflect it to
the other.

The process of developing a mesh for the area shown above involves some
thought. The element type used for meshing this area (SOLID186) allows
curvilinear edges to be formed which would help to ensure that good results are
achieved close to the cores. The area to be meshed must itself be sub-divided
to allow approximately square elements to be used to produce a mapped mesh.
Figure 5.8(a) shows the sub area discussed above divided up in such a manner
as to give all four sided areas. Also shown in figure 5.8(b) is the same area with

a suitable mesh applied to it.

(a) area divided (b) sub areas with mesh applied

Figure 5.8 mesh sub-areas and elements

There are a number of considerations that must be borne in mind whilst creating
the mesh. The Ansys help menu suggests that an aspect ratio of less than 20
should be aspired to for the 3D elements produced in the mesh. Therefore, the
user must take care and try not to produce any elements that have a particularly
small dimension in any direction. Also, by specifying the number of elements
along the sides of the sub areas, the shapes of the resulting elements may be
controlled. It can generally be said that internal angles of 135° or greater are
undesirable and therefore the user must visually inspect the mesh pattern
produced in order to avoid this.

The procedure employed to create the mesh shown above involves creating

lines that divide the area as shown. Once all four bounding lines have been
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created, an area may be defined. Each of the lines defining the area may then
have the number of divisions associated with it set. Three divisions along a line
leads to the creation of three elements along this edge all with equal edge
length along the collinear edge. The user must also ensure that corner nodes
meet as nodes on adjacent elements may not lie along the edge of an element.
Figure 5.9 shows diagrammatically this error with the problem nodes highlighted
by the red circle.

Figure 5.9 a meshing error

The final characteristic that should be avoided are degenerate elements. The
first element shown in Figure 5.10 is one of the faces of a 20 node element
whose shape is approximately square. The second element shown is a
triangular-faced element. However it is formed from a 20 node element, three
nodes of which occupy the same coordinate. Allowing degenerating elements
may lead to element ‘locking’ where elements appear to have greater stiffness
than is the case in reality. It is generally accepted that to avoid the possibility of
this occurrence, the user should use triangles or tetrahedral elements that were
formulated as such (Cook et al. 2002).

1 2 1.2, 3
3
8 8
4 4
7 7
6 5 6 5

Figure 5.10 a degenerate element
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Referring back to Figure 5.8(a) which shows the areas generated upon
subdividing the repeatable shapes, the corners of two of these areas were
positioned so as to coincide with the location of the end point of a strand. This
allows the mesh applied to the line representing the strand to interact fully with

the mesh that will be extruded for the concrete elements.

After a suitable area mesh has been formed on the end surface of the slab this
must be extruded back through the volume of the slab. The user selects the
‘element extrusion option’ found under Modelling — Operate — Extrude to set a
number of options. Before carrying out the extrusion the user must specify the
material from which the extruded volume would consist. At this point the user
also specifies that the area mesh is to be changed to the SOLID186 when it is
transformed into a volume. Finally, the number of divisions along the length of
the extrusion at which elements are to be formed is chosen. This choice, as
discussed earlier is made based on the required aspect ratio of the elements
and the solution time. The actual extrusion is carried out by specifying the area
elements to be extruded and then specifying the axis and distance along the
axis which the mesh is to be generated along. Figure 5.11 shows the mesh

produced as shown in Ansys.

o a 54?""5"49 Y B

IOV WW

Figure 5.11 an Ansys mapped mesh

i

Meshing the strands

Before the mesh along the lines representing the strands is created, the ‘Real
Constant relating to the BEAM4 element type must be set. Many of these
properties of the strands are most easily calculated manually and typed in.
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However, the user may use the ‘Parameters’ feature found in the utilities menu
to declare variables and then enter the appropriate formula in the real constants
form. Typical values used for a 8.5mm diameter strand include an area of
51.61mm?, an by and |,y value of 211.3mm* and a thickness of 8.1mm. The
prestrain value would typically be of the order of 0.0048 to 0.0055 depending on

the losses that are assumed to have occurred.

Meshing the lines that represent the strands is straightforward once they have
been identified. This is somewhat complicated by the number of lines running
perpendicular to the direction of the span. The normal procedure for selecting
any object on screen is to click on it close to its centre of gravity. However, due
to the jumble of lines presented onscreen the method chosen to identify the
lines involved identifying the ten keypoints at the ends of the strands and from
the file containing the list of lines and their associated keypoints, the line
numbers were identified. The lines were then displayed using the ‘Plof —
Specific Entities — Lines' command to display the lines representing the strands
one at a time and thereby allowing them to be meshed individually. Meshing the
lines is carried out by setting the attributes of lines such as material type, real
constants and the element type with which the line will be meshed. The next
step involves specifying the element size that is to be used along the line. From
within the meshing sub option in the Ansys Main menu the user selects ‘Size
Controls — Manual Size — Lines — Picked lines’ and selects the line to be
meshed. The user must specify the same number of divisions for the mesh for
the line as was used when extruding the area mesh on the concrete into the
volume. This ensures that the nodes along the strands coincide with the nodes
within the concrete so as to ensure that the prestressing force is applied to the
concrete at these nodes as opposed to just at the ends of the slab. Finally the

mesh is actually applied to the line through the mesh tool option.

With all the geometry and associated meshes defined the user may move on to
loading the slab. However, as a precaution, the user is advised to select the
‘Delete Volumes and Below’ option within the Modelling option and select
everything on screen. This will lead to all volumes, areas, lines and keypoints

that have no mesh associated with them to be deleted therefore removing the
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possibility that a load could be applied to a phantom area instead of the areas
or volumes holding a mesh and truly representing the structure. This process
has no effect on the volumes, areas, lines or keypoints on which the mesh itself

is created.

5.3.2.4. Applying loads

The ioading options may also be found within Loads menu in the Ansys Main
Menu. The three load types that must be defined are structural displacement

(supports), gravity loads and pressure loads (imposed loads).

Under the loads option the user selects ‘Define loads — Apply — Structural —
Displacement — On lines'. The user then selects the lines on the slab which
represent the supported edges. In the case of the slabs under examination, the
supported edges are typically those found at the bottom of the slab at opposite
ends of the span. The user would see that in the case of the slabs examined in
this project, the edge to be supported actually consisted of many short lines
each of which forms the lower boundary of the sub areas at the bottom of the
slab cross section shown in Figure 5.8(a). The user must then specify the lines
upon which the displacements are to be applied. Ordinary supports are defined
by setting the displacement value to zero. The displacement relative to each
axis must be set independently as selecting the option to restrain all degrees of
freedom will also restrain rotations about all three axes and would lead to an
effect similar to that given by a fixed support. At one end of the slab a pinned
support is set by stipulating zero displacement in the x, y and z direction
whereas at the opposite end the roller support is formed by only suppressing

the displacement in the vertical direction (y — direction).

The next load type to be considered is the pressure load. The pressure load
option is also found under: ‘Define loads — Apply — Structural. This load is
applied to the areas that make up the top of the slab. These areas are the top
surfaces of the extruded elements as shown in Figure 5.12. The process of
selecting these areas is made simpler by selecting the option to plot the area

numbers. The user may then select the areas whose numbers appear on the
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top surface of the slab where any incorrect selections would be blatantly
obvious. The user then specifies the load in N/mm?, inputting 0.001 for 1 kN/m?.

Figure 5.12 a meshed volume

The final load data to be specified is gravity. At the stage where the material
properties were specified the user was given the option of including a material
density, if the user did so then by selecting: ‘Inertia — Gravity — Global', the
value for acceleration due to gravity in any direction may be specified.
Therefore, given the orientation of the geometry created earlier, a value of
9.81m/s? in the y direction is set for this.

5.3.2.5. The solution stage

The user is now at the stage where the solution may be found. The solution
command is found in the Solution option in the Ansys Main menu. The user
selects the ‘Solve — Current LS’ within the Solution option and the solution
begins. If any errors or warnings arise the user may find further details in the
Ansys Output Window. The number of elements used for a typical slab would
result in a model that would take in the region of 30 — 40 minutes to solve
assuming no errors in the model are highlighted. Both before and after the
solution is found the work in progress should be saved in case some failure in

the Ansys program.
5.3.2.6. Displaying Results

As a first step after the analysis was complete viewing the deflections provides
a quick method of verifying that all loads and material properties were input in
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the correct manner. For example, if a maximum deflection was expected to be
in the 5 — 25mm range but the results suggest a deflection ten or one hundred
times greater, then the first item to check would be consistency in the units
used. The tools for generating result displays are found in the Postprocessor
option in the Ansys main menu. Contour plots produce the most easily read
results. To display deflection the user selects ‘Plot results — Contour plot —
Nodal Solution’. The menu that appears allows the user to specify the
directional component of the displacement which is calculated to have occurred
to the slab. The deflection in the y-direction is selected and the user may also
specify if the contour plot is to be overlaid on the original shape of the slab or
the deflected shape.

Displaying stresses involves slightly more thought. The user selects the
Element plot option and is presented with a slightly different set of options. The
stresses of greatest interest to precast concrete slab designers are the
longitudinal stresses in the slab. The user may choose to examine other
stresses such as the principal stresses however the stress in the z direction
would prove a good first indicator as to whether the slab design is viable. The
options presented to the user are presented in Figure 5.13.
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Figure 5.13 Ansys contour plot stress options
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The stresses are then plotted on the displaced shape of the slab. Once again
the plot appears and the user may rotate it and zoom in or out to examine

features of interest.

A problem arises from the stress range produced by the analysis. Stresses
found locally around the strands are much higher than the top and bottom fibre
stresses in the concrete leading to an anomaly in the legend. The legend is
calculated by taking the maximum and minimum stress values and using steps
of one tenth of this as the contour values. If it is assumed that the stress range
found in the top and bottom fibres of the slab is between 4N/mm? in tension and
25N/mm? in compression then this range could normally be displayed using
contours with steps at every 3N/mm?. However, close to the strands a local
stress is found in the order of 150N/mm? in tension. The contour steps are
therefore in the order of 18 — 20 N/mm? masking the stress variation in the top

and bottom fibres in the concrete.

To overcome this difficulty the user must customise the range of stresses
shown in the legend so as to focus on the stress range actually encountered in
top and bottom fibres. This is achieved by specifying Non-uniform Contours in
the sub option found in the ‘Style — Contours — Non-uniform Contours’ option in
the Ansys Utility menu. This is shown in figure 5.14.

Non:uniform Contours
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Figure 5.14 Non-uniform contour options in Ansys
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An iterative process of reducing the step values between contours and
reviewing the resulting displays until the full range of stresses acting on the
faces of the slab can clearly be seen. The stresses found around the strands
that lead to the distortion of the legend is a falsely high value calculated based
on the meshed produced in the last section. This is related to the manner in
which the prestressing force is transmitted from the steel into the concrete. In
this model the strand is modelled as a line and only a very limited number of
elements in the concrete may link to the two nodes present in the beam
elements used to model the strands. In an ideal situation where the capacity to
solve a model with a far greater number of elements exists, the strand would
also be meshed with 3D solid elements and a much greater number of nodes
would be present on the surface of the strands to link to the elements in the
concrete. The greater number of elements linking the concrete and strand paits
allows a more accurate distribution of the stresses at these locations to occur, in

turn giving better analysis results.

5.4. Summary

This chapter detailed the methods used in an attempt to ensure the accuracy of
the software at many of the stages during development process and then to test
the final product. During the construction of the software debugging tools within
the Delphi compiler were utilised and then after a logical division of work was
completed, a Excel spreadsheet would be used to verify the accuracy of the
results produced by the unit. After the software was finished Ansys was chosen
to produce results to compare with those produced by the software. Initially
Ansys workbench was examined however ultimately the full version, Ansys
Classic, was used due to its greater flexibility. The remainder of this chapter
then details the components within Ansys that were studied in order to
successfully model prestressed slabs. These techniques will be used to
produce the results used for comparisons between Ansys and the software

shown in the next chapter.
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6. COMPARISON OF RESULTS

6.1. Introduction

The procedures outlined in the last chapter allowed sets of results to be
generated whereby the analysis software produced for this research was
compared to Ansys. The relative accuracy of the software was then be gauged
and from this improvements were made. Later in this chapter Ansys analysis
results for six design situations will be shown and compared with the results
generated using the same design parameters in the software produced for this

research.

6.2. Overview of the Ansys models

The Ansys models produced were based on two of the four slab cross-sections.
The 150mm deep and 200mm deep slabs were chosen to enable two different
slabs with cores in them to be modelled. The limitation on the maximum number
of elements used also meant that the 250mm deep slab had to be ignored as
the number of elements used in creating a mapped mesh on the end face
would, when extruded, produce a larger numbers of elements than allowed by
the university version of Ansys in most design cases. This is most clearly
pronounced for deeper slabs as they are most commonly used for longer spans

and therefore require more elements to satisfy the aspect ratio rules in Ansys.

6.2.1. Assumptions

The Ansys models constructed involved certain simplifications in order to
streamline the research. The loads applied to the slab were all uniformly
distributed loads. Stresses due to patch loads, point loads and line loads are not
investigated in this research. Once again the limits placed on the number of
elements used affected the spans used. Therefore, spans that could be
considered short for a particular depth of slab were used. However, in order to
balance this out, heavier loads were applied to ensure that the stresses

produced were high enough to justify the selection of slab depth. For all the
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designs carried out a Young’s modulus of 30,000 N/mm? and a Poisson's ratio
of 0.2 were assumed for the concrete. The concrete used for prestressed slabs
is almost universally 50 N/mm? and therefore the maximum compressive stress
for the designs is 16.5 N/mm? and a maximum tensile stress is 3.2 N/mm? -
assuming the slabs are designed as class 2 members as discussed in Section
2.2.1.

The openings and notches on the slab are positioned to accommodate the
limitations of the software produced for the research and also keep the meshing

process in Ansys as simple as possible.
6.2.2. Details of the slabs to be analysed

As mentioned earlier the slabs analysed were either 150mm or 200mm deep

cross sections. The six designs considered were:

150mm deep slab, solid in plan

150mm deep slab, one large notch

150mm deep slab, two notches along the same edge
150mm deep slab, one opening

200mm deep slab, solid in plan

S N

200mm deep slab, one opening

The specific dimensions of the individuals slabs are given in appendix 4. The
examples for analysis represent reasonable design parameters that the
software could encounter during real world design situations. If the user wished
to examine a number of different loading patterns, the geometry and associated
meshes could be re-used to further increase the number of design situations

examined.

6.2.3. Mesh patterns utilised in Ansys

The mesh patterns used for the two slab depths examined have a number of

similarities in the form of the repetition of the sub-patterns used around the
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voids. Figure 6.1(a) shows the mesh pattern used for the 150mm deep cross
section and Figure 6.1(b) shows the mesh used for the 200mm deep slab.
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Figure 6.1 meshes used for 150mm deep and 200mm deep slabs

From inspection it can be seen that the 200mm deep slab has approximately
50% more elements. The key consideration was to produce the largest element
dimensions to avoid problems with the aspect ratio of the elements when
extruded.

The mapped mesh produced was altered slightly for the slabs with notches or
openings. One of the limitations of the software produced is the requirement
that the position of the openings, or notches, coincides with the quarter point
between strands so as to suit the element shapes chosen transversely. The
openings are formed by excluding portions of the mapped mesh when extruding
the areas into volumes. Effectively, the mesh is extruded along the length of the
span with a gap left to create the notch or opening. The altered portion of the
mesh is shown below in Figure 6.2. The arrows show the location of the quarter
point, between the strand centres, where the edge of the openings must be
located. In the case of forming an opening modelled with the mesh shown
below, the portion of the mesh area to the left of the arrows is extruded onwards
along the length of the slab. However the portion of the mesh area to the right,
and extending across to the other limit of the opening, is not extruded through
this distance. Instead it is copied to the point further along the span
corresponding to the end of the opening, and then extruded onwards from

there. The resulting volume mesh is shown in Figure 6.3.
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6.2.4. Loading

The loadings applied to the slabs analysed were generally larger than would be
encountered but were chosen to increase the stress values close to the
maximum allowable values and therefore justify the selection of slab depth. The
uniformly distributed load applied to the slabs varied from 7 kN/m? to 10 kN/m?.

As stated in Section 5.3.2.3., the prestressing force is applied by specifying the
prestrain and the area of the strand. The calculation of the losses in prestress
for both cross sections is shown in Appendix 5. Two sets of calculations were
carried out, one for each cross section considered. It should be noted that since
all the analyses carried out for the 150mm deep slab related to one span length,
4900mm, only one set of loss calculations was required, Similarly for the
200mm deep slab, both analyses related to a 6.0m slab and therefore, once

again, only one set of calculations was required.
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6.3. Ansys Results

The six sets of analyses were carried out and saved in the usual manner.
However, the contour plots were also saved in the ‘Metafile’ image format with a
white background. This format may then be opened in almost any of the image
viewing packages available. The results of interest were the deflection values
and the stresses in the z-direction since most prestressed slab designers will
only check this particular stress. Within Ansys, the slab was examined, with
points of interest such as stress concentrations near openings, the stresses
found near the strands, and points where possible errors may have occurred.
The contour plots that were saved included images such as plan views, edge

views and isometric views of particular details.

A typical isometric view of a slab is shown below in Figure 6.4. The maximum
and minimum stresses (DMX and DMN) shown in the body of text in the top left
hand corner are the absolute maximum and minimum values found throughout
the depth of the section and include those locally high values. The legend, as
mentioned in Section 5.3.2.6., shows contour values as specified by the user.
The divisions were devised based on typical requirements that a slab designer
would set out.
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Figure 6.4. typical Ansys result plot
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As stated earlier, the maximum allowable compressive stress in the slabs
analysed was 16.5 N/mm? and 3.2 N/mm? in tension. In Figure 6.4, the eight
stress step values in the legend are visible. The highest compressive stress is
shown by default in blue however the other seven stress values were user
defined. The five compressive stress steps were in equal steps from zero up to
the maximum allowable compressive stress. The two tensile stress values were
similarly found. The legend created above allows the user to determine quickly
whether the design is viable, as the critical compressive stresses (greater than
16.5 N/mm?) shown in blue and critical tensile stresses (greater than 3.2

N/mm?) are shown in grey.

In the case of each of the six slabs the comparison carried out in the next
section has the following format. The Ansys results are shown on the top half of

each page with the software resuits shown below to allow direct comparison.

1. Stresses found in the top fibres of the slab as calculated by Ansys and
the results given by the software as seen from a plan view.

2. Stresses found in the bottom fibres of the slab as calculated by Ansys
and the results given by the software as seen from below the slab.

3. Deflections as found by Ansys and those found by the software

4. Discussion of similarities or differences,

The comparison of results is somewhat complicated by the differences in the
methods in which the contour plots are presented. An Ansys stress plot uses six
colours ranging from a dark blue to red. However the software uses twenty one
colours in the piot ranging from red to green in smaller steps. The advantages
and disadvantages of both methods can be seen by studying both types of

stress plot.
6.3.1. A 150mm Deep slab with no opening or notches

This sfab was the first analysed as it is the simplest model to create and the
simplest to verify by hand calculations. The span was 6.0m and a uniformly

distributed applied load of 6 kN/m? was assumed.
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6.3.1.1. Results

Top fibre stresses
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Figure 6.5 Ansys top stress — slab 1
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Figure 6.6. Software top stress — slab 1

160



Bottom fibre stresses
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Figure 6.7 Ansys bottom stress — slab 1
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Figure 6.8 Software bottom stress — slab 1
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Deflection
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Figure 6.9 Ansys deflection plot — slab 1
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Figure 6.10 Software deflection plot — slab 1

6.3.1.2. Comparison of results

The slab analysed as shown above presents the simplest design case and can
be carried out relatively accurately by representing the slab as a prestressed
beam using traditional elastic analysis. However, this simple analysis provides a

good starting point in the process of verifying the results given by the software.
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The first comment that can be made about the slab detailed above is that the
design itself appears to pass the design checks in terms of top and bottom fibre
stresses. Referring back to Figures 6.5 and 6.8 in which the top stresses given
by Ansys and the software produced are shown, despite the different colour
coding systems used in the stress diagrams, the similarities in the stress values
can be seen. The largest compressive stress found by Ansys is seen to be no
greater than 9.9 N/mm? whilst the peak value found by the software was 10.46
N/mm?Z. Similarly the tensile stresses found in the top fibres at both ends of the
slab were generally no greater than 1.6 N/mm? as found by Ansys, and a peak
of 0.52 N/mm? as calculated by the software. This difference is due
predominantly to the prestressing forces used in Ansys being constant along
the length of the slab whereas the software produced takes into account the fall
off in force at the ends of the strands due to anchorage. It can therefore be said
that the software more accurately models the prestressing force in these
regions and therefore the true stress value for the regions close to the ends of
the slabs must be closer to that given by the software. The central 40% of the
slab is shown by Ansys to have stresses in the region of 6.6 to 9.9 N/fmm? in
compression, whilst the sofiware finds stresses in the same region to be
between 6.8 and 10.46 N/mm?.

The bottom fibre stresses are shown in Figures 6.7 and 6.8. The maximum
tensile stress in the mid-span region as given by Ansys is no greater than 3.2
N/mm?. However, the vaiues as given by the software are slightly larger at 3.27
N/mm?. The highest compressive stresses found by the software near to the
ends of the slab are once again in line with those found by Ansys. Once again
the Ansys values can be seen to be slightly larger due to the constant

prestressing force used in the Ansys model.

The deflection values given by Ansys in Figure 6.9 are somewhat lower than
those calculated by the software, shown in Figure 6.10, with the difference
found to be 11.6% Once again the difference in prestressing force values
applied along the iength of the slab would play a part in accounting for this

difference.
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An examination of the results produced by Ansys show a number of areas on
the slab where very large stresses differences are found within single elements.
A typical example of this is found in Figure 6.11 towards the end of the span.

4

3.2 .
-16.5 -9.9 -3.3 1.6

Figuré 6.11 locally high stresses

As was discussed in Section 2.4.5, the prestressing force in the ends of the
strands falls off due to the lack of a sufficient anchorage distance. Therefore,
the extremely high tensile and compressive stresses found by Ansys at the
ends of the slab are most likely due to prestressing force values that are not
possible in these locations but were modelled as such in Ansys. The stresses in
these locations could, in theory, be attained if the slabs were post tensioned,
having end blocks to distribute the prestressing force uniformly throughout the
length of the slab. A possible second source for this phenomenon are the
element shapes used in this region and the aspect ratio of these elements. It
could prove beneficial to use a number of shorter columns of elements in such
regions where high stress variations occur. The bottom fibre stresses given by
the software in Figure 6.8 show a slight anomaly that would require further
examination as part of any measures to continue the research or further
develop the software. Along the first column of elements in the left hand support
a tensile stress appears to be acting which is not present at the other end of the
slab or in the Ansys model. This is thought to be due to an anomaly in the code
which calculates the forces to be applied at each node along the line of the
strands. This is seen in Section 4.9.2.2. where the method used for applying the

loads is detailed.
6.3.2. A 150mm deep slab with one opening

The next slab analysed was shorter than the last at 4.9m and has a uniformly
distributed load of 7.0 kN/m% This layout also has an opening in plan that
results in a break in two of the strands.
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6.3.2.1. Results

Top fibre stresses
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Figure 6.12 Ansys top stress — slab 2
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Figure 6.13 Software top stress — slab 2
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Bottom fibre stresses
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Figure 6.14 Ansys bottom stress — slab 2
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Figure 6.15 Software bottom stress — slab 2
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Deflection
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Figure 6.16 Ansys deflection plot — slab 2
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Figure 6.17 software deflection plot — slab 2

6.3.2.2. Comparison of results

This slab represents a slightly more complicated analysis than that shown in the

last section. The break in two of the stands should be seen to reduce the
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capacity of the slab substantially, as this amounts to a 20% reduction in the

prestressing force at any cross section taken at the opening.

Figures 6.12 and 6.13 show the results as given by Ansys and the software
respectively. The main features of the first slab analysed follow through to this
analysis, such as the discrepancies in the tensile stress at the ends of the slab.
The compressive stresses given by Ansys for the mid-span region are generally
no greater than 6.6 N/mm? with a very small region along an edge where the
local stress surpasses 6.6 N/mm?. The software produced values that peak in at
the mid-span point at 6.82 N/mm?. In a number of the test analyses carried out,
the software appeared to show the edge elements as particularly stiff and
therefore able to resist the stresses more effectively. This possibly explains why
the stress concentration shown at the top of the Ansys model in Figure 6.12 is
not present in the plot produced by the software shown in Figure 6.13. It is
thought that this is due to an error in the software code however examination of
this section of code failed to reveal the cause. The other areas of interest are
around the opening on the slab. Once again, by examining the stresses to the
left and right of the opening in both Figures 6.12 and 6.13, tensile stresses are
visible in both cases, typical of the those found at the ends of the strands with
values of 0.87N/mm? given by the software and values in the 0 to 1.6 N/mm?
range given by Ansys. Above and below the openings reasonably large areas of

compressive stresses ranging between 6.5 to 10.5 N/mm? can be seen to act.

The bottom fibre stresses shown in Figures 6.14 and 6.15 are once again
broadly in line with each other in terms of mid-span stresses and stresses near
the supports, with the exception of the results found by the software for the first
column of elements on the left side of the slab as discussed at the end of
Section 6.3.1.2. An examination of the stresses around the opening shows
similar stress concentrations around the corners to the left of the opening with
peak values of 1.78 N/mm? given by the software. The anomaly that was seen
to affect the first column of elements at the left side of the slab also effects the
column of elements immediately to the right of the opening. However, other
than this particular group of elements the software can be seen to give similar

stresses at the other locations around the opening.
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The deflection values found were again similar at 7.6% and showed generally
the same pattern with the maximum deflection as given by Ansys to be 2.21 mm

and by the software to be 2.5 mm.

The pattern seen in both the top and bottom stress plots produced by the
software includes a teeth like step effect as shown in Figure 6.18. This reflects
the difference in stiffness between the lines of elements that include the strands

and those with the hollow core running through them.

Figure 6.18 stresses over hollow cores
In Ansys, the benefit of the 3-dimensional elements can be seen as the curved
element shapes used model the stresses within the individual elements more
accuracy. The relates to the ability of the Ansys model to accurately predict the
transfer of stresses from the thinnest point over the void to the stiffest point over

the strands.
6.3.3. A 150mm deep slab with one notch
This slab is identical to the last in terms of span and loading however the

opening is replaced by a notch along one of the edges which intersects two of

the strands.
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6.3.3.1. Results

Top fibre stresses
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Figure 6.19 Ansys top stress — slab 3
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Figure 6. 20 software top stress —slab 3
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Bottom fibre stresses
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Figure 6.21 Ansys bottom stress — slab 3
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Figure 6.22 Software bottom stress — slab 3
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Deflection
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Figure 6.23 Ansys deflection plot — slab 3
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Figure 6.24 Software deflection plot — slab 3

Comparison of results

This slab, in common with the previous example has its capacity reduced by the

presence of a break in two of the strands. However, with this slab the break in

the strands is due to a notch along one of the edges.
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Examining the top fibre stresses shown in Figure 6.19 and 6.20, the pattern of
stresses seen in the first two analyses at the ends of the span is present. Mid-
span and peak stress values show good agreement. It can be seen that the
Ansys plot shows a region of compressive stress in the 6.6 to 9.9 N/mm? with a
corresponding region of stresses plotted by the software with values ranging
from 7.36 to 9.72 N/mm?. Peak stresses given by Ansys are in the 13.2 to 16.5
N/mm? region compared with software values of 15.24 to 16.02 N/mm? very

close to the corners of the notch.

The bottom fibre compressive stresses at the support were found to range
between 6.6 and 9.9 N/mm? in Ansys and peak somewhere in the region of 6.28
to 8.93 N/mm? as calculated by the software. The mid-span Ansys stresses fall
in the 0 to 1.6 N/mm? tensile range as compared with 0.83 to 1.48 N/mm? given
by the software. The peak stresses found by Ansys are shown to be greater
than 3.2 N/mm?, as shown by the grey area on the stress plot. The software
however, shows these stresses as having a value in the 6.0 to 6.65 N/mm?

range.

Once again the deflection values produced by both the software and Ansys
compare reasonably well with software giving a peak deflection value of
3.64mm and Ansys giving a peak value of 3.22mm, a difference of 11.5%. An
examination of the deflection plots also shows a good correlation in terms of the

deflection values at various points on the slabs.

6.3.4. A 150mm deep slab with two notches
This slab follows the same span and loading pattern outlined in the last two

analyses. There are two notches along the same edge each intersecting the line

of two of the strands.
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6.3.4.1. Results

Top fibre stresses
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Figure 6.25 Ansys top stress — slab 4
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Figure 6.26 Software top stress — slab 4
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Bottom fibre stresses

ELENENT SOLUTION AN b1

STEP=1

SUB =1

TIME=1

52 (NOAVG)
RSYS=0

DHX =2.767

SMN =-111.593
SMX =72.096

-111.5893 -13.2 -6.6 lu] 3.z
-16.5 =9.9 =3.3 1.6

-7.21 601 -474 -347 221 094 U.337 153 28 413 54
664 537 411 284 15 031 0S5 223 35 476 603
Stess, N/rm™2

Figure 6.28 Software bottom stress — slab 4

175



Deflection
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Figure 6.29 Ansys deflection plot — slab 4
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Figure 6.30 Software deflection plot — slab 4

6.3.4.2. Comparison of results

This analysis was set up so as to model a slightly more complicated slab than
that seen in the last example. The top fibre stresses are compared in Figure
6.25 and 6.26. As was noticed with the first two analyses the end stresses
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produced by Ansys and the software are in good agreement. The maximum
stresses found mid-span in Ansys lie in between 6.6 and 9.9 N/mm? whilst the
peak value given by the software was 7.51 N/mm?. It should be noted that these
stresses were found in the same location on the slab. Examination of the
stresses closer to the notches shows a similar picture. Again, the Ansys stress
plot shows an area in which the stresses are between 6.6 and 9.9 N/mm? close
to both of the notches. The stresses shown in the software plot for the same
region vary from 6.76 to 9.76 N/mm? giving a very close correlation with the
Angys results. The peak stresses found at the corners of the notches were

found to be 16.5 and 15.01 N/mm? in Ansys and the software respectively.

Bottom fibre stress values generated in Ansys are shown in Figure 6.27 with the
equivalent stress diagram generated by the software shown in Figure 6.28. The
general pattern of stresses across the slab once again holds true. The stresses
found towards the end of the strands compare well with compressive stresses in
the 6.6 to 9.9 N/mm? range reported by Ansys and a value of 7.27 N/fmm?
produced by the software. The Ansys stress plot shows a large area of the slab
with a compressive stress in the 0 to 3.3 N/mm? range which compares well
with the stress plot produced by the software where stresses in the same area
lie between 3.47 N/mm? in compression and 0.33 N/mm? in tension. It can also
be seen that close to the notches Ansys shows stress concentrations at the
corners in excess of 3.2 N/mm? - the upper limit for tension whilst the software

shows values up to 6.03 N/mm? in tension.

Finally, deflection values are compared with the results from Ansys and the
software shown in Figures 6.29 and 6.30. A brief study of the two deflection
plots shows that values are reasonably well matched. The peak mid-span value
as given by Ansys is 2.758 mm compared with 2.87 mm as calculated by the

software.
6.3.5. A 200mm deep slab with no openings or notches

This deeper slab required a slightly longer span to be economical and therefore

a 6m span was once again used. The uniformly distributed load was once again
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increased to 8 kN/m? in an attempt to model a situation where this choice of

slab depth would prove logical.

6.3.5.1.

Results

Top fibre stresses
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Figure 6.32 Ansys top stress — slab 5
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Bottom fibre stresses
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Figure 6.33 Ansys top stress — slab 5
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Figure 6.34 Ansys top stress — slab 5
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Deflection
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Figure 6.35 Ansys deflection plot —slab 5
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Figure 6.36 Software deflection plot — slab 5

6.3.5.2. Comparison of results

This analysis, along with the next slab were carried out in order to help gain
confidence in the software’s ability to handle slabs of different depths. This
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particular exercise would allow confidence to be built up in that section of code

within the software that calculates section properties.

Top fibre stresses are shown in Figure 6.31 and 6.32. The main points of
interest, the tensile stresses at the ends of the slab and the maximum
compressive stresses found at the mid-span location, are once again in good
agreement. The Ansys values produced for the tensile stresses at the end of
the slab are in the 0 to 1.6 N/mm? range whilst the software gives a peak value
of 0.9 N/mm?. The mid-span stresses are calculated by Ansys to be in the
region of 6.6 to 9.9 N/mm? in compression whilst the software values for the
same region peak at 8.0 N/mm?. The difficuity in comparing results noted earlier
is also evident here however further inspection shows that certain features such

as points of contraflexure are at almost identical locations in both stress plots.

Bottom fibre stresses also show the same traits seen in the 150mm deep slab
analysed in Section 6.3.1. Ansys gives compressive stresses at the ends of the
slab in the 3.3 to 6.6 N/mm? range with software values peaking at 6.16 N/mm?.
At the mid-span point the Ansys stress plot gives tensile stresses from 0 N/mm?
to 1.6 N/mm? compared to a peak stress value given by the software of 1.22
N/mm?Z. Again the locations at which contraflexure occurs appear to coincide

reasonably well.

A quick examination of deflection values show reasonable agreement with
Ansys giving a mid-span deflection value of 3.714 mm deflection and the
software giving a peak value of 4.19 mm, a difference of 11.5%

6.3.6. A 200mm deep slab with one opening

The final slab analysis was carried out also on a 6m slab but with a narrow

opening in the slab in plan which intersects two of the strands. The applied load
is 8 kN/m?,
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6.3.6.1. Results

Top fibre stresses
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Figure 6.37 Ansys top stress — slab 6
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Figure 6.38 Software top stress — slab 6
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Bottom fibre stresses
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Figure 6.39 Ansys bottom stress — slab 6
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Figure 6.40 Software bottom stress — slab 6
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Deflection
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Figure 6.41 Ansys deflection plot — slab 6
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Figure 6.42 Software deflection plot — slab 6

6.3.6.2. Comparison of results

This analysis allows a further examination of the software’s performance with
the 200 mm deep section. A single opening was chosen so as to start, once
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again with the simplest possible situation for analysis and then develop onwards

to increasingly complicated situations.

The Ansys results found for top fibre stresses are shown in Figure 6.37 and the
software result are shown in Figure 6.38. Once again the end stresses agree
well with Ansys values between 0 to 1.6 N/mm? in tension and software values
of 0.88 N/mm?. Close to the mid-span point the Ansys stress plot shows
compressive stress values between 6.6 to 9.9 N/mm? range above and below
the opening. The stresses shown in the same region on the stress plot appear
slightly different and tend to have values marginally higher. There are a number
of stress contours in the software plot within this region ranging from 7.37
N/mm? to 10.37 N/mm?, generally just over 0.5 N/mm? higher. The main
difference in the stress pattern are shown by the appearance of slight stress
concentrations over the hollow cores running through the siab at a location
approximately one meter to the right of the opening. This particular pattern was
noticed on a number of the other analyses that were performed. The corners of
the openings once again show stress concentrations in both stress plots with
the Ansys values found to be in the region of 13.2 to 16.5 N/mm? and the
software giving a peak stress value of 14.87 N/mm?. To the left and right of the
openings the rapid fall off in compressive stress can be seen with small patches

of tensile stress visible in both sets of results.

Bottom fibre stresses for Ansys and the software are shown in Figures 6.39 and
6.40 respectively. As expected the Ansys values for the stresses at the end of
the slabs compare well with those given by software values with values
between 3.3 and 6.6 N/mm? in by Ansys compared to a peak value of 6.21
N/mm? given by the software. The most interesting stress patterns however are
seen close to the opening however and compare quite favourably. The Ansys
plot shows a region of tensile stresses above and below the opening in the 0 to
1.6 N/mm? range. Comparing this to the same region on the software plot the
results shows stresses ranging from 0.56 to 1.79 N/mm?. Similarly, in the area
where the next stress contour is found in Ansys (1.6 to 3.2 N/mm?), the stress
range given by the software is 1.79 to 3.03 N/mm?. Finally, Ansys shows critical

stress (greater than 3.2 N/mm?) which would cause the slab to fail above and

185



below the opening whist the software show values ranging from 3.03 to 6.72

N/mm?.

The deflections shown in Figure 6.41 and 6.42 also appear to match reasonably
well. Ansys gives a peak value of 4.182 mm and the software gives a peak

value of 4.486 mm.

6.4. Overview of results

The six comparisons carried out above generally show good comparisons
between the resuits found by the software and those found by Ansys. In Section
6.3. the stress patterns plotted by Ansys and the software were shown and
discussed. This was complicated by the differences in the format of the display
systems used. As stated earlier, Ansys uses eight colours in the contour plot as
compared with twenty colours in the plot produced by the software. This allowed
the stresses at any point on the software stress plot to be determined more
accurately than would be the case with the plots produced by Ansys. Therefore,
whilst the contour plots provide an excellent tool for comparison of the stress
patterns, a direct comparison on the stress values produced by the two
packages proved very difficult. To overcome this difficulty, the stresses at a
number of notable points in the contour plot produced by the software were
recorded and compared to the numerical stress values found in a list of values
produced by Ansys. In order to achieve this, the user must select the option to
display the node numbers on the Ansys mesh and through inspection find the
nodes nearest the points of interest on the slab for which values are known from
the software stress plot. A file listing the stresses was generated using the
following command: 'Main Menu — General Postproc — List Results — Nodal

Solution’

This file was then imported into Microsoft Excel to allow the numbers to be most
easily sorted and viewed. The appropriate nodal stresses may then be found

simply by finding the node number in the spreadsheet and reading the ‘sz’ value
in the corresponding cell. The next two sections show the comparisons between

the stresses found at three locations on the slabs to which designers would
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typically pay attention. The first of these sections compares top fibre stresses
and the second compares bottom fibre stresses. Finally, the deflection values

produced by both are compared.

6.4.1. Top fibre stresses

Table 6.1 shows the top fibre stresses from both Ansys and the software. In
each case the stress at a generally representative point near the support is
examined. The stresses at or close to the mid-span point are also compared.
The point at which this stress value is taken depends on the general stress
profile of the top of the slab. The stress value taken for comparison was
generally taken from the centre of reasonably large areas of high stress close to
the mid-span point. The peak stress values were taken as the highest overall
value found on the top face of the slab and were found at the corners of the
openings or notches. The percentage difference in each case was calculated

using the following formula:

Software — Ansys

% difference = 100

Software

A comparison of the mid-span stresses show reasonably good agreement for
the six slabs with differences of between 4.3 to 14.8 %. The stresses at the
supports appear to show a greater deviation with differences ranging from 4.6 to
54.9 %. However, if the largest discrepancy is examined, 54.9 %, the stress
values, which are both very small, can be seen to differ by only 0.28 N/mm?.
This difference when examined in the context of the stress range found in the
analysis is actually very small. The peak stresses found again compared

reasonably well with differences ranging from 1.9to 7.2 %.
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_ Top Fibre Stresses (N/mm?) _
Analysis Type Difference
Ansys Software
Mid-span 9.41 10.46 10.0 %
150 dp -
. support 0.67 0.52 28.8 %
solid
peak n/a n/a n/a
Mid-span 6.54 6.27 4.3 %
150 dp -
] support 0.83 0.87 4.6 %
1 opening
peak 9.90 10.67 7.2%
Mid-span 7.62 8.94 14.8 %
150 dp -
support 0.79 0.51 54.9 %
1 notch
peak 16.39 16.02 2.2 %
Mid-span 6.92 7.51 7.9%
150 dp -
support 0.83 0.74 122 %
2 notches
peak 15.33 15.01 21 %
Mid-span 7.19 8.00 10.1 %
200 dp -
. support 0.65 0.90 27.8 %
solid
peak n/a n/a n/a
Mid-span 9.13 9.62 51 %
200 dp -
. support 0.62 0.88 295 %
1 opening
peak 15.10 14.82 1.9 %
Table 6.1

6.4.2. Bottom fibre stresses

The bottom fibre stresses are presented in the same fashion as the top stresses
with mid-span, support and peak stress values from Ansys and the software

compared. The results of this comparison are given in table 6.2.
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. Bottom Fibre Stresses (N/mm?) |
Analysis Type Difference
Ansys Software

Mid-span 1.97 3.27 39.8 %
150 dp - [support 7.47 6.90 8.3%
solid

peak n/a n/a n/a

Mid-span 0.92 0.63 46.0 %
150 dp — 0
1 opening support 7.15 7.43 3.8 %

peak 2.51 1.78 41.0 %

Mid-span 1.21 2.12 42.9 %
150 dp —
1 netelies support 7.52 6.93 8.5 %

peak 6.53 6.65 1.8 %

Mid-span 0.67 0.33 103.0 %
150 dp — 0
2 notches support 7.07 1.2f 2.8 %

peak 6.58 6.03 9.1 %

Mid-span 0.45 1.22 63.1 %
200dp — [ support 6.41 6.16 4.1 %
solid

peak n/a n/a n/a

Mid-span 2.94 3.03 3.0%
200 dp - ['support 6.33 6.21 1.9 %
1 opening

peak 6.68 6.72 0.6 %

Table 6.2

The most notable feature of the comparison between the Ansys and the
software results for the mid-span stresses are the large percentage differences
compared to table 6.1. As with the top fibre support stresses, the fact that most
of these stress values are small, contributes to the percentage difference
shown. However, in comparison to the top fibre support stresses, these
stresses are slightly larger and the differences greater. In the case of the
150mm deep slab with no openings or notches the software gives a mid-span
stress of 3.27 N/mm?2, whereas the Ansys value was 1.97 N/mm?, 1.3 N/mm?
smaller. This is most probably related to an error, either in the software code or
the application of the underlying theory relating to the application of the moment
due to the prestressing force. The support stresses compare favourably to each

other with differences of between 1.9 and 8.5 %, with most of the differences in
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the region of 4 %. Many of the peak stresses were seen to have small values
giving relatively large percentage differences, where the numerical differences

were small, the largest actual difference was 0.73 N/mm?®.
6.4.3. Deflection

The deflection values are the final set of results that were used to measure the
accuracy of the software. Only the peak deflection values were compared, as
the deflection patterns are best examined though the direct study of the
deflection plots. Table 6.3 gives the maximum values for comparison and the

percentage differences.

Maximum Deflection values (mm) _
Analysis type Difference
Ansys Software
150 dp - Solid 7.87 8.90 11.6 %
150 dp - 1 opening 2.31 2.50 7.6 %
150 dp - 1 notch 3.22 3.64 1.5 %
150 dp - 2 notches 2.76 2.87 3.8 %
200 dp - Solid 3.71 4.19 11.5 %
200 dp - 1 opening 4.18 4.46 6.3 %
Table 6.3

Once again the values compare reasonably well with the difference in deflection
varying by between 3.8 and 11.6 %. In each case the defiection given by the
software was larger which is not consistent with the pattern of percentage

differences seen in the discussion relating to the stresses.

6.5. Summary

The results shown in the last three sections indicate that whilst further
verification of the results would most certainly be required, and possibly also

some alteration of the software, the results show that the software is potentially

viable.
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7. CONCLUSIONS

7.1. Introduction

The purpose of this research was to develop a software package to analyse the
stresses in prestressed concrete slabs using finite element theory. This chapter
presents a summary of the research, the conclusions reached from the
research and possible research which could build upon this study. The first of
these three sections addresses the steps involved in gathering the theory,
implementing it within the program and finally testing the resulting software by
comparing its results with those produced by Ansys. The second section details
the conclusions made from the comparison of results and the processes
themselves. The final section gives a number of suggestions for further

research that became evident during the research itself.

7.2. Summary

The aim of this research was to construct a software package to assist in the
analysis and design of prestressed concrete slabs. In order to achieve this goal
the theory upon which the prestressing is based was studied and some aspects
of theory of particular relevance were highlighted. The particular aspects of
theory examined were the calculation of transfer and service stresses, the
ultimate moment capacity, ultimate shear capacity, deflection and the losses in
prestress encountered during the life of the structure. The manufacturing
technique and its effects on the theory were considered as were the material

properties of the steel and concrete.

Plate bending and plane stress theory were also examined with the aim of
implementing them as the analysis engine for the package. A method was
found to allow the stiffness of hollow-core cross-section of the slabs to be
modelled successfully. The effect of prestressing the slab was modelled by
applying an axial force to the corner nodes of the elements in the plane stress
model and then applying the moment due to the eccentricity of the force at the

corners of the elements in the plate bending model. After supports were applied

191



to the model and suitable loads were defined the global stiffness matrix and the
load vector were defined and the displacement vector was calculated. The
displacement vector, and stress-displacement matrix, for each element then
allowed both plane stresses and plate stresses to be found and combined in a

suitable manner to give the final stresses in the slab.

The next chapter detailed the process of constructing the software, The links
between the software and Auto-CAD were shown and the process of
ascertaining the stiffness of the individual elements in the mesh outlined. The
methods employed for calculating the prestressing force after losses at the
horizontal nodal intervals along the span direction was shown. The process of
applying the supports and loads, in particular, the patch loads was programmed
so as to allow the user to select these items onscreen using mouse clicks only.
The construction of the global stiffness matrix was an important aspect to the
software design as optimising memory storage space was seen to become
critically important as the matrices got larger. The Cholesky method was used
to solve these matrices, this was relatively easily programmed and seen to work
very efficiently. A section of code was written to displace a wireframe displaced
shape diagram of the slab and in a new form display the stresses using contour
plots. A final feature was added to allow the user to export the numerical values

calculated by the software to Excel for the user to examine further.

The Ansys suite was studied and then ultimately employed to test the validity of
the results produced by the software. Initially, it was hoped that Ansys
workbench could be used due to its user friendly interface, with the geometry
itself being created in Solid Edge. However, the requirement for stricter control
over the mesh density and shape resulted in Ansys classic being used for the
testing. 20 node brick elements were used to model the concrete with the
prestressed strands being modelled by beam elements with a prestrain applied.
Six potential slab design situations were identified and analyses were carried
out in both Ansys and the software produced for this research. ldentical spans,
slab cross-sections, material properties and loading values were used in each
pair of comparative analyses. Finally, the results were compared and possible

reasons for some of the discrepancies discussed.
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7.3. Conclusions

The conclusions that the author arrived at upon completing this research stem
from two areas, the performance of the software written and the processes

involved in constructing and testing the software.

The performance of the software was discussed in some detail at the end of
Chapter 6 with Tables 6.1, 6.2 and 6.3 showing the comparative values and
percentage differences. The software was seen to generally compare well with
the Ansys results for all of the analyses carried out. It was found to be most
useful to compare the contour plots produced by both Ansys and the software
rather than comparing numbers directly. The stress patterns produced by both
appeared to agree reasonably well. Critically, both sets of results tended to

agree in terms of the critical stresses that would result in the slab failing.

The top and bottom fibre stresses towards the ends of the slab are obviously
greatly effected by the prestressing force at the particular cross-section under
consideration. However, in the Ansys model the prestressing force value was
seen to be constant along the span not taking account of anchorage at the ends
of the sections of the strand or the variation in force though out the remaining
length of the span due to the relieving effect that self weight has on losses.
Therefore, it can be said that the end stresses given by the software are more
accurate. Peak stresses in the slab near openings also compared well although
the percentage differences occasionally gave a distorted comparison. In these
cases the stresses were seen to have low numerical values in the order of 0.5
N/mm? which when compared to an insignificantly larger stress of 0.7 N/mm?

appeared as a large percentage difference.

Clearly further testing would be required to validate the results and possibly
further comparisons with spreadsheets to verify prestressing force loss
calculations. However, as the aim of this research was to produce a prototype,

the accuracy was deemed to be adequate
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The other area in which the author feels that comment is due relates to the
process of testing. Each model that was setup in Ansys took a considerable
amount of time to generate the geometry, mesh it, prestress the slab and run
the analysis itself. Indeed, running the analysis itself normally took up to three
qguarters of an hour. Whilst a mesh pattern itself couid be reused, the presence
of openings or notches lead to alterations in the mesh that added further to the
time spent setting up the model. It was also noted that the process of selecting
the lines to mesh with the prestrainable beam elements took a great amount of
time and was open to user errors being made that would not appear obviously
incorrect. These factors lead the author to believe that Ansys is not suitable for
use in industry as the time and expertise required to carry out these analyses
would not be forthcoming. The author notes Ansys obvious strength as a
general analysis package but in so far as the prestressed concrete industry
would be concerned the complexity resulting from its eminent flexibility render it

unwieldy.

This reinforces the author opinion that with further development and testing the
software produced would generate interest from industry and provide a powerful

tool for checking the more complex design situations that regularly occur.

7.4. Recommendations for further research

As the research progressed the author was required to limit the scope of the
study due to time constraints. An example of this could be seen during the study
of the ultimate moment capacity of prestressed slabs. The theory was examined
with a view to implementing it, however a significant additionai unit of code
would have been required to add this feature. As discussed in Section 4.13. the
theory used in the finite element analysis would have to be altered to allow for
the non-linear behaviour of the concrete at the limit state. This additional work
required would have proved significant in comparison to the relatively
straightforward process of generating a second load vector to allow transfer
stresses to be examined in addition to service stresses. The other main area
upon which time constraints limited the research was the deflection of the slabs.

The deflection calculations carried out by the software are only performed as
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an intermediate step towards finding the stresses. These deflection values are
not found based on the theory discussed in Section 2.2.5. Instead, the
deflections are found as part of the displacement vector based on the finite
element theory from chapter 3. A number of stress calculations could be carried
out as part of a fuller study into the service live cycle and values such as the
range of deflections encountered during service could be found. Shear stress
calculations provide yet another field in which further study could be carried out.
This part of the analysis would be carried out after the ultimate moment capacity
values had been found in order to allow the cracked and uncracked areas on
the slab to be identified.

The finite element component of the research also lends itself to further
research. The plate bending aspect of the model used in this study was set very
early in the research as it had been used successfully in other unfinished
research. Building upon the work carried out for this thesis, other more
complicated finite element models could possibly be applied to this task and
tested. 3-D elements could be used instead of the 2-D plate elements however,
the use of curvilinear elements with a large number of nodes would lead to
computer processor and memory capacity problems arising. The matrix storage
and solution code would have to be made more efficient and the researcher
could examine the possibility of writing these two pieces of code in the
compiler's assembler suite. Shape function could potentially be used to allow
irregularly shaped elements to be mapped to the regular shapes of the
elements used in the theory in this research. This would offer immense flexibility
when generating the mesh, allowing the user to place more elements near

areas where stress concentrations are expected.

The software as it stands would require further testing possibly against other
established software packages besides Ansys. If its accuracy was deemed to
be adequate the software would have to be expanded to accept the cross-
sectional geometry of other slab profiles in use in industry. The unit of code
currently employed within the software accepts only the cross-section shown in
Figure 4.3. However this could be expanded by examining the possibility of

writing code to accept any cross-sectional shape and calculating its properties.
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Finally, a study into the possibility of modelling prestressed slabs with structural
screeds applied could be carried out. This branch off the research would also

most likely study the effects of propping the slabs whilst the screed itself cures

and gains strength.
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