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Abstract

We consider an integrable hierarchy of nonlinear evolution equations (NLEE) re-
lated to linear bundle Lax operator L. The Lax representation is Z2 × Z2 reduced
and is naturally associated with the symmetric space SU(3)/S(U(1) × U(2)). The
simplest nontrivial equation in the hierarchy is a generalization of Heisenberg ferro-
magnetic model. We construct the N -soliton solutions for an arbitrary member of
the hierarchy by using the Zakharov-Shabat dressing method with an appropriately
chosen dressing factor. Two types of soliton solutions: quadruplet and doublet soli-
tons are found. The one-soliton solutions of NLEEs with even and odd dispersion
laws have different properties. In particular, the one-soliton solutions for NLEEs
with even dispersion laws are not traveling waves; their velocities and their ampli-
tudes are time dependent. Calculating the asymptotics of the N -soliton solutions
for t → ±∞ we analyze the interactions of quadruplet solitons.

1 Introduction

The main object of present paper is the following coupled system of equations

iut + uxx + (uu∗x + vv∗x)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x)vx + (uu∗x + vv∗x)xv = 0
, (1.1)

where the smooth functions u : R2 → C and v : R2 → C satisfy the algebraic constraint
|u|2 + |v|2 = 1. The system (1.1) is a natural candidate to be a multicomponent general-
isation of the classical Heisenberg ferromagnetic equation. It is well known [32] that the
Heisenberg ferromagnetic model is integrable in the sense of inverse scattering method
(ISM). It has a Lax pair related to the algebra su(2). Since the time the complete inte-
grability of HF equations was discovered, many attempts for its generalization have been
made [20, 21, 22]. A well known method [26, 27, 28, 29, 12, 10, 24, 30, 31] to obtain new
integrable nonlinear evolution equations (NLEE) is based on imposing certain algebraic
reductions on generic Lax operators. Lax pairs associated to hermitian symmetric spaces
represent a special interest in modern theory of integrable systems is study of NLEEs
[1, 7, 8, 11] since the NLEEs they produce look relatively simple.
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The system (1.1) is also integrable in the sense of ISM. Its Lax operators are associated
with the symmetric space SU(3)/S(U(1) × U(2)) with a Z2 × Z2 reduction imposed on
them [15, 16, 13].

The purpose of the present paper is to derive the soliton solutions for the integrable
hierarchy of equations related to (1.1) and analyse the interactions between them. In this
sense this paper is a natural continuation of our previous papers [15, 16, 13].

In Section 2 we start with some basic facts to be used further in paper. Firstly
we describe the hierarchy of nonlinear equations related to (1.1) in terms of recursion
operators. Then we outline the spectral properties of the relevant Lax operator and
formulate direct scattering problem. The spectrum of scattering operator L consists of
a continuous and a discrete parts. As a result of the Z2 reductions L possesses two
configurations of discrete eigenvalues: generic ones, coming in quadruplets ±λk, ±λ∗k and
purely imaginary ones coming as doublets ±iκj .

In Section 3 we derive the 1-soliton solutions for the NLEEs of the hierarchy. For
this to be done we apply the Zakharov-Shabat dressing method [34, 38, 35, 36] with a
rational dressing factor with 2 simple poles. Due to the action of reductions we have
two types of 1-soliton solutions: quadruplet solitons to correspond to 4 eigenvalues and
doublet ones to correspond to 2 eigenvalues respectively. We present explicit expressions
for these two types of one-soliton solutions. In order to construct general multisoliton
solutions we discuss two different purely algebraic constructions: by using a multiple pole
dressing factor and by applying ”one-soliton” dressing factors several times consecutively.
It turns out that the properties of the 1-soliton solutions to NLEEs with even and odd
dispersion laws differ drastically. For example, the 1-soliton solutions for NLEEs with even
dispersion laws are not traveling waves. Even the doublet soliton of eq. (1.1) exhibits two
maxima (resp. minima) for |u1| (resp. for |v1|) which first come closer to each other and
then move away, one to ∞ and the other to −∞ as time goes to t → ∞. Their velocity,
as well as their amplitudes are time dependent. These properties are similar to the ones
of the boomerons and trappons discovered by Calogero and Degasperis [2, 3, 4, 5]. At the
same time the soliton solutions to the NLEEs with odd dispersion laws (e.g. the solutions
of eq. (2.18)) behave as standard solitons, i.e. they are traveling waves.

Section 4 is dedicated to interactions of quadruplet soliton solutions for the NLEE
with odd dispersion laws. In order to do this we use the classical method of Zakharov
and Shabat, see the monographs [34, 32] for a detailed exposition. Namely, we calculate
the limits of the N -soliton solutions for t → ±∞ assuming that all solitons move with
different velocities. In this way we establish that the solitons preserve their velocities and
amplitudes; the only effect of their interaction consists in shifts of the relative mass center
and the phase of solitons. We provide explicit expressions for these shifts in terms of the
poles µk of the dressing factors.

In Section 5 we briefly discuss the conservation laws of the NLEE and finish with some
conclusions.

2 Preliminaries

In this section we shall expose in brief some basic facts on Lax operators and direct
scattering problem for the integrable hierarchy of the equation (1.1). In doing this we
shall use a gauge covariant formulation [14, 17, 18, 19].
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2.1 Polynomial Lax Pair Related to SU(3)/S(U(1)× U(2))

The NLEEs under consideration in this paper represent a zero curvature condition [L,A] =
0 for Lax operators L and A in the form:

L(λ) = i∂x + λL1(x, t) (2.1)

A(λ) = i∂t +

N
∑

k=1

λkAk(x, t), (2.2)

where λ ∈ C is the so-called spectral parameter and the functions L1 and Ak, k = 1, . . . , N
take values in sl(3,C). The Lax operators are subject to the following Z2 reductions:

L†(λ∗) = −L̆(λ), A†(λ∗) = −Ă(λ) (2.3)

CL(−λ)C = L(λ), CA(−λ)C = A(λ), (2.4)

where C = diag (1,−1,−1) and the operation˘is defined as follows

L̆(λ)ψ(x, t, λ) ≡ i∂xψ(x, t, λ)− λψ(x, t, λ)L1(x, t, λ).

Due to reduction (2.3) the matrix coefficients of the Lax pair are hermitian matrices. On
the other hand reduction (2.4) represents an action of Cartan’s involutive automorphism
which defines the symmetric space SU(3)/S(U(1) × U(2)), see [23, 25]. It induces a
Z2-grading in the Lie algebra sl(3,C)

sl(3) = sl
0(3)⊕ sl

1(3), sl
σ(3) = {X ∈ sl(3) |CXC = (−1)σX}. (2.5)

It is evident that L1, Ak ∈ sl
1(3) for k being an odd integer and Ak ∈ sl

0(3) otherwise.
This means that Ak for even k are block-diagonal matrices of the form

Ak =





∗ 0 0
0 ∗ ∗
0 ∗ ∗





while L1 and Ak for odd k have the complementary block structure. In particular, L1 is
written as:

L1 =





0 u v
u∗ 0 0
v∗ 0 0



 (2.6)

The potential L1 is required to obey the following conditions:

1. The eigenvalues of L1 are 0,±1, i.e. the potential satisfies the characteristic equation
L3
1 = L1.

2. The function L1(x, t)− L± where

lim
x→±∞

L1(x, t) = L± =





0 0 eiφ±

0 0 0
e−iφ± 0 0



 , φ± ∈ R. (2.7)

is a Schwartz type function, i.e. it is infinitely smooth and tends to 0 faster than
any polynomial when |x| → ∞.
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The grading (2.5) means that any function X with values in sl(3) can be split as
follows:

X = X0 +X1, X0,1 ∈ sl
0,1(3). (2.8)

Let us define the Killing form for sl(3) as follows:

〈X, Y 〉 = tr (XY ), X, Y ∈ sl(3).

Then each component X0,1 splits into a term commuting with L1 and its orthogonal
complement with respect to the Killing form

X0 = X0,⊥ + κ0L2, L2 = L2
1 −

2

3
11, 〈X0,⊥, L2〉 = 0 (2.9)

X1 = X1,⊥ + κ1L1, 〈X1,⊥, L1〉 = 0. (2.10)

As a simple consequence of condition 1 above L1 and L2 are normalized as follows:

〈L1, L1〉 = 2, 〈L2, L2〉 =
2

3
. (2.11)

Therefore the coefficients κ0 and κ1 are given by the following equalities

κ0 =
3

2
〈X0, L2〉, κ1 =

1

2
〈X1, L1〉. (2.12)

The zero curvature condition [L,A] = 0 for the pair (2.1), (2.2) leads to certain
recurrence relations for the matrix coefficients of L and A, see [13]. Resolving them
allows one to express Ak in terms of L1 and its x-derivatives of order up to N − k. Since
the maximal order term in the operator A must commute with L1 there exists two options:

a) AN = c2pL2, if N = 2p

b) AN = c2p+1L1, if N = 2p+ 1,

where c2p and c2p+1 are constants. Then a more detailed analysis [13] shows that the
NLEEs look as follows:

a) ad −1
L1
L1,t −

p
∑

q=1

c2q(Λ1Λ2)
q−1Λ1ad

−1
L1
L2,x −

p−1
∑

q=0

c2q+1(Λ1Λ2)
qad−1

L1
L1,x = 0,

b) ad −1
L1
L1,t −

p
∑

q=1

c2q(Λ1Λ2)
q−1Λ1ad

−1
L1
L2,x −

p
∑

q=0

c2q+1(Λ1Λ2)
qad−1

L1
L1,x = 0.

(2.13)

The integro-differential operators Λ1 and Λ2 appeared above are given by

Λ1 = −iad −1
L1

(

π∂x(·)−
1

2
L1,x∂

−1
x 〈∂x(·), L1〉

)

Λ2 = −iad −1
L1

(

π∂x(· )−
3

2
L2,x∂

−1
x 〈∂x(· ), L2〉

)

,

(2.14)

where projection π := ad−1
L1
ad L1 cuts all L1-commuting parts off. The operator

ΛX :=

{

Λ1Λ2X, X ∈ sl
0(3)

Λ2Λ1X, X ∈ sl
1(3)

is called recursion operator. It can be viewed as an adjoint representation of the operator
L. Its existence manifests the hierarchies associated with NLEE (nonlinear equations,
integrals of motion, simplectic forms etc) and thus plays a very important role in theory
of solitons.
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Example 1 Consider the simplest case when N = 2. Then the matrix coefficients of the
second Lax operator A read:

A2 = −





1/3 0 0
0 |u|2 − 2/3 u∗v
0 v∗u |v|2 − 2/3



 , A1 =





0 a b
a∗ 0 0
b∗ 0 0



 (2.15)

a = iux + i(uu∗x + vv∗x)u, b = ivx + i(uu∗x + vv∗x)v (2.16)

This L-A pair produces the 2-component system

iut + uxx + (uu∗x + vv∗x)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x)vx + (uu∗x + vv∗x)xv = 0
. (2.17)

we started our paper with (see (1.1)).�

For completeness here we present another member of the hierarchy (2.13). It is the
simplest NLEE corresponding to an odd dispersion law.

Example 2 Consider the case when f(λ) = −8λ3J , i.e. c3 = −8, c2 = c1 = 0. Then the
corresponding 2-component system obtains the form:

ut = 8uxxx + 12(uu∗x + vv∗x)uxx + r(u, v)ux + s(u, v)u

vt = 8vxxx + 12(uu∗x + vv∗x)vxx + r(u, v)vx + s(u, v)v
, (2.18)

where

r(u, v) = 3
[

4(|ux|2 + |vx|2) + 5(uu∗x + vv∗x)
2 + 6(uu∗x + vv∗x)x

]

s(u, v) = 3
[

2(uu∗x + vv∗x)xx + 4(|ux|2 + |vx|2)x + 5(uu∗x + vv∗x)
2
x

]

. �

Sometimes it is more convenient to deal with Lax operators written in canonical gauge.
In this gauge the operator (2.1) looks as follows:

L̃(λ) = g−1Lg = i∂x + U0(x, t) + λJ, J = diag (1, 0,−1), (2.19)

where

g =

√
2

2





1 0 −1

u∗
√
2v u∗

v∗ −
√
2u v∗



 . (2.20)

The second Lax operator (2.2) is given by

a) Ã(λ) = i∂t +

N−1
∑

k=0

λkÃk(x, t) + cNλ
NI, N = 2p

b) Ã(λ) = i∂t +

N−1
∑

k=0

λkÃk(x, t) + cNλ
NJ, N = 2p+ 1,

(2.21)

where I = g−1L2 g = diag (1/3,−2/3, 1/3).
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2.2 Direct Scattering Problem

In order to formulate a direct scattering problem for L, one needs to introduce auxiliary
spectral linear system

L(λ)ψ(x, t, λ) = i∂xψ(x, t, λ) + λL1(x, t)ψ(x, t, λ) = 0. (2.22)

Here ψ denotes a fundamental set of solutions or a fundamental solution for short. Since
the operators (2.1) and (2.2) commute ψ also satisfies

A(λ)ψ(x, t, λ) =

(

i∂t +
N
∑

k=1

λkAk(x, t)

)

ψ(x, t, λ) = ψ(x, t, λ)f(λ) (2.23)

as well. The matrix-valued function

f(λ) = lim
x→±∞

g−1
±

N
∑

k=1

λkAk(x, t)g± (2.24)

is called dispersion law of the nonlinear equation (2.13). The unitary matrix

g± = lim
x→±∞

g(x, t) =
1√
2





1 0 −1

0
√
2 eiφ± 0

e−iφ± 0 e−iφ±





involved in the definition of the dispersion law diagonalizes the asymptotics L1,± =
limx→±∞L1(x, t). It can be proven that the dispersion law of (2.13) reads

a) f(λ) =

p−1
∑

q=0

c2q+1λ
2q+1J +

p
∑

q=1

c2qλ
2qI,

b) f(λ) =

p
∑

q=0

c2q+1λ
2q+1J +

p
∑

q=1

c2qλ
2qI.

(2.25)

The dispersion law of the 2-component system (2.17) is −λ2I and that of ((2.18) is −8λ3J .
It is evident from (2.25) that f(λ) obeys the splitting:

f(λ) = f0(λ)I + f1(λ)J, (2.26)

which is a result of the Z2 grading (2.5) of the algebra sl(3).
A special type of fundamental solutions are the so-called Jost solutions ψ± which are

normalized as follows
lim

x→±∞
ψ±(x, t, λ)e

−iλJxg−1
± = 11. (2.27)

Due to (2.24) one can show that the asymptotic behavior of ψ± do not depend on time
and thus the definition is correct. The transition matrix

T (t, λ) = [ψ+(x, t, λ)]
−1ψ−(x, t, λ). (2.28)

is called scattering matrix. It can be easily deduced from relation (2.23) that the scattering
matrix evolves with time according to the linear differential equation

i∂tT + [f(λ), T ] = 0, (2.29)
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which is integrated straight away to give

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t. (2.30)

From now on the parameter t will be fixed and we shall omit it to simplify our notation.
Due to reasons of simplicity we set φ+ = φ− = 0 as well.

The action of Z2-reductions (2.3), (2.4) imposes the following restrictions

[

ψ†
±(x, λ

∗)
]−1

= ψ±(x, λ),
[

T †(λ∗)
]−1

= T (λ)

Cψ±(x,−λ)C = ψ±(x, λ), CT (−λ)C = T (λ)
(2.31)

on the Jost solutions and the scattering matrix.
The continuous spectrum of L fills up the real axis in the complex λ-plane. Thus the

λ-plane is divided into two regions denoted by C+ (the upper half plane) and C− (the
lower half plane). These regions represent domains for fundamental solutions χ+(x, λ)
and χ−(x, λ) to be analytic functions in C+ and C− respectively [16]. The fundamental
analytic solutions (FAS) can be constructed by using Gauss factors in the decomposition
of the scattering matrix:

T (λ) = T∓(λ)D±(λ)(S±(λ))−1. (2.32)

S+ and T+ are upper triangular matrices, S− and T− are lower triangular matrices and
D± are diagonal ones. Then χ+ and χ− are expressed as follows

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ). (2.33)

Due to relation (2.33) the FAS can be interpreted as solutions to a local Riemann-Hilbert
problem

χ+(x, λ) = χ−(x, λ)G(x, λ), G(λ) = (S−(λ))−1S+(λ). (2.34)

The established interrelation between the inverse scattering method and Riemann-Hilbert
problem plays an important role in constructing solutions to NLEEs through dressing
method.

It can be shown that the reduction conditions (2.31) and equation (2.32) lead to the
following demands on the Gauss factors

[

S+(λ∗)
]†

= [S−(λ)]−1, C̃S±(−λ)C̃ = S∓(λ)
[

T+(λ∗)
]†

= [T−(λ)]−1, C̃T±(−λ)C̃ = T∓(λ)
[

D+(λ∗)
]†

= [D−(λ)]−1, C̃D±(−λ)C̃ = D±(λ),

(2.35)

where

C̃ =





0 0 1
0 1 0
1 0 0



 .

Finally, combining all this information we see that the FAS obey the symmetry conditions

[

χ+(x, λ∗)
]

= [χ−(x, λ)]−1 Cχ+(x,−λ)C = χ−(x, λ). (2.36)
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3 Dressing Method and Soliton Solutions

As we mentioned in the previous section the inverse scattering method is tightly related to
Riemann-Hilbert problem. The Riemann-Hilbert problem possesses two types of solutions:
regular ones (without singularities) and singular ones. Singular solutions can be generated
by dressing regular solutions with a factor which has prescribed singularities. The simplest
types of singularities are first order poles and zeroes. It can be proven that they correspond
to poles of the resolvent of L. Hence they are discrete eigenvalues of the Lax operator
(2.1). The discrete eigenvalues of L form orbits of the reduction group Z2 × Z2. There
exist two types of orbits: generic orbits containing quadruplets of eigenvalues {±µ,±µ∗}
and degenerate orbits consisting of two imaginary eigenvalues ±iκ (doublets).

There is a very deep connection between singular solutions to Riemann-Hilbert prob-
lem and soliton solutions to the corresponding nonlinear problem. In the present section
we are going to analyze the soliton solutions to the system (2.13). For this to be done, we
are going to apply the dressing method proposed in [38] and developed in [35, 36, 28, 29].
We demonstrate that the NLEE (2.13) has two types of 1-soliton solutions: doublet soli-
ton to be connected with two imaginary discrete eigenvalues of L and quadruplet soliton
connected to 4 eigenvalues.

3.1 Rational Dressing

The dressing method is an indirect method for solving a NLEE possessing a Lax represen-
tation. This means that it allows one to generate a solution to the NLEE starting from
a known one. Let us assume we know a solution

L
(0)
1 =





0 u0 v0
u∗0 0 0
v∗0 0 0





of (2.13) and a fundamental solution ψ0(x, t, λ) of the auxiliary linear problems

L(0)(λ)ψ0 = i∂xψ0 + λL
(0)
1 ψ0 = 0

A(0)(λ)ψ0 = i∂tψ0 +

N
∑

k=1

λkA
(0)
k ψ0 = 0.

(3.1)

Then one constructs another function ψ1(x, t, λ) = Φ(x, t, λ)ψ0(x, t, λ)Φ
†
−(λ), where Φ−(λ) =

limx→−∞Φ(x, t, λ). This function is a common solution to

L(1)(λ)ψ1 = i∂xψ1 + λL
(1)
1 ψ1 = 0

A(1)(λ)ψ1 = i∂tψ1 +

N
∑

k=1

λkA
(1)
k ψ1 = 0,

(3.2)

where the potential

L
(1)
1 =





0 u1 v1
u∗1 0 0
v∗1 0 0




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is to be found. From (3.1) and (3.2) it follows that the dressing factor Φ(x, t, λ) satisfies
the following equations:

i∂xΦ+ λL
(1)
1 Φ− λΦL

(0)
1 = 0 (3.3)

i∂tΦ+

N
∑

k=1

λkA
(1)
k Φ− Φ

N
∑

k=1

λkA
(0)
k = 0. (3.4)

We also assume that the dressing factor is regular at |λ| → 0,∞. Then from (3.3) one

can derive the following relation between L
(1)
1 and L

(0)
1 :

L
(1)
1 (x, t) = Φ(x, t,∞)L

(0)
1 (x, t)Φ†(x, t,∞). (3.5)

This equation will play a central role in our further considerations since it allows one to
generate a new solution to (2.13) from the given one L

(0)
1 .

Due to the reduction conditions (2.3), (2.4) the dressing factor obeys the symmetries:

CΦ(x, t,−λ)C = Φ(x, t, λ) (3.6)

Φ(x, t, λ)Φ†(x, t, λ∗) = 11. (3.7)

In order to obtain a nontrivial dressing we choose Φ(x, t, λ) as a rational function1 of
λ with a minimal number of simple poles. At first we shall consider the case when these
poles are generic complex numbers. Hence the dressing factor looks as follows:

Φ(x, t, λ) = 11 +
λM(x, t)

λ− µ
+
λCM(x, t)C

λ+ µ
, (3.8)

where Re µ 6= 0, Im µ 6= 0. It is evident that the reduction condition (3.6) is fulfilled. On
the other hand (3.7) leads to the conclusion that

Φ−1(x, t, λ) = 11 +
λM †(x, t)

λ− µ∗
+
λCM †(x, t)C

λ+ µ∗
. (3.9)

The identity Φ(λ)Φ−1(λ) = 11 must hold for any λ. Therefore after equating the
residue at λ = µ∗ to 0 one gets the equation:

(

11 +
µ∗M(x, t)

µ∗ − µ
+
µ∗CM(x, t)C

µ∗ + µ

)

M †(x, t) = 0. (3.10)

The rest of algebraic relations can be reduced to (3.10) due to the symmetry conditions
(2.3), (2.4).

The residue M ought to be singular since otherwise it should be proportional to 11 and
the dressing becomes trivial. It suffices to consider the case rankM = 1. Then M can be
decomposed in the following manner:

M = |n〉〈m|, |n〉 = (n1, n2, n3)
T , 〈m| = (m∗

1, m
∗
2, m

∗
3). (3.11)

After substituting this representation into (3.10) one derives a linear system for the 3-
vector |n〉:

|m〉 − µ∗|n〉〈m|m〉
2iκ

+
µ∗C|n〉〈m|C|m〉

2ω
= 0. (3.12)

1If Φ is λ-independent then it does not depend on x and t either. Thus (3.5) produces simply a unitary

transformation of L
(0)
1 which is not essential because of U(2) gauge symmetry of the model.
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where we have used the notation ω = Re µ, κ = Im µ. The solution of (3.12) reads:

|n〉 = 1

µ∗

(〈m|m〉
2iκ

− 〈m|C|m〉
2ω

C

)−1

|m〉. (3.13)

The vector |m〉 is an element of the projective space CP 2. Indeed, it is evident that a
rescaling |m〉 → h|m〉 with any complex h 6= 0 does not change the matrix M .

Taking into account the ansatz (3.8) one can rewrite (3.5) as:

L
(1)
1 = (11 +M +CMC)L

(0)
1 (11 +M +CMC)†. (3.14)

Notice that the dressing procedure preserves the matrix structure of L since the factor
11 +M +CMC is a block-diagonal matrix.

We have expressed all quantities needed in terms of |m〉 and now it remains to find
|m〉 itself. For that purpose we rewrite equations (3.3), (3.4) in the form:

Φ(x, t, λ)
(

i∂x + λL
(0)
1

)

Φ−1(x, t, λ) = λL
(1)
1

Φ(x, t, λ)

(

i∂t +

N
∑

k=1

λkA
(0)
k

)

Φ−1(x, t, λ) =

N
∑

k=1

λkA
(1)
k .

(3.15)

It is obviously satisfied at λ = 0. After equating the residues of (3.15) at λ = µ∗ to 0 we
obtain a set of differential equations

(

11 +
µ∗M

µ∗ − µ
+
µ∗CMC

µ∗ + µ

)

(

i∂x + µ∗L
(0)
1

)

|m〉 = 0

(

11 +
µ∗M

µ∗ − µ
+
µ∗CMC

µ∗ + µ

)

(

i∂t +

N
∑

k=1

(µ∗)kA
(0)
k

)

|m〉 = 0.

(3.16)

Taking into account (3.10) the equations above can be reduced to

(

i∂x + µ∗L
(0)
1 (x, t)

)

|m(x, t)〉 = h(x, t)|m(x, t)〉
(

i∂t +
N
∑

k=1

(µ∗)kA
(0)
k (x, t)

)

|m(x, t)〉 = h(x, t)|m(x, t)〉
(3.17)

for some arbitrary function h. At this point we recall that the vectors in the decomposition
(3.11)are not uniquely determined. Indeed, the operation |n〉 → B−1|n〉 and |m〉 → B†|m〉
for any nondegenerate 3 × 3 matrix B produces another decomposition of M . It is not
hard to see that it is always possible to choose B in such a way that h ≡ 0 is fulfilled.
Thus from (3.17) it follows that |m(x, t)〉 is proportional to some fundamental solution
ψ0(x, t, λ) of the bare linear problem, namely

|m(x, t)〉 = ψ0(x, t, µ
∗)|m0〉, (3.18)

where |m0〉 ∈ C3\{0} is a constant vector of integration. The new solution L
(1)
1 of (2.13)

and the solution ψ1(x, t, λ) of the corresponding linear system are parameterized by a
complex number µ and a complex 3-vector |m0〉.

Thus we have proved the following Proposition:

10



Proposition 1 Let L
(0)
1 be a solution of (2.13) and ψ0(x, t, λ) be a common solution to

(3.1). Let also µ be a complex number to fulfill Re µ 6= 0, Im µ > 0 and |m0〉 ∈ C3\{0}.
Then the matrix-valued function L

(1)
1 (x, t) defined by (3.14) where M = |n〉〈m| is deter-

mined by (3.13) and (3.18) is a solution to (2.13) as well. The corresponding fundamental
solution ψ1(x, t, λ) of (3.2) is given by ψ1 = Φψ0 where Φ(x, t, λ) is determined by (3.8),
(3.11), (3.13) and (3.18). �

Let us now consider the case when the poles of the dressing factor are imaginary, i.e.
we have:

Φ(x, t, λ) = 11 + λ

(

M(x, t)

λ− iκ
+

CM(x, t)C

λ+ iκ

)

, κ 6= 0. (3.19)

Then Φ−1 has the same poles as Φ and therefore the equality ΦΦ−1 = 11 already con-
tains second order poles. In this case the natural requirement of vanishing of the matrix
coefficients before (λ− iκ)−2 and (λ− iκ)−1 leads to the algebraic relations:

MCM † = 0 (3.20)
(

11 +M +
CMC

2

)

CM †C+M

(

11 +CM †C+
M †

2

)

= 0. (3.21)

As before in order to obtain a nontrivial result M is required to be a degenerate matrix,
i.e. decomposition (3.11) holds true. Then relation (3.20) is rewritten as

〈m|C|m〉 = 0. (3.22)

Relation (3.21) in its turn can be easily reduced to the following linear system for 3-vector
|n〉

(

11 +
C|n〉〈m|C

2

)

C|m〉 = iσ|n〉. (3.23)

by introducing some auxiliary real function σ. That linear system allows one to express
|n〉 through 〈m| and σ, namely:

|n〉 =
(

iσ − 〈m|m〉
2

C

)−1

C|m〉. (3.24)

In order to find |m〉 and σ we turn back to the equations (3.15). Vanishing of the second
order poles in (3.15) leads to the conclusion that

|m(x, t)〉 = ψ0(x, t,−iκ)|m0〉, (3.25)

where |m0〉 is a constant nonzero 3-vector. After substituting (3.25) into (3.22) and taking
into account (2.3) one convinces himself that the components of the polarization vector
|m0〉 are no longer independent but satisfy the constraint:

〈m0|C|m0〉 = 0 ⇔ |m0,1|2 = |m0,2|2 + |m0,3|2. (3.26)

The vanishing condition of the first order poles leads to some differential constraint
on σ(x, t) which is integrated to give:

σ(x, t) = −κ〈m0|ψ−1(x, t, iκ)ψ̇0(x, t, iκ)C|m0〉+ σ0, (3.27)

where σ0 ∈ R is a costant of integration.
Thus to calculate the soliton solution itself one just substitutes the result for |n〉 and

|m〉 into M and uses formula (3.14). As it is seen the new solution is parametrized by the
polarization vector |m0〉, the real number σ0 and the pole iκ. All this can be formulated
in the following manner:
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Proposition 2 Let there be given a solution L(0)(x, t) to (2.13), a common solution
ψ0(x, t, λ) to (3.1), real numbers κ > 0, σ0 and a complex nonzero vector |m0〉 satis-

fying (3.26). Then the function L
(1)
1 (x, t) determined by (3.14), (3.11), (3.24), (3.25) and

(3.27) is a solution of the system (2.13) too. The solution ψ1(x, t, λ) of the dressed linear
system (3.2) is given by ψ1 = Φψ0 where Φ is defined by (3.19), (3.11), (3.24), (3.25)
and (3.27).

One can apply the dressing procedure repeatedly to build a sequence of exact solutions

L
(0)
1

Φ1−→ L
(1)
1

Φ2−→ . . .
ΦN−→ L

(N)
1 . (3.28)

More precisely this alternative procedure will be explained in Section 4.

3.2 Soliton Solutions

Let us apply the dressing procedure to the following seed solution

L
(0)
1 (x, t) =





0 0 1
0 0 0
1 0 0



 (3.29)

of equation (2.13). In this case a fundamental solution to (3.1) reads:

ψ0(x, t, λ) =







cos(λx+ f1(λ)t)e
if0(λ)t

3 0 i sin(λx+ f1(λ)t)e
if0(λ)t

3

0 e
−2if0(λ)t

3 0

i sin(λx+ f1(λ)t)e
if0(λ)t

3 0 cos(λx+ f1(λ)t)e
if0(λ)t

3






. (3.30)

We recall that f0(λ) and f1(λ) are even and odd part of the dispersion law induced by the
Z2 grading of sl(3), see (2.26).

We are going to consider the generation of a quadruplet soliton first. In this case one
uses factor (3.8). It is convenient to decompose the polarization vector |m0〉 according to
the eigensubspaces of the endomorphism ψ0 (3.30):

|m0〉 = α





1
0
1



+ β





1
0

−1



 + γ





0
1
0



 , (3.31)

where α, β, γ are arbitrary complex constants.
If the vector |m0〉 is proportional to one of the eigenvectors of the endomorphism ψ0,

then the corresponding matrix M does not depend on the variables x and t (due to the
projective nature of the vector |m〉) and the corresponding solution (3.14) is a simple

unitary rotation of the constant solution L
(0)
1 .

Thus elementary solitons correspond to vectors |m0〉, belonging to essentially two-
dimensional invariant subspaces of ψ0, i.e. they correspond to polarization vectors with
only one zero coefficient in the expansion (3.31). Let us consider each of these three cases
in more detail.
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Figure 1: Real and imaginary parts of the component v1 in 3.33 as a function of x. Here
κ = 1, ω = 10−3, α = 1, β = 1 + i.

Case (i): α 6= 0, β 6= 0, γ = 0

The 1-soliton solution is given by:

u1(x, t) = 0

v1(x, t) = exp

{

4i arctan

(

κ cos(2ωx+ 2fR1 (µ)t+ φα − φβ)

ω cosh(2κx+ 2f I1 (µ)t+ ln |α/β|)

)}

,
(3.32)

where φα = argα, φβ = arg β. fR1 (λ) and f I1 (λ) are the real and the imaginary part of the
polynomial f1(λ) (resp. f

R
0 (λ) and f I0 (λ) stand for the real and imaginary part of f0(λ) to

be used later on). If the dispersion law of NLEE is an even polynomial (f1(λ) ≡ 0) then
the solution (3.32) becomes stationary:

u1(x, t) = 0

v1(x, t) = exp

{

4i arctan

(

κ cos(2ωx+ φα − φβ)

ω cosh(2κx+ ln |α/β|)

)}

.
(3.33)

A plot of that solution is presented on Fig.1. It is easy to check that u = 0, v = exp(if(x))
is an exact solution of (2.17) for any differentiable function f(x) tending to 0 when
x → ±∞. This resembles the case of the three-wave equation [33] where one wave of an
arbitrary shape is an exact solution of the system and the two other waves are identically
zero. The solution (3.33) has a simple spectral characterisation and an explicitly given
analytic fundamental solution of the corresponding linear problem.

If the dispersion law contains odd powers of λ as well then the elementary soliton is
no more stationary. For example in the case of equation (2.18) it reads:

u1(x, t) = 0, v1(x, t) = exp(4i arctan ζcub(x, t))

ζcub(x, t) =

[

κ cos 2ω[x+ 8(3κ2 − ω2)t+ (φα − φβ)/2ω]

ω cosh 2κ[x+ 8(κ2 − 3ω2)t+ ln |α/β|/2κ]

]

.
(3.34)
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Case (ii): α 6= 0, β = 0, γ 6= 0

In this case the solution looks as follows:

u1(x, t) =
4iωκQ∗

gen exp i{ωx+ (fR0 (µ) + fR1 (µ))t+ φα − φγ}
(ω − iκ)Q2

gen

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2
gen

,

(3.35)

where φα = argα, φγ = arg γ and

Qgen = 2ωeκx+(fI0 (µ)+f
I
1 (µ))t+ln |α/γ| + (ω + iκ)e−κx−(fI0 (µ)+f

I
1 (µ))t−ln |α/γ|.

In particular, when f(λ) = −λ2I, i.e. f0(λ) = −λ2 and f1(λ) = 0 hold, we obtain a
solution to (2.17):

u1(x, t) =
4iωκQ∗ exp i{ωx+ (κ2 − ω2)t+ φα − φγ}

(ω − iκ)Q2

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2
,

(3.36)

where
Q = 2ωeκ(x−2ωt)+ln |α/γ| + (ω + iκ)e−κ(x−2ωt)−ln |α/γ|.

Contour plots of |u1|2 and |v1|2 of the solutions (3.36) are shown on Figure 2.
When the dispersion law is odd, say f1(λ) = −8λ3, the quadruplet solution represents

a traveling wave of the form:

u1(x, t) =
4iωκQ∗ exp iω[x+ 8(3κ2 − ω2)t+ (φα − φγ)/ω]

(ω − iκ)Q2

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2
, ,

(3.37)

where
Q = 2ωeκ(x+8(κ2−3ω2)t+ln |α/γ|/κ) + (ω + iκ)e−κ(x+8(κ2−3ω2)t+ln |α/γ|/κ).

This is an elementary soliton for the cubic flow NLEE (2.18).

Case (iii): α = 0, β 6= 0, γ 6= 0

The solution now can be obtained from the solution in the case (ii), by changing α → β
and x→ −x.

In the cases (ii) the solution (3.36) is a soliton of width 1/κ moving with velocity 2ω.
The corresponding soliton in the case (iii) moves with a velocity −2ω.

In the generic case, when all three constants are non-zero, the solution represents a
nonlinear deformation of the above described solitons. For κ > 0 it may be viewed as
a decay of unstable time independent soliton from the case (i) into two solitons, corre-
sponding to the cases (ii) and (iii) (see fig 2). For κ < 0, the solution is a fusion of two
colliding solitons into a stationary one.

Let us now consider dressing by a factor with two imaginary poles (doublet case), i.e.
µ = iκ. There are two essentially different cases.
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Figure 2: Contour plot of |u1|2 (left panel) and |v1|2 (right panel) for a generic soliton
solution (3.36) as a function of x and t where α = γ = κ = ω = 1.

Case (i): α 6= 0, β 6= 0, γ = 0

From (3.26) it follows that |m0,1| = |m0,3|. It suffices to pick up m0,1 = 1 and the third
component is m0,3 = exp(iϕ), ϕ ∈ R. The doublet solution reads:

u1(x, t) = 0, v1(x, t) = exp(4i arctanΞgen(x, t))

Ξgen(x, t) =
σ0 − 2κ(x+ ḟ1(iκ)t) sinϕ

cosh 2(κx+ f I1 (iκ)t) + sinh 2(κx+ f I1 (iκ)t) cosϕ
.

(3.38)

If the dispersion law of NLEE is even polynomial, i.e. f1(λ) ≡ 0, the 1-soliton solution
becomes stationary:

u1(x, t) = 0

v1(x, t) = exp

{

4i arctan

(

σ0 − 2κx sinϕ

cosh 2κx+ sinh 2κx cosϕ

)}

.
(3.39)

Figure 3 presents the argument and the imaginary part of v1(x) in the stationary case as
functions of x and the phase ϕ.

As in the quadruplet case if the dispersion law is an odd polynomial the doublet solu-
tion is time-depending. Let us consider the simplest example f1(λ) = −8λ3 corresponding
to equation (2.18). Now (3.38) obtains the form:

u1(x, t) = 0, v1(x, t) = exp(4i arctanΞcub(x, t))

Ξ cub(x, t) =
σ0 − 2κ(x+ 24κ2t) sinϕ

cosh 2κ(x+ 8κ2t) + sinh 2κ(x+ 8κ2t) cosϕ
.

(3.40)

Case ii. Generic doublet

Now let us assume m0,2 6= 0. For simplicity we fix m0,2 = 1. Then the norms of m0,1 and
m0,3 are interrelated through

|m0,1|2 − |m0,3|2 = 1.
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Figure 3: Plots of the argument (left panel) and Im v1(x) (right panel) for the stationary
solution (3.39 ) as a function of x and ϕ; κ = σ = 1.

This is why it proves to be convenient to parametrize them as follows:

m0,1 = cosh θ0e
i(ϕ0+ϕ̃), m0,3 = | sinh θ0|ei(ϕ0−ϕ̃), (3.41)

where θ0, ϕ0 and ϕ̃ are arbitrary real numbers. Then the doublet soliton solution reads:

u1(x, t) =
2∆∗

∆2
ei(f0(iκ)t+ϕ0) [sinh θ+ cos ϕ̃+ i sinh θ− sin ϕ̃]

v1(x, t) = 1 +
2(2iσ − 1)

∆
+

4iσ(iσ − 1)

∆2
,

(3.42)

where

∆(x, t) = cosh2 θ+ cos2 ϕ̃+ cosh2 θ− sin2 ϕ̃− iσ

σ(x, t) = σ0 + κḟ I0 (iκ)t + κ
(

x+ ḟ1(iκ)t
)

sinh 2θ0 sin 2ϕ̃

θ±(x, t) = κx+ f I1 (iκ)t± θ0.

Let us consider the special case when the dispersion law is −λ2I. The solution (3.42)
is significantly simplified if in addition one assumes that m0,3/m0,1 > 0 (ϕ̃ = 0). The
result reads:

u1 =
2
(

cosh2(κx+ θ0) + i(σ0 − 2κ2t)
)

(

cosh2(κx+ θ0)− i(σ0 − 2κ2t)
)2 ei(κ

2t+ϕ0) sinh(κx+ θ0)

v1 =

(

cosh2(κx+ θ0) + i(σ0 − 2κ2t)

cosh2(κx+ θ0)− i(σ0 − 2κ2t)

)2

− 2
(

cosh2(κx+ θ0)− i(σ0 − 2κ2t)
)2 .

(3.43)

A plot of Re u1(x, t) and Re v1(x, t) is shown on Fig. 4
It proves to be of some interest to consider the odd dispersion case as well. In the

simplest nontrivial situation when f1(λ) = −8λ3 (equation (2.18)) we have

u1 =
2
(

cosh2(κx+ 8κ3t+ θ0 + iσ0
)

(

cosh2(κx+ 8κ3t+ θ0)− iσ0
)2 e

iϕ0 sinh(κx+ 8κ3t + θ0)

v1 =

(

cosh2(κx+ 8κ3t+ θ0) + iσ0

cosh2(κx+ 8κ3t + θ0)− iσ0

)2

− 2
(

cosh2(κx+ 8κ3t+ θ0)− iσ0
)2 .

(3.44)
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Figure 4: Contour plot of Re u1(x, t) (left panel) and Re v1(x, t) (right panel) for doublet
soliton (3.43) as functions of x and t. Here κ = 0, σ0 = 5 and θ0 = 0.

We have assumed above that ϕ̃ = 0.

Remark 1 Let us make a few short remarks on the behaviour of doublet soliton (3.43).
First of all it is evident that this is not a travelling wave solution. Moreover, as it is seen
from Fig. 5 the component |u1(x, t)|2 has two symmetric maxima and one minimum at
the origin (resp. |v1(x, t)|2 has two symmetric minima and one maximum at the origin).
The value of the maximum of |u1(x, t)|2 (resp. the minimum of |v1(x, t)|2) first increases
with time (σ(t) > 0) and then decreases (σ(t) < 0). The maxima positions of u1 depend
on t according to:

ξ0(t) = −θ0
κ

+
1

κ
ln

(
√

1 +
√

1 + σ2(t) + 4
√

1 + σ2(t)

)

, (3.45)

where σ(t) = σ0 − 2κ2t. The soliton velocity v := dξ0/dt is not constant but changes
with t as given by:

v(t) = − 2κ2tσ(t)

1 + σ2(t)

4
√

1 + σ2(t)
√

1 +
√

1 + σ2(t)
. (3.46)

Such behavior resembles the boomerons and the trappons [4, 5]. On Fig. 6 it is plotted
the t-dependence of the soliton velocity.

3.3 Multisoliton Solutions

As we have already mentioned the dressing procedure can be applied several times conse-
quently. Thus after dressing the 1-soliton solution one derives a 2-soliton solution, after
dressing the 2-soliton solution one obtains a 3-soliton solution and so on. Of course, in
doing this one is allowed to apply either of dressing factors (3.8) and (3.19). Therefore the
multisoliton obtained will be a certain combination of quadruplet and doublet solitons.
Another way of derivation the multisoliton solution consists in using a dressing factor
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Figure 5: Contour plot of |u1(x, t)|2 (left panel) and |v1(x, t)|2 (right panel) for doublet
soliton solution (3.43) as a function of x for several values of t: t = 0, 1, 5, 10, 20, 40.

with a proper number of poles:

Φ = 11 + λ

N1
∑

k=1

(

Mk

λ− µk
+

CMkC

λ+ µk

)

+ λ

N2
∑

l=1

(

Pl

λ− iκl
+

CPlC

λ+ iκl

)

. (3.47)

As it follows from (3.47) the multisoliton solution obtained will be a mixture ofN1 quadru-
plet solitons and N2 doublet ones. In order to determine the residues of Φ one follows
basically the same steps as in the case of a 2-poles dressing factor. Firstly, the identity
ΦΦ−1 = 11 implies that the residues of Φ and Φ−1 fulfill some algebraic restrictions. For
example, the condition

lim
λ→µk

(λ− µk)ΦΦ
−1 = 0, k = 1, . . . , N1 (3.48)

for vanishing of the residue of ΦΦ−1 at λ = µk leads to the following algebraic restrictions:

Mk

[

11 + µk

N1
∑

r=1

(

M †
r

µk − µ∗
r

+
CM †

rC

µk + µ∗
r

)

+ µk

N2
∑

l=1

(

P †
l

µk + iκl
+

CP †
l C

µk − iκl

)]

= 0. (3.49)

Apart of this type of constraints we have another one originating from vanishing of the
coefficients before the imaginary poles:

lim
λ→iκl

(λ− iκl)
2ΦΦ−1 = (iκl)

2PlCP
†
l = 0, l = 1, . . . , N2, (3.50)

lim
λ→iκl

∂λ[(λ− iκl)
2ΦΦ−1] = iκlΘlCP

†
l C+ iκlPlCΘ†

lC = 0, (3.51)

where

Θl = 11 + iκl

N1
∑

k=1

(

Mk

iκl − µk
+

CMkC

iκl + µk

)

+ Pl +
CPlC

2

+ iκl

N2
∑

s 6=l

(

Ps

i(κl − κs)
+

CPsC

i(κl + κs)

)

.
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Figure 6: The soliton velocity v(t) and position of the maxima ξ0(t) of solution (3.43) as
a functions of t. Here κ = σ0 = 1, θ0 = 0 and ϕ̃ = 0.

Vanishing of the rest of poles of ΦΦ−1 leads to algebraic constraints which coincide with
(3.49)–(3.51) due to the action of Z2 reductions.

Since Mk(x, t) and Pl(x, t) must be degenerate matrices one introduces their factor-
izations Mk = |nk〉〈mk| and Pl = |ql〉〈pl|. Substituting it into (3.49)–(3.51) we reduce the
first and the third constraint to linear systems for |nk〉 and |ql〉

|mk〉 =
N1
∑

r=1

Brk|n r〉+
N2
∑

l=1

Dsk|q s〉

C|pl〉 =
N1
∑

r=1

Erl|n r〉+
N2
∑

s=1

Fsl|q s〉,
(3.52)

where the matrix coefficients read

Brk := µ∗
k

(〈m r|mk〉
µr − µ∗

k

− 〈m r|C|mk〉
µr + µ∗

k

C

)

Dsk := µ∗
k

( 〈p s|mk〉
iκs − µ∗

k

− 〈p s|C|mk〉
iκs + µ∗

k

C

)

Erl := −iκl

(〈m r|C|pl〉
iκl − µk

+
〈m r|pl〉
iκl + µk

C

)

, Fss := iσs −
〈p s|ps〉

2
C

Fsl := κl

(〈p s|C|pl〉
κs − κl

− 〈p s|pl〉
κs + κl

C

)

, s 6= l

By inverting the linear system (3.52) we can express |n r〉 and |q s〉 through all |mk〉, |p l〉
and σl and that way determine the dressing factor in terms of the latter. The vectors
|mk〉 and |p l〉 as well as the functions σl can be found from the natural requirement of
vanishing of the poles in (3.15). The result reads

|mk(x, t)〉 = ψ0(x, t, µ
∗
k)|mk,0〉

|p l(x, t)〉 = ψ0(x, t,−iκl)|p l,0〉
σl(x, t) = −κl〈pl,0|ψ−1(x, t, iκl)ψ̇0(x, t, iκl)C|pl,0〉+ σl,0.

(3.53)

19



Analogously to the 2-poles case the components of |pl〉 are not independent. As a
result of (3.50) that the following relations holds true:

〈pl(x, t)|C|pl(x, t)〉 = 〈pl,0|C|pl,0〉 = 0. (3.54)

Thus we have proved that the dressing factor in the multiple poles case is determined
if one knows the initial fundamental solution ψ0(x, t, λ). The multisoliton solution itself
can be derived through the following formula

L
(1)
1 (x, t) = Φ(x, t,∞)L

(0)
1 (x, t)Φ†(x, t,∞), (3.55)

where

Φ(x, t,∞) = 11 +

N1
∑

k=1

(Mk +CMkC) +

N2
∑

l=1

(Pl +CPlC).

From all said above it follows that the algorithm for obtaining the multisoliton solution
can be presented symbolically as follows

L
(0)
1 −→ {|mk〉}N1

k=1, {|pl〉}N2
l=1, {σl}N2

l=1 −→
{|nk〉}N1

k=1, {|ql〉}N2
l=1 −→ {Mk}N1

k=1, {Pl}N2
l=1 −→ L

(1)
1 .

4 Interactions of Quadruplet Solitons

In this section we aim to study the interactions of solitons we have derived. We shall
restrict ourselves with quadruplet solitons for NLEEs with odd dispersion laws. This is
the simplest case since the solitons are travelling wave-type solutions. The interactions of
the other types of solitons require a special treatment and will be done elsewhere.

Our study will be based on the Zakharov-Shabat scheme [34] applied to the recur-
sive procedure (3.28). Their approach consists in calculating the asymptotics of generic
N -soliton solution for t → ±∞ and establishing the pure elastic character of the inter-
actions of generic soliton, i.e. solitons travelling at different velocities. The pure elastic
character of the soliton interactions is demonstrated by the fact that for t → ±∞ the
N -soliton solution splits into a sum of N one soliton solutions preserving its amplitudes
and velocities. The only effect of the interaction consists in shifting the center of mass
and the initial phase of the solitons.

The 1-soliton dressing factor corresponding to the quadruplet case with poles at ±µk

is given by:

Φk(x, t, λ, µk) = 11 +
λ

λ− µk
Mk(x, t) +

λ

λ+ µk
CMk(x, t)C. (4.1)

The residues Mk(x, t) = |nk〉〈mk| are determined by the following equalities

|nk〉 =
1

µ∗
k

(〈mk|mk〉
2iκk

− 〈mk|C|mk〉
2ωk

C

)−1

|mk〉

|mk(x, t)〉 = ψ0(x, t, µk)|mk0〉, |mk0〉 =





αk + βk
γk

αk − βk



 .

(4.2)

Let us now outline the alternative procedure for constructing the N -soliton solutions of
the NLEE (2.13). The idea is to apply subsequently N times the the one-soliton dressing.
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For simplicity we assume that all N solitons are of quadruplet type. As a result the
sequence of mappings (3.28) allows us to constructs a sequence of Lax operators with

potentials L
(k)
1 , k = 1, . . . , N and eigenfunctions:

χ±
(k)(x, t, λ) = Φk(x, t, λ, µk)Φk−1(x, t, λ, µk−1) . . .Φ1(x, t, λ, µ1)

× ψ0(x, t, λ)Φ
†
1,−(λ, µ1) . . .Φ

†
k−1,−(λ, µk−1)Φ

†
k,−(λ, µk),

(4.3)

where

Φk,−(λ, µk) = lim
x→−∞

Φk(x, t, λ, µk) (4.4)

The dressing factors Φk(x, t, λ, µk) are constructed in analogy with (4.1) as follows:

Φk(x, t, λ, µk) = 11 +
λ

λ− µk
Mk(x, t) +

λ

λ+ µk
CMk(x, t)C

Mk(x, t) =
1

µ∗
k

(〈mk|mk〉
2iκk

− 〈mk|C|mk〉
2ωk

C

)−1

|mk〉〈mk|

|mk〉 = Φk−1(x, t, µk, µk=1) . . .Φ1(x, t, µk, µ1)|mk〉.

(4.5)

Thus for the N -soliton potential we obtain:

L
(N)
1 (x, t) = lim

λ→∞
χ±
(N)(x, t, λ)L

(0)
1 .χ̂±

(N)(x, t, λ) (4.6)

Next we recall that we are considering NLEE with odd dispersion laws (2.13b).
Their one-soliton solutions are traveling waves and depend on Zk = x − Vkt, where
Vk = 1/κkImf1(µk). In particular, for the eq. (2.18) f1(λ) = −8λ3 and Vk = 8(3µ2

k − κ2k).
Now let us to pick up the trajectory of the N -th soliton: ZN ≡ x − 2ωN t/3 = fixed and

evaluate the asymptotics of L
(N)
1 (x, t) for t→ ±∞ for fixed ZN . This will allow us to see

what are the effects of the soliton interactions on the N -th soliton.
In what follows we will assume that all solitons move with different velocities, i.e.

Vj 6= Vk for k 6= j. It is natural to split the solitons in two groups:

M+ ≡ {Vk : Vk > VN}, M− ≡ {Vk : Vj < ωN}, (4.7)

i.e., the solitons belonging to M+ are moving faster than the N -th soliton, while the ones
belonging to M− are slower.

Now we are able to calculate the limits of Φk(x, t, λ) for t→ ±∞ for fixed ZN . To do
this we firstly need to obtain the limits of the one-soliton dressing factor for x→ ±∞. It
can be verified that:

Φk,−(λ, µk) := lim
x→−∞

Φk(x, t, λ) =





ck(λ) 0 −c′k(λ),
0 1 0

−c′k(λ) 0 ck(λ)



 ,

Φk,+(λ, µk) := lim
x→∞

Φk(x, t, λ) =





ck(λ) 0 c
′
k(λ)

0 1 0
c′k(λ) 0 ck(λ)



 ,

(4.8)

where

ck(λ) =
µk

µ∗
k

λ2 − |µk|2
λ2 − µ2

k

, c′k(λ) = −µk

µ∗
k

λ(µk − µ∗
k)

λ2 − µ2
k

.
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Note that the asymptotics Φk,±(λ, µk) do not depend upon the polarization vectors |mk0〉
and that they commute for different values of λ. This allows us to describe explicitly the
N -soliton interactions of quadruplet solitons.

The action of Φk,±(λ, µk) on the polarization vectors produces the equalities:

Φk,±(λ, µk)





αk + βk
γk

αk − βk



 =





α±
k + β±

k

γk
α±
k − β±

k





α±
k

αk

=
µk

µ∗
k

λ± µ∗
k

λ± µk

,
β±
k

βk
=
µk

µ∗
k

λ∓ µ∗
k

λ∓ µk

.

(4.9)

Next we have to evaluate the asymptotics of |mk(x, t)〉 when t → ±∞ along the
trajectory ZN(x, t) = const. This is done recursively using (4.8). Skipping all technical
details here we get:

|mN(x, t)〉 ≃
t→∞

∏

j∈M+

Φ+(µN , µj)
∏

j∈M−

Φ−(µN , µj)|mN (x, t)〉

|mN(x, t)〉 ≃
t→−∞

∏

j∈M+

Φ−(µN , µj)
∏

j∈M−

Φ+(µN , µj)|mN(x, t)〉.
(4.10)

Then from (4.9) and (4.10) one deduces that:

α+
N

α
=

N
∏

k=1

µk

µ∗
k

∏

j∈M+

AN,j

∏

j∈M−

BN,j
α−
N

α
=

N
∏

k=1

µk

µ∗
k

∏

j∈M+

BN,j

∏

j∈M−

AN,j

β+
N

β
=

N
∏

k=1

µk

µ∗
k

∏

j∈M+

BN,j

∏

j∈M−

AN,j
β−
N

β
=

N
∏

k=1

µk

µ∗
k

∏

j∈M+

AN,j

∏

j∈M−

BN,j

AN,j =
µN + µ∗

j

µN + µj
, BN,j =

µN − µ∗
j

µN − µj
.

(4.11)

As a result we obtain that: i) the soliton interactions are purely elastic, and ii) their effect
is shifts of the relative center of mass and the phase δN = argα− arg β of the solitons:

Z±
N = ZN ∓

∑

j∈M+

zN,j ±
∑

j∈M−

zN,j

δ±N = δN ±
∑

j∈M+

φN,j ∓
∑

j∈M−

φN,j

zN,j =
1

2κN
(ln |AN,j| − ln |BN,j|), φN,j = arg(AN,j)− arg(BN,j).

(4.12)

5 Integrals of Motion

Here we will sketch briefly the direct method for finding integrals of motion, introduced
by Drinfel’d and Sokolov [6]. We will apply it to the system (2.17). In order to do that it
proves to be technically more convenient to deal with the Lax pair (2.19), (2.21). We will
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use the transformation P(x, t, λ) that diagonalizes simultaneously the Lax pair L̃ and Ã:

L = P
−1L̃P = i∂x + λJ + L0 +

L1

λ
+ · · ·

A = P
−1ÃP = i∂t + λ2I + λA−1 +A0 +

A1

λ
+ · · · .

(5.1)

Here all matrix coefficients Lk, A−1 and Ak, k = 0, 1, . . . are diagonal. Using the asymp-
totic expansion for P(x, t, λ):

P(x, t, λ) = 11 +
p1(x, t)

λ
+
p2(x, t)

λ2
+ · · · (5.2)

one can get a set of recurrence relations:

U0 + Jp1 = L0 + p1J (5.3)

ip1,x + U0p1 + Jp2 = L1 + p1L0 + p2J (5.4)
...

ipk,x + U0pk + Jpk+1 = Lk + pk+1J +
k−1
∑

m=0

pk−mLm (5.5)

...

Here we assume that all coefficients pl (l = 1, 2, . . .) are off-diagonal matrices.
In order to solve the recursion relations above, we will split each relation into a diagonal

and off-diagonal part. For example, treating this way the first relation above one gets

L0 = Ud
0 , U f

0 = −[J, p1], (5.6)

where the superscripts d and f above denote projection onto diagonal and off-diagonal
part of a matrix respectively. Taking into account the explicit form of U0 for L0 we have

L0 =
i

2
(uu∗x + vv∗x)





1 0 0
0 −2 0
0 0 1



 . (5.7)

Thus as a density of our first integral we can choose: I0 = u∗ux + v∗vx. It represents
momentum density of our system. For the stationary solutions (3.33) and (3.39 the
momentum density is depicted on Figure 7. It is evidential, that the integrals of motion
are well localized function of x.

Similarly, for the second integral density one gets

I1 = |uu∗x + vv∗x|2 + 4|uvx − vux|2.

In general, the-k integral of motion can be calculated through the formula

Lk =
(

Uf
0 pk

)d

. (5.8)

The matrix pk in its turn is obtained from the following recursive formula

pk = −ad −1
J

(

ipk−1,x + (U0pk−1)
f −

k−1
∑

m=0

pk−1−mLm

)

. (5.9)
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Figure 7: Plots of the density of the first integral of motion as a function of x evaluated
on the stationary quadruplet soliton (3.33) for α = β = γ = ω = 1, δ = 0 (left panel) and
for the stationary doublet soliton (3.39) for κ = σ0 = 1, φ = 0 (right panel).

Note, that the zero curvature representation is gauge invariant, i. e. [L,A] = 0 is
fulfilled. Since [Lk,Al] = 0 the commutativity of L and A is equivalent to the following
requirements

∂xA−1 = 0, ∂tLk − ∂xAk = 0, k = 0, 1, . . . (5.10)

Hence Lk represent densities of the integrals of motion we are interested in.

6 Conclusions

The soliton solutions for a hierarchy of NLEEs related to the symmetric space SU(3)/S(U(1)
×U(2)) are constructed. In order to obtain the soliton solutions we have applied the dress-
ing procedure with a 2-poles dressing factor. It has been shown that there exist two types
of 1-soliton solutions: quadruplet solitons which are associated with 4 symmetrically lo-
cated eigenvalues of L and doublet solitons which are associated with a pair of purely
imaginary eigenvalues. This remarkable fact is a consequence of the simultaneous action
of two Z2 reductions on the Lax pair. The properties of the elementary solitons depend
crucially upon the symmetry properties the dispersion law. For example, if the dispersion
law is an even polynomial then the elementary soliton of the first type will be stationary
(see formula (3.33)) otherwise it is time-dependent (formula (3.34)). In the case of the
doublet type solitons the situation changes significantly — the components of the polar-
ization vector |m0〉 are no longer independent, see (3.26). This is why we have only two
cases possible: generic case and a degenerate case. In the latter case the doublet soliton
is stationary if f(λ) is an even polynomial, otherwise they are time-depending. In the
generic case a new phenomenon arises. When the dispersion law is an even polynomial
the soliton is not a traveling wave. Its behavior resembles that of trappons and boomerons
— the soliton velocity is not fixed but varies with time.

We have described the quadruplet soliton interactions for NLEE with odd dispersion
laws by calculating explicitly their asymptotics along the soliton trajectories in the generic
case (different soliton velocities). The important result consisted in the following:

i) the N -soliton interactions are purely elastic and always split into sequences of ele-
mentary 2-soliton interactions;

ii) the effect of each 2-soliton interaction consists in shifts of the relative center of mass
and relative phases of each of the solitons;
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iii) the corresponding shifts are different from the ones for the NLS and Heisenberg
ferromagnetic equations.
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