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Abstract 21 

Endocrine disruptors are a class of contaminants found in water and process effluents at low 22 

concentrations. They are of concern due to their high estrogenic potency. Their presence in the 23 

environment has led to the search for effective techniques for their removal in wastewater. For 24 

this purpose, an atmospheric air plasma reactor was employed for the study of the degradation of 25 

three endocrine disruptor chemicals (EDC) namely; bisphenol A (BPA), estrone (E1) and 17β-26 

estradiol (E2) within a model dairy effluent. Identification of the plasma induced active species 27 

both in the gas and liquid phases were performed. Also studied was the influence of an inhibitor, 28 

namely tertiary butanol, on the degradation of the EDCs. The results demonstrate that air plasma 29 

could successfully degrade the tested EDCs, achieving efficacies of 93% (k=0.189 min-1) for 30 

BPA, 83% (k=0.132 min-1) for E1 and 86% (k=0.149 min-1) for E2, with the process following 31 

first order kinetics. The removal efficacy was reduced in the presence of a radical scavenger 32 

confirming the key role of oxygen radicals such as .OH in the degradation process. The 33 

intermediate and final products generated in the degradation process were identified using 34 

UHPLC-MS and LC-MS. Based on the intermediates identified a proposed degradation pathway 35 

is presented. 36 

Keywords: Atmospheric air plasma, endocrine disruptors, degradation. 37 

 38 

 39 

 40 
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1. Introduction 41 

Endocrine disrupting compounds (EDCs) are organic chemicals which are either excreted 42 

endogenously from humans and animals or are derived from uses in clinical practices [1]. An 43 

EDC is defined as an exogenous agent that alters the function(s) of the endocrine system, leading 44 

to adverse health effects in organisms [2]. Endocrine disruptors vary widely in their structure and 45 

have numerous uses in everyday items including; electrical appliances, clothing, furniture and 46 

cosmetics. They can also include pesticides (e.g., DDE, dicofol), plastics (bisphenol A, 47 

phthalates), food preservatives (UV-filters), hormonal agents and phytoestrogens. The presence 48 

of EDCs has been widely detected in surface waters, process effluents and sewage sludge 49 

treatment plants (STP). Hartmann et al.[3] has reported that the main source of animal-derived 50 

estrogens (60–70%) in the human diet is milk and dairy products. Estrogen content is mostly 51 

distributed in the fat phase because of its solubility. Food processing operations do not typically 52 

affect the hormone patterns. Animal fecal and urinary excretions may also result in the 53 

occurrence of estrogens in dairy effluents [4]. Recently, free and conjugated forms of estrogens 54 

including 17β-estradiol and estrone have been detected in milk and milk products [3]. 55 

Inappropriate disposal, leaching and poor removal by conventional wastewater treatment 56 

processes (WWTP) are identified areas of concern. Various studies have reported on the 57 

occurrence of these emerging contaminants, including those from dairy and meat process 58 

effluents [5, 6].  59 

When effluents containing chemicals are used for agricultural crops they can be 60 

transported to surface or ground waters. Colbron et al.[7] reported that EDCs are associated with 61 

reproductive and sexual abnormalities in animals and wildlife. The effects of EDCs include; fish 62 

feminization, changes in reproduction and behavior, decrease in number of spermatozoids, 63 
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increase in breast cancer rates and an increase of certain anomalies in the human reproductive 64 

system [8-10]. With particular concern to human health, it is paramount that these chemicals are 65 

effectively treated before entering drinking water supplies, however for such hydrophobic 66 

contaminants, conventional treatment may be ineffective.  Biological processes have been used 67 

for their treatment however, such chemicals have been found to be resistant and/or toxic to 68 

microbes and consequently they cannot be readily treated by biological processes [11][10]. 69 

Consequently, such treatment processes may not reach the required regulatory limits for these 70 

contaminants. It is reported that the regulatory limits for all EDCs is <0.0001 mg/L [12]. 71 

Chlorination of EDCs and its chlorinated products have been reported to elicit estrogenic activity 72 

[13]. Moreover, chlorination leads to the production of disinfection by-products (DBPs) that may 73 

be residually present in the treated effluent and pose a potential risk to consumers. Several 74 

authors had reported on the removal of these chemicals by advanced oxidation process (AOPs) 75 

such as ozonation [14], UV/H2O2 [15] and TiO2 photocatalysis [16]. However, in the case of the 76 

later, an additional step for the removal of the reagents used and incomplete mineralization might 77 

increase the operational costs. As a result, there is a need to find a sustainable, effective and 78 

economical process for degrading and removing EDCs from effluents. 79 

Recently, dielectric barrier discharge non-thermal plasma (DBD-NTP) oxidation has 80 

emerged as a promising technology for eliminating organic micropollutants with high removal 81 

rates and environmental compatibility [17] . Plasma is a partially or wholly ionized state which 82 

consists of positively and negatively charged ions, free electrons, free radicals and intermediate 83 

highly reactive species, atoms, molecules and UV photons [18, 19]. Plasma can be generated 84 

either in the gas or liquid phase simultaneously [20]. The electron impact dissociation of oxygen 85 

and water molecules leads to generation of numerous active species such as O•, •OH, N•, HO2
•, 86 
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N2*, N*, OH−, O2
−, O−, O2

+, N2
+, N+, O+, and O3,

 H2O2 following subsequent chemical reactions 87 

[21, 22]. These species react with chemicals causing oxidation. Moreover, pollutant degradation 88 

could be initiated by UV light or shock waves. Recently, several authors have reported on the 89 

potential of DBD plasma technology for the removal of toxic chemicals from wastewaters such 90 

as pollutant dyes [23], pesticides [24, 25], mycotoxins [26], volatile organic compounds [27, 28] 91 

and antibiotics [29]. Recently Gao et al.,[30] reported on the degradation of estrogenic endocrine 92 

disruptors by DBD plasma technology. A DBD plasma source combined with a Pt–TiO2 93 

photocatalyst was developed by Chen et al.[31]  which demonstrated effective degradation of 94 

17β-estradiol. The application of DBD plasma to the treatment of bisphenol A and tributylin was 95 

studied by Hijosa-Valsero et al. [32], demonstrating that plasma can be an alternative AOP for 96 

the removal of persistent and toxic pollutants from water and wastewater. Abdelmalek and co-97 

authors [33] used a gliding arc discharge plasma reactor to study the degradation of the 98 

endocrine disruptor bisphenol A with ferrous ions. They found that both hydroxyl radicals and 99 

hydrogen peroxide are responsible for the degradation effect and the addition of ferrous ions (II) 100 

allowed for greater mineralization via the production of additional hydroxyl radicals, according 101 

to the Fenton reaction. 102 

The selection of an oxidation process may depend upon many factors such as the degree 103 

of degradation, the by-products formed in the process, the total cost, safety and reliability of the 104 

process [34]. Most studies to date on pollutant degradation using plasma have been carried out in 105 

the absence of competing organic matter. In this study, a novel high voltage and low-frequency 106 

DBD prototype reactor was employed which utilized atmospheric air as the inducer gas for the 107 

degradation of EDCs in a model dairy effluent. Furthermore, identification of degraded products 108 

and possible mechanisms of EDC degradation in the presence of dairy effluent is also studied. 109 
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2. Materials and Methods 110 

2.1. Materials 111 

Analytical grade standards of Bisphenol A (BPA), Estrone (E1) and 17β-Estradiol (E2) of purity 112 

(>96 %), HPLC grade methanol, acetonitrile, ethyl acetate, ammonium hydroxide solution (32%) 113 

puriss p.a. (NH4OH), acetic acid (AcOH), formic acid (HCOOH), sodium acetate (NaOAc), 114 

ammonium formate, tert-butyl alcohol(TBA) and LC-MS grade water were obtained from 115 

Sigma-Aldrich (Ireland).  116 

2.2. Sample Preparation 117 

A model dairy effluent was prepared by dissolving 4 g of skim milk powder, 0.4 g of milk fat 118 

and 0.01% of NaOH per liter of distilled water [35]. The model effluent was used to overcome 119 

inherent variability in commercial effluent composition. Large particulate matter was removed 120 

by filtering the model effluent through a Whatman (UK) filter paper and a 0.45 μm membrane 121 

(Millipore). Each endocrine disruptor (BPA, E1 and E2) was dissolved in acetonitrile to obtain a 122 

standard stock solution with the concentration 100mg/L. The prepared stock solution was diluted 123 

and spiked with the filtered model effluent to obtain a concentration of 2 mg/L.  124 

2.3. Experimental procedure  125 

2.3.1 Atmospheric air plasma treatment 126 

The experimental set-up employed for this work is shown in Fig.1. The experimental apparatus 127 

consisted of two aluminium plate electrodes of circular geometry (outer diameter = 158 mm) 128 

which were covered with dielectric materials of 2 mm thickness for ground electrode and 10mm 129 

thick acrylic sheet for the high voltage electrode. For each experiment, 20 mL of dairy effluent 130 

spiked with EDC’s (at an initial concentration of 2 mg/L) was added to petri dish and placed 131 
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within a polypropylene (PP) container of dimensions 310 mm × 230 mm × 22 mm which acts as 132 

a closed reactor and as an additional dielectric barrier. This container was further sealed inside a 133 

high barrier Cryovac BB3050 film in order to prevent loss of reactive species generated during 134 

plasma treatment. The voltage was delivered through a step-up transformer (Phenix 135 

Technologies, Inc., USA) whose primary winding received an input at 230 V, 50 Hz and 136 

delivered a high voltage output in the range 0-120 kVRMS. Plasma treatment was performed at 137 

varying voltage (60-80 kV) and treatment durations (0-15 min). Treatment of samples was 138 

carried out in duplicate at ambient temperature (16-18 ℃). After processing, containers were 139 

stored at room temperature of 16-18 ℃ for 24 h to ensure that the generated and contained 140 

reactive species reacted with the samples. Ozone concentrations were measured using short-term 141 

ozone detection tubes obtained from Gastec (Product No. 18M, Gastec, Japan). These tubes 142 

contain a reagent which changes color after coming into contact with the specified gas and are 143 

calibrated for specific sampling volumes. Ozone concentrations were measured immediately 144 

following treatment. The emission spectra of the discharge were acquired with a computer 145 

controlled Ocean Optics spectrometer (HR2000+), to which the light from the plasma is coupled 146 

via an optical fibre [36]. Further details regarding gas measurement methodology for ozone and 147 

the optical emission spectroscopy experiments can be found elsewhere [37]. The conductivity of 148 

the effluent was measured using a conductivity meter (model CON-BTA, Vernier Software & 149 

Technology Inc.) at ambient temperature (16℃) and turbidity was measured by using a Hach 150 

2100 P, ISO USA turbidity meter. The pH of all the samples were measured after 24h storage 151 

using a calibrated glass electrode ORION pH meter (model 420A, Thermo Fisher Scientific Inc.) 152 

at ambient temperature (16 ℃). Total organic carbon (TOC) of the dairy effluent was measured 153 
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using a digestion unit DRB 200, Hach, USA and double beam UV-visible spectrophotometer 154 

Hach, DR 2400, USA. 155 

2.4. Sample Extraction  156 

The plasma treated model effluents were firstly extracted by solid-phase extraction (SPE). The 157 

extraction was carried out using a solid phase cartridge (Supelclean™-ENVI™-18), previously 158 

preconditioned by flushing with acetonitrile followed by methanol (3 × 3 mL). In succession, the 159 

cartridges were washed with water (3 × mL) and then the sample was passed through the 160 

cartridges at a flow rate of 10 mL/min with the aid of a vacuum. These cartridges were dried and 161 

elution was performed with methanol (3 ×3 mL). The methanol extracts were evaporated to 162 

dryness under nitrogen stream and re-suspended in 1.5 mL of acetonitrile. 163 

2.5. Analytical Methods 164 

Standard curves for the EDC’s were established using standard solutions ranging between 0.05 165 

mg/L and 5 mg/L using acetonitrile as solvent. The linear correlation coefficients (r2) were 166 

0.997, 0.998 and 0.997 for BPA, E1 and E2 respectively. The quantification of EDCs was 167 

determined using a HPLC system which consisted of a Waters 600 Satellite connected to a 168 

Waters 996 PDA detector and Waters auto-sampler (Waters, Ireland). Separation was carried out 169 

on a Phenomenex Gemini-Nx C18 column (Phenomenex, U.K.), 5 μm particle size (250 mm × 170 

4.6 mm). The mobile phase consisted of 70% acetonitrile and 30% water, and the flow rate was 171 

set at 0.6 mL/min. The detector wavelength was set at 210-400 nm. Chromatographic data was 172 

collected and processed using Empower2 software (Waters, Ireland). The SPE recoveries 173 

obtained in the present study were found to be 97% for BPA, 92% for E1 and 94% E2 174 

respectively. 175 
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The degradants were analyzed using an Acquity UHPLC coupled to a Quattro Premier XE triple 176 

quadrupole instrument operating in electrospray ionization (ESI) mode (all from Waters, 177 

Milford, MA, USA). Separation was carried out in an Acquity BEH C8 analytical column (2.1 x 178 

50 mm, particle size 1.7 µm) maintained at 30ºC. A binary gradient system was used to separate 179 

analytes comprising of mobile phase A, 5mM 0.24 mM ammonium formate in MeOH /H2O 180 

(80:20, v/v) and mobile phase B, 5 mM of ammonium formate in MeOH. The gradient profile 181 

was linear from 80% A to 30% A over 5 min and 0% A at 6.5 min then 2 min at 0% A followed 182 

by 2 min for re-equilibration at 80% A. The UHPLC-MS system was controlled by MassLynx™ 183 

software and data was processed using TargetLynx™ software (all from Waters). A Full scan 184 

mode was used to acquire MS spectra of the intermediates with a scan range of m/z 80–500. 185 

Transformation products were also identified using LC–MS. The organic acids in the dairy 186 

effluent were quantified by an ion chromatograph (ICS 3000, Dionex, USA) at 30 °C. 187 

2.6. Determination of nitrite, nitrate and hydrogen peroxide 188 

Nitrite concentrations in the effluent were quantified by employing the Griess reagent (N-(1-189 

naphthyl) ethylenediamine dihydrochloride) spectrophotometric method [38]. This was 190 

accomplished by the addition of 100 μl sample, trichloroacetic acid and Griess reagent. The 191 

reaction mixture was incubated at 37 °C for 30 min, after which the absorbance was determined 192 

at 548 nm using a UV–visible spectrophotometer (Shimadzu UV-1800, Shimadzu Scientific 193 

Instruments Kyoto, Japan). A calibration curve was prepared using a standard solution of sodium 194 

nitrite. Nitrate concentrations were determined according to the procedure of Lu et al.[39]. 195 

Hydrogen peroxide concentrations were determined according to the procedure of Bohem et 196 

al.,[40].  197 
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2.7. Degradation kinetic modelling study and data analysis  198 

The removal efficiencies (η) of EDC’s were calculated according to the following equation: 199 

 
0

0

100
C C

C


 ŋ  (1) 

Where η is removal efficiency of each EDC, 𝐶 is the concentration of EDCs at time ‘t’ and 𝐶0 200 

the initial concentration of the EDC. Plasma degradation of EDCs in aqueous media followed 201 

first order kinetics [25, 41] as described in the following equation 202 

 0 exp( )ktC C   (2) 

Where 𝒌 is the degradation rate constant (min-1) of the reaction and 𝒕 is the treatment time (min) 203 

and energy yield was calculated according to the procedure of Jiang et al.[42]. 204 

 3. Results and discussion 205 

3.1. Current-Voltage characteristic of plasma source 206 

Fig.2. shows the typical current-voltage waveform for the discharges within the reactor at the 207 

applied voltages. It can be observed that the applied voltage was sinusoidal and total current is 208 

the combination of displacement current and several current pulses associated with filamentary 209 

micro-discharges. A stable discharge was found at the high voltages employed even at the large 210 

discharge gap of 2.2 cm. The dielectric used acts a charge trapping agent and also prevents 211 

arcing [43]. Further details regarding the electrical characteristics of the discharge using 212 

capacitance-voltage Lissajous patterns can be found in a previous publication [44].  213 

3.2. Evaluation of removal efficiency and degradation kinetics 214 

The endocrine disruptors, namely estrone (E1), 17β-estradiol (E2) and bisphenol A (BPA) were 215 

identified using chromatographic retention time data. The EDCs were shown to degrade 216 
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significantly by >25% and >42% following plasma treatment times of 5 and 15 min respectively, 217 

for all applied voltages (Fig.3.). A significant increase in removal efficiencies was also achieved 218 

with increases in applied voltage from 60 kV to 80 kV. The maximum removal efficiencies 219 

achieved were 83.57±0.45%, 86.52±0.75 % and 93.90±0.92% for E1, E2 and BPA respectively, 220 

after 80 kV for 15 min of plasma treatment. Similar results were observed for the degradation of 221 

methylene blue and pesticides by non-thermal plasma [23, 25]. In order to confirm the effect of 222 

the plasma process parameters and systematic analysis for removal of contaminants, the 223 

degradation was modelled using a first order kinetic model Fig.4. It is evident from Table 1 that 224 

the first order kinetic model is in reasonable agreement with the experimental data, with 225 

correlation coefficients >0.90. Increases in applied voltage from 60 kV to 80 kV, resulted in an 226 

increase in the rate constant values (k) from 0.045 to 0.189 min-1 for all three EDCs. 227 

Atmospheric air plasma are known to produce a variety of excited and active species, such as 228 

O•, •OH, N•, HO2
•, N2*, N*, OH−, O2

−, O−, O2
+, N2

+, N+, and O+ [43] in the gas phase or at the 229 

liquid interface, which can dissolve into solutions leading to contaminant oxidation. The active 230 

species generated not only react with the target contaminant but also with the degraded products. 231 

During plasma treatment EDCs are oxidized through an attack by the active species such as the 232 

ozone molecule, the hydroxyl radical and hydrogen peroxide. Ozone reacts selectively with 233 

certain functional groups, whereas an indiscriminate reaction occurs with the hydroxyl radical 234 

[45]. The degradation of a contaminant by plasma depends on many factors such as sample 235 

concentration, sample volume, electrode gap, sample chemistry, reactor type, discharge gas and 236 

sample viscosity. The electrode gap is an important plasma process parameter for DBDs. In the 237 

present study, a stable discharge was achieved at the very high voltages employed facilitating a 238 

large discharge gap of 2.2 cm. The physical processes occurring during air breakdown and the 239 
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micro-discharges formed in the gap govern the resultant chemistry [46]. This novel plasma 240 

design of high voltage, low frequency and large gap atmospheric air DBD has demonstrated 241 

rapid treatment efficacies for a range of processes [12,14,15,16].  242 

The chemical structure of the contaminant is the dominant factor for the target’s persistence as it 243 

influences the chemical stability during the degradation reaction [47]. The degradation behavior 244 

of E1, E2 are found to be similar due to their comparable chemical structure, whereas a slight 245 

difference was observed for BPA. The high degradation rates obtained are due to the effective 246 

generation of large quantities of active species during the discharge coupled with the retention of 247 

the species within the confines of the reactor post discharge. Similar reports were observed for 248 

ozonation of phenolic pharmaceutical compounds by Boyd et al [48]. The plasma active species 249 

specifically attack the high electron density carbon (C=C) double bond, activated aromatic acids 250 

and non-protonated amines. This is due to the donation of an electron by the hydroxyl group to 251 

the benzene ring which activates the aromatic system and facilitates oxidative attack by ozone 252 

[48]. In our study, a closed reactor setup was employed by placing the samples in the 253 

polypropylene (PP) container. These reactors were stored for 24 h to ensure that the generated 254 

and contained reactive species reacted with the samples, post plasma treatment. The plasma 255 

species also diffuse to regions outside of the discharge zone within the reactor. The degradation 256 

of EDCs was found to be greater inside the discharge zone, which is due to the presence of all 257 

the reactive species (electrons, ions, free radicals, etc.) when compared to the remote regions 258 

where meta-stables are only found. Nevertheless, EDC degradation was found to occur with 259 

exposure to either a direct discharge or the retained afterglow [36].   260 

 A brief comparison of the different methods of EDC removal is summarized in Table 2. 261 

It is observed that 70% of E1 can be removed by chlorination for a contact time of 15 min. 262 
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However, the chlorination process introduces the risk of the generation of disinfection by-263 

products [49]. More than 80% of E2 could be removed via the photo-Fenton process, however 264 

the additional step required for the removal of the reagents employed would increase the 265 

operational costs [50]. Zhang et al. [51] and Ohko et al.[16] demonstrated that photo-catalysis 266 

with TiO2 to be efficient in the elimination of E1 and E2. However, these approaches require 267 

significant contact times to achieve satisfactory removals. Ozonation has been reported as an 268 

efficient oxidation process for the removal of EDCs (>90%), however the process can also 269 

generate toxic products [52, 53]. Plasma can be an alternative process which can be used for 270 

removal of pollutants. The advantage of plasma over ozone is that, plasma contains over 100 271 

reactive species in humid air (including ozone), many of which are more active.  Gao et al. [30] 272 

achieved 100 % removal of E2 using a DBD plasma reactor, however an increase in 273 

concentration to 900 µg/L reduced the removal to 64% after 30 min of plasma treatment. In 274 

another study, a synergetic system which combined a DBD plasma discharge and Pt-TiO2 275 

achieved 99.8% efficiency with 72% achieved with the DBD reactor alone for a treatment time 276 

of 30 min and an initial concentration of 400 µg/L [31]. Furthermore, a 96%  degradation of 277 

BPA, at an initial concentration of 1 mg/L, was found for a DBD reactor using helium as the 278 

carrier gas [32].  279 

 The removal efficiency may be characterised by the amount of EDC degraded per unit of 280 

energy (yield). The energy yield depends on the type of discharge reactor, initial concentration 281 

and nature of the compound [41]. The energy yield of EDC degradation was calculated and the 282 

results were shown in Fig.5. With increasing applied voltage from 60 kV to 70 kV, the energy 283 

yield decreased from 1295×10-6 to 1249×10-6 g/kW h for BPA, 777×10-6 to 737×10-6 g/kW h for 284 

E1, 1006×10-6 to  810×10-6 g/kW h for E2 and 805×10-6 to 652×10-6 g/kW h for BPA/TBA, 285 
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respectively. Comparing with previous studies on EDC degradation using DBD reactors [30, 31] 286 

our design was found to have slightly low energy yield values. This might be due to a high initial 287 

concentration of the solution, the volume of samples treated and the presence of competing 288 

organic matter as reactive sinks. The degradation of diuron in aqueous solution by DBD plasma, 289 

by Feng et al.[54], reported high energy yield values of 0.16 g/kW h. Similarly, Reddy et al.[41] 290 

also reported a high energy yield values of 0.298 g/kW h for the mineralization of endosulfan in 291 

an aqueous medium by DBD plasma. AOP technologies which employ chemical addition are 292 

typically high energy consumption and environmentally hazardous [42]. For example, Jantawasu 293 

et al. [55] obtained a 78% decomposition of methyl orange by nanocrystalline mesoporous-294 

assembled TiO2 photocatalysis, after a 4 h treatment. The energy cost and treatment time were 295 

rather high when compared to non-thermal plasma. As compared to other common AOPs, such 296 

as UV/H2O2 and ozone/H2O2 the primary benefit of DBD plasma is the ability to generate UV 297 

light and oxidizing species, ozone, hydroxyl radicals, etc. without chemical addition or the use of 298 

UV lamp [42].  299 

3.3. The role of active species 300 

The plasma discharge was characterized using optical emission spectroscopy (OES). From Fig.6, 301 

it can be seen that small peaks of •OH were recorded at 295-300 nm. Emissions from N2 and 302 

excited species of +

2N  exhibited distinct peaks in the UV region [56]. A high-intensity 303 

metastable singlet oxygen (O) was recorded at around 750 and 780nm which is similar to 304 

reported studies for DBDs operating at atmospheric pressures in air [57].  As expected the 305 

atmospheric discharge is an effective source of reactive nitrogen and oxygen species (RNOS). 306 

Plasma species such as superoxides, hydroxyl radicals, and peroxynitrites are short lived 307 

whereas, hydrogen peroxide is relatively more stable even up to 24 hours. Such active species 308 
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play an important role in the degradation of EDC’s. Ozone is a widely applied strong oxidizing 309 

agent for the treatment of wastewater. Misra et al.[20] reported that ozone is one the most stable 310 

active species generated in DBD with a high oxidation potential of 2.02V. The ozone reaction 311 

with EDCs takes place through molecular and radical reactions. The ozone concentrations 312 

measured after 10 min of plasma treatment were found to be 1600, 2400 and 3100 ppm (within ± 313 

10% errors) for applied voltages of 60, 70, and 80 kV respectively. The mechanism of ozone 314 

degradation of contaminants can be either by direct oxidation or an indirect one, by converting 315 

into hydroxyl radicals. The direct reaction is predominant in acidic environments while at high 316 

pH indirect oxidation takes place.  However, both reactions can occur simultaneously and ozone 317 

may react with unsaturated functional groups present in organic molecules. Electron dissociation 318 

of water molecules leads to the formation of ⋅OH which further forms H2O2 in both air and water. 319 

In order to study the function of hydroxyl radicals (•OH) during DBD plasma treatment 320 

tertiary butanol (4% v/v), a hydroxyl radical scavenger was added to the BPA solution with the 321 

degradation efficiency reported as a function of treatment time and applied voltage (see Fig.4). 322 

The data shows that the process efficiency was reduced by ~20% with the addition. Similar 323 

observations were reported by Gao et al.,[30] and Mehrvar et al., [58]. The addition of the 324 

radical scavenger also resulted in a decrease in the rate constant from 0.189 min-1 to 0.098 min-1 325 

at 80 kV. The results infer that tertiary butanol competes with BPA to consume the generated 326 

hydroxyl radicals and can restrain the interaction between •OH and the BPA molecule.  327 

Fig.7(a) shows the TOC removal efficiencies of all three EDC’s as a function of 328 

treatment time. The initial concentration of EDC spiked dairy effluent corresponds to TOC 329 

concentrations of 1125.44, 1245.9 and 1243.7 mg/L for BPA, E1 and E2 respectively. As shown, 330 

the TOC removal efficiencies of all three EDC’s, linearly increased with time, reaching a 331 
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maximum removal of 21.5%, 17.8% and 22.3% for BPA, E1 and E2 respectively, after 15 min of 332 

plasma treated at 80 kV. Interestingly, all the tested EDCs were effectively degraded more than 333 

80 % within 15 min however, the TOC removal efficiencies achieved were not more than 30%, 334 

which can be attributed to the formation of low-molecular weight compounds such as oxalic acid 335 

and formic acid before being completely mineralized [59]. 336 

Fig 7(b) shows the evolution of pH as a function of treatment time and applied voltage 337 

for the treated samples, with pH values changing from 6.95 to 5.41. The decrease in pH values is 338 

due to the formation of nitric acid, nitrous acids and intermediate organic acids (oxalic and 339 

formic acid) that originate from the nitrogen in the air and the degraded EDCs. It was known that 340 

these organic acids have large acidic dissociation constants, which lead to significant reductions 341 

in solution pH [29].  The conductivity of the model effluent with EDCs is shown in Fig.7 (c). It 342 

was observed that the conductivity increased with increases in treatment time and applied 343 

voltage due to the generation of ionic species. The conductivity of the control sample was 750 344 

μS/cm, which increased to 1660 μS/cm after plasma treatment for 15 min at 80 kV. An increase 345 

in the conductivity of brewery effluent and dye solution with plasma treatment was demonstrated 346 

by previous authors [60, 61]. The increased ionic strength will reduce ozone solubility in the 347 

bulk solution because of the salting-out effect, which would also likely affect the degree of 348 

oxidation. The dissolution of nitrite and nitrate in water which are inevitably produced by 349 

electric discharges can also induce significant changes in the pH and electrical conductivity of 350 

the effluent. The dissolution of nitrite to form nitric acid can be explained as follows. 351 
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Nitrate and Nitrite concentrations were measured in the model effluent sample, without 353 

the presence of EDCs to ensure no interaction from their presence with the reagents used.  Nitrite 354 

can be formed not only by the degradation of the effluent but also by the electrical discharge in 355 

air. Fig. 8 (a) (b) shows the temporal variations of nitrite and nitrate concentrations in the plasma 356 

treated dairy effluent. The concentrations of nitrite and nitrate after 15 min treatment were found 357 

to be 56.50, 57.62, 66.86 mg/L and 114.87, 146.30, 163.59 mg/L for applied voltages of 60, 70, 358 

and 80 kV respectively. These values are substantially lower than the maximum permissible 359 

concentration (MPC) for nitrates or nitrites in dairy effluents [62]. The formation of nitrite can be 360 

explained from Eq (19-20), where formation of nitrate is attributed to the dissociation of nitric 361 

acid formed by the sequence of reactions (21) and (22) [63]. 362 
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 It was also known that nitrate is formed from nitrite oxidation and also an intermediate. 363 

The transient character of nitrite ions was observed previously [64, 65]. About 30% of nitrites 364 

were converted to nitrates after 24 h of storage in the tank contacting with air [66].  365 

The concentration of hydrogen peroxide (H2O2) is presented in Fig.8.(c), the 366 

concentrations of H2O2 increased linearly with respect to time for all voltages with 367 

concentrations in the range of 2074 to 16810 mg/L. The high amounts of H2O2 in the treated 368 

effluent are due to the retention of reactive species in the gas phase in contact with the treated 369 

liquid for extended periods of time. Earlier work by our group achieved stable concentrations of 370 

H2O2 in PBS solutions for extended storage times of several weeks in a closed reactor [40].  371 

The concentrations of formic and oxalic acid in the dairy effluent were determined by ion 372 

chromatography and the results are presented in Fig.9. The concentrations of oxalic acid 373 

measured after 15 min treatment were found to be 200.09, 231.31 and 242.42 mg/L for applied 374 

voltages of 60, 70, and 80 kV respectively. As shown in Fig.9, the concentration of both organic 375 

acids increased with treatment time and all applied voltages. Interestingly, for all the organic 376 

acids measured oxalic acid was found to be the most abundant in the treated effluent. It was also 377 

observed that the initial formation of formic acid was rapid, however after 10 min, the 378 

concentration was found to decrease. This phenomenon is attributed to mineralization of organic 379 

acids. The decrease in pH presented in Fig.7. (b) also, explains the formation of organic acids as 380 

byproducts. Similar results in the formation of organic acid as by-products has been 381 

demonstrated by Kim et al., [59] in plasma-treated aqueous antibiotic solutions. 382 

3.4. Degradation mechanism of Endocrine disruptors 383 

The intermediate products were identified using UHPLC-MS in both the positive and negative 384 

modes. It has been reported that the negative ion mode is preferred for the identification of target 385 
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estrogens [67].  In this study, the maximum concentrations of EDCs were spiked to identify the 386 

intermediate products (see supplementary material Table S1 and S2). The MS spectrum (see 387 

supplementary Fig.S4) of Bisphenol A showed a deprotonated major molecular ion at  m/z 227 388 

and a minor ion at  m/z 134 and the fragmentation spectra showed peaks at m/z 213 and m/z 93 389 

which were similar to the published reports of Debrode et al.[52]. The intermediate product ions 390 

are identified at m/z 243, m/z 260, m/z 275, m/z 221. It was observed that the peak area of the 391 

product ion m/z 227 decreased with plasma exposure time. Conversely, an increase in the peak 392 

area of other products was seen in the 60 kV sample. Major peaks at m/z 275 and m/z 319 were 393 

also observed. These might be 3-nitro-bisphenol A and 3,3’-dinitrobisphenol A, the nitrite 394 

compounds formed by reactive nitrogen species [33, 68]. The fragments ions at m/z 243, m/z 149 395 

and m/z 134 could result in ring opening. These might be due to hydroxylation of BPA via direct 396 

reaction between plasma active species such as ozone and hydroxyl radicals. The formation of 397 

monohydroxy BPA was further confirmed by fragmented peak ions at m/z 228 and m/z 93. The 398 

reaction further proceeded to yield dihydroxy BPA m/z 261. The peak identified in the MS 399 

spectra at m/z of 241 is an intermediate product, likely to be diketone, formed by the selective 400 

reaction of ozone with an electron rich site. The loss in a carbonyl group would lead to another 401 

peak at m/z 213[M-H]-. However, the peak at m/z 276.10 would correspond to dicarboxylic acid 402 

formed by initial attack of .OH via hydrogen abstraction. Other peaks identified in the MS 403 

spectrum were observed at m/z 219 and m/z 235. Similar degradation products were detected in 404 

ozonation of bisphenol A by Debrode et al.[52] and Tay et al.[69]. Additional peaks at m/z 232 405 

[M-H]- and m/z 189 [M-H]- with a loss of CO2 were also evident. The fragments at m/z 149, 406 

136,134,110 could result from a chain fragmentation of BPA. Based on previous reports [70, 71] 407 

the fragments at m/z 110 are intermediates of catechol, orthoquinone and hydroquinone. The 408 
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reaction of ozone and hydroxyl radicals with the phenol ring of BPA results in similar reaction 409 

by-products of phenol. These products were identified with samples treated for 70 kV for 5 min. 410 

A large number of peaks observed in the chromatograms are polar compounds such as acid and 411 

aldehydes. In the present study, oxalic and formic acid were identified  which, is similar to the 412 

findings by Garoma et al.,[72].  413 

   The degraded products and intermediates of E1 and E2 are identified from the MS 414 

spectrum. It is known that E1 and E2 differ by two mass units, with molecular weights of 415 

270.166 g/mol for E1 and 272.18 g/mol for E2. The structural difference is due to the presence of 416 

a ketone group in position 17 of E1 and a hydroxyl group in the same position of the E2 417 

molecule [8]. As mentioned plasma species target high electron rich cites such as the ortho and 418 

para position of EDCs to form hydroxylated derivatives. The deprotonated ion at m/z 285 and 419 

m/z 287 were identified as 2-hydroxy estrone and 2-hydroxyestradiol (2OH-E2) or 6-420 

hydroxyestradiol (6OH-E2). These products were also identified for ozonation [14, 73], photo-421 

Fenton reaction [74] and photo degradation [75] of E2. In addition to the major fragments at m/z 422 

287 other peaks at m/z 259,183,158,134 were also identified in the MS spectrum of E2. The 423 

oxidation of E2 by reactive species will yield diketone E2 and the initial attack of •OH via 424 

hydrogen abstraction leads to opening of the aromatic ring which is converted to dicarboxylic 425 

acids. This was confirmed by the major peak at m/z 319 and other ions at m/z 262, 162,135. The 426 

MS spectra shows a peaks at m/z 303,287,259,175 and m/z 287, 259, 162, 134 these compounds 427 

represent the 2-hydroxyestradiol or its resonance structure 10e-17b-dihydroxy-1,4-estradien-3-428 

one (DEO)[16]. A fragment ion peak m/z 259 [M-H]- was observed in the MS spectra formed by 429 

the elimination of the carbonyl group from compound m/z 288 and consecutive elimination of 430 

carbonyl and oxygen at m/z 303. As previously reported by Gao et al.,[30] a number of other 431 
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intermediates at m/z 336, m/z 352, m/z 368 with molecular weights greater than E2 are also 432 

observed in the spectrum. In addition to the peak at m/z 368, a few other fragments at m/z, 336, 433 

292 and 274 were also observed. In addition to the fragment ion peak m/z 368, the product ion at 434 

m/z 352 is identified as the deprotonated molecule ([M-H]- with other fragment ions 336,319,292 435 

and 274. Similar fragments as m/z 319,292,275 were also seen for the deprotonated molecule at 436 

m/z 336. The fragments ion at peak m/z 319 is formed by the loss of oxygen, where m/z 291 [M-437 

H]- might be formed by the loss of the carboxyl group and m/z 275 [M-H]-  could be attributed to 438 

the consecutive loss of CO2 and H2O. The loss of H2O from the ion at m/z 352 [M-H]- and loss of 439 

O2  from ion m/z 368[M-H]- would yield the ion m/z 336. These results are similar to previous 440 

studies [8, 30, 76, 77]. Another peak was identified at m/z 317(2-nitro 17β-estradiol), this 441 

compound might be an intermediate formed by the reaction of nitrogen species. Besides, these a 442 

few other peak ions at m/z 208, 131, and 90 were also identified. These peaks would be chain 443 

fragmented products of E2 which result in further oxidation to oxalic acid and formic acid. 444 

Based on the intermediates formed possible degradation pathways for the tested EDC’s 445 

are proposed. The pathway for BPA (I) to (II) can occur through hydroxylation or reaction 446 

between BPA and ozone and hydroxyl radicals as shown in Fig.10 pathway 1. A similar reaction 447 

for E1(I) to (II)) and E2(P) to (P1) is also proposed for the degradation pathway of E1 and E2 see 448 

Fig.11(a) and Fig.11(b). The most probable attack of plasma active species is against one of the 449 

ortho positions (with respect to phenolic hydroxyl group) of the aromatic ring of E1 and E2. The 450 

most probable site for the initial addition of the .OH radical is at the C2 atom leading to the 451 

formation of 2-hydroxy estrone (II) and 2-hydroxyestradiol (2OH-E2)(P1) or 6-hydroxyestradiol 452 

(6OH-E2) [30, 76]. It is reported that the estrogenic activity of  hydroxylated EDCs is much 453 

lower than that of the parent compound [73, 78].  The degraded products such as hydroxylated 454 
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EDCs are further attacked by .OH radicals on the aromatic ring. The increase in the addition of 455 

hydroxylated structures involves ring opening, leading to oxidized products to form diketone 456 

intermediates (II) to (III) and (P1) to (P2) which convert to dicarboxylic acids (III) to (IV) and 457 

(P2) to (P3) to (P4). These dicarboxylic acids further oxidize to smaller products. The reaction 458 

(IV) to (V) and (P4) to (P5) to (P6) is formed either by direct reaction of ozone or indirect 459 

oxidation by hydroxyl radicals. Degradation of these EDCs by plasma is initiated with the 460 

phenol-moiety oxidation [16]. Thus, this involves oxidation reactions to form a resonance 461 

structure P7 (DEO) with a low estrogenic activity and which is favored by an attack by .OH and 462 

.OOH radicals [16, 79]. The deprotonation of the BPA molecule or reaction with plasma reactive 463 

species at electron rich sites by .OH abstraction at the side chains leads to the formation of S1 464 

compound (Fig.10 pathway 2). The reaction is proceeded by cleavage of the C-C bond resulting 465 

in S2 and phenol radicals (S3) [69]. Moreover the phenol radical reacts with .OH to form 466 

hydroquione (S4) or catechol (S5) and further orthoquinone (S6) which has relatively weak 467 

estrogenic activity compared with BPA [80, 81]. The intermediate product (S2) undergoes both 468 

direct and indirect reaction with ozone and hydroxyl radicals to form 4-isopropenylphenol (S7) 469 

and 4-hydroxyacetophenone (S8). However, these compounds are similar to products identified 470 

by Ike et al. [82] which showed a lower estrogenic activity compared to BPA. The results 471 

obtained in this study suggest that atmospheric air plasma technology could be applied for the 472 

removal of hazardous chemicals from processing effluents, with efficient degradation pathways 473 

that mitigate the formation of biologically active intermediates. 474 

4. Conclusion 475 

This study demonstrates that atmospheric air plasma can effectively degrade endocrine 476 

disruptors in a model dairy effluent. The removal efficiency achieved at 80 kV for 15 min was 477 
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found to be more than 80% for all EDCs tested. The degradation kinetics followed a first-order 478 

kinetic model. The rate constants were found to increase with voltage and treatment time. The 479 

plasma discharge under atmospheric air conditions was monitored using optical emission 480 

spectroscopy and metastables measured using H2O2, nitrates or nitrite assays. The addition of 481 

tertiary butanol reduced the removal efficiency by 20% which reveals the major role of .OH in 482 

the degradation process. The oxidative decomposition of EDCs by plasma species leads to 483 

intermediate products which were identified by UHPLC-MS and LC-MS. Based on the 484 

intermediates formed a degradation mechanism was proposed for all three EDCs. The use of eco-485 

friendly gasses and fast removal rates make this technology a potential approach for industrial 486 

application. This work provides an efficient method for degradation of contaminants in water and 487 

has the potential to lead to novel applications for environmental protection.  488 
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 706 

Fig. 1. Schematic of the experimental setup with electrical and optical diagnostics. 707 
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 715 

Fig.2. Representative current –voltage charecteristics of the discharge. 716 
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 722 

 723 

Fig.3. Percentage degradation of endocrine disruptors in model effluent. BPA/TBA refers to 724 

degradation in presence of radical scavenger tertiary butanol alcohol. 725 

 726 
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 727 

Fig.4. First order kinetics plots of endocrine disruptor degradation in model effluent. BPA/TBA 728 

refers to degradation in presence of radical scavenger tertiary butanol alcohol. 729 
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 734 



32 
 

 735 

Fig.5. Evolution of energy yield with treatment time under different applied voltages. BPA/TBA 736 

refers to degradation in presence of radical scavenger tertiary butanol alcohol. 737 
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 739 

 740 

 741 

 742 
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743 
Fig.6. Typical Optical Emission Spectrum (OES) of the dielectric barrier discharge in air. 744 

Operating voltage 80 kV. 745 

 746 
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 749 

 750 
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 752 

Fig.7. (a) TOC removal efficiencies of EDC’s after plasma treatment, (b) and (c) shows 753 

evolution of pH and conductivity after plasma treatment of dairy effluent with Bisphenol A    754 
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 759 

 760 

Fig. 8. Variation of nitrite, nitrate and H2O2 concentration in plasma treated dairy effluent. 761 
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 767 

Fig. 9. Variation of organic acid concentrations produced during degradation of plasma treated 768 

dairy effluent. 769 

 770 

 771 
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 772 

Fig. 10. The proposed degradation pathways of Bisphenol A (BPA) with chemical formula and 773 

monoisotopic mass of identified products 774 
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 775 

Fig. 11. The proposed degradation pathways of estrone (a) and 17β-estradiol (b) with chemical 776 

formula and monoisotopic mass of identified products 777 
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Table 1 778 

Model parameters for endocrine degradation based on first-order kinetics 779 

Endocrine disruptor  Voltage(kV)  Rate constant k (min-1)  R2(Adj) 

Bisphenol A (BPA) 60  0.045±0.003 0.97  

 70  0.086±0.011 0.93 

 80  0.189±0.016 0.97 

Estrone (E1) 60  0.041±0.002 0.98 

 70  0.076±0.009 0.93 

 80  0.132±0.014 0.95  

17β-estradiol (E2) 60  0.044±0.003 0.98  

 70  0.087±0.086 0.96 

 80  0.149±0.02 0.93  

Bisphenol with TBA 60  0.031±0.012 0.99  

 70  0.059±0.005 0.97 

 80  0.098±0.015 0.91 

Note: BPA/TBA refers to degradation in presence of radical scavenger tertiary butanol alcohol.780 
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Table 2 781 

 Removal efficiencies of estrogens using different oxidative technologies 782 

Process Estrogens 

studied 

Removal 

(%) 

Treatment conditions Other observations reference 

 Chlorination E1 70 1.0 mg/L contact time of 15 

min  

Matrix used was water with 

buffer solution. 

[49] 

Photo-Fenton E2  

 

86.4 

 

98 

pH-7.47 α-FeOOH-(5g/L)- 8 

h. 

 

pH-3.07 α-FeOOH-(5g/L)- 8 

h. 

Matrix used was Milli-Q 

water at initital concentration 

of 272µg/L. 

[50] 

TiO2/UV E1, E2 

E2 

94 

99 

1g/L TiO2 and 1 h. 

1g/L TiO2 and 30 min. 

Matrix used was deionized 

water. 

[51] 

[16] 

Ozonation E2, E1, EE2 

 

 

100 

 

94 

0.38 mg/min 4 min (1.52 

mg/L). 

0.38 mg/min – 8 min(3.04 

Matrix used was water at 

initial concentration of 10 

mg/L, pH-9. 

[53] 

 

[52] 
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BPA 

 

100 

mg/L). 

Aqueous O3(15-400 µM) 

treatment for 24 h 

 

 

Matrix used was Milli-Q 

water with initial 

concentration of 100 µM and 

pH-6.5 

 

 

 

Combination of 

AOP (US/O3
) 

BPA 34.6 

 

 

63 

 

100 

 

 

US intensity of 60W/cm2. 

 

 

O3 flow rate of 10 mL/min 

 

US/O3 at 60W/cm2 followed 

by O3 treatment at flow rate of 

10 mL/min 

Matrix used was deionized 

water at initial concetration of 

100 ug/L 

[83] 

DBD plasma  E2 100 

75 

64 

Peak voltage of 12 kV at pH-

5.6 -30 min of treatment with 

ambient air as discharge gas 

100 ug/L 

300 ug/L 

600 ug/L 

[30] 
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64  900 ug/L  

Matrix used was ultrapure 

water. 

DBD plasma 

combined with Pt–

TiO2 photocatalyst   

E2 75 

90 

99.8 

DBD plasma alone 

DBD+ TiO2 

DBD+Pt-TiO2 

Peak voltage of 12 kV-30 min 

of treatment with ambient air 

as discharge gas 

Matrix used was ultrapure 

water at pH-5.6 

[31] 

Gliding arc plasma 

with ferrous ions 

BPA 100 

 

70 

COD 

 

TOC 

At voltage of 10 kV-30 min of 

treatment. Under different 

working gases such as air, 

argon, oxygen/argon mixture 

Matrix used was acidified 

osmosis water at pH-3 with 

initial concentration of 120 

µM (28 mg/L) 

[33] 
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(20/80, v/v), 

DBD plasma  BPA 96 Voltage of 20 kV treatment 

time of 5 min with helium as 

discharge gas 

Initial concetration of 1 mg/L [32] 

 783 

 784 
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