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The relationship between macular pigment and visual performance q
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a b s t r a c t

This study was designed to assess whether macular pigment optical density (MPOD) is associated with
visual performance. One hundred and forty-two young healthy subjects were recruited. Macular pigment
optical density and visual performance were assessed by psychophysical tests including best corrected
visual acuity (BCVA), mesopic and photopic contrast sensitivity, glare sensitivity, photostress recovery
time (PRT). Measures of central visual function, including BCVA and contrast sensitivity, were positively
associated with MPOD (p < 0.05, for all). Photostress recovery and glare sensitivity were unrelated to
MPOD (p > 0.05). A longitudinal, placebo-controlled and randomized supplementation trial will be
required to ascertain whether augmentation of MPOD can influence visual performance.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The macula is a specialized part of the retina and is responsible
for high spatial resolution and color vision (Hirsch & Curcio, 1989).
The carotenoids lutein (L), zeaxanthin (Z) and meso-zeaxanthin
(meso-Z) accumulate at the macula where they are collectively re-
ferred to as macular pigment (MP). (Bone, Landrum, Hime, Cains, &
Zamor, 1993) L and Z are of dietary origin, whereas meso-Z is not
normally found in a conventional diet, and is generated at the ret-
ina following L isomerization (Bone et al., 1993; Neuringer, Sand-
strom, Johnson, & Snodderly, 2004).

Age-related macular degeneration (AMD) is a disease of the
macula and results in the loss of central and color vision. AMD is
the most common cause of blindness in the elderly population in
the developed world (Congdon et al., 2004). It is now understood
that oxidative stress (Beatty, Koh, Henson, & Boulton, 2000; Win-
kler, Boulton, Gottsch, & Sternberg, 1999), exacerbated in part by
cumulative short-wavelength visible light exposure (Algvere, Mar-
shall, & Seregard, 2006; Fletcher et al., 2008), is important in the
aetiopathogenesis of AMD. MP is a short-wavelength (blue) light

filter (Bone, Landrum, & Cains, 1992) and a powerful antioxidant
(Khachik, Bernstein, & Garland, 1997), and is therefore believed
to protect against AMD. This hypothesis, referred to as the ‘‘protec-
tive” hypothesis of MP, has been studied and reported on exten-
sively (Loane, Kelliher, Beatty, & Nolan, 2008).

Beyond its ‘‘protective” hypothesis, MP’s optical and anatomic
properties have prompted the ‘‘optical” hypotheses of this pig-
ment. The ‘‘optical” hypotheses of MP were originally discussed
by Reading and Weale (1974) and later by Nussbaum, Pruett, &
Delori (1981) and include MP’s putative ability to enhance visual
performance and/or comfort by attenuation of the effects of chro-
matic aberration and light scatter, via its light-filtering properties
(Walls & Judd, 1933).

Several studies have evaluated, and reported on, the role of MP
in various aspects of visual performance including visual acuity,
contrast sensitivity, glare sensitivity, photostress recovery, critical
flicker fusion frequency (CFF), and color vision, among others
(Bartlett & Eperjesi, 2008; Engles, Wooten, & Hammond, 2007;
Hammond & Wooten, 2005; Kvansakul et al., 2006; Rodriguez-Car-
mona et al., 2006; Stringham, Fuld, & Wenzel, 2004; Stringham &
Hammond, 2007; Stringham & Hammond, 2008; Wooten & Ham-
mond, 2002). However, the findings from these studies are incon-
sistent, which might be explained, at least in part, by
methodological differences between studies.

In this manuscript, we present baseline data from the Collabo-
rative Optical Macular Pigment ASsessment Study (COMPASS),
and as such represents a cross-sectional evaluation of the relation-
ship between MP optical density (MPOD) and visual performance
and comfort across a broad and refined range of functional tests.

0042-6989/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2010.04.009
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2. Methods

2.1. Subjects

One hundred and forty-two healthy subjects volunteered to
participate in this study, which was approved by the research eth-
ics committees at both Waterford Institute of Technology (WIT)
and Dublin Institute of Technology (DIT). Informed consent was
obtained from each volunteer, and the experimental procedures
adhered to the tenets of the Declaration of Helsinki.

The study was conducted at WIT and DIT vision science lab-
oratories, located in the southeast and east of the Republic of
Ireland, respectively. Self-selected recruitment of subjects (WIT:
n = 61 and DIT: n = 81) was facilitated by poster and newsletter
advertisement, and also by word of mouth, in the respective lo-
cal communities. All subjects were aged between 18 and
41 years, in perfect general (self report) and ocular health, and
with visual acuity of at least 20/30 in the study eye. A typical
study visit lasted approximately four hours. Those aspects of vi-
sual performance assessed, and their sequence, are presented in
Table 1.

All subjects recruited into the study could be classed as naïve
observers to the tests carried out (with the exception of the visual
acuity test, with which all subjects were familiar). To optimize per-
formance, and also to minimize any potential learning effects on
performance, all subjects underwent a defined period of pre-test
training. This training consisted of careful explanation of the nat-
ure of each test, pictorial and/or video demonstration of the test
requirements and procedure, and was followed by a defined ses-
sion of pre-test practice.

2.2. Demographic, medical history, lifestyle and vision case history
questionnaires

The following details were recorded for each volunteer by ques-
tionnaire: demographics; general health status; smoking habits
(never, current or past); alcohol consumption (average unit weekly
intake); exercise (minutes per week); body mass index (BMI, kg/
m2); blood pressure; ethnicity; marital status; education;
occupation.

Vision case history included: time since last eye examination;
spectacles or contact lens use; history of ocular treatment or sur-
gery; history of occlusion therapy or visual training in childhood;
family history of eye disease; current problems with vision; asthe-
nopia associated with computer use; history of headaches.

2.3. Spectacle refraction, visual acuity, and ocular dominance

Each subject underwent precise spectacle refraction by an expe-
rienced optometrist to determine refractive error and best cor-
rected visual acuity (BCVA) for each eye. A computer generated
LogMAR test chart (Test Chart 2000 Pro; Thomson Software Solu-
tions) was used to determine BCVA at a viewing distance of 4 m,
using a Sloan ETDRS letterset. BCVA was determined as the average
of three measurements, with letter and line changes facilitated by
the software pseudo-randomization feature. Best corrected visual
acuity was recorded using a letter-scoring visual acuity rating, with
20/20 visual acuity assigned a value of 100. Best corrected visual
acuity was scored relative to this value, with each letter correctly
identified assigned a nominal value of one, so that, for example,
a BCVA of 20/20+1 equated to a score of 101, and 20/20�1 to 99.
The study eye was selected on the basis of ocular dominance,
determined using the Miles Test (Roth, Lora, & Heilman, 2002) with
the dominant eye chosen as the study eye, except in cases of ob-
served equidominance, in which case the right eye was selected.
All subsequent tests were conducted with the subject’s optimal
subjective refraction in place.

2.4. Glare sensitivity

Glare sensitivity was assessed using a Functional Vision Ana-
lyzer (Hohberger, Laemmer, Adler, Juenemann, & Horn, 2007) (Ste-
reo Optical Co., Inc., Chicago, IL) using the Functional Acuity
Contrast Test (FACT) Hitchcock, Dick, & Krieg, 2004; Terzi, Buhren,
Wesemann, & Kohnen, 2005) and a customized inbuilt glare
source. The test comprised linear, vertically oriented, sine wave
gratings presented at five different spatial frequencies including
1.5, 3, 6, 12 and 18 cycles per degree (cpd). Nine circular patches
were presented at each spatial frequency, the contrast of each
patch decreasing by 0.15 log units from the previous. Gratings
were tilted �15�, 0� or +15� with respect to the vertical, to keep
them within the orientation bandwidth of the visual channel. The
background was tapered into a grey field in order to keep retinal
illumination constant and avoid ghost imaging. Baseline contrast
sensitivity was determined on the basis of the lowest contrast
compatible with accurate determination of patch orientation
across all five spatial frequencies for mesopic (3 cd m�2) condi-
tions, initially in the absence of a glare source. Subjects were asked
to identify grating orientation, starting with the patch at highest
contrast, and continuing until identification was no longer possible
due to reducing contrast. Subjects were instructed not to guess, but
to respond ‘‘don’t know” if patch orientation could not be correctly
identified.

Glare sensitivity was assessed using a radial glare source con-
sisting of 12 white LED’s arranged circumferentially in an oval pat-
tern surrounding the grating charts (ranging from 4.5� to 6� from
central fixation). Two customized intensity settings were used to
determine the effect of different levels of glare on contrast sensitiv-
ity. Glare source settings were set at a medium intensity of 42 Lux
and a higher intensity of 84 Lux. All correct responses were entered
into the Eyeview software provided, and contrast sensitivity scores
for no glare, medium and high glare conditions were determined
for the respective spatial frequencies.

2.5. Contrast sensitivity function

A Dell Dimension 9200 computer and a Metropsis Visual Stim-
ulus Generation device (VSG (ViSaGe S/N: 81020197), Cambridge
Research Systems Ltd., Cambridge, U.K.) were used to generate
and control the stimuli. The VSG provided 14-bit output resolution
per phosphor. The stimuli were displayed on a 1900 ViewSonic pro-
fessional series p227f color CRT flat screen monitor with a frame

Table 1
Parameters assessed and their sequence for a typical study visit.

Description Time
(min)

Information leaflet discussion and informed consent 10
Collection of blood for serum carotenoid analysis 10
Demographic, medical history, lifestyle and vision case history

questionnaires
20

Spectacle refraction, visual acuity, and ocular dominance 25
Color vision 20
Glare sensitivity 10
Visual function questionnaire 10
Contrast sensitivity 25
Break �30
Macular pigment optical density spatial profile 30
Dietary questionnaire 30
Short wavelength automated perimetry 15
Photostress recovery 15
Fundus and iris photography 10

Total time 260
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rate of 119.98 Hz. The resolution of the monitor was set to
1024 � 769 pixels. Non-linearities in the screen luminance output
were eliminated by gamma correction prior to testing using a pho-
tometer system (Opti-Cal; Minolta, Japan). The Metropsis software
calculated the inverse curves required to correct for the monitor’s
non-linearities.

The Metropsis contrast sensitivity system generated luminance
modulated sine gratings (Gabor patches). The orientation of the
stimuli was vertical. The Gabor patches were presented on the
CRT monitor and subtended a visual angle of 4.2�. The mean lumi-
nance was used as the background luminance. The Gabor had a
two-dimensional spatial Gaussian envelope and was radially sym-
metrical with equal standard deviations, dx and dy.

Contrast sensitivity functions were determined under both me-
sopic and photopic conditions. Each subject was seated at a fixed
viewing distance of 1.5 m from the CRT monitor. Natural pupils
were used throughout the experiment. The non-dominant eye
was occluded. Testing was carried out in a light free environment.
The subject was dark adapted for 5 min and a 5-min training ses-
sion was given prior to testing under mesopic conditions. Subject
responses were recorded using a handheld responder (CR6, Cam-
bridge Research Systems Ltd., Cambridge, UK), which communi-
cated with the VSG device via an infra red link. A four alternate
forced choice testing system was used, with four possible target
locations. The stimuli were randomly presented at 2� spatial offset
from the central cross target. The subject indicated the location of
the target in relation to the fixation cross using the appropriate
button on the responder box. The subject’s contrast sensitivity
was determined for five different spatial frequencies (1.0, 4.1,
7.5, 11.8 and 20.7 cpd) under both mesopic and photopic condi-
tions, all at a mean luminance of 3 cd m�2 (mesopic) and
100 cd m�2 (photopic).

A linear staircase method was used to determine the contrast
threshold. The first Gabor at a particular location was presented
at an initial contrast level where it was anticipated that the obser-
ver would be able to detect the Gabor patch for that particular spa-
tial frequency (initial contrast settings were informed by a brief
pilot study involving five young healthy subjects). Subsequently,
the contrast of the Gabor patch was varied using an adaptive stair-
case procedure, which was computer controlled and depended
upon the subject’s responses. The stimulus contrast was reduced
in steps of 0.3 log units until the subject did not detect the Gabor
patch (first reversal). The contrast was subsequently increased by
0.15-log unit steps until the subject saw the Gabor patch and re-
sponded correctly (second reversal). The Metropsis software calcu-
lated the contrast threshold for each location and spatial frequency
by taking the mid-point between the mean for peaks and troughs
for 12 reversal points. The standard deviation was calculated by
taking the deviations of the peak reversals from their peak means
and using the average square of these deviations to calculate a
peak variance. This method was repeated for the troughs. The
square root of both variances were then calculated and averaged
to provide the threshold standard deviation.

For each subject, the Metropsis software plotted the inverse of
the contrast threshold against the range of spatial frequencies
tested to provide a contrast sensitivity function under both meso-
pic and photopic conditions.

2.6. Photostress recovery

Photostress recovery time (PRT) was calculated using a macular
automated photostress (MAP) test. (Dhalla & Fantin, 2005; Dhalla,
Fantin, Blinder, & Bakal, 2007) MAP is a novel photostress method
for the evaluation of macular function using the Humphrey� field
analyzer (Model 745i Carl Zeiss Meditec Inc. Dublin, CA, USA).
The foveal threshold feature of the field analyzer was used to

establish baseline foveal sensitivity as the average of three consec-
utive foveal sensitivity measurements recorded in decibels (dB),
with each dB representing a 0.1 log unit sensitivity variation.

Following baseline foveal sensitivity calculation, the subject
was exposed to a photostress stimulus, which consisted of a 5-s
exposure to a 300-W, 230 V tungsten lamp head from a viewing
distance of one meter. The spectral irradiance in the wavelength
range, 300–800 nm, was measured using a Bentham DMc 150 dou-
ble monochromator scanning spectroradiometer. The input optic
consisted of a very high precision cosine response diffuser (f2 er-
ror < 1%) and the measurements were performed in 1 nm intervals.
Calibration was carried out with reference to a quartz-halogen
lamp traceable to the UK National Physical Laboratory. The illumi-
nance at 1 m was obtained by using the photopic weighting func-
tion. The spectral irradiance at 1 m fixation distance from the
photostress lamp is presented in Fig. 1.

Immediately post-photostress, a continuous and timed cycle of
foveal sensitivity measurements were conducted and recorded for
each subject. The reduction in foveal sensitivity from baseline,
along with the time taken to recover to baseline foveal sensitivity,
was recorded.

2.7. Macular pigment optical density

We used the Macular Densitometer™, a device developed and
originally described by Wooten, Hammond, Land, and Snodderly
(1999) to measure MPOD, including its spatial profile across the
retina (i.e. 0.25�, 0.5�, 1.0�, 1.75� and 3� of retinal eccentricity).
The Macular Densitometer™ uses heterochromatic flicker photom-
etry (HFP) to obtain a valid measure of MPOD at a given retinal
location (Hammond, Wooten, & Smollon, 2005). This method has
recently been refined and is now referred to as customized HFP
or cHFP. For a detailed description of this protocol please see recent
publications by our research group and others (Loane, Stack,
Beatty, & Nolan, 2007; Nolan et al., 2009; Stringham et al., 2008).
One subject (cwit2553) was excluded from analysis due to inability
to use the Densitometer to obtain reliable MPOD data.

2.8. Fundus photography

Fundus photographs were obtained in both eyes using a NIDEK
non-mydriatic fundus camera (AFC-230). Fundus photographs
were assessed by a qualified optometrist to exclude fundoscopical-
ly evident retinal/nerve pathology.

Fig. 1. Spectral Irradiance at 1 m fixation distance from Arri 300 photostress lamp.
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2.8.1. Reliability testing of methods
Given that all subjects recruited into the study were classed as

‘‘naïve” to the tests carried out (with the exception of the visual
acuity test), we conducted a pilot reliability study prior to the
study commencing. Following pre-test training (see above), repeat
testing on 10 subjects at three separate study visits (over a 10 day
period) was conducted. The intraclass correlations (ICC) obtained
for all methods were high and are presented in Table 2. In addition,
repeat testing of radiance values obtained to compute MPOD val-
ues had previously been conducted by our research group. The data
from this investigation concluded that the radiance values ob-
tained using the Densitometer were very high (i.e. ICC in the range
of 0.93–0.96; see recent publication by (Kirby et al., 2009) In addi-
tion, we conducted Bland Altman analyses of differences in MPOD
at eccentricities 0.25�, 0.5�, 1� and 1.75�, measured at two separate
study visits. The limits of agreement, at all eccentricities, were in
the range 0.06–0.07 units away from the mean difference, which
seems satisfactory. The coefficient of repeatability ranged from
about 6% at the central eccentricities (0.25�, 0.5�), to 19.4% at 1.75�.

Mean differences in MPOD between study visits were 0.02,
�0.01, 0.02, and 0.0 at eccentricities 0.25�, 0.5�, 1� and 1.75�,
respectively. The first two of these differences were statistically
significant, at the 5% level, using the paired t-test, suggesting bias;
clinically, however, a bias of this very small magnitude is of no
practical importance.

2.9. Statistical analysis

The statistical software package SPSS (version 17) was used for
analysis. All variables investigated exhibited a typical normal

distribution. Mean ± SD’s are presented in the text. Pearson
correlation coefficients were calculated to investigate bivariate
relationships and partial correlation coefficients when controlling
for confounding variables. We used the 5% level of significance
throughout our analysis. A statistical power analysis determined
a minimum sample size of 91 subjects in order to achieve 99%
power with a one-tailed 5% test, with an affect size of q
(rho) = 0.4. The 142 subjects recruited exceed these stringent sta-
tistical requirements, but more importantly, allowed for contin-
ued follow up (and standard drop-out) as part of the COMPASS
lutein interventional study (ISRCTN number = 35481392), which
was designed to investigate whether MPOD augmentation, fol-
lowing lutein supplementation, improves visual performance. Of
note, this study is currently on-going.

3. Results

The demographic, medical, lifestyle, anthropometric, and vi-
sion-related data of the 142 subjects recruited into the study are
summarized in Table 3. No subject was excluded from the study
on the basis of fundus findings. The mean (±SD) age of the sample
was 29 (±6) and ranged from 18 to 41 years. The mean (±SD) BMI
was 25 (±4) and ranged from 19 to 43.

3.1. Macular pigment optical density

The mean (±SD) MPOD, at all degrees of retinal eccentricity
measured, is summarized in Table 4. MPOD at peak (0.25� eccen-
tricity) was positively and significantly correlated with MPOD at

Table 2
Reproducibility of visual performance tests used in COMPASS, assessed using intraclass correlation coefficient (ICC).

Test Visit 1 Visit 2 Visit 3 ICC

Mesopic CSFb with no glare (cpd)
1.5 1.55 (±0.21) 1.68 (±0.23) 1.62 (±0.20) 0.683
3 1.67 (±0.27) 1.74 (±0.24) 1.77 (±0.23) 0.852
6 1.51 (±0.58) 1.64 (±0.27) 1.61 (±0.25) 0.682
12 0.78 (±0.61) 0.88 (±0.52) 0.97 (±0.57) 0.867
18 0.56 (±0.45) 0.43 (±0.53) 0.39 (±0.46) 0.843

Mesopic CSF under medium glare lights (cpd)
1.5 1.47 (±0.20) 1.55 (±0.22) 1.45 (±0.21) 0.626
3 1.31 (±0.54) 1.52 (±0.34) 1.43 (±0.57) 0.533
6 1.03 (±0.77) 1.16 (±0.69) 1.18 (±0.68) 0.893
12 0.49 (±0.59) 0.60 (±0.58) 0.51 (±0.62) 0.770
18 0.19 (±0.37) 0.25 (±0.39) 0.33 (±0.41) 0.767

Mesopic CSF under high glare lights (cpd)
1.5 1.25 (±0.52) 1.34 (±0.32) 1.28 (±0.52) 0.829
3 1.26 (±0.55) 1.33 (±0.56) 1.30 (±0.51) 0.942
6 1.01 (±0.77) 0.94 (±0.71) 0.98 (±0.74) 0.978
12 0.48 (±0.57) 0.33 (±0.50) 0.36 (±0.55) 0.485
18 0.19 (±0.37) 0.07 (±0.20) 0.13 (±0.27) 0.707

CSF by metropsis mesopic (cpd)
1 1.54 (±0.10) 1.55 (±0.15) 1.60 (±0.11) 0.432
4.1 1.73 (±0.15) 1.77 (±0.13) 1.77 (±0.17) 0.399
7.5 1.32 (±0.09) 1.31 (±0.15) 1.34 (±0.18) 0.683
11.8 0.83 (±0.14) 0.84 (±0.18) 0.82 (±0.23) 0.732
20.7 0.22 (±0.07) 0.24 (±0.09) 0.25 (±0.09) 0.746

Photopic CSF (cpd)
1.0 1.60 (±0.17) 1.58 (±0.15) 1.59 (±0.15) 0.645
4.1 1.95 (±0.13) 1.98 (±0.13) 1.97 (±0.13) 0.662
7.5 1.75 (±0.13) 1.75 (±0.17) 1.78 (±0.18) 0.632
11.8 1.29 (±0.21) 1.34 (±0.25) 1.39 (±0.25) 0.727
20.7 0.43 (±0.24) 0.43 (±0.19) 0.41 (±0.20) 0.857

Photostress recovery test 37.41 (±1.30) 38.41 (±1.52) 38.08 (±1.68) 0.560

a ICC = intraclass correlation coefficient.
b CSF = contrast sensitivity function.
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all other degrees of retinal eccentricity (r = 0.472–0.919, p < 0.01
for all).

3.2. MPOD and its relationship with BCVA

The mean (±SD) BCVA of the study group was 112 (±3). There
was a positive and statistically significant relationship between
MPOD at each eccentricity measured and BCVA (r = 0.237–0.308,
p < 0.01 for all). The relationship between MPOD at 0.25� of eccen-
tricity and BCVA is presented in Fig. 2.

3.3. MPOD and its relationship with contrast sensitivity

The relationships between MPOD at each eccentricity measured
and log mesopic and photopic contrast sensitivity at different spa-
tial frequencies are presented in Table 5.

The strongest relationship was seen between MPOD at 0.25�
and log contrast sensitivity at 7.5 cpd for mesopic conditions
(r = 0.22, p < 0.01) (Fig. 3).

3.4. MPOD and its relationship with glare sensitivity

There was no statistically significant relationship between
MPOD, at any of the eccentricities measured, and mesopic contrast
sensitivity observed under medium or high glare conditions for any
spatial frequency (p > 0.05, for all), with the exception of the neg-
ative and statistically significant relationship between peripheral
MPOD (at 1.0�, 1.75� and 3.0�) and mesopic contrast sensitivity un-
der medium glare conditions (r = �0.178 to �0.213, p < 0.05).

3.5. MPOD and its relationship with PRT

The mean (±SD) foveal sensitivity of the study group was 38.1
(±1.4) dB. The mean (±SD) sensitivity post-photostress was 27.7
(±2.9) dB, representing a mean sensitivity reduction of 27.3% from
baseline, across the entire study group. The mean (±SD) PRT

Table 3
Demographic, medical, lifestyle, anthropometric, and ocular related data for the entire
study group.

Characteristic na

Sex
Male 74
Female 68

Medical history
Diabetes 1
High blood pressure 4
High cholesterol 6
Angina 0
Stroke 0

Family history of eye diseases
Unknown 3
AMD 22
Cataract 12
Glaucoma 28
Retinal problem 4
None 82

Smoking habitsb

Never smoked 86
Ex-smoker 25
Current smoker 31
Exposed second-hand smoke 17

BMI
Desirable weight (BMI < 25) 83
Overweight (BMI 25–30) 42
Obese (BMI > 30) 17

Ocular dominance
Right 86
Left 53
Equidominant 3

BCVA
<100 1
100–105 3
>105–110 42
>110–115 79
>115–120 17

a n = sample size.
b Smoking habits: ex-smoker = smoked P 100 cigarettes in lifetime but none in

last 12 months; current smoker = smoked P 100 cigarettes in lifetime and at least 1
cigarette per week in last 12 months; exposed second-hand smoke = commonly
exposed to second-hand smoke at home or in the work place.

Table 4
MPOD at all measured degrees of retinal eccentricity, for the entire study group.

Retinal eccentricitya (�) MPODb

0.25 0.48 (±0.19)
0.5 0.39 (±0.17)
1 0.21 (±0.12)
1.75 0.09 (±0.09)
3 0.09 (±0.07)

Average 0.25 (±0.12)

n = 141.
a Degrees retinal eccentricity.
b MPOD = mean (±SD) macular pigment optical density.

Fig. 2. The relationship between MPOD at 0.25� and BCVA.

Table 5
The relationships between MPOD and mesopic and photopic contrast sensitivity at
different spatial frequencies.

Spatial
frequency

MPOD
0.25�

MPOD
0.50�

MPOD
1.0�

MPOD
1.75�

MPOD
3.0�

Mesopic
1 �0.019 �0.034 �0.120 �0.200* �0.097
4.1 0.065 0.016 �0.046 �0.080 �0.093
7.5 0.220** 0.192* 0.138 0.102 0.111
11.8 0.184* 0.183* 0.122 0.084 0.031
20.7 0.139 0.113 0.028 0.089 0.024

Photopic
1.0 0.210* 0.159 0.108 0.160 0.081
4.1 0.124 0.100 0.007 0.067 0.053
7.5 0.176* 0.167* 0.115 0.133 0.101
11.8 0.193* 0.187* 0.135 0.131 0.114
20.7 0.153 0.153 0.082 0.132 0.117

* p < 0.05.
** p < 0.01.

J. Loughman et al. / Vision Research 50 (2010) 1249–1256 1253



(recorded as the time taken for foveal sensitivity to recover to 95%,
or typically to within 2 dB, of the baseline value) was 135.8
(±63.9) s. There was no statistical relationship between MPOD at
any of the eccentricities measured and either foveal sensitivity
reduction (%) caused by photostress (p > 0.05, for all), or PRT
(p > 0.05, for all).

4. Discussion

Given the central and pre-receptoral location (Snodderly, Auran,
& Delori, 1984; Trieschmann et al., 2008) and the optical properties
of MP (Bone et al., 1992), it is reasonable to hypothesize that MP
would impact on visual performance, via its potential to attenuate
chromatic aberration and light scatter (Nussbaum et al., 1981;
Reading & Weale, 1974; Walls & Judd, 1933; Wooten & Hammond,
2002). In this study, we investigated the relationship between
MPOD at various degrees of eccentricity (i.e. at 0.25�, 0.5�, 1.0�,
1.75� and 3� of retinal eccentricity) and clinically important param-
eters of central visual performance including BCVA, contrast sensi-
tivity, glare sensitivity, and photostress recovery.

We report that MP (at each degree of eccentricity) is positively
associated with BCVA in our study population, which suggests that
MP may play a role in the optimization of visual acuity under phot-
opic conditions; however, it is important to note that the r values
ranged from 0.237 to 0.308 and the observed relationships can
therefore only explain 5.6–9.5% of the variability. This finding is
all the more provocative given that subjects in the current study
were young, free from ocular pathology, and uniformly demon-
strated high visual acuity. Indeed, It is somewhat intriguing to note
that this statistically significant relationship was detected in a pop-
ulation sample where the majority of participants exhibited aver-
age to high levels of MP (at 0.25� of eccentricity). Indeed, only a
very small number of subjects (�13.4%) had central MPOD of less
than 0.3 in the current study. It has been previously suggested that
levels above 0.3 might be superfluous to visual performance, due to
the non linear nature of the effect of MP on vision (Reading &
Weale, 1974).

It is important to point out that extensive efforts were made by
the COMPASS study investigators to probe the limits of visual acu-
ity, so that even the most subtle contributions of MP to visual per-
formance might be detected. This was facilitated by customization
of the vision test charts (i.e. inclusion of additional letter sizes to
allow testing to a limit equivalent to 20/8) and recruitment of

experienced optometrists to perform functional evaluations at
both study sites (WIT and DIT). Best corrected visual acuity among
the study participants ranged from a minimum of 99 (20/20�1) to a
maximum of 118 (20/8�2). MP, it appears, could account for the
theoretical refinement of acuity by up to 0.1 log units in the study
sample here. This represents a substantial contribution and might
be equated to the elimination of up to 0.25 dioptres of optical defo-
cus, and appears to be consistent with previously reported limiting
effects of chromatic aberration on the spatial modulation transfer
function (Thibos, Bradley, & Zhang, 1991).

This finding is, however, somewhat at odds with previously re-
ported investigations of the ‘‘acuity hypothesis” Engles et al. (2007)
explored the relationship between MPOD and both gap and vernier
acuity under ‘‘photopic” conditions (Engles et al., 2007). They re-
ported that neither gap acuity nor vernier acuity was significantly
related to MPOD. Their findings however are not directly compara-
ble to the results described here, and for a number of reasons. Spe-
cifically, their adopted background luminance levels were in the
low photopic range (i.e. 17 cd m�2 for the achromatic condition,
and 15.7 cd m�2 for the chromatic condition. Also, gap, vernier
and recognition acuity measures are not directly interchangeable,
so it is entirely plausible that findings with relation to the acuity
hypothesis might differ when different visual attributes are as-
sessed. Despite the aforementioned methodological differences,
the conflicting outcomes do serve to emphasize the challenges
inherent in the evaluation of the role of MP on visual performance,
particularly by associative means.

We also report that central MPOD (i.e. at 0.25� and at 0.5� of
eccentricity) is positively and significantly related to both mesopic
and photopic contrast sensitivity at intermediate spatial frequen-
cies (i.e. 7.5 and 11.8 cpd). Central MP appears to influence sensi-
tivity at spatial frequencies to which the visual system is highly
tuned (Campbell & Robson, 1968). However, and similar to the
association between MP and BCVA, it is important to note that
the r values for MP’s association with contrast sensitivity ranged
from 0.167 to 0.220 and therefore the observed relationships can
only explain 2.8–4.8% of the variability.

For photopic conditions, this finding might be attributable to
the attenuation of the effects of chromatic aberration and light
scatter, whereby image refinement potentially cause lateral inhib-
itory surround responses to be dampened, and the resultant gan-
glion cell response optimized (Kuffler, 1953). Under mesopic
conditions, it is more likely that enhanced visual performance is
a consequence of the selective diminution of rod mediated signals.
While rod and cone photoreceptors operate interactively in the
high mesopic conditions employed here (Kuffler, 1953), rods re-
main optimally sensitive to shorter wavelengths than cones
(explaining the Purkinje shift in peak retinal spectral sensitivity to-
wards blue under mesopic conditions). The pre-receptoral absorp-
tion of short-wavelength light by MP might, therefore, serve to
attenuate rod activity and allow cone-mediated vision (which typ-
ically exhibits better contrast sensitivity (Puell, Palomo, Sanchez-
Ramos, & Villena, 2004), to dominate further into the mesopic
range. This theory is supported by the limited nature of the rela-
tionship observed between MP and contrast sensitivity, confined
to the most central anatomic locations where MP is highest and
cone activity predominates.

Of note, this is the first study to report on the association be-
tween MP and contrast sensitivity in a young healthy population
(not confounded by dietary supplementation or ocular pathology).
Our findings are consistent with those of Kvansakul et al. (2006)
who reported that MP augmentation, via supplementation, en-
hances contrast acuity thresholds under mesopic conditions.

Finally, we found that MPOD was not related to either glare sen-
sitivity or photostress recovery, as assessed here. At first glance,
these findings might appear to conflict directly with a number of

Fig. 3. The relationship between MPOD at 0.25� and log contrast sensitivity at
7.5 cpd for mesopic conditions.
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recent studies, which have reported positive and statistically sig-
nificant associations between MP and several parameters of visual
performance including: visual discomfort (Stringham, Fuld, &
Wenzel, 2003), photophobia (Wenzel, Fuld, Stringham, & Curran-
Celentano, 2006), veiling glare (Stringham & Hammond, 2007)
and photostress recovery (Stringham & Hammond, 2007; String-
ham & Hammond, 2008). The cited series of experimental analyses
are consistent with the rationale whereby MP attenuates the ef-
fects of blue light, which is both valid and important. Fundamental
methodological differences may, however, explain the differences
between those reports and our observations.

Firstly, all the above studies employed a Maxwellian-view opti-
cal system to generate and present stimuli. While the rationale for
doing so remains sound, in that it eliminates pupil diameter and
pupil responses as a potential confounding factor, it is difficult to
extrapolate their findings into a natural environment, outside of
the laboratory, where changes in pupil diameter for example, are
a natural consequence of the luminance changes typically observed
on a daily basis, and may confer some level of protection against
the deleterious effects of glare and excessive light stimulation.
However, adoption of a natural pupil introduces other difficulties.
Most importantly, the individual variation in pupil size, and the
consequential variation in retinal illuminance, clouds the interpre-
tation of MP’s contribution to visual performance under glare con-
ditions. It should therefore be conceded, that for a cross-sectional
evaluation, the natural pupil is less appropriate for a comprehen-
sive evaluation of the role of MP, if any, in terms of its contribution
to visual comfort and glare attenuation.

Secondly, the studies cited above invariably employed stimuli
containing a strong short-wavelength blue light component. Again,
there is an obvious rationale for doing so, as MP predominantly ab-
sorbs blue light. However, the concept of the environmental valid-
ity of such stimuli must again be questioned. Specifically, the most
common light sources employed in industrial, commercial and
home lighting systems typically contain significantly less blue light
than those employed in cited studies. Tungsten and tungsten–hal-
ogen filament lighting systems, in fact, contain a minimal blue light
component (see Fig. 1). The absence of a strong blue light compo-
nent in the photostress lamp, employed here, may partially explain
the absence of any association between MP on PRT observed in our
study. Our findings, therefore, in fact corroborate and extend the
findings of Stringham et al. (2004) and Stringham and Hammond
(2007) in that the associations between MP and glare are strongly
wavelength dependent, and the influence of MP on glare disability
is critically dependent on the spectral output of the source. It is
worth noting, however, that the current trend for change to com-
pact fluorescent and light emitting diode installations, which typ-
ically emit significantly more blue light (unpublished data from
our laboratory suggests a twofold increase in blue light irradiance
for compact fluorescent bulbs compared to tungsten), may render
the role of MP for visual performance, if any, ever more important.

In conclusion, visual performance, as assessed by visual acuity
and contrast sensitivity measures, appear to be weakly associated
with MPOD. However, photostress recovery and visual perfor-
mance under glare conditions were unrelated to this pigment.
The lack of consistency between our findings and those of others
possibly reflects the difficulties inherent in investigating the role
of MP with respect to visual performance using a study of cross-
sectional design. Fundamental experimental design issues for vi-
sual performance evaluation must also be considered. There are
no gold standard techniques, no means to accurately simulate
the broad range of environmental conditions experienced on a
daily basis, so the selection of individual test parameters will
influence both the results of the investigation, and any subse-
quent comparison with previous experimental results. The results
of the current investigation should be interpreted with full

appreciation of its design limitations, and conclusions should
therefore be restricted to the specific testing conditions employed
herein.

Visual acuity has been shown to relate to quality of life (Datta et
al., 2008) and is important in our highly visual society, where the
demands for high quality visual resolution are constant. Contrast
sensitivity correlates with various functional vision tasks such as
mobility orientation, balance control, driving, face perception and
reading performance (Owsley & Sloane, 1987; Owsley et al.,
2002), and has been established as an important measure of visual
function, which is related to quality of life (Owsley & Sloane, 1987).
These associations between MP and visual performance are likely
to apply equally and possibly more substantially, in an older pop-
ulation, where, for example, the incidence of driving accidents and
falls directly relate to visual performance (Owsley et al., 2002).

In summary, a placebo-controlled, randomized, L-based supple-
mentation trial, designed to investigate if augmentation of MPOD
enhances visual performance and/or comfort, is required to more
adequately address this critical research question, and fully ex-
plore the proposed ‘‘optical” hypotheses of MP.
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