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DISCRETE-TIME VELOCITY-BASED MULTIPLE MODEL NETWORKS 
 

Ruiyao Gao, Aidan O’Dwyer, Séamus McLoone*, Eugene Coyle 
 

         School of Control Systems and Electrical Engineering 
Dublin Institute of Technology, Kevin Street,Dublin 8, Ireland  

 
*Department of Electronic Engineering,   

National University of Ireland, Maynooth,Co.Kildare, Ireland
 

Abstract: The velocity-based local model (LM) network is a novel modelling approach that overcomes 
the lack of interpretability associated with the conventional LM network technique. The global 
dynamics of the nonlinear network are directly related to the underlying sub-model dynamics. Thus, the 
velocity-based network is ideally suited to the development of local controller (LC) networks. 
Furthermore, the local models are continuous -time, velocity-based and linear, providing continuity with 
established linear theory. To date, research has focused on the continuous-time version of the velocity-
based network. The application of digital computer is widely popular in the field  of control and, 
therefore, this paper develops a discrete-time velocity-based multiple model representation. A complex 
nonlinear process, in the form of a simulated continuous stirred tank reactor, is used to examine the 
modelling capabilities of the prop osed discrete-time technique. Copyright  Controlo 2002.  

Keywords: multiple model networks, velocity-based networks, discrete-time nonlinear identification. 

 

1. INTRODUCTION 
 

A static model gives information about the steady 
state relation between the input  and the output signal. 
A dynamic model should give the relationship 
between the input and the output signal during 
transients. It is naturally much more difficult to 
capture dynamic behaviour. In an attempt to 
accurately model nonlinear dynamical systems, a 
wide variety of techniques have been developed such 
as nonlinear auto-regressive moving average with 
exogenous inputs (NARMAX) models (Chen and 
Billings, 1989), Weiner models (Schetzen, 1981), 
Hammerstein models (Billings and Fakhouri, 1982) 
and Multiple Layer Perceptron (MLP) neural 
networks (Narendra and Kannan, 1990). However, all 
of these methods have difficulty in exploiting the 
significant theoretical results available in the 
conventional modelling because of their so-called 
black-box representation of nonlinear systems.  

In contrast, Local Model (LM) network was 
proposed as a modelling frame that could produce 
highly transparent models (Johansen, 1993). It was 
purported that the locally valid sub-models were 
easily interpreted and that the weighted sum of the 
local sub-models provided a qualitative high-level 
description of the nonlinear system. 

However, recent research has questioned the ease of 
interpretability of the multiple model frameworks, 
demonstrating that the global dynamics of the 
convent ional LM network are only weakly related to 
the dynamics of the underlying local models. Leith 

and Leithead (1999) presented a novel class of 
blended multiple-model networks whereby the global 
dynamics are directly related to the local models 
employed. Moreover, the underlying sub -models are 
continuous-time, velocity-based and linear, thus 
ensuring continuity with existing linear techniques, 
which is useful for analysis and controller design. 
Furthermore, analytical results based on the complex 
nonlinear continuous stirred tank reactor (CSTR) 
process show that the velocity-based approach is 
ideally suited to the development of local controller 
(LC) networks (McLoone, 2001).  

So far, a lot work has been done regarding the 
conventional LM technique in both the continuous -
time and discrete-time domains. However, all the 
studies relating to velocity-based LM networks exist 
in the continuous-time domain. Considering the 
popular applications of digital computer in the field 
of control and the potential capability of velocity-
based LM  network approach in the development of 
LC networks, this paper develops and presents a 
discrete-time version of the velocity-based multiple 
model representation. The modelling capabilities of 
the resulting nonlinear model are examined using a 
highly complex nonlinear process, in the form of a 
simulated continuous stirred tank reactor.  

Section 2 briefly outlines the continuous-time 
velocity-based multiple network approach, while 
section 3 develops the novel discrete-time version of 
the network. Section 4 describes the CSTR process. 
The simulation results are given in section 5 while 
the paper ends with some conclusions and 
suggestions for future work in section 6.  
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2. CONTINUOUS-TIME VELOCITY-BASED 
MULTIPLE MODEL NETWORKS  

Consider the general nonlinear state space system, 
with state vector x and input u : 

( ) ( ) ( )( )tu,txftx =&  
( ) ( ) ( )( )tu,txgty =                                          (2.1) 

For convenience, it is assumed that Cxy =  without 
loss of generality, because the output y is effectively 
a constant vector multiplied by the state vector. In 
many cases, the behaviour of a nonlinear system near 
an operating point ( )00 u,x  can be described by a 
linear time-invariant system. To see this , we consider 
state and input trajectories that are small 
perturbations away from the operating point: 

( ) ( )tdxxtx 0 +=     
( ) ( )tduutu 0 +=                                           (2.2) 

where 0u is nominal input  and ( )tdu  is the 
perturbation input. The input and state vector obey 
the differential equation, determined by submitting 
(2.2) into (2.1): 

( ) ( ) ( )( )tduu,tdxxftxd 00 ++=&                       (2.3) 
Expanding the right -hand side of (2.3) in a Taylor 
series about ( 0x , 0u ) and keeping only the linear 
terms yields 

( ) ( ) ( ) ( ) ( )tu|
u
f

tx|
x
f

u,xftxd
0000 u,x)u,(x00 ∂

∂
∂

+∂
∂
∂

+=&

   (2.4) 

Notice that ( ) 0u,xf 00 = . Defining )u,(x 00
|

x
f

A
∂
∂

= , 

( )00 u,x|
u
f

B
∂
∂

= , we can rewrite (2.4) as  

( ) ( ) ( )tuBtxAtxd ∂+∂=&                                  (2.5)  

Substituting (2.2) into (2.4) and differentiating (2.4) 
with respect to time gives the linear velocity-based 
system equation 

( ) ( ) u|
u
f

x|
x
f

x
0000 u,xu,x &&(&&(

∂
∂

+
∂
∂

=                           (2.6) 

With the appropriate initial conditions, (2.4) and 
(2.6) give identical solutions, and therefore there is 
no approximation at this stage. Equation (2. 6) gives a 
direct relationship between the dynamics of velocity-
based form of the nonlinear system and the velocity-
based linearization near an operating point. 
Furthermore, members of the family of velocity-
based linearization functions are all linear, which 
provides continuity with established linear theory and 
methods.  

A velocity-based, blended, multiple-model system is 
formed by weighting several velocity-based 
linearised models as follows: 

( ) ( ) ( ) ( ) u??u,xBx??u,xAx
i

iiii
i

iiii &&&&










+










= ∑∑ ~~~~~~          

(2.7)       

where  

( ) ( ) ( )ii u,xu,xiii |x
fu,xA ~~~~

=∂
∂= , 

( ) ( ) ( )ii u,xu,xiii |u
fu,xB ~~~

=∂
∂= and ( )ii u,x~  is the 

linearization or freezing point of the ith  local model: 
( ) ( )uu,xBxu,xAx iiiiii &&&& ~~ +=                                (2.8) 

The normalised weighting function is given by 
( )??i
~ , where ?~ is the scheduling vector. 

The dynamics of the blended system, about the 
operating point ( )00 u,x~  is now considered. The 

velocity-based linearized form of (2.7), at ( )00 u,x~ , is 
simply obtained by freezing the validity function 

( )?? i
~  at the operating point to produce the following 

linear system: 

( ) ( ) ( ) ( ) u??u,xBx??u,xAx
i

0iiii
i

0iiii &&&&










+










= ∑∑ ~~~~~~    

(2.9) 
With the appropriate initial conditions, the solution to 
(2.9) is initially tangential to the solution of the 
velocity-based multiple model system in (2.7). The 
dynamics of the multiple model system local to an 
arbitrary operating point are therefore the same as the 
dynamics of the corresponding frozen-form linear 
system at the same operating point. Rewriting (2.9) as 

( ) ( ) ( )( )uu,xBxu,xA??x iiiiii
i

0i &&&& ~~~~~ += ∑            (2.10) 

which clearly highlights this direct relationship 
between the frozen-form (2. 9) of the velocity-based 
blended system and the underlying local models 
(2.10) at ( )00 u,x~ . Thus, at any arbitrary operating 
point, the global dynamics of the multiple model 
system are described by a straightforward weighted 
sum of the local model dynamics. No such direct 
relationship exists between the dynamics of the 
conventional multiple model representation and the 
dynamics of the first -order expansion system. Further 
detailed theoretical analysis of both conventional and 
velocity-based nonlinear representations can be found 
in (Leith and Leithead, 1999, McLoone,2001). 

3. DISCRETE-TIME VELOCITY-BASED 
MULTIPLE MODEL NETWORKS  

3.1. ZERO HOLD ORDER EQUIVALENT 
MODEL DEVELOPMENT 

 

The continuous time input to the plant is a zero-order 
hold (ZOH) of the compensator output 

( ) [ ]kutu = , TkTtkT +<≤                                (3.1) 
and the output of the plant is sampled by an A/D 
converter: 

[ ] [ ]kTyky =                                                           (3.2) 
Assume that we have a state space model (A,B ,C,D) 
for the plant G(s); that is, the behaviour of the plant is 
governed by the following equations: 
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( ) ( ) ( )
( ) ( ) ( )tDutCxty

tButAxtx

+=
+=&

                                             (3.3) 

Because (3.3) is a first order differential equation, if 
the value of ( )tx  is known at some time 0t , then the 

value of ( )tx  at future times is given by 

( ) ( ) ( ) ( ) ( )dttBuetxetx
t

t

ttA
0

ttA

0

0 ∫ −− +=                  (3.4) 

where the symbol Ate stands for the matrix 
exponential function. If kTt =0 and TkTt += , 
where T is sampling time, then (3.4) gives an update 
formula for the state vector at  sampling instants. That 
is, integrating the state equation over one sample 
period yields 

( ) ( ) ( )kTxeTkTx kTTkTA −+=+    

                   ( ) ( )dttBue
TkT

kT

tTkTA∫
+ −++                   (3.5) 

Now recall from (3.1) that in the interval of 
integration, the function ( )tu  is equal to [ ]ku , a 
constant. This constant can be taken outside of the 
integral as follows: 

( ) ( ) ( ) [ ]kudtBekTxeTkTx
TkT

kT

tTkTAAT





+=+ ∫

+ −+    

            (3.6) 
This formula is computing the value of the state 
vector ( )tx  only at sampling instants kTt = . Thus, if 
we define a discrete time state space equation 

[ ] [ ]kTxkx = , 
ATeF = , 

( )∫
+ −+=

TkT

kT

tTkTA BdteG                                         (3.7) 

Then (3.6) becomes the discrete time state space 
sequence by  

[ ] [ ] [ ]kGukF x1kx +=+                                       (3.8) 
Note that Gin (3.8) is a constant vector. Also, using 
the output equation of (3.3), we can write  

[ ] [ ] [ ]kDukCxky +=                                             (3.9) 

Equation (3.8) and (3.9) constitute a discrete time 
system whose output, by construction, exactly 
matches the output of the analog system if its input is 
piecewise constant. Note that if ( )sG  is a linear time 
invariant, then its ZOH equivalent will also be linear 
and time invariant.  

3.2. CONVENTIONAL LM NETWORK 
DEVELOPMENT  

Assuming we have a set of linearized local models 
for a nonlinear system described as (2.1); that is, each 
of them is governed as (2.4) and (2.5) by the 
following equations: 

( ) ( ) ( ) ( ) ( )
( ) ( )tCxty

tduu,xBtdxu,xAtxd iiiiii

=

+=&
           (3.10) 

in which ( ) ( ) iextxtdx −= , ( ) ( ) ieututdu −=  , iex and 

ieu are the state vector and the input at the 
equilibrium points, near which the nonlinear system 
are linearized.    

According to the section 3.1, we have the ZOH 
equivalent models for each linearized model, as 
follows: 

[ ] ( ) [ ] ( ) [ ]kduu,xGkxdu,xF1kxd iiiiii +=+  

[ ] [ ]kxCky =                                                    (3.11) 

in which  ( ) ( ) iexkxkxd −=  , 
( ) ( ) ieukukdu −= , TA

i
ieF = ,

( )∫
+ −+=

TkT

kT i
tTkTA

i dtBeG i  
 We can rewrite the (3.11) as  

[ ] ( ) [ ]( )ieiii xkxu,xF1kx −=+  
               ( ) [ ]( ) ieieiii xuku,uxG +−+  

 [ ] [ ]kxCky =                                                   (3.12) 
 A normal, blended local model network system in 
discrete time domain is formulated by weighting 
several local models: 

[ ] ( ) ( ) [ ]( )
( ) [ ]( )∑ 








+−+

−
=+

i ieieiii

ieiii
0i xukuu,xG

xkxu,xF
??1kx ~  

[ ] [ ]kCxky =                                                      (3.13)                                                       

3.3. VELOCITY-BASED MULTIPLE MODEL 
NETWORKS DEVELOPMENT 

Recalling the linearized ith  velocity-based local 
model in (2.8), we define xw &= .  Rewriting it  as 
follows: 

( ) ( ) u
u,xB

0
w
x

u,xA0
I0

w
x

iiiiii

&
&
&









+
















=








~~        (3.14) 

Then, the linearized model output is 

 ( ) 







=

w
x

0cy                                                    (3.15) 

For simplicity, we write the (3.14) as follows 

( ) ( )uu,xBWu,xAW iiiiii &
((& ~~ +=        

WCy
(

=                                                              (3.17) 

in which, ( ) ( )






=

iii
iii u,xA0

I0
u,xA ~

~(
 , 

( ) ( )






=

iii
ii u,xb

0
u,xB ~

(((
 , ( )0cC =

(
, 








=

w
x

W . 

Then based on the section 3.1, we have the velocity 
based local state-space model 

[ ] ( ) [ ] ( ) [ ]kuu,xGkWu,xF1kW iiiiii
~~ +=+      

[ ] [ ]kWCky =                                                      (3.18) 
Where 

( ) ( )Tu,xA
iii

iiieu,xF
~~ (

= ,

( ) ( )( )∫
+ −+=

TkT

kT i
tTkTu,xA

iii dtbeu,xG iii
~~ (

 and CC
(

= .  

A velocity-based, blended, multiple model system in 
discrete time domain is formed by weighting several 
velocity-based local models: 

[ ] ( ) ( ) [ ] ( ) [ ]( )∑ +=+
i

iiiiii0i kuu,xGkWu,xF??1kW ~~~  

[ ] [ ]kCWkY =                                                      (3.19) 
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4. CSTR PROCESS 

CSTR (Continuous Stirred Tank Reactor) is a highly 
non-linear process. A schematic of the CSTR system 
is shown in Figure 1. A single irreversible, 
exothermic reaction is assumed to occur in the 
reactor. The process model consists of two non-linear 
ordinary differential equations (Henson and Seborg, 
1990),  

( ) ( )( ) ( ) ( ) 







−+−=

tRT
E

tCKtTT
V

q
tT f

f exp1
&  

       ( ) ( ) ( )( )tTT
tq

K
tqK cf

c
c −




















−−+ 3

2 exp1  

( )( ) ( ) ( )







−−−=

tRT
E

tCKtCC
V

q
tC f

f exp)( 0
&  

( )tqc  is the coolant flow rate, T(t) is the temperature 

of solution, )( tC is the effluent concentration. The 
model parameters defined, and the nominal operating 
conditions are shown in table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                   

 
   
 

Table 1.  Nominal CSTR Operating Conditions 
 

fq = 100 l/min, product flow rate fC =1 mol/l,input concentration 

fT =350 K,input temprature        cfT =350 K,temprature of coolant 

K1=1.44*1013 Kl/min/mol,         V =100 l , container volume 

R
E =104 K,activation energy     01.02 =K /l  , constant 

K3=700 l/min. constant              10
0 10*2.7=K min-1 , constant 

  
0 10 20 30 40 50 60

0.04

0.06
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0.18

 
 

Fig 2  Dynamic response of the CSTR plant 

The CSTR plant is highly nonlinear with exponential 

terms and product terms. Moreover, open-loop step 
tests show that the output concentration responses 
vary from over-damped to under-damped, indicating 
the variable dynamics in the CSTR process.  Fig.2 is 
the step response of concentration output )(tC when 

the coolant  flow rate )(tq c varies from 85 l/min to 
111 l/min. The CSTR exhibits highly non-linear 
dynamical behaviour. 

5. MODELLING THE CSTR PLANT 

5.1. IMPLEMENTATION OF THE VELOCITY-
BASED NETWORK 

 
Recalling the (2.10), we see that the input of the 
velocity-based multiple model is the time differential 
of the control signal u . It is a pulse response model 
rather than a normal step response model. Practically, 
it is very difficult to formulate a pulse input signal 
because of the differential problem.  Mathematically, 
in continuous time domain, 

( ) ( ) ( )
τ

τ
τ

tutu
tu

−+
=

→0
lim&  

 and in the discrete time domain, the problem is 
simplified as  

 
[ ] [ ] [ ]

T
TkTukTu

T
kTu −−

=
∆

, 

where T represents the sample time. This equation 
exactly matches the definition of the differential. 
There is no approximation at this stage. Figure 3 
shows how the pulses are produced from  step 
changes in the discrete time domain. 

 
 
 

 
 
 
 
 

Fig.3. Discrete-time Pulse formulation 
 
The key issue of this paper is to deduce the 
conventional LM network and velocity-based LM 
network in discrete time domain. For simplicity, the 
authors employed the strategy as (McLoone,2001), in 
which two local models are applied to model the 
relationships between the coolant flow rate ( )tqc  and 

the product concentration, )(tC , for the operating 

space bounded by input: ( )tqc =[85, 111] l/min. 
These two local models are obtained by freezing the 
nonlinear velocity model at the appropriate 
linearization points:  

min/0.90,7522.448,/062.0 111 lqKTlmolC cooo ===

min/0.110,9487.432,/1298.0 112 lqKTlmolC cooo ===

in which  ( i
co

i
o

i
o qTC ,, ) denotes the linearization point 

of the ith local model. Normalised Gaussian function 

Time  (min) 

C
on

ce
nt

ra
tio

n 
 C

(t)
(m

ol
/l)

 

step 10 

Differential  

Ts 

sT
10

( )tqc( ) cfTtqc ,

C(t),T(t) 

Feed in 

fff TqC ,,

Coolant 

Fig. 1. Continuous Stirred Tank Reactor 
 

in discrete time 
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is commonly used as the weighting function to blend 
local models in both conventional LM network and 
velocity-based LM network. However, recent study 
(McLoone, 2001) pointed out its limited mapping 
accuracy in the special case CSTR and suggest to use 
piecewise linear weighting functions instead. 

To transform the velocity-based LM network to a 
discrete-time model, the sampling time is selected as 
0.1 min according to Shannon’s sampling theorem.  

5.2. SIMULATION RESULTS 

In this section, simulation will be done in two parts. 
To get a clear idea about the performance of all the 
kinds of multiple models we discussed, we choose 
the same set of step signal ( )tqc , which varies from 
88 l/min to 110 l/min as shown in Fig.4. Firstly, 
continuous-time outputs from the velocity-based LM 
network are compared with the corresponding 
discrete-time outputs; Secondly, both of the outputs 
from the conventional LM Network and the velocity-
based multiple models, in the discrete time domain, 
are compared  with the output from the CSTR model 
plant. Meanwhile, the modelling error from the 
velocity-based LM network and the conventional LM 
network are compared too.  

0 20 40 60 80 100 120
85

90

95

100

105

110

 

Fig.4.  Step changes in coolant flow rate qc(t) 

A. Comparison of concentration outputs from 
velocity-based LM network in the discrete time 
domain with corresponding outputs in the continuous 
time domain.  

0 20 40 6 0 80 100 120
0.04
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0.08

0 . 1

0 .12
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0.16

 

80 81 82 83 84 85 86 87 88 89 90
0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

 
 
Fig.5.  Comparison of the concentration outputs. Solid 

line represents the outputs from discrete-time 
model, and dash-dot line represents the outputs 
from the continuous-time model. 

Fig.5. shows that the dynamics of the discrete-time 
model accurately matches those of the continuous -
time model. The results validate the use of the 
proposed continuous-to-discrete model transform 
approach. It should be noted that the discrete-time 
velocity-based LM network doesn’t exactly follow 
the continuous-time velocity-based LM network 
output in terms of the steady state. This is because 
modelling errors exist in both the continuous-time 
and discrete-time velocity-based LM network. These 
errors are out of the control of the networ k and 
therefore accumulate with time. More detailed 
information is shown in Fig. 6.  

B. Comparison of concentration outputs from the 
discrete-time model networks with corresponding 
outputs from the CSTR plant model. 

Fig. 6 shows that the performances of both networks 
are relatively poor, especially in terms of steady-state 
accuracy. The discrete-time conventional LM 
network represents the CSTR plant accurately at 
points where only one model is valid. However, in 
the space between the models the steady-state 
accuracy is poor for the LM network is globally 
affined. Furthermore, the conventional LM network 
fails to capture the dynamics of the CSTR. The 
discrete-time velocity based LM network, on the 
other hand, shows much better capability in capturing 
the dynamics of CSTR plant, especially when C(t) is 
about 0.11 mol/l - refer to the modelling error shown 
in  Fig. (c).  Unfortunately, the steady state error is 
still significant. However, as discussed in (McLoone, 
2001), this error is inherent in the velocity-based 
approach but can be removed using integral feedback 
in a control framework. Thus, the discrete-time 
velocity-based approach outlined in this paper is 
ideally suited to the development of discrete-time 
network consisting of a set of local controllers. 
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a) Velocity-based LM network 
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b)      Conventional LM network 
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c)    Modelling error 
 
Fig.6. Comparison of concentration outputs. The 

dashed line represents the output from the CSTR 
plant. The solid line represents the output from 
the discrete-time models networks. The dash-
dotted line represents the output from the CSTR 
plant model. Modelling errors are shown in (c). 

 

6. CONCLUSIONS 

The main objective of this paper is to develop the 
discrete velocity-based LM network. In section 3, 
both of the velocity-based LM network and 
conventional LM network are transformed to the 
discrete time domain mathematically. Then 
simulations on highly nonlinear plant CSTR prove 
the effectiveness of the proposed continuous -to-
discrete model transform approach and highlight that 
the velocity-based LM network has better capability 
in capturing the dynamics than the conventional LM 
networks. This brings promising potential for its 
application in controller design. Further work will 
focus on local controller networks design based on 
the developed discrete velocity-based LM network. 
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