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Abstract 

We present a helium porous plasma jet based on gas diffuser, designed with the aim of 

decontaminating inner surfaces of contaminated structures e.g pipes. The porous plasma jet 

operates with three discharge modes in ambient air and inside a vessel. Its decontamination 

capacity is demonstrated by evaluating the inactivation efficacy of biofilm form of 

Pseudomonas aeruginosa, adherent to inner surface of a glass vial. Plasma treatments for 5 

mins with filament mode and double region helium discharge mode reduced bacterial 

numbers by 2.4 and 2.5 Log10 CFU/ml. Plasma treatment with double region air-like 

discharge mode was the most effective, reducing bacterial cells by 4.5 Log10 CFU/ml, which 

demonstrates porous plasma jet could provide an efficient approach for inner surface 

decontamination.  

 

1 Introduction  

Cold (or non-thermal equilibrium) atmospheric plasma  (CAP) have been extensively applied 

in biological, medical and environmental fields [1-3]. Among the widespread applications of 

CAPs, possibly the most-investigated and best-known biological application is the 

mailto:paula.bourke@dit.ie
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inactivation of bacterial cells for applications in sterilization in fields, such as medical devices 

[4], living tissue (skin, wounds, dental root) [5,6], food and agriculture [7] and cancer cell 

treatments [8,9]. Both direct discharge treatment and flowing afterglow plasma treatment have 

demonstrated antimicrobial effects for diverse bacterial strains in various dry and wet target 

materials. Biofilms represent a challenging resevoir of microbial contamination, which build 

up and establish in environmental niches in processing environments and indwelling devices. 

These challenges are often present on the internal surfaces of tubes, pipes, devices etc. For a 

practical CAP application when the treatment target is attached on the inner surface of a 

chamber, or device tubing or pipeworks, the generated plasma is required to extend into the 

interior of tubing and contact with the surface. Currently, the plasma source for inner-surface 

decontamination is of great technological interest. Kitazaki and coworkers reported a method 

using vacuum chamber to produce low pressure plasma inside a narrow pipe [10,11]. Polak and 

coworkers proposed a method in which two wire electrodes were twined around the treated 

tube to produce CAP inside it [12]. A typical CAP source configuration is the plasma jet which 

can launch the stable plasma species to a separate environment [3,13]. When the desired 

application requires an all-side treatment, the multi-dimensional combination or rotation of 

plasma jets is necessary to irradiate 3D surfaces.  

In real conditions, bacterial cells persist in the form of biofilms rather than planktonic form. 

Biofilm represents a major form of surface biological contamination, where cells are 

embedded in a matrix of extracellular polymeric substances forming a complex defensive 

mechanism making bacteria within them resistant to antimicrobial treatments [14,15]. Previous 

studies investigated the efficacy of CAP against bacterial biofilms produced by diverse 

monoculture bacterial strains relevant to food and pharmaceutical industries [16-20]. The aim of 

this work was to evaluate the feasibility of a porous helium plasma jet based on a cylindrical 

gas diffuser for inactivation of bacterial biofilms as contaminants of the inner surface of a 

glass cylinder. Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative abundant 
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microorganism in the natural environment and a common opportunistic nosocomial pathogen,  

was selected as the target biofilm-forming bacteria. The effect of different discharge 

operational modes on inactivation within P. aeruginosa biofilm was investigated to identify 

the optimal approach.    

 

2 Experimental Section  

2.1 Porous plasma jet 

The porous plasma jet is based on a cylindrical metal gas diffusor (WAT025531, WATERS). 

The diameter and length of the diffusor are 12 mm and 20 mm, respectively, and its pore size 

is about 10 µm. The diffusor is attached to one end of a quartz tube, opposite to the gas inlet  

feed, as shown in Figure 1. The inner and outer diameter of the quartz tube are 3 mm and 6 

mm, respectively. The single electrode configuration was adopted in this porous plasma jet, in 

which an aluminum foil wrapped on the quartz tube served as the high voltage electrode. The 

distance between the high voltage electrode and the inlet of gas diffuser is 5 cm.  The gas 

diffusor provides a porous media for the gas flow and also enhance the local electric field 

thereby favoring the plasma jetting. Helium gas (CP grade 99.999%, BOC gas) was used as 

the working gas. The gas flow rate was regulated by a mass flow controller (KOFLOC DF-

300C).  A HV half bridge resonant inverter circuit (PVM500, INFORMATION 

UNLIMITED) with a set-up transformer delivered a sinusoidal AC high voltage to drive the 

plasma discharge. Applied voltage and discharge current were monitored by a HV probe 

(Tektronix P6015A) and a wideband current transformer (0.5-1.0W, STANGENES 

INDUSTRIES), respectively. InfiniVision DSO-2014A oscilloscope (Agilent Technologies, 

100-MHz bandwidth and 2-G Samples/s sampling rate) was used to record voltage and 

current waveforms. The optical emission spectrum from the discharge plasma was measured 

by a miniature CCD spectrometer (Exemplar LS, BWTEK). The light from the plasma 
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emission was focused by an optical fiber coupled lens and guided to the spectrometer via an 

optical fiber. 

                                                             

Figure 1. Schematic of the helium porous plasma jet 

 

2.2 Biofilm culture and analysis  

P. aeruginosa (ATCC 27853) biofilms were obtained in universal glass bottles (25 ml 

capacity with wide neck) by inoculating either 3 (for plasma mode 1 and 2) or 6 ml (for 

plasma mode 3) of sterile TSB with 100 or 200 µl of overnight culture and incubating the 

culture in rotary shaking incubator for 24 h at 37°C and 200 rpm. Prior to plasma treatment, 

the TSB containing suspended bacterial cells was removed and bottles were washed with 

sterile PBS, leaving only surface attached bacterial biofilms for further investigation. P. 

aeruginosa biofilms on the inner wall of the glass vials were easily visible as shown in Figure 

2. 
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Figure 2 P. aeruginosa biofilms cultured on the inner surface of glass vials 

 

For treatment, the jet was introduced inside the vial and plasma was ignited. P. aeruginosa 24 

h biofilms were treated by plasma discharge for 5 min with different discharge modes 

(described in section 3.1) individually. To analyse surviving population of cells following 

treatment, biofilms were disrupted by adding sterile maximum recovery diluent (MRD, 

ScharlauChemie, Spain) and sterile glass beads into the bottles, which were then vortexed for 

1 min. Surviving populations of P. aeruginosa were estimated by using drop plate technique, 

where aliquots of appropriate dilutions (10 µl) were surface plated on tryptic soy agar (TSA, 

ScharlauChemie, Spain) and incubated at 37°C for 24 h. Experiments were repeated at least 5 

times. Results are presented as surviving bacterial population in Log10 CFU/ml (limit of 

detection 2.0 Log10 CFU/ml). In addition, XTT assay (2,3-bis (2-methoxy-4-nitro-5-

sulfophenyl) [phenyl-amino)car-bonyl]-2H-tetrazolium hydroxide (XTT), 1 mg/ml, Sigma-

Aldrich, Ireland) was performed as described previously [21] to examine cells metabolic state. 

To study the independent effect of temperature, bacterial biofilms were exposed to 50°C in 

water bath for 15 min and the number of surviving cells was estimated by colony count assay. 

The effect of plasma treatments on bacterial cell morphology was also analysed by scanning 

electron microscopy (SEM). For this, P. aeruginosa biofilms were formed on membrane 

filters, which  were introduced inside the bottles prior to media inoculation. After 24 h 

incubation biofilms were either exposed to 5 min of plasma treatment or left untreated 

(controls). After treatment the filters were aseptically removed from the bottles and the area 

containing biofilms (~10x10 mm) was excised for further preparations. The biofilms were 

prepared for SEM according to the procedure described by Los et al [22].  In order to prevent 

surface charging by the electron beam, the samples were sputter-coated with gold particles 

using Emitech K575X Sputter Coating Unit resulting in a coating of 10 nm after 30 s. The 

samples were examined visually using a FEI Quanta 3D FEG Dual Beam SEM (FEI Ltd, 

Hillsboro, USA) at 5 kV. 



    

 - 6 - 

3 Results and Discussion 

3.1 Characteristics of porous plasma jet 

By varying the applied voltage amplitude and gas flow rate the porous plasma jet can be 

operated with different discharge modes in the ambient air. Figure 3 shows a series of typical 

plasma images, in which the amplitude of applied voltage was gradually raised with the fixed 

frequency at 28 kHz and gas flow rate 10.5 L/min. As a reference, Figure 3 includes a 

conventional plasma jet without the gas diffusor in the case of 6.7 L/min gas flow rate. Figure 

3 shows that the morphology of porous plasma jet discharge in the ambient air is generally 

composed of a ring-like plasma region on the diffusor surface and multiple ray-like plasma 

jets spreading into the ambient air. In the case of low applied voltage (VP 3.8 kV) as shown in 

Figure 3(a), a plasma ring which is composed of a series of localized plasma spots from each 

tiny hole of the gas diffusor arises from the diffusor surface. In tandem with increasing the 

voltage amplitude, the width of the plasma ring (indicated by L in Figure 3 (i)) increases along 

the axial direction. Meanwhile, multiple regular straight plasma jets spread out of the plasma 

ring into the ambient air, which appear like regular rays of light as shown in Figure 3(b)-(c). 

Additionally, the length of each plasma jet increases slightly in accordance with increasing 

applied voltage. In the case of higher voltage, Figure 3(e) and (f) show the transition of the 

regular straight line-like plasma plumes into the irregular swing-like mode. With a further 

voltage increase, the location of the bright spot on the diffusor surface disperses and the bright 

spots becomes larger and brighter; in addition, the ejected plasma jets swing upwards. These 

plasma images suggest that the plasma patterns can be categorized and controlled into three 

types, namely ‘no plasma plume’ mode, regular ‘ray-like plume’ mode and ‘swing-like 

plume’ mode. To visualize the helium gas flow into ambiemt air through the gas diffusor, a Z-

type schlieren imaging system was set up. Figure 4 shows schlieren images of helium gas 

flow. The gas diffusor is placed vertically downwards. The helium gas flows upwards after 

coming out of the diffusor. It looks like that helium gas wraps the diffusor. Increasing the gas 
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flow rate increases the radial distribution of helium gas. The pattern of helium gas flow into 

the ambient air through the gas diffusor looks different from the laminar or turbulent flow of 

the conventional plasma jet through a dielectric tubing which has been reported widely. With 

the plasma on (Figure 4(g) and (h)), it is hard to distinguish flow pattern of each jet from the 

diffusor, by comparison with the ray-like plasma jets shown in Figure 3. However, the gas 

flow pattern is changed and becomes irregular after plasma ignition. This may be partly due to 

helium temperature increase caused by the heating of gas diffusor. 

 

Figure 3. Photograph of porous gas diffusor, porous plasma jet operated at 10.5 L/min with the 

applied voltage VP of (a) 3.8 kV, (b) 5.8 kV, (c)6 kV, (d) 6.2 kV (e) 6.8 kV, (f) 7.2 kV, (g) 8 

kV, (h) 8.5 kV, and a conventional helium plasma jet at 6.7 L/min and 8 kV; (1) and (2) shows 

the far-away images corresponding (d) and (h). Taken by Canon PowerShot SX60 HS, 

Exposure time 1/3s, ISO 200 

 

 
Figure 4. Schlieren images of helium flow into ambient air through the gas diffusor 

without/with plasma on. Gas flow rate is indicated in each image 

 

Figure 5 shows the waveforms of applied voltage and plasma current with a fixed gas flow 

rate of 10.5 L/min, which correspond to the typical plasma modes in Figure 3.  The plasma 

current comprises displacement current and conduction current. Both currents increase with 
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the increasing applied voltage. Compared with the plasma ring mode, in the ray-like plume 

and swing-like plume modes, the plasma current shows a spike signature superimposing on 

the displacement current. In the transition from the ray-like plume to swing-like plume, the 

current spike broadens and its amplitude raises over 5mA as shown in Figure 5. By changing 

the applied voltage in each fixed gas flow rate and examining the discharge mode through 

current signature and plasma images, the parameter boundary (average applied voltage) 

between each mode is evaluated.  No plasma plume means either no discharge or plasma ring 

mode. The mapping of parameter space in Figure 6 shows that the minimal gas flow rate and 

low applied voltage favors the generation of ray-like plume mode. 

 

 

Figure 5. Applied voltage and current waveforms of the porous plasma jet of different 

discharge modes 
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Figure 6. Mapping of discharge parameter region of the porous plasma jet for different 

discharge modes 

 

 

Figure 7. Photograph of gas diffusor inside a glass vial (a), porous plasma jet induced discharge 

at (b) 1.2 L/min, (c) 1.6 L/min, (d) 2 L/min, (e) 2.4 L/min, (f) 2.8 L/min, (g) 3.2 L/min, and (h) 

4.7 L/min with the applied voltage of (Vp) 12.8 kV. (i) and (j) are close-up images showing 

filaments and glow-like region. Taken by Canon PowerShot SX60 HS, Exposure time 1/3s, ISO 

200 The grey bar in (c), (e) and (h) indicates the position of biofilm adherent on the inner surface 

of the glass vial 

 

One of the main aims of the proposed porous plasma jet is to inactivate an adherent biological 

contaminant on the inner surface of a tubular shape. To know the proper discharge parameter, 

initial studies focused on the discharge pattern of porous plasma jet induced discharge inside 

the glass vial (inner diameter 22 mm). Figure 7 shows a series of discharge images under 

different gas flow rates in the case of fixed applied voltage (Vp) 12.8 kV. In the case of low 

gas flow rate (< 2 L/min) radial discharge filaments eject from the gas diffusor and imping 

onto the glass vial surface, as shown in Figure 7(b)-(d). The discharge filaments as shown in 
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Figure 7(i) mainly jet from the bottom edge of the gas diffusor due to the low gas flow rate 

and the electric field edge effect. With a slightly increased gas flow rate, the distribution 

region of the radial discharge filaments gradually expands upwards along the gas diffusor. 

Upon further increase of the gas flow rate (Figure 7(e)-(f)), the entire lower part of the glass 

vial under the gas diffusor is lighted by the discharge channel and two plasma regions are 

observed. The upper region consists of uniformly distributed radial plasma jets around the gas 

diffusor, which brush the glass vial inner surface. The seemingly uniform lower plasma region 

comprises multiple glow-like surface discharge regions along the glass vial surface as shown 

in Figure 7(j). In the case of higher gas flow rate (> 2.8 L/min), two different color plasma 

regions can be clearly seen as shown in Figure 7 (g). This is due to the change of gas 

composition from air to helium inside the glass vial. The lower plasma region is surface 

helium gas discharge; while the upper part is volume discharge in air which contains reactive 

nitrogen and oxygen species. When the gas flow rate is further increased both plasma regions 

are pink which exhibits helium dominated discharges (helium-filled discharge tube) as shown 

in Figure 7 (h). Overall, the porous plasma jet-induced discharge inside the glass cylinder has 

three typical modes, which are filament discharge mode (Figure 7 (b)- (d)), double region 

mode (Figure 7 (e)- (f))) and double region helium dominated mode (Figure 7(g)- (h)). These 

modes are named as mode 1, 2 and 3, respectively. 

The different discharge modes inside the glass vial may be tuned by varying the applied 

voltage. Discharge parameter region for porous plasma jet-induced discharge mode types 

inside the glass vial is mapped in Figure 8. In the case of high gas flow rate, mode 1 and 2 

easily transit into mode 3. The apparent color difference from plasma emission suggests the 

different optical emission spectrum (OES) from different discharge modes. In the case of the 

low gas flow rate, the discharge filaments show the similar color as the air corona discharge. 

With the increasing gas flow rate, the plasma region color gradually changes to pink through 

the transition of violet. Figure 9(a) shows OES from different discharge modes which 
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corresponds to Figure 7. In mode 2 and 3, the plasma emission was collected in the lower 

plasma region. Major identified spectral bands are from molecular nitrogen second positive 

systems band , first negative systems band, hydroxyl band of 

, atomic helium (He I) and atomic oxygen (O I). Figure 9(b) shows the change of 

OES intensities for selected bands of , He I and O I with the gas flow rate. It is 

found that with the increasing helium flow rate the spectral intensities of  and O I 

firstly increase and then decease with the increasing of He I band intensity. The intensities of 

 and O I bands reach maximum in the medium flow rate region (mode 2 discharge 

region). This is due to the increased air ionization region with the addition of helium gas 

compared with the smaller discharge region in mode 1 discharge. 

 

Figure 8. Mapping of discharge parameter region for porous plasma jet-induced different 

discharge modes inside the glass vial. 
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(a) 

 

(b) 

Figure 9. (a) OES of porous plasma jet-induced different discharge modes inside the glass 

vial, (b) change of OES intensities of , He I and O I bands with the gas flow rate 

 

3.2 Biofilm inactivation  

The inactivation efficacy of 5 min of plasma treatments with three discharge modes was 

evaluated against P. aeruginosa 24 h biofilms formed on the inner surface of the glass vials. 

Control biofilms were exposed to corresponding helium gas flow treatment without discharge. 

In each mode the applied voltage (Vp) was fixed at about 12.8 kV, the gas flow rate was set to 

1.6 L/min, 2.8 L/min and 4.7 L/min as depicted in Figure 7 (c), (e) and (h), respectively. In 
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each mode, the gas diffuser position was adjusted with respect to the biofilm position to 

ensure that the biofilm was treated in the discharge plasma region.  

 

Figure 10. Surviving populations of P. aeruginosa 24 h biofilm after 5 min plasma treatments 

with discharge mode 1, 2 and 3, estimated by colony count assay 

 

 
Figure 11. Surviving populations of P. aeruginosa 24 h biofilm after 5 min plasma treatments 

with discharge mode 2, estimated by metabolic activity assay (XTT) and colony count assay. 

 

Reductions of P. aeruginosa 24 h biofilms due to plasma treatment are presented in Figure 9. 

Initial bacterial cell populations attached on the inner surface of the vial after 24 h of 

incubation reached 8.4 Log10 CFU/ml (n=13). These numbers decreased but insignificantly 

due to the action of helium gas flow without ignition of plasma. Discharge plasma treatments 

for 5 min with mode 1 and 3 considerably reduced bacterial numbers by 2.4 and 2.5 Log10 

CFU/ml, respectively, by comparison to corresponding gas control. Plasma treatment with 

mode 2 was the most effective, reducing bacterial cells within the biofilm by 4.5 Log10 

CFU/ml. This may be due to higher yield of reactive nitrogen and oxygen species, which are 
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reflected from the higher spectral intensities of  and O I. In addition, ozone which 

is a prominent long-living reactive species generated by most atmospheric pressure plasma 

sources operated in ambient air might also play a role for the biofilm inactivation effect. The 

ozone concentration in effluents of plasma jets in ambient air has been mostly measured with 

helium (or Ar) and oxygen gas admixture [23-25]. It is reported that with the oxygen ratio up to 

10%, the volume-averaged ozone concentration is in the order of 1015cm-3, which is from a 

few tens of ppm to a few hundreds of ppm. Compared with the oxygen admixture helium 

plasma jet, the porous plasma jet is operated with pure helium, consequently resulting in a 

lower ozone concentration. Atomic oxygen is a precursor for ozone formation. Therefore, it 

may be suggested that the mode 2 has the highest ozone yield due to its highest spectral 

intensity of O I. Excessive concentrations of RONS can be damaging to cells if present for too 

long and/or in too high a concentration[3]. Further, to confirm the viablility of cells within the 

biofilms, XTT assay was performed to study metabolic activity of P. aeruginosa following 

plasma exposure. As shown in Figure 10, the percentage of metabolic capacity of cells within 

biofilms considerably decreased by 40 % after plasma treatment as compared to the 

corresponding gas control. XTT assay demonstrated slightly higher cell viability than 

estimated by the colony count assay, where culturability of cells was reduced by a half. It has 

been previously reported by our group and by other co-workers that plasma can result in 

bacterial cells to enter viable but non-culturable state (VBNC) [26-28], a survival state in which 

bacterial cells are no longer capable to form colonies on media but still able to perform 

respiration, gene transcription and protein synthesis [29].  The glass vial wall temperature was 

measured by an infrared thermometer (Fluke 561). The temperature was measured at different 

angles around the axis of the glass vial and averaged to the value. The highest wall 

temperature increased to about 47°C from the initial 22°C after mode 2 discharge treatment, 

while the wall temperature raised to about 40°C and 35°C after mode 3 and mode 1 plasma 

treatments, respectively. Additional experiments were conducted in order to assess the effect 
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of temperature on viability of P. aeruginosa biofilms. On average (n=3) 9.0 (± 0.1) and 8.6 (± 

0.5) Log10 CFU/ml were recovered for the controls and after heat treatment, respectively, with 

0.4 Log10 CFU/ml reduction observed, confirming that this temperature was not sufficient to 

inactivate the cells. Similar effect of elevated temperatures on P. aeruginosa biofilms 

response was reported by O’Toole et al [30] . In addition, the properties of medical device 

materials or industrial pipework or tubing are usually such that temperatures of up to 50 C do 

not cause adverse effects. 

 

Figure 12. SEM images of P. aeruginosa 24 h biofilms: untreated control (left), control 

biofilms subjected to 5 min helium gas flow corresponding to mode 1, 2 and 3 without plasma 

ignition (top panel) and biofilms treated with 5 min plasma discharge with mode 1, 2 and 3 

(bottom panel). White arrows indicate biofilm matrix disintegration and holes on the surface 

of cells. 

 

SEM analysis was performed to examine the effects of porous plasma jet treatment on P. 

aeruginosa biofilm morphology. The cells of the untreated control biofilm were intact and 

interconnected with each other by the biofilm matrix components (Figure 11, left image). The 

damage of bacterial cells, i.e., presence of holes on the wall of some of the bacterial cells after 

exposure to mode 1 and 3 and destruction of the biofilm matrix following exposure to mode 1 

and 2 (white arrows) were observed (Figure 11, bottom panel). In comparison, complete 

disintegration of cells and biofilm matrix was earlier reported where plasma generated using 
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high voltage dielectric barrier discharge system converted healthy P. aeruginosa biofilms into 

a ‘sponge-like,’ irregularly shaped structures [26] . In the present work, the difference between 

destructive effects on the biofilm matrix of the three discharge modes was insignificant, as the 

majority of cells visually remained intact. Similar findings were reported by Xu et al [17] 

where complete disintegration or removal of Staphylococcus cells was not clearly observed by 

SEM. On one hand, in this circumstance, when high inactivation levels of biofilms was 

associated without obvious disintegration of cell and matrix components may prove useful, as 

part of a contamination control strategy, where confirmed inactivation is necessary prior to 

biofilm removal, to mitigate cross contamination or dislodgement of viable cells to a 

subsequent location. On the other hand, further research is required in order to elucidate 

inactivation pathways, to characterize matrix exo-polymers before and after plasma treatment 

and to describe biochemical damages to biofilm matrix components. Furthermore, in this 

work a small fraction of extracellular polymeric substances were still visible within inner 

layers of cells after the plasma treatment generated by mode 2, which could indicate that 

plasma treatment had higher impacts on the outer layers of cells, leaving extracellular 

components as well as cells in the inner layers intact. Therefore, system optimization is still 

required to achieve efficient inner surface sterilization and decontamination for the specific 

biofilm risks within the medical device, food and pharmaceutical manufacturing sectors. 

4 Conclusion 

We present a helium porous plasma jet based on a cylindrical metal gas diffuser with the pore 

size of 10 µm. Porous plasma jets ignited in the ambient air and inside a glass vial have been 

investigated. By varying the applied voltage and gas flow rate, porous plasma jet can operate 

with three typical discharge patterns in the ambient air, namely localized plasma ring, laminar 

plume and turbulent plume. When it is placed inside a glass vial, the porous plasma jet 

induces three different discharge modes, which are filament discharge mode, double region 

mode and double region helium dominated mode. The inactivation effect of P. aeruginosa 
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biofilm adherent on the inner surface of the glass vial by the porous plasma jet treatment was 

evaluated, showing that porous plasma jet induced air surface discharge significantly reduces 

bacterial cells within the biofilm by greater than 4 Log10 CFU/ml in comparison with cell 

reductions of 2.4 and 2.5 Log10 CFU/ml by plasma treatments with filament discharge mode 

and helium dominated discharge mode. The porous plasma jet presented could provide an 

efficient alternative for the inner surface sterilization and decontamination for relevant 

sectors, such as medical device, food and pharmaceutical manufacturing industries.  
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