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ABSTRACT 

Dielectric barrier discharge atmospheric plasma is a novel non-thermal technology for the food 

and packaging industry. The effects of dielectric barrier discharge plasma on the surface, 

structural, thermal and moisture sorption properties of edible zein films have been examined. 

Plasma treatment increased the surface roughness and equillibrium moisture content of the 

zein film in a direct relationship with the applied voltage level. No significant difference in the 

thermal stability of the zein film is also observed after plasma treatment. Dielectric barrier 

discharge plasma treatments of zein film lead to a change in the protein conformation which is 

confirmed by X-ray diffraction and Fourier transform Infrared spectroscopy. The evaluation of 

films modifications by plasma discharge will contribute to enhance the in-package 

decontamination studies of food products by plasma. 

KEYWORDS: Zein, ACP, DBD, plasma, AFM, XRD, FTIR 



INTRODUCTION 

Biodegradable polymers from renewable resources have shown significant potential in 

packaging applications due to their environmental benefits. Whilst biodegradable packaging 

materials have limitations pertaining to properties and cost, the fact that certain chemicals 

used for synthetic packaging are endocrine disrupters and lead to greenhouse gases, the 

demand for eco-friendly wrappings has increased. 1,2 Zein, is a primary byproduct of the 

bioethanol industry thus justifying its practicality for efficient utilization of green biomass.  

Zein was first described by John Gorham in 1821 after isolating the protein from corn and in 

1909, the first patent was granted for preparing plastic from zein. 3,4 Zein is a water-insoluble 

prolamin present in corn endosperm cells with a high content of hydrophobic amino acids 

(leucine, proline and alanine). 5 Zein can be cast into films by dissolving it in a hydrated organic 

solvent, such as ethanol or acetone, and then drying. 6 However, films made of 100% zein are 

brittle, therefore plasticizers are added to improve flexibility. 7 Zein films are distinctive as they 

are tough, glossy, hydrophobic, greaseproof, and resistant to microbial attack ensuring its 

suitability as coatings, fibers and packaging films for food and pharmaceutical industries. 5,8 The 

effectiveness of using zein films as edible coating for maintaining post-harvest quality has been 

demonstrated for produce including; apple, broccoli  and tomato. 9-11 

Recently, Atmospheric Cold Plasma (ACP) has gained attention for the decontamination of fresh 

fruits and vegetables.12-14 ACP is characterized by the disequilibrium of temperature between 

electrons and ions and can be generated by various methods. 15 Dielectric barrier discharge 

(DBD) is one of the common methods to generate ACP. In most common DBD devices, plasma is 



generated between two plane-parallel metal electrodes among which at least one of the 

electrodes is covered by a dielectric layer. A filamentary discharge is formed by micro-

discharges or streamers, which develop on the dielectric layer surface. The dielectric layer plays 

an important role in limiting the discharge current to avoid an arc transition and to randomly 

distribute streamers on the electrode surface resulting a homogeneous treatment. 16 DBD 

plasma is well known for the modification of both the surface and bulk properties of polymers. 

17 The effects of DBD plasma on conventional polymers like polyethylene, polypropylene, 

poly(ethylene terephthalate) and polystyrene  have been reported but there is limited 

information available on the effects of DBD plasma on biodegradable polymers.18-22 The aim of 

this work is to characterize the effects of DBD ACP plasma treatments on surface, structural, 

thermal and moisture sorption properties of biodegradable corn zein films.  

EXPERIMENTAL 

Materials 

Zein films were prepared as described by Mastromatteo, Barbuzzi, Conte and Del Nobile 23 with 

slight modifications. 5g of zein (Sigma-Aldrich, Ireland) were dissolved into 26 mL of 95% 

ethanol at 50°C. 3g of glycerol (Sigma-Aldrich, Ireland) were added to the solution and stirred 

using a hotplate magnetic stirrer for 10 min. The film forming solutions were poured on Petri 

dishes (diameter 15 cm) and dried at ambient conditions under laminar flow hood until the 

solvent was completely evaporated and peeled off after 48 hours. The cast zein films had an 

average thickness of 385±10 µm. 

 



Plasma treatment 

A schematic of the experimental setup is presented in Figure 1. The DBD plasma source consists 

of two circular aluminium plate electrodes (outer diameter = 158 mm) over perspex dielectric 

layers (10 mm thickness). The applied voltage to the electrode was obtained from a step-up 

transformer (Phenix Technologies, Inc., USA). The input voltage to the primary winding was 

230V at a frequency of 50 Hz. A 2-mm-thick polypropylene sheet was used to stabilize the 

discharge. The distance between electrodes was 22 mm. The atmospheric air conditions at the 

time of treatment were 48 % relative humidity (RH) and 20°C. The samples were treated at 60, 

70 and 80 kV for 1, 2, 3, 4 and 5 minutes. 

 

FIGURE 1: Schematic of the experimental setup for DBD plasma system. 

Material characterization 

Atomic force microscopy (AFM) 

AFM measurements were carried out to observe the surface topography of the samples before 

and after DBD plasma treatment. The AFM used was MFP-3D BIO 1126 (Asylum Research, Santa 



Barbara, CA, USA) operated in intermittent contact (tapping) mode. The images were collected 

at a fixed scan rate of 0.5 Hz. The sampling rate was 512 lines. The data was processed using 

MF3D software (version 111111+1219). 

Water Sorption Kinetics 

Water sorption kinetics was determined by the method of Pereda, Aranguren and Marcovich 24. 

Briefly, the films were dried at 40°C for three days in a vacuum oven at 500mm pressure at 

25°C. After drying, films were DBD plasma treated and placed in a versatile environmental test 

chamber (Model MLR-350H, Sanyo Electric Biomedical Co. ltd., Japan) at a controlled humidity 

environment of 75% at 23°C. Samples were weighed gravimetrically at equal time intervals with 

a precision of ± 0.0001g. This experiment was performed in triplicate to ensure the 

reproducibility of the results. The moisture content (Mt) of films as a function of time was 

obtained from the total mass balance of the sample as a function of time as given in equation 1. 
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where Mt= moisture content of the sample at time t (%), Wt= weight of the sample at time t (g), 

W0= initial dry weight of sample (g). 

Thermogravimetric analysis (TGA) 

TGA analysis was performed with a DTG-60 instrument (Shimadzu, Ireland). Samples were 

heated at 10°C min-1 from room temperature to 700°C under nitrogen atmosphere (flow rate 



50 ml min-1). The initial degradation temperature (T5) was determined as the temperature at 

which 5% of mass was lost. 

Differential scanning calorimetry (DSC) 

DSC analysis was performed with a Differential Scanning Calorimeter DSC2010 with a 

refrigerating cooling system (RCS) (TA Instruments, AGB Scientific, Dublin, Ireland) under a dry 

nitrogen gas flow rate of 50 ml min-1. Approximately 3 mg samples were weighed in aluminium 

pans (40 µL) and subjected to heating-cooling cycles from -30°C to 200°C at 10°C min-1. Glass 

transition temperatures (Tg) and melting endotherm were determined in the first heating scan. 

X-ray diffraction (XRD) 

Wide-angle X-ray scattering (WAXS) was performed on a Bruker D8-Advance (USA) 

diffractometer, equipped with a Cu-Kα radiation source (λ = 1.546Å), operating at 40 kV and 40 

mA as the applied voltage and current, respectively. The incidence angle (2θ) was varied 

between 5°and 90° at a scanning rate of 2°min-1. 

Fourier transform infrared spectroscopy (FTIR) 

FTIR spectroscopy was carried out by using a Perkin Elmer FT-IR/FT-NIR spectrometer(Spectrum 

400) from 4000 to 400 cm−1 to measure any changes in the spectra intensities. A background 

spectrum was collected by keeping the resolution as 4 cm-1. After the background scan, treated 

and untreated film samples were placed in the sample holder and analyzed.  

 



RESULTS AND DISCUSSIONS 

Surface Properties 

DBD plasma is known for increasing the surface roughness of polymers due to the etching 

effect. Etching by DBD plasma can be due to chemical (breaking of bonds, chain scission, 

chemical degradation) or physical processes (physically removal of low molecular fragments).25-

27 The possibility of a change in surface roughness resulting from micro-discharge filaments 

cannot be also completely overruled. The AFM topography of the zein surface is shown in 

Figure 2 and the roughness parameters are shown in Table 1. It is evident that DBD plasma 

treatment increased the surface roughness of the zein film. Surface roughness was observed to 

be increasing with an increase in the applied voltage and treatment time. Similar increases in 

the surface roughness after plasma treatment have also been reported for common polymers 

such as; low-density polyethylene, polypropylene, poly(ethylene terephthalate) and poly(lactic 

acid). 19,28-30 



 

FIGURE 2: AFM images of the surface of untreated and plasma-treated cast zein films 

(a) Untreated, (b) 60 kV-5min, (c) 70 kV-5, (d) 80 kV-5. 

 

 

 

 



TABLE 1: Roughness parameters for control and DBD plasma treated cast zein films (RRMS: root 

mean square roughness (mean value), RPeak: Highest peak, RGroove: lowest groove). 

Voltage (kV) Time (min) RRMS (nm) RPeak (nm) RGroove (nm) 

Control 16.410 125.991 66.995 

60 5 52.044 295.146 337.616 

70 5 126.164 496.313 506.472 

80 5 132.869 641.017 651.892 

 

Water Sorption Kinetics 

Generally, protein films have poor moisture barrier properties due to their hydrophilic nature. 

Use of glycerol as plasticizer further increases the moisture sorption capacity due to its 

hydrophilic nature as shown by Lawton 31 and Wei and Baianu 32. Water diffusion into 

hydrophilic polymers is associated with relaxation of the polymer chain and an increase in the 

free volume. There are many empirical and fundamental models proposed in the literature for 

the absorption of water in hydrophilic films. In this study the Peleg equation was chosen for the 

empirical description of the sorption process. This equation relates the moisture content at a 

given time (Mt) with the initial moisture content (M0) as given in equation 2. 
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where t is time (min) and K1 and K2 are fitting parameters. K1 is Peleg’s rate factor (min/%wt.) 

and is associated with the initial absorption rate, K2 is Peleg’s capacity parameter (% wt.-1) and 

is related to the final absorption capacity. 

As a fundamental model describing the water absorption on films, Fick’s second law intended 

for a plane sheet with constant boundary conditions and uniform initial concentration was used 

as reported in equation 3. 
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where M(t) is the moisture content (%) at time t (s), Meq is the moisture at equilibrium 

conditions (%), D is the diffusion coefficient (cm2 s-1) through the swollen polymeric matrix and 

h is the film thickness (cm). 

Experimental moisture sorption data were fitted with the Peleg equation and Fick’s diffusion 

model and the fitting parameters are reported in Table 2 (Figure 3). An increase in the 

equillibrium moisture content was observed after the DBD plasma treatment. This increase was 

found to be directly correlated with the treatment voltage. For the control film the equillibrium 

moisture content was 10.2% while after plasma treatment at 80kV for 5 minutes, it increased to 

18.7%. In the present study the Peleg equation was found to describe the process better than 

the Fickian model as evident from the root mean square error (RMSE) values. This can be 

explained by the fact that, Fick’s model describes mass transport related to Brownian motions 

in which the penetrant flow is exclusively driven by a concentration gradient while water 

sorption in  moderately hydrophilic  polymers  is a complex  phenomenon due to the presence 



of specific interactions between water molecules and the hydrophilic sites on the polymer 

backbone.24 The system of DBD plasma discharge employed i

oxygen (ROS) and reactive nitrogen species (RNS) which has been reported in prev

studies.25 An increase in the surface oxygenation after plasma treatment 

many authors leading to an increase in the hydrophillicity of the sample.

hydrophillicity can be correlated with the increased 

FIGURE 3: Moisture sorption of zein films after DBD plasma treatment at 23

(solid lines represent the fitting from the Peleg equation, Control(

5min(+), 80kV-5min(○). 
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TABLE 2: Fitting Parameters of the Peleg Equation and Fickian model for DBD plasma treated 

zein films. 

Treatments Peleg Equation Fickian Model 

 K1(min/%wt.) K2(% wt.-1) RMSE Meq (%) D (cm2/s) RMSE 

Control 19.51 0.082 0.84 10.43 6.85 X 10-9 1.246 

60kV/5min 17.06 0.062 1.11 13.95 5.81 X 10-9 1.709 

70kV/5min 11.86 0.052 0.99 16.93 6.63 X 10-9 1.602 

80kV/5min 8.994 0.046 0.72 19.18 7.64 X 10-9 1.472 

 

Thermal Properties 

The initial degradation temperature of zein film was not significantly (p>0.05) different after 

DBD plasma treatment. The T5 for untreated control zein film was 148.1°C while after plasma 

treatment it was in the range of 146.3°C to 150.6°C. The initial step of mass loss for control film 

was found in the region of 78°C while after plasma treatment it was in the region of 82 to 93°C 

which also suggests the increase in water retention capacity of the zein film after plasma 

treatment. The results were different than the studies conducted on commercial biodegradable 

polymer like poly (lactic acid) where an increased thermal stability was observed.30 

In the DSC thermogram, no significant change was observed in Tg after plasma treatment and 

the values are in good agreement with other studies using glycerol as plasticizer.31,33  This 

implies that glycerol was effectively incorporated, by penetrating the protein network, forming 

hydrogen bonds with the protein molecules and thus increasing the separation between the 



protein chains. However, ACP treatment clearly changed the pattern of thermograms of the 

plasticized zein films, since an endothermic event between 50 and 55°C appears in all the 

treated samples, but it is not distinguishable in the control sample. This phenomenon was 

evident in the samples subjected to 5 min of treatment time (Figure 4). It is also noted that as 

voltage increases, enthalpies associated with this event are higher and peak shapes also differ, 

with three small peaks for samples treated at 60kV and one well-defined peak for sample 

treated at 80 kV observed. Given the fact that this event appears just before the glass transition 

in all the samples, it could be attributed to a breakdown of cross-linkages leading to a 

reorganization of the protein conformational structure as the molecules obtain sufficient 

freedom of motion.  



 

FIGURE 4: DSC thermogram of DBD plasma treated zein films. A-B: Voltage (kV)-Treatment time 

(min). 

X-ray diffraction (XRD) 

The WAXS pattern of zein films is shown in Figure 5. Two broad peaks appear in all the 

diffractograms at 2θ = 8.7 and 2θ = 19.3. By applying Bragg’s law, distances of 10.1 Å and 4.6 Å 

respectively were calculated. The smaller distance (4.6 Å) corresponds to the average backbone 

distance within the α-helix. The larger distance (10.1 Å) is related to the lateral α-helix packing 

or the mean distance among neighboring helices. 33-35 As evident from Figure 6a and 6b, after 

ACP treatment of zein films at 60kV and 70 kV there is a decrease in the intensity of the first 



peak.  Since the 10.1 Å is related to the inter-helix packing, the decline of intensity implies the 

disruption of zein molecular aggregates, which was also observed by Wang, Geil and Padua 34 

with the application of higher mechanical energy during film processing. At 80 kV, the reduction 

of the first peak’s intensity was only observed after 1 minute of treatment. The second spacing 

corresponding to 4.6 Å (peak at 2θ = 19.3 in Figure 6) was clearly less affected in all the plasma 

treated samples, suggesting that the helical configuration of zein was not disturbed by plasma 

treatment. 



 

FIGURE 5: X-ray diffractogram of zein film after DBD plasma treatment at (a) 60kV (b) 70kV and 

(c) 80kV. 



Fourier transform infrared spectroscopy (FTIR) 

In the amide I region, band around 1650 cm-1 can be assigned to α-helical and disordered 

conformation (stretching vibrations of the C=O bond of the amide) and the band at 1685 cm-1 is 

due to β-sheets.36 A broad peak was observed around 1650 cm-1, which is consistent with an α 

helical structure (Figure 6). The increase of intensity observed at this band after DBD plasma 

treatment suggests that the ACP treatment increased the amount of α-helical and disordered 

conformations. The result is in agreement with the DSC thermograms and XRD diffractogram 

which also suggested a change in the protein conformation after plasma treatment. An increase 

in the intensity of amide II band at 1540 cm-1 (bending vibrations of the N-H bond) after DBD 

plasma treatment was also observed. This change may be due to two main factors (i) more 

extensive hydrogen bonding between the protein, reducing the number of non-bonded peptide 

groups and (ii) a shift from β-sheet structure, which absorbs around 1525 cm-1 , to α-helical 

structure, which has its amide II maximum at 1545 cm-1. 37 Bands were also observed at the 

2800-3000 cm-1 range, 1447 cm-1 and 720 cm-1 which are attributed to the vibrations of 

attached hydrocarbon chains.38 



 

FIGURE 6: FTIR spectra of DBD plasma treated and control zein films in amide I and amide II 

region. A-B: Voltage (kV)-Treatment time (min). 

CONCLUSION 

DBD plasma treatment of zein film increases the surface roughness of the film. It also increases 

the equilibrium moisture content of the film. No significant difference in the thermal stability of 

zein was also observed for all the voltage levels and treatment times. ACP treatment led to a 

reorganization of the protein conformational structure as evident from the DSC and XRD 

results. FTIR spectrum also confirms the changes in the amide I and amide II region after plasma 



treatment. The use of different voltages and treatment times for specific food-package systems 

could be a promising environmentally-friendly alternative to tailor a stable in-package 

decontamination method using edible zein films. Further studies are suggested to understand 

the impact of these ACP induced changes on the packaging suitability of the zein film and 

ultimately on the shelf-life of food products. 
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