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Abstract 
Background  
Breast cancer is a heterogeneous disease that consists of varying genetic, cellular and molecular subtypes 
with unique characteristics. Due to the multiple subtypes and molecular markers of breast cancer, 
successful clinical treatment is hampered by the lack of reliable biomarkers. HER2-positive breast cancer 
is an aggressive subtype associated with poor patient prognosis. Although survival rates have 
dramatically increased due to the development of Trastuzumab in 1997, many patients develop a 
resistance to this therapeutic treatment and relapse over time. Previous studies have associated the 
acquirement of resistance to HER2-treatment with Neuromedin U, but the mechanisms by which it works 
remain elusive. 
 
Aim 
The aim of this study was to investigate the effects of NmU on the regulation of immediate early and 
delayed primary response genes in HER2-positive SKBR3 breast cancer cells using RT-qPCR gene 
expression analysis. This information was then used to uncover related pathways that may be involved 
in the progression of this aggressive cancer due to NmU. 
 
Results 
Treatment of SKBR3 cells with endogenous NmU resulted in a significant change in the regulation of 
several cancer-associated genes. Jun expression was significantly downregulated after 30 minutes of 
NmU treatment, which increased significantly after 1 hour. EGR1 and NR4A1 expression levels were 
also significantly downregulated. EGR1 and NR4A1 act as tumour suppressors in certain human cancers, 
suggesting that NmU may drive cancer progression by inhibiting important tumour suppressors. 
Increasing regulation of SOD2 and DKK1 was observed due to NmU, suggesting that NmU plays a role 
in Wnt and MAPK signalling. 
 
Conclusion 
This project has identified a number of critical genes that may induced by NmU. Through further 
research, this could lead to the potential development of alternative therapies for HER2-positive breast 
cancer by targeting these genes. 
 
Keywords: Breast Cancer, HER2-positive Breast Cancer, Neuromedin U, Immediate Early Genes, Gene 
Expression Analysis  
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1. Introduction 
Breast cancer is a heterogeneous disease that consists of varying genetic, cellular, and molecular 
subtypes all with unique characteristics. Over 1 million new breast cancer patients are diagnosed 
yearly worldwide and accounts for the most cancer-related deaths in women (Jemal, et al., 
2011). Due to the multiple subtypes and molecular markers of breast cancer, successful clinical 
treatment is hampered by the lack of reliable biomarkers. Human Epidermal Growth Factor 
Receptor 2 (HER2)-positive breast cancer is an aggressive subtype associated with poor patient 
prognosis. Although survival rates have dramatically increased due to the development of 
Trastuzumab in 1997, many patients develop a resistance to this therapeutic treatment and 
relapse over time. Rani et al. (2014), have recently associated the acquirement of resistance to 
HER2-treatment with a secreted neuropeptide called Neuromedin U (NmU), but the 
mechanisms by which this occurs have not been uncovered.  
NmU is an endogenous neuropeptide belonging to a family known as the Neuromedins. These 
neuropeptides are involved in neuronal signalling and have implicated themselves in a range of 
physiological processes such as energy homeostasis and maintaining the biological clock 
(Budhiraja & Chugh, 2008). NmU was originally isolated from the spinal cord of a pig in 1985 
and has since been found to be highly conserved in the gut and brain of a number of different 
species throughout evolution. NmU was first found to play a role in smooth muscle contraction 
of the uterus, hence its name, and has since been ascribed many peripheral and central activities 
It is ubiquitously distributed throughout the body with its highest levels found in the pituitary 
gland and gastrointestinal tract. Current research has suggested that NmU also plays a role in 
immune inflammatory diseases, stress, and cancer, however, the exact pathological roles of 
NmU have not yet been fully investigated and still remain ambiguous (Budhiraja & Chugh, 
2008). 
NmU is believed to act as an endogenous antagonist to its two identified receptors – NMUR1 
and NMUR2. These are G protein coupled receptors (GPCRs), which transform extracellular 
stimuli into intracellular signals via their seven transmembrane domains (Kroeze, et al., 2003). 
Activation of these GPCRs by NmU activates two heterotrimeric membrane-resident G 
proteins; Gqalpha-11 (Gqα11) and Gialpha (Giα). These G proteins consist of three subunits: α, 
β, and γ, which are anchored to the membrane via a fatty acid chain. When activated, these 
proteins are switched on by the conversion of guanosine diphosphate (GDP), found in the α 
subunit, to guanosine triphosphate (GTP). This allows the βγ subunit to dissociate from the α 
and move laterally across the membrane in search of a target (Fig. 1; Li, et al., 2002). 

 
Figure 1: Schematic representation of NMUR1 and NMUR2 GPCRs (Malendowicz, Ziolkowska, & Rucinski, 2012; used with permission). 
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NMUR1 and NMUR2 stimulation has been found to activate phospholipase C through the Gqα11 
protein, allowing a flux of Ca2+ ions to pass through the cell membrane, subsequently activating 
a cascade of intracellular changes (Gajjar & Patel, 2017). These include the activation of 
Tyrosine-Protein Kinase Met (c-Met), which causes further signal transduction cascades such 
as the activation of pathways which have been heavily implicated in cancer progression. These 
are the phosphoinositide-3-kinase (Pi3K) and mitogen-activated protein kinase (MAPK) 
pathways, which have repeatedly been associated with increased cell migration, differentiation, 
and resistance to apoptosis (Ketterer, et al., 2009). 
In recent years, it has been suggested that NmU may play an oncogenic role in cancer 
progression. Studies by Rani et al. (2014) have linked NmU with acquired resistance to HER2-
targeted therapies in HER2-positive breast cancer. This study, which looked at the HER2-
positive SKBR3 cell line, reported that NmU levels were significantly increased in patients who 
were resistant to HER-targeted treatments, and that NmU knockdown greatly improved the 
effectiveness of these treatments. Rani et al. (2014) suggested that NmU expression could be 
used as an independent prognostic factor for poor outcome. Subsequent research by Garczyk et 
al. (2017) found that NMUR2 expression levels were high in HER2-rich breast tumours. They 
also found that NmU over-expression increased motility of NMUR2-positive SKBR3 breast 
cancer cells. With this information, they suggested that NmU plays an oncogenic role, especially 
in the presence of the NMUR2 receptor. Little is known to date, however, on the pathways and 
molecules that NmU interacts with to induce this oncogenic effect. By uncovering which 
immediate early genes (IEGs) and delayed primary response genes (DPRGs) are regulated by 
NmU, we may be able to identify specific therapeutic targets to prevent the metastatic spread of 
this cancer.  
The exact signal transduction of NMUR1 and NMUR2 is not yet known, however typically the 
binding of growth factors to cell surface receptors leads to the activation of signalling pathways 
involved in the mediation of cell proliferation, differentiation, and survival. These signalling 
cascades typically target transcription factors, which alter gene expression levels, resulting in 
changes in cell behaviour. There are two highly organised programmes of gene expression 
induced by growth factor stimulation: the regulation of primary response genes, which do not 
require de novo transcription factor synthesis; and the regulation of secondary response genes, 
which are regulated later by primary response genes and depend on the translation of primary 
gene mRNA to produce transcription factors for their activation (Tullai, et al., 2007). The initial 
response to growth factor stimulation is the rapid induction of these primary response genes, 
which are mediated by pre-existing transcription factors. These primary response genes are 
classified into IEGs and DPRGs. IEGs are regulated rapidly by growth factors and encode 
transcription factors, which in turn activate secondary response genes. While DPRGs are 
induced later than IEGs, they do not require further protein synthesis for their activation and are 
thus classified as delayed primary response genes and not secondary (Tullai, et al., 2007). There 
is little information about the effects of NmU on IEGs and DPRGs, and the pathways associated 
with them. This research project aims to uncover the role of NmU in cancer pathogenesis by 
examining the effect of NmU on the HER2-positive cell line – SKBR3 through the regulation 
of these genes. This could potentially lead to the identification of novel methods of treating 
HER2-positive breast cancer by targeting these pathways. 
 

2. Materials and Methods 
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Materials 
SKBR3 cell lines were obtained from Trinity College Dublin; Dulbecco’s Modified Eagle’s 
Medium – high glucose with 4500 mg/L glucose, L-glutamine, and sodium bicarbonate, without 
sodium pyruvate (Sigma); Fetal Bovine Serum Canada origin, sterile-filtered, γ-irradiated 
(Sigma); Penicillin-Streptomycin, stabilised with 10,000 units penicillin and 10 mg 
streptomycin/mL (Sigma); Trypsin BRP, European Pharmacopoeia (EP) reference standard 
(Sigma); Dulbecco’s Phosphate Buffered Saline with MgCl2 and CaCl2, liquid (Sigma); 
Neuromedin U-25 (human) (NmU) ( CAT no. ab141007 Abcam); Virkon disinfectant cleaner 
(Sigma); Ethanol (Fisher Scientific); Cell freezing medium-DMSO 1X (Sigma); Class II 
Biological Safety Cabinet; 37 °C incubator with 5% CO2; Corning® CELLBIND® Surface cell 
culture flasks (Sigma); Optika Vision Pro Software with camera lens; Cryogenic Tube 
(ALDRICH); Microscope (Olympus/CX23LEDRFS1); PureLink RNA Mini Kit (CAT no 
12183018A, Invitrogen); Applied Biosystems High-Capacity cDNA Reverse Transcription kit 
(CAT no. 4368814); NanoDrop® ND-1000 spectrophotometer; SYBR™ Select Master Mix 
(Applied Biosystems, CAT 4472903); Applied Biosystems 7300 Real-Time PCR System; 
MicroAmp™ Optical 96-Well Reaction Plate (Applied Biosystems). 
 
Cell Culture and Treatments 
SKBR3 cells were originally established in 1970 and were sourced from a Caucasian female 43 
years of age who suffered from malignant breast adenocarcinoma. SKBR3 cells over-express 
the HER2 receptor. These cells were chosen as it has been earlier reported that NmU increases 
the stability of the HER2 receptor, thereby increasing the aggressiveness of the cancer (Rani, et 
al., 2014). SKBR3 cells were cultured in Dulbecco’s minimal essential medium (DMEM), 
supplemented with 10% v/v fetal bovine serum (FBS), 1% v/v penicillin streptomycin (Pen-
Strep), and 1% v/v  L-glutamine. To induce expression of IEGs and DPRGs, 5x105 cells were 
seeded in 25-cm2 flasks, allowed to attach overnight, and subsequently treated with 5 µmol/L 
of NmU-25 for 30 minutes, 1 hour, and 24 hours respectively. Sterile water was used as a solvent 
to dissolve the NmU. Sterile water was also used as a solvent control for the untreated cells. 
 
RNA Extraction and Quantification using Microvolume Spectrophotometry 
Total RNA was extracted from the treated and untreated SKBR3 cells using the Invitrogen 
PureLink RNA Mini Kit as per the manufacturer’s instructions. To lyse the cells for RNA 
extraction, 0.6 ml of lysis buffer was added to each sample and the lysate was passed through a 
2.5 ml syringe needle 5 times for complete homogenisation. Extracted RNA was quantified 
using the NanoDrop® ND-1000 spectrophotometer. The A260/A260 ratio for all samples was 
2.03-2.07 indicating the RNA was pure. Cell treatment and RNA extraction were performed 
once only.  
 
Reverse Transcription PCR 
cDNA was synthesised from each RNA sample using the Applied Biosystems High-Capacity 
cDNA Reverse Transcription kit, according to the manufacturer’s instructions. A Master Mix 
was prepared with 12 µl of 10X RT Buffer, 4.8 µl of 25X dNTP Mix (100 mM), 12 µl of 10X 
RT Random Primers, and 6 µl of MultiScribe Reverse Transcriptase. 164.4 ng/µl of RNA from 
each treatment time was converted to cDNA. The reverse transcription reaction was carried out 
in a thermal cycler using the conditions laid out in Table 1. 
 
Table 1: Thermal cycler conditions for cDNA reverse transcription. 
 

Settings Step 1 Step 2 Step 3 Step 4 
Temp. 25 °C 37 °C  85 °C 4 °C 
Time 10 minutes 120 minutes 5 minutes ∞ 
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RT-qPCR 
Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out using 
SYBR green detection to determine gene expression in SKBR3 cells due to NmU. The analysis 
was performed using 2 µl of DNA, 1 µl of the relevant primer mix, and 7 µl of SYBR green and 
ultra-pure water. The real time reaction was carried out on a 96-well plate according to the 
conditions collated in Table 2, with the annealing temperature changing according to the Tm of 
the primers used (Table 3). Beta-actin was used as an endogenous control to allow for 
normalisation of the gene expression levels. 
 
Table 2: RT-qPCR reaction conditions. 
 

Stage Temperature (°C) Time 
Holding Stage 95.0 10 min 
Cycling Stage (40 Cycles) 95.0 15 sec 

60.0* 1 min 
Melt Curve Stage 95.0 15 sec 

60.0 1 
95.0 15 sec 

*Annealing temperature changed according to melting temperature (Tm) of primers. 
  
Table 3: List of primers used with corresponding Tm. 
 

Primer used Average Tm of forward and reverse (°C) 
Beta-actin 59.6 

FOS 58.15 
JUN 61.4 

EGR1 60.6 
IER2 59.35 

NR4A1 63.6 
SOD2 59.8 
DKK1 57.45 

 
Statistical analysis 
Three biological replicates and three technical replicates were used for statistical analysis, and 
the relative quantification (RQ)/fold-change was calculated in Excel using the average values 
for each gene. The delta-delta cycle threshold (CT) method was used to calculate the RQ, and 
the results were compared to untreated controls to determine the size of the change in expression 
between the two conditions. Statistical analysis on RT-qPCR data was performed in Excel. 
Student t-tests were used to generate p-values, with p < 0.05 considered as statistically 
significant.  
 
 

3. Results  
 

RNA Quantification using Microvolume Spectrophotometry 
The NanoDrop® ND-1000 was used to measure the concentration of 1 µl of RNA extracted 
from each of the SKBR3 samples after treatment with NmU-25 peptide. The ND-1000 software 
was used to automatically calculate the quantity of RNA in each sample in ng/µl (Table 4). 
Corresponding absorbance curves for each treatment times are available on request. Each RNA 
sample quantified had a A260/280 ratio of 2.03-2.07, indicating that there were no contaminants 
present and therefore deeming the RNA as pure (NanoDrop Technologies Inc., 2007). 
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Table 4: RNA concentrations of the control and NmU-treated SKBR3 cells as determined using the NanoDrop® ND-1000. The ratio of RNA 
sample absorbance at 260 nm and 280 nm was used to determine the purity of the RNA. All samples with a 260/280 ratio of 2.0 were deemed 
as pure. 

 
Sample ID ng/µl A260/280 A260/230 

Control 768.64 2.04 1.18 
30 mins 164.40 2.07 0.78 
1 hr 430.63 2.04 1.91 
24 hrs 850.82 2.03 1.30 

 
Gene Expression Analysis using RT-qPCR 
Based on literature by Forget et al. (2007),  Jiao et al. (2010), and Wu et al. (2017)  , five IEGs 
and two DPRGs were selected, which have previously been linked with cancer and these were 
analysed using RT-qPCR. IEGs and DPRGs can be activated and transcribed rapidly after 
stimulation by external and internal stimuli. Many of these genes are considered proto-
oncogenes and have been linked to the MAPK pathway, which is commonly involved in cancer 
mutagenesis (Bahrami & Drablos, 2016). 
A sample RT-qPCR curve for one of the reactions carried out can be seen below in Figure 2. 
From this curve the CT values were extrapolated and used to calculate the RQ values of each 
gene. The fold change in gene expression levels due to NmU can be seen below in Table 5 for 
IEGs and Table 6 for DPRGs. Beta-actin was used as an endogenous control so that the gene 
expression levels of the target gene could be normalised. However, beta-actin showed some 
variability in its expression between NmU-treatment times, as shown in Table 5. 
 

 
Figure 2: Sample image of the RT-qPCR analysis carried out of gene expression in SKBR3 cells due to NmU 
treatment at 30 minutes, 1 hour, 24 hours, and untreated controls. All curves over the baseline indicate a positive 
reaction. 
 
 
 
 
 
 
 
Table 5: Statistical analysis of IEG expression was calculated using the delta-delta Ct method. The fold changes of each gene due to NmU are 
shown. A negative value infers gene downregulation due to NmU and a positive value signifies an upregulation of the gene. The fold changes 
of beta-actin treated and untreated and also included in this table, this housekeeping gene (HKG) was used for normalisation of the data. 
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Gene NmU Treatment 
Time 

Average Fold 
Change 

Standard Error of 
Mean (SEM) 

Beta-Actin Control 15.0844 0.69 
Beta-Actin (Treated) 30 min 15.846 0.76 
 1 h 15.58 0.49 
 24h 15.3217 0.26 
FOS 30 min 6.43 1.80 
 1 h 5.57 0.87 
 24 h 2.52 0.30 
JUN 30 min -97.25 0.79 
 1 h 6.93 1.53 
 24 h 2.49 0.32 
EGR1 30 min -73.48 6.82 
 1 h -7.48 1.33 
 24 h -93.88 2.18 
NR4A1 30 min 1.46 0.11 
 1 h -1.33 0.19 
 24 h -2.12 0.26 

 
 

Table 6: Statistical analysis of DPRG expression calculated using the delta Ct method. A negative value infers gene downregulation due to 
NmU and a positive value signifies an upregulation of the gene. The results for beta-actin collated above were used for data normalisation. 

 
Gene NmU Treatment 

Time 
Average Fold 

Change 
Standard Error of 

Mean (SEM) 
SOD2 30 min -1.35 0.17 
 1 h 2.02 0.19 
 24 h 1.72 0.14 
DKK1 30 min -2.16 1.11 
 1 h 73.76 2.84 
 24 h 15.57 0.54 

 
Previous research by Rani et al. (2014) found that NmU-25 had no cytotoxic effects on SKBR3 
cells when 1 x 106 cells seeded in a 25-cm2 flask were treated with 1 µmol/L of NmU. As such, 
a similar method was followed in this research project, to ensure the cells were not adversely 
affected by the peptide. While cell morphology and proliferation rate were not a focus of this 
experiment, all cells treated with NmU-25 appeared to have reduced colony formation when 
examined under a microscope. However, this would need to be further examined using colony 
formation and migration assays. To determine the effect of NmU on the regulation of the genes 
listed in Tables 5 and 6 in HER2-positive breast cancer and whether they are linked to resistance 
in HER-targeted therapies, relevant primers for each gene were used in this study. 

 
 
 
 

Analysis of Fos & Jun expression following NmU treatment. 
NmU treated SKBR3 cells were analysed using RT-qPCR to determine the change in expression 
levels of the Fos oncogene (Fig. 3). However, these results obtained were not statistically 
significant, suggesting that Fos may not be directly impacted by NmU expression in vitro.  
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Figure 3: Decreasing expression of Fos was observed due to NmU treatment at 30 minutes (6.43-fold ± 1.80), 1 
hour (5.57-fold ± 0.87, p=0.66), and 24 hours (2.52-fold ± 0.30, p=0.08). Fold change was calculated in Excel 
using the delta-delta Ct method. Results are presented as mean ± SEM; n=3, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 
0.001. 
 
Jun, which is known to form a transcriptional complex with Fos, was also examined in this 
project. After 30 minutes of treatment with NmU, a large downregulation of Jun by -97.25-fold 
was observed, followed by a highly significant upregulation to 6.93-fold after 1 hour, which 
again decreased significantly to 2.49-fold after 24-hours (Fig. 4). This variation in gene 
expression may be due to the cyclic manner in which some genes are transcribed within the 
nucleus. It may also be due to an activating protein (AP-1) complex that is formed by the 
dimerisation of Fos and Jun, suggesting that Jun may rely on the formation of this complex for 
its upregulation.  
 

 
Figure 4: Regulation of Jun expression following NmU treatment at 30 minutes (-97.25-fold  ± 0.79) , 1 hour 
(6.93-fold  ± 1.53, p=0.000017), and 24 hours (2.49-fold  ± 0.32, p=0.05). Fold change was calculated in Excel 
using the delta-delta Ct method. Results are presented as mean ± SEM; n=3, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 
0.001. 
 
Analysis of EGR1 expression following NmU treatment. 
Treatment of the SKBR3 cells with NmU resulted in a significant downregulation of EGR1 after 30 minutes and 
24 hours (Fig. 5). 
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Figure 5: Downregulation of EGR1 due to NmU treatment at 30 minutes (-73.48-fold  ± 6.82) , 1 hour (-7.48-fold  
± 1.33, p=0.0007), and 24 hours (-93.88-fold  ± 2.18, p=0.000005). Fold change was calculated in Excel using the 
delta-delta Ct method. Results are presented as mean ± SEM; n=3, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 

 
Analysis of NR4A1 expression following NmU treatment. 
Treatment of SKBR3 cells with NmU resulted in an initial upregulation of NR4A1 after 30 minutes of treatment, 
which decreased significantly after 1 hour (Fig. 6). 

 
Figure 6: Regulation of NR4A1 due to NmU treatment at 30 minutes (1.46-fold  ± 0.11) , 1 hour (-1.33-fold  ± 
0.19, p=0.03), and 24 hours (-2.12-fold  ± 0.26, p=0.13). Fold change was calculated in Excel using the delta-delta 
Ct method. Results are presented as mean ± SEM; n=3, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
 
Analysis of SOD2 expression following NmU treatment. 
Treatment of SKBR3 cells with NmU resulted in an initial downregulation of SOD2 gene expression after 30 
minutes, which significantly increased after 1 hour (Fig. 7). This shows that in HER2-positive breast cancer with 
high levels of NmU, SOD2 is likely to play the role of a tumour promoter. 

*	
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Figure 7: Regulation of SOD2 due to NmU treatment at 30 minutes (-1.35-fold  ± 0.17) , 1 hour (2.02-fold  ± 0.19, 
p=0.001), and 24 hours (1.72-fold  ± 0.14, p=0.33). Fold change was calculated in Excel using the delta-delta Ct 
method. Results are presented as mean ± SEM; n=3, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
 
Analysis of DKK1 expression following NmU treatment. 
Treatment of SKBR3 cells with NmU resulted in a highly significant upregulation of DKK1 expression after 1-
hour of treatment (73.76-fold), which decreased to 15.57-fold after 24 hours (Fig. 8). This suggests that the DKK1 
gene is also transcribed in a cyclic manner, as was seen with Jun. 

 
Figure 8: Regulation of DKK1 due to NmU treatment at 30 minutes (-2.16-fold  ± 1.11) , 1 hour (73.76-fold  ± 
2.84, p=0.00002), and 24 hours (15.57-fold  ± 0.54, p=0.0006). Fold change was calculated in Excel using the 
delta-delta Ct method. Results are presented as mean ± SEM; n=3, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 

 
 
4. Discussion  
 

NmU has previously been associated with HER2-positive breast cancer, but little is known about 
its effects on IEGs and DPRGs, and the role it plays in cancer progression. A number of IEGs 
and DPRGs have been associated with the progression and increased aggressiveness of cancers 
such as HER2-positive, however, the role that NmU plays in this has not yet been uncovered. 
The genes listed in Table 3.2 were selected as they have previously been linked to human 
cancers, but it has not been determined whether NmU plays a role in their activation. By 
determining the role of NmU in the regulation of these genes, it will be possible to make 
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connections between specific genes and pathways, and potentially uncover new targets for 
HER2-positive breast cancer treatment. 

 
Endogenous Control gene 
Beta-actin was used as an endogenous control so that the gene expression levels of the target 
gene could be normalised. Beta-actin is a HKG, whose expression levels should remain constant 
throughout NmU treatment. However, in this study a small level of variability in expression 
between NmU-treatment times was observed. HKGs are often used for the normalisation of 
mRNA levels between different samples, however, their expression levels can vary among cells 
and tissues and may change under specific circumstances; this is likely in this case. Good 
reproducibility was observed throughout the experiment with other samples and primers used, 
confirming that the variability seen in beta-actin between treatment times is likely due to the 
gene itself, and not due to errors made in sample preparation. Aithal & Rajeswati (2015) have 
shown that beta-actin varies considerably during some gene expression profiling and is thus not 
the most suitable candidate for gene expression analysis. 
 
Fos  
This study analysed the effects of NmU on the Fos oncogene, which plays a distinct role in the 
regulation of cell growth, differentiation, and transformation. It is characterised as an IEG, as 
its expression is rapidly induced by external stimuli such as mitogens and hormones (He, et al., 
2001). Transcription of Fos is activated by serum and growth factors and is linked to the 
transcription factor Elk-1 – a target of the MAPK pathway. Numerous studies have implicated 
Fos in enhanced cell proliferation and differentiation and have found it to regulate many genes 
involved in tumorigenesis by causing a downregulation of tumour-suppressor genes (Bakin & 
Curran, 1999). Members of the Fos family have long since been represented in gene profiles 
associated with early relapse and reduced survival rates in many cancer types (Meinhold-
Heerlein, et al., 2005). Furthermore, Fos has been seen to induce epithelial-mesenchymal 
transition (EMT), leading to the metastatic growth of mammary epithelial cells (Fialka, et al., 
1996). There was no significant evidence however, to suggest that Fos was directly impacted 
by NmU (see Figure 3.3). This was surprising as Jun, which is known to form a heterodimeric 
AP-1 transcriptional complex with the nuclear protein encoded by Fos, was found to be 
significantly downregulated due to NmU. The AP-1 complex is a transcription factor formed in 
response to external stimuli by the dimerisation of c-Fos and c-Jun (Maggiolini, et al., 2004). 
This complex controls a number of cellular processes seen in cancer development, such as 
apoptosis, proliferation, and differentiation. It acts by binding to the promoter region of specific 
target genes and converting extracellular signals into changes in gene expression (Mahner, et 
al., 2008). According to Eferl & Wagner (2003), some Jun and Fos family proteins can actually 
suppress the formation of tumours and whether AP-1 is oncogenic or not depends on the cell 
type and differentiation state. 
 
Jun  
Jun is a proto-oncogene that produces the transcription factor c-Jun, which forms part of the 
AP-1 complex discussed above. c-Jun is overexpressed in human breast cancer and has been 
linked to cancer progression through activation of the MAPK pathway. Studies by Jiao et al. 
(2010) have shown that c-Jun promotes cellular invasiveness and stem cell expansion in HER2-
positive and other aggressive breast cancer subtypes. As Jun is also associated with cell 
proliferation, the significant downregulation of this gene observed here (see Figure 3.4) due to 
NmU may explain the reduced cell growth and proliferation observed by Garczyk et al. (2017) 
in cells with increased levels of NmU mRNA. The AP1 complex, formed by Fos and Jun, is 
also associated with increased cell motility. While this study has not found NmU to be linked 
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with Fos expression, it may still play a role in the promotion of AP-1 through the stimulation of 
Jun, suggesting that NmU may be involved in the increased motility associated with HER2-
positive cells, allowing them to disseminate from the primary tumour site and invade other parts 
of the body. This postulation may explain why Garczyk and his colleagues found that NmU 
reduced cell-Matrigel adhesion of NMUR2-positive SKBR3 cells in an anchorage-
independence assay (Garczyk, et al., 2017). As changes in tumour cell migration are often 
accompanied by alterations in cell adhesion, this warrants for further investigation into the role 
of the AP-1 unit in HER2-positive breast cancer and the genes and pathways associated with it. 
If there is a link associated with NmU and the AP-1 unit, it may be possible to design a method 
to reduce the risk of cancer metastasis by targeting this complex. 
 
EGR-1  
EGR1 is an important transcriptional regulator that acts as a master switch for a variety of 
extracellular stimuli involved in long-term cellular responses such as growth, proliferation, and 
apoptosis (Gregg & Fraizer, 2011). EGR1 is found in low abundance in many cancers such as 
lymphoma and breast cancer, indicating that it plays a role in tumour suppression. Studies have 
shown that it acts through targeting two main tumour suppressors – Phosphatase and tensin 
homolog (PTEN) and p53, and also the pro and anti-apoptotic factor c-Jun. This suggests that 
the absence of EGR1 allows cells to grow unchecked and proliferate out of control (Gregg & 
Fraizer, 2011). EGR1 was found to be significantly downregulated after 30 minutes and 24 
hours of treatment with NmU (see Figure 3.5). This correlates with Gregg & Fraizer (2011), 
who found the EGR1 gene to be absent or in low prevalence in cancers such as breast cancer. 
This is also in concordance with previous research carried out to analyse the effects of the 
growth factors heregulin and EGF on HER2-positive breast cancer (Murphy, 2017). This project 
found that treatment of SKBR3 cells with EGF, the main growth factor involved in EGR1 
regulation, reduced their ability to proliferate (Murphy, 2017). This suggests that NmU may 
enhance the invasive property of SKBR3 cells by downregulating EGR1 and allows cells to 
move through the cell cycle unchecked. This warrants for further investigation into the possible 
link between NmU and EGF. 
 
NR4A1  
Nuclear hormone receptor 4 (NR4A1) belongs to a family of nuclear hormone receptors (NHRs) 
that are involved in the regulation of physiological and pathological processes in the human 
body. NHRs are transcription factors that are induced by hormones in the body to regulate their 
target gene expression. NR4A1 however, is an orphan receptor as it does not have any identified 
hormones or ligands. It can be activated by various extracellular stimuli such as growth factors, 
cytokines, and neurotransmitters (Maxwell & Muscat, 2006). This IEG has pleiotropic 
physiological roles and has been implicated in the regulation of functions involving the central 
nervous system (CNS), inflammation, and metabolism (Maxwell & Muscat, 2006). In cancer, 
conflicting reports have been made about its role, suggesting that the complex function of this 
transcription factor may be specific to each subtype of this disease (Wu, et al., 2017). Several 
studies have reported NR4A1 acting as a tumour suppressor. For example, Lenz et al. (2008) 
found that the over-expression of NR4A1 in lymphoma cells induced apoptosis and inhibited 
further growth of tumour cells in mice. The significant downregulation of NR4A1 observed in 
this study (see Figure 3.6) is supported by Wu et al. (2017) who found that expression of this 
gene in TNBC cells inhibited cell proliferation, migration, and invasion (Wu, et al., 2017). The 
downregulation of NR4A1 observed after 1 hour of treatment with NmU correlates with studies 
by Wu et al. (2017), where NR4A1 expression was significantly downregulated in triple-
negative breast cancer (TNBC). The low levels of NR4A1 protein in the TNBC tissue samples 
was associated with advanced tumour stage, lymph node metastasis, and disease recurrence 
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(Wu, et al., 2017). This leads to the suggestion that NmU may increase the aggressiveness of 
HER2-positive breast cancer by down-regulating tumour suppressors such as NR4A1, thereby 
allowing the cells to proliferate and avoid cell cycle checkpoints. 
 
Superoxide dismutase 2 
Superoxide dismutase 2 (SOD2), a DPRG, is an antioxidant enzyme that plays an important role 
in the defence of reactive oxygen species (ROS) (Kang, 2015). ROS are known to cause DNA 
damage in cells, generating genetic lesions, which can ultimately lead to the initiation of 
tumorigenesis (Bulteau, et al., 2005). SOD enzymes are one of the most important enzymes 
involved in the mediation of ROS induced damage (Yamakura & Kawasaki, 2010), with SOD2 
being the only one found within the mitochondrial matrix. SOD2 has been found to play a 
dichotomous role in cancer, acting as both a tumour suppressor and promoter. Traditionally, 
SOD2 was considered a tumour suppressor due to its cytoprotective role of scavenging harmful 
superoxide anion free radicals (O2•−) in the mitochondrial matrix (Kim, et al., 2017). This 
observation was made due to the reduced expression of the gene found in a variety of tumour 
types (Zhong, et al. 1997), and forced expression of SOD2 in a number of murine tumours also 
resulted in a significant tumour growth reduction (Weydert, et al., 2003). More recently 
however, it has been shown that SOD2 expression is entirely dependent of the tumour type, with 
some cancers actually displaying an increase in SOD2 levels (Miar, et al., 2015). A reduction 
in SOD2 expression is primarily seen at the initiation of cancer and in non-metastatic cancer 
cell lines, however, during metastasis, SOD2 levels have been seen to increase (Hempel, et al., 
2011). It has been found that an increase in the antioxidant enzymes encoded by SOD2 are 
required to enable tumour cells to cope with the added stress of detaching from the ECM. (Liu, 
et al., 2015).The increase in SOD2 levels observed in this study (see Figure 3.7) correlates with 
Hempel et al. (2011), who found that SOD2 levels were increased in metastatic cancers. As 
HER2-positive breast cancer can become metastatic, it is likely that this is in part due to the 
elevated levels of SOD2 induced by NmU, which helps the cells to cope with the stress of 
detaching from the ECM. 
 
DKK1  
DKK1 encodes a member of the dickkopf family of proteins – dickkopf-related protein 1. This 
soluble protein is secreted into the microenvironment of the bone and is important in embryonic 
development and bone formation. This protein is known to inhibit the beta-catenin dependent 
Wnt signalling pathway and has been found to be overexpressed in multiple human cancers, 
possibly promoting invasion in cancer cell lines (Forget, et al., 2007). In the Wnt signalling 
pathway, Wnt-1 protein binds to both the frizzled (fz) receptor and the low-density lipoprotein 
receptor-related protein 5/6 (LRP5/6), which triggers cellular signalling from proliferation via 
beta-catenin. When DKK1 is overexpressed, it binds to LRP5/6, thus blocking it from 
interacting with Wnt-1, ultimately leading to beta-catenin degradation and alterations in 
proliferation (Forget, et al., 2007). Conflicting reports have been made about DKK1’s role in 
cancer progression, with studies suggesting it prevents metastasis through downregulating the 
Wnt signalling pathway. Forget et al. (2007), however, have described DKK1 to be a potential 
diagnostic marker of aggressive breast cancer subtypes due to its high prevalence in human 
breast cancer with negative hormone expression. In their study, high DKK1 expression was 
found in MCF-7 HER2-positive cell lines along with DKK1 protein expression, leading to the 
suggestion that elevated DKK1 expression may contribute to the invasive phenotype associated 
with aggressive breast cancer cells (Forget, et al., 2007). The upregulation of DKK1 observed 
in this study (see Figure 3.8) correlates with the enhanced expression of this gene observed in 
MCF-7 cells by Forget et al. (2007). This suggests that NmU plays a role in the upregulation of 
DKK1 by signalling intracellular cascades such as the Wnt pathway. Garczyk et al. (2017) have 
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recently suggested that a crosstalk of NmU signalling with cancer-associated pathways such as 
Wnt and MAPK cascades may result in the altered expression of DKK1, thus contributing to 
cell growth inhibition and the promotion of cell migration.   
 
The DPRGs investigated in this project followed a similar trend of an initial downregulation at 
30 minutes, followed by a significant upregulation. As DPRGs are regulated later than IEGs, it 
is likely that it took one hour for this activation to occur inside the cells. This is in concordance 
with the literature available on DPRGs, which has shown that they require the upregulation of 
other primary response genes for they themselves to be activated. 
 
Proposed pathways involved in NmU activity 
To fully understand the mechanisms by which NmU increases resistance to treatment and 
progresses cancer, it is important to understand the proteins and genes that it interacts with. 
Gene expression analysis performed in this study allowed for the identification of critical genes 
and pathways associated with NmU. In light of this retrospective data discussed in this paper, a 
number of these potentially associated genes were evaluated using the String Database (see Fig. 
3). This investigation identified several interactions between these critical cancer-genes that are 
regulated by NmU. Fos, Jun, EGR1, and NR4A1 were all found to be related through 
intracellular interactions with strong data support. This new-found information will pave the 
way for further research into these genes, the pathways they are involved with, vital protein-
protein interactions, and the potential of their use as biomarkers to determine the onset of 
metastatic breast cancer. This also leads to the postulation that the targeting of NMUR2 could 
prevent NmU from regulating these oncogenic genes, thus preventing cells from becoming 
invasive and resistant to HER2-targeted therapies. 
 

 
Figure 3: Gene Ontology (GO) network diagram, created using the String Database, showing known and predicted 
interactions between Fos, Jun, IER2, EGR1, and NR4A1. Line thickness indicates the strength of data support. 
 
 

5. Conclusions 
Through gene expression analysis, this research project has, for the first time ,identified a 
number of critical genes and pathways induced by NmU, which is believed to act through its 
receptor NMUR2, as discussed previously by Garczyk et al. (2017). This may be the missing 
link in determining the mechanism by which HER2-positive breast cancer becomes metastatic 
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and lays the groundwork for the development of alternative therapies by targeting these genes. 
This study also suggests that NmU may play a role in inducing breast cancer metastasis through 
the activation of genes which increase cell motility. This leads to the postulation that NMUR2 
could potentially be used as a druggable target to block NmU from activating these genes. To 
verify these results found, the experiments detailed here will need to be repeated using a more 
suitable HKG, due to variability observed in beta-actin. 
 
 

6. Future Work 
In future studies, screening for suitable house-keeping genes should be performed to ensure the 
accuracy of the gene expression analysis.  As the selection of HKGs with the most stable 
expression is crucial to accurately analyse gene regulation, several endogenous controls should 
be compared using RT-PCR to determine the most appropriate candidate. 
The relationship between NmU and these genes should also be investigated in other HER2-
positive cell lines with innate-resistance/susceptibility to various HER-drugs, this would help to 
consolidate the results observed in this study. To identify further pathways and genes associated 
with NmU, more cancer-associated genes should be investigated to determine the effect NmU 
has on their reaction. Once a large group of specifically regulated genes has been identified, 
Western Blotting and BioID could be used to screen for protein-protein interactions involved in 
HER2-positive breast cancer with high NMUR2 levels. As Rani et al. (2014) suggested a link 
between NmU and HER2-resistance, gene expression analysis could then be performed in HER-
Drug resistant cell lines so that a co-relation between NmU and HER-drug resistance could also 
be detected. 
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