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On Stability of Affine Blending Systems 
Ruiyao Gao, Aidan O’Dwyer, Seamus McLoone*, Eugene Coyle 

         School of Control Systems and Electrical Engineering 
Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland  

*Department of Electronic Engineering,   
National University of Ireland, Maynooth, Co.Kildare, Ireland 

Abstract—This paper presents a novel approach to stability analysis of affine blending 
systems. The analysis is based on Quadratic Lyapunov functions. The approach considers 
the nonlinear offset term in affine blending systems as non-vanishing perturbations added  
to the corresponding nominal linear blending systems. The affine blending systems will be 
bounded if the corresponding linear blending system is exponentially stable. The bound is 
determined by an ultimate limit, which is proportional to the maximum of the  offset terms 
of each affine system. 

I INTRODUCTION 

The last decade has shown an increase in the use of 
local model representations of nonlinear dynamic 
systems for controller design, such as gain scheduled 
control, fuzzy systems, local model/controller 
networks. The attraction of the application of local 
model representations is that a nonlinear design task 
is simplified to linear design problems by first 
decomposing the task into a number of linear sub-
problems solvable by established methods, then 
recombining, in some appropriate manner, the 
resultant collection of linear designs to obtain the 
required nonlinear design. In general, the local model 
structure has two categories, i.e. linear (homogeneous) 
local models (LLM) and affine (inhomogeneous) 
local models (ALM) (which have an extra offset term). 
The resulting linear blending systems inherit many 
valuable properties, but they could result in poor 
global representations of the nonlinear plant ([1]). In 
contrast, blending affine systems improve the 
modelling accuracy of LLM significantly with a 
benefit from the extra offset term introduced in the 
ALM. 

In terms of control, the inherent nonlinearity in the 
blending systems is known as a major disadvantage of 
the approach. It has become evident that many basic 
issues remain to be further addressed ([2], [3]). 
Stability analysis and systematic design are certainly 
among the most important issues in this area.  

However, the literature review for linear blending 
systems and affine blending systems shows unevenly 
distributed interest, although the ALM blending 
system has been widely applied in the modelling of 
nonlinear systems. Most research work has been 
devoted to analysis of linear systems ([4]-[7]), 

although there are several interesting recent 
contributions on affine fuzzy systems or piecewise 
affine systems ([8]-[10]). It is obvious that the LLM is 
linear and has equilibrium centred at the origin x=0. 
Comparably, the ALM is inhomogeneous and has a 
constant offset term, whose equilibrium is close to but 
not at the origin. Thus, it is more difficult to deal with 
the stability analysis and controller design for affine 
blending systems.  

This paper proposes a novel method to analyse the 
influence of offset terms on stability issues in affine 
blending systems by using quadratic Lyapunov 
functions. It deals with the offset term as a ‘non-
vanishing’ disturbance of a system, which stabilizes at 
the origin. 

The paper is organised as follows. Section 2 discusses 
the stability issue for blending systems and introduces 
the sufficient conditions for ensuring the stability of 
linear blending systems using quadratic Lyapunov 
functions. In section 3, stability issues for linear 
blending systems are investigated, with section 4 
discussing the stability issue for affine blending 
systems. Concluding remarks are provided in section 
5. 

II  PROBLEM FORMULATION 

Consider the nonlinear system  

( )uxfx ,=&                                                        (1) 
Utilizing a blended local model structure we 
approximate the nonlinear system (1) as follows: 

( ) ( )uxfuxx i

N

i
i

m

,,
1
∑

=

ρ=&                                        (2) 

where state vector Nx ℜ∈ , input Pu ℜ∈ , the model 
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( )::,if  is one of  mN  vector functions of the states, the 
input and the output, and is valid in a region defined 
by the scalar validity function iρ , which is, in turn, a 
function of the above variables. Typically, the local 
models if  are chosen to be of the affine form 

( ) iiii duBxAuxf ++=, , resulting in constituent 
dynamic systems ∑i given by, 

( ) ( ) ( )uxduuxBxuxAx ,,, ++=&                        (3) 

where ( ) ( ) i

N

i
i AuxuxA

m
,,

1
∑
=

= ρ , ( ) ( ) i

N

i
i BuxuxB

m
,,

1
∑
=

= ρ  

and ( ) ( ) i

N

i
i duxuxd

m
,,

1
∑
=

= ρ . 

Assuming that all the local subsystems are stable, a 
question naturally arises as to whether the overall 
global system is stable? The answer is no, in general. 
Although the stability, performance and robustness 
properties of each linear local model controller are 
well understood and can be analyzed using standard 
tools, such as the Bode plot and Nyquist plot for each 
fixed operating point, these local properties do not 
naturally and necessarily lead to guaranteed global 
properties ([11]). Global properties cannot be 
guaranteed if proper modification (for example, 
controller gains) is not made when implementing the 
gain-scheduled controller. One example in the 
discrete time domain is given below to illustrate the 
issue, which also works in the continuous time 
domain. 

Assuming an open-loop system has two subsystems as 
follows: 

( ) ( )kxAkx i
i

i∑
=

=
2

1
ρ&

                                                (4) 

where, ( ) ( ) ( )[ ]Tkxkxkx 21 ,= , 






 −
=

01
5.01

1A , and 








 −−
=

01
5.01

2A
.  
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Figure 1. Normalized Validity function 

Figure 1 shows the validity function for the 
interpolation of these two local models.  
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(a) Trajectory of 1A  
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 (b) Trajectory of 2A  

Figure 2. Trajectory of the subsystems 

The eigenvalues of 1A  are 5.05.0 j±  and those of 

2A  are 5.05.0 j±− . Since both 1A  and 2A  are 
Hurwitz, the linear subsystems are stable. Figure 2 
shows the trajectory of 1A  in (a) and 2A  in (b), both 
of which finally converge at equilibrium point (0,0). 
However, when combining these two subsystems in a 
LM network, for some initial conditions, for example 

Tx ]7.0,90.0[ −= , the global system can be unstable 
as shown in figure 3. 

As illustrated by the example, the blending procedure 
could cause an instability problem for the overall 
system, although each subsystem is locally stable. 
Thus stability issues should be taken into 
consideration when selecting validity functions and 
local models, and in the controller design of the 
blending system. How to systematically select validity 
functions, local models and approaches for controller 
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design to meet the required overall system stability is 
not clear so far. 
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Figure 3. Trajectory of the overall system 

Most of the time, a trial-and-error procedure has been 
used ([4], [5]). Hunt and Johansen ([12]) proposed 
one sufficient but not necessary condition to 
guarantee the overall stability for gain scheduling 
systems, which is based on the analysis of the effect 
of modeling errors. However, the condition is mainly 
of a qualitative nature, as no bounds on performance, 
robustness or design parameters are provided. The 
objective of this paper is to determine the bound for 
the stability condition of the blending affine systems. 

III LINEAR BLENDING SYSTEMS  

For a blending system with linear local models, whose 
offset terms fade to zero, a common sufficient 
condition for the stability is given by the Lyapunov 
function. Recall the state space representation of the 
nonlinear systems as given by equation (2), the open 
loop system corresponding to (2) is  

xAx i

Nm

i
i∑

=
=

1
ρ&                                                  (5) 

where the validity function 01 ≥≥ iρ  and 1
1

=∑
=

Nm

i
iρ . 

Each linear component ( )txAi  is called a subsystem. 
The sufficient conditions for ensuring stability of 
equation (5) are usually formulated in Theorem 1 
(Tanaka and Sugeno, 1992): 

Theorem 1: The equilibrium point of a system (5) is 
asymptotically stable in the large if there exists a 
common positive definite matrix P such that  

0<+ i
T
i PAPA , Nmi ,,2,1 L=                             (6) 

i.e., a common P has to exist for all subsystems to 
guarantee the overall stability. In this case, the 
nominal global system has a uniformly exponentially 
asymptotically stable equilibrium point at the origin. 
This theorem reduces to the Lyapunov stability 
theorem for linear systems when mN =1. 

The stability condition of Theorem 1 is derived using 
a quadratic function ( ) PxxxV T= . If there exists a 
P>0 such that the quadratic function proves the 
stability of system (5), system (5) is also said to be 
quadratically stable and the V is called a quadratic 
Lyapunov function. Theorem 1 thus presents a 
sufficient condition for the quadratic stability of 
system (5). 

Checking the stability of system (5) has long been 
recognized to be difficult for there is a lack of a 
systematic procedure to find a common positive 
definite matrix P. Solving this problem requires two 
questions to be answered: Is there a common 
quadratic Lyapunov function that exists?  How can a 
common quadratic Lyapunov function be determined?  

Deriving sufficient conditions under which 
exponential stability will be assured has been 
investigated by a number of authors. Narendra and 
Balakrishnan ([13]) introduce ‘commutativity’ to 
assure the existence of a common Lyapunov function; 
however, the converse of the approach does not hold 
in general, i.e. if there is no such commuting 
Lyapunov function found for the overall system, it 
doesn’t mean that the overall global system is not 
stable, so the utilization of other approaches to look 
for the common P matrix, if it exists, is needed. 
Shorten and Narendra ([14]) presented the necessary 
and sufficient conditions for the existence of a 
common quadratic Lyapunov function for two stable 
second order linear systems. Subsequently, Shorten 
and Narendra ([15]) extended the approach to check 
the existence of a common quadratic Lyapunov 
function for a finite number of stable second order 
linear systems. Recently, Shorten made a further step 
and generalized the above results in ([16]). 

To determine the common quadratic Lyapunov 
function, most of the time a trial-and-error procedure 
has been used ([4]). In the literature, since the middle 
of the 1990s, there is a rapidly growing interest in 
finding out the common Lyapunov function P by 
solving a convex optimization problem using linear 
matrix inequality (LMI) approach  ([5], [7]). A very 
important property of this approach is that the 
stability condition of theorem 1 is expressed in LMI 
form. To check stability, which means to find a 
common positive quadratic Lyapunov function P, or 
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to show that there is no such common P that exists for 
the system, converts to a problem of solving LMI 
functions. Numerically, the LMI problems can be 
solved efficiently by means of some powerful tools 
available in the mathematical programming literature, 
like the Matlab LMI toolbox.  

IV AFFINE BLENDING SYSTEMS 

For the blending of linear local models, each of which 
has a stable node with an equilibrium point centered 
at the origin, the global system has its equilibrium 
point centered at the origin x=0. In contrast, the affine 
local model allows its equilibrium point to be close to, 
but not centered at the origin ([2]), because the offset 
term in each affine local model doesn’t fade to zero, 
but is instead a constant. Thus, the origin x=0 may not 
be equilibrium of the blended system. We can no 
longer study stability of the origin as an equilibrium 
point, nor should we expect the solution of the offset 
term to approach the origin as ∞→t .  

One possibility is to consider the offset term ( )tuxd ,,  
in equation (2) as a non-vanishing perturbation. It is 
hoped that if the ‘perturbation term’ ( )tuxd ,,  is small 
in some sense, then ( )tx  will be ultimately bounded 
by a small bound; that is, ( )tx  will be small for 
sufficiently large t. 

Consider the open-loop system in equation (2) and 
rewrite it as follows: 

i

Nm

i
ii

Nm

i
i dxAx ∑∑

==
+=

11
ρρ&                                            (7) 

Note that equation (5) is termed a nominal system and equation (7) 
is termed a perturbed system for convenience.  

Suppose the nominal system (5) has a uniformly 
asymptotically stable equilibrium point at the origin, 
what can we say about the stability behavior of the 
perturbed system (7)? A natural approach to address 
this question is to use a Lyapunov function for the 
nominal system as a Lyapunov function candidate for 
the perturbed system. The new element here is that 
the ‘perturbation term’ will not vanish at the origin, 
i.e. the origin will not be an equilibrium point of the 
perturbed system. Therefore, the problem can no 
longer be studied as a question of the stability of 
equilibria. The best that can be hoped for is that if the 
perturbation term, bounded by a small bound ( )tx , 
will be small for sufficiently large t. 

From Theorem 1, it is known that if there is a 
common positive definite P existing for all the local 

linear models, then ( ) PxxxtV T=,  is a Lyapunov 
function of the global blending system (5). The 
conditions to ensure the global stability of system (7) 
are more complicated, as more analysis needs to be 
performed. Lemma 1 is first developed for the linear 
blending systems. 

Lemma 1: Let x=0 be an equilibrium point for the 
blending system as equation (5), where iA  is Hurwitz. 
Let ( )xV  be a Lyapunov function of the nominal 
system. Then V satisfies the inequalities: 

( ) 2

22
2

21 xcxVxc ≤≤                                           (8) 

2

23
1

xcxA
x
V

i

Nm

i
i −≤

∂
∂

∑
=

ρ                                           (9) 

24
2

xc
x
V ≤

∂
∂                                                      (10) 

for some positive constants 1c , 2c , 3c  and 4c , where 

( )Pc min1 λ= , ( )Pc max2 λ= , ( )( )iNmi
Qc min13 min λ

L=
= , 

( )Pc max4 2λ= . 

Proof: Assuming that the Lyapunov function is 
defined as ( ) PxxxV T= , P being the common 
positive definite matrix, then 

 ( ) ( )IPPIP maxmin λλ ≤≤  

⇒ ( ) ( ) ( )xPxxVxPx TT
maxmin λλ ≤≤                                    

⇒ ( ) ( ) ( ) 2

2max
2

2min xPxVxP λλ ≤≤  

xPAAPx

xA
x
V

T
Nm

i
ii

Nm

i
i

T

i

Nm

i
i

i 





 +=

∂
∂

∑∑

∑

==

=

11

1

ρρ

ρ
     

xQx
Nm

i
ii

T ∑
=

−=
1
ρ                                         

( )
( )( )iNmi

i

Nm

i
i

Q

xQ

min1

2

2min
1

min λ

λρ

L=

=

−≤

−≤ ∑
 

( )
2max222

2

222 xPxPPx
x
V T λ≤≤≤

∂
∂  

Now we introduce some special scalar functions and 
Theorem 2 ([17]) that will help to characterize and 
study the stability behavior of the blending affine 
local model systems. 
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Definition 1: A continuous function 
),0[),0[: ∞→aα  is said to belong to the class K 

function if it is strictly increasing and ( ) 00 =α . It is 
said to belong to the class ∞K  function if ∞=a  and 

( ) ∞→rα  as ∞→r . 

Definition 2: A continuous function 
),0[),0[: ∞→aβ  is said to be a class KL function if 

for each fixed s, the mapping ( )sr,β  belongs to class 
K with respect to r, and for each fixed r the mapping 

( )sr,β  is decreasing with respect to s and 
( ) ∞→sr,β  as ∞→r . 

Theorem 2: Let }|{ rxRxD n <∈=  and 
nRDf →×∞),0[:  be piecewise continuous in t and 

locally Lipschitz in x. Let RDV →×∞),0[:  be a 
continuous differentiable function such that 

( ) ( ) ( )xxtVx 21 , αα ≤≤   (11) 

( ) ( ) 0,, 3 >≥∀−≤
∂
∂+

∂
∂ µα xxxtf

x
V

t
V   (12) 

,0≥∀ t  Dx ∈∀ , where ( )⋅1α , ( )⋅2α , and ( )⋅3α  are 

class K function defined on ),0[ r  and ( )( )r1
1

2 ααµ −< . 
Then, there exists a class KL function ( )⋅⋅,β  and a 
finite time 1t  (dependent on ( )0tx  and µ ) such that  

( ) ( )( )00 , tttxtx −≤ β , 10 ttt ≤≤∀                   (13) 

( ) ( )( )µαα 2
1

1
−≤tx , 1tt ≥∀                                 (14) 

( ) ( )( )rtx 1
1

20 αα −<∀ . Moreover, if all the 

assumptions hold with ∞=r , that is, nRD = , and 
( )⋅1α  belongs to class ∞K , then inequalities (13)-(14) 

hold for any initial state ( )0tx . Furthermore, if 

( ) c
ii rkr =α , for some positive constants ik  and c , 

then ( ) ( )rskrsr −= exp,β  with ( ) ckkk 1
12=  and 

( )ckkr 23= . 

Inequalities (13)-(14) show that ( )tx  is uniformly 
bounded for all 0tt ≥ . They also show that ( )tx  is 
uniformly ultimately bounded with an ultimate bound 

( )( )µαα 2
1

1
− . It is significant that the ultimate bound is 

a class K function of µ , because the smaller the value 
of µ  the smaller the ultimate bound. As 0→µ , the 
ultimate bound approaches zero.  

Based on Theorem 2, a Lemma (Lemma 2) is 

dveloped for the analysis of the blending of affine 
local models when the origin of the nominal system is 
exponentially stable. 

Lemma 2: Let x=0 be an exponentially stable 
equilibrium point of the nominal system. Let V(x) be 
a Lyapunov function of the nominal system and for 
some positive 10 <<θ , the solution of the perturbed 
system x(t) satisfies: 

( ) ( )[ ] ( )00exp txttrktx −−≤ , 10 ttt <≤∀  

and ( ) 1, ttbtx ≥∀≤  

for some finite time 1t , where 

12 cck = , ( )
2

3

2
1

c
cr θ−

= , 
θ
δ

1

2

3

4

c
c

c
cb =  

Proof: Assume ( )xV  is a Lyapunov function candidate 
for the perturbation system (7). The derivative of 

( )xV  along the trajectories of (7) satisfies 

( ) PxxxPxxV TT &&& +=  

PxdxAdxAPx
TNm

i

Nm

i
iiii

Nm

i

Nm

i
iiii

T 





 ++






 += ∑ ∑∑ ∑

= == = 1 11 1
ρρρρ  

xPAAPx
Nm

i

Nm

i

T
iiii

T 





 += ∑ ∑

= =1 1
ρρ + i

Nm

i
i

T dPx ∑
=1

2 ρ  

( )iNmi
dxcxc

L124
2

23 max
=

+−≤    

( ) ( )
2423

2

231 xcxcxc δθθ −−−−= , ( )iNmi
d

L1
max
=

=δ  

( ) 2

231 xcθ−−≤     θδ 342
ccx ≥∀  

Application of Theorem 2 completes the proof. 

Lemma 2 shows the effect, from the offset term, of 
affine models on the property of blended systems. 
This result demonstrates that if linear blending system 
(5) is exponentially stable with respect to the origin, 
then the corresponding affine blending system (7) is 
uniformly bounded with ultimate bound b. Moreover, 
note that the ultimate bound b is proportional to the 
upper bound on the perturbation ( )iNmi

d
L1

max
=

=δ . The 

ultimate bound can be viewed as a robustness 
property of nominal systems having exponentially 
stable equilibria at the origin, because it shows that 
arbitrarily small (uniformly bounded) perturbations 
will not result in large steady-state deviations from 
the origin. 
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V CONCLUDING REMARKS 

This paper investigated the stability of affine blending 
systems, in which the offset term is nonlinear, 
parameter dependent and bounded. Assuming the 
nominal linear blending system is exponentially 
asymptotically stable, the corresponding affine 
blending system is bounded by an ultimate value b, 
which is proportional to the maximum of the offset 
terms of local models. The smaller the bound b is, the 
smaller the deviation of the affine blending systems 
from the stabilizing origin of the linear blending 
systems. Further work will focus on the systematic 
analysis and controller design of affine blending 
systems to ensure the closed-loop compensated 
system has guaranteed stability. 
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